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Ring Polymer Dynamics Are Governed by a Coupling between
Architecture and Hydrodynamic Interactions
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ABSTRACT: The behavior of linear polymer chains in dilute
solution flows has an established history. Polymers often
possess more complex architectures, however, such as
branched, dendritic, or ring structures. A major challenge lies
in understanding how these nonlinear chain topologies affect
the dynamic properties in nonequilibrium conditions, in both
dilute and entangled solutions. In this work, we interrogate the
single-chain dynamics of ring polymers using a combination of
simulation, theory, and experiment. Inspired by recent
experimental results by Li et al, we demonstrate that the
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presence of architectural constraints has surprising and pronounced effects on the dynamic properties of polymers as they are
driven out of equilibrium. Ring constraints lead to two behaviors that contrast from linear chains. First, the coil—stretch transition
occurs at larger values of the dimensionless flow strength (Weissenberg number) compared to linear chains, which is driven by
coupling between intramolecular hydrodynamic interactions (HI) and chain architecture. Second, a large loop conformation is
observed for ring polymers in extensional flow at intermediate to large Weissenberg numbers, and we show that this open loop
conformation is driven by intramolecular HI. Our results reveal the emergence of new paradigms in chain architecture—
hydrodynamic coupling that may be relevant for solution-based processing of polymeric materials and could provide new
opportunities for precise flow-based polymer conformation control to guide material properties.

B INTRODUCTION

Ring polymers are intensely studied in polymer physics,
primarily due to their status as a model system for
understanding the role of chain topology.'™ Circular (or
ring) polymers provide the opportunity to probe some of the
most fundamental features of long-chain macromolecules. For
example, the absence of chain ends leads to compelling
questions with regards to entanglements: how does an
entangled melt of rings relieve stress, given the absence of
free chain ends? How does this affect the flow properties of
ring-based materials? Over the past several years, a large
amount of literature has been devoted to these questions.”*~*
The essence of the question lies in understanding how a
polymer that has similar local random walk statistics compared
to a linear polymer is altered by the constraint that the overall
chain must return to its starting point.l_3

These fundamental questions in ring polymer dynamics are
typically considered in the context of concentrated sys-
tems; " "® however, recent work has begun to probe the
dynamic behavior of single ring polymer chains in dilute
solution.”™"" Such systems are motivated by the success of
single-chain dynamics, which has informed polymer dynamics
for a half century. This field stemmed from pioneering work by
Rouse and Zimm that established the language of polymer
relaxation and dynamics in the linear regime.'”"’ Moving
forward, additional work by others including Peterlin and De
Gennes'"'® established the theoretical principles of how
polymers stretch in fluid flows. The fundamental competition
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relevant for nonequilibrium polymer dynamics is between
hydrodynamic flow fields that stretch a polymer and the
entropic forces that drive a polymer to relax back to a random
coil. This competition leads to a coil—stretch transition in
extension-dominated flows and a weaker second-order
transition in simple shear flows.'®"> The details of this
transition are sensitive to hydrodynamic interactions (HI)
between polymer segments in solution.'” In essence, intra-
molecular HI leads to hydrodynamic screening in the coiled
state, with hydrodynamic friction or drag increasing as a
polymer chain unravels in flow. This conformation-dependent
drag ultimately gives rise to a first-order-like coil-to-stretch
transition for chains in elongation flows.">'® From this
perspective, the single-chain problem has contributed sub-
stantially to our understanding of polymer dynamics and
rtheology, both as a limiting case that informs concentrated
polymer dynamics and as a technologically relevant physical
description of polymers useful for solution processing or for
flow-based polymer manipulation.' """

Bulk rheological and rheooptical techniques such as
birefringence and light scattering have provided a wealth of
information regarding polymer chain dynamics."> Bulk-level
techniques, however, can only indirectly infer molecular
features of polymer stretching dynamics by measuring bulk
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materials properties. In recent years, single molecule
fluorescence microscopy has enabled direct imaging of polymer
chains and visualization of dynamic conformational evolution in
nonequilibrium fluid flow."”'® This approach has led to the
ability to directly probe the fundamental predictions of polymer
dynamics: single-chain diffusivity,"* conformational relaxa-
tion,”*™** flow-driven chain stretching in both elongation and
shear flows,'**~%° chain tumbling,26 confinement effects,”” and
conformational chain hysteresis predicted decades earlier.'®
New experimental and theoretical efforts have focused on
nonlinear architectures,'”""** collapsed %)olymers,zx_31 knotted
polymers,”>** and nondilute solutions."

Compared to linear chains, ring polymers have received less
attention in the context of single-chain dynamics,”**° despite
substantial literature considering their melt properties.”*™®
Nevertheless, the fundamental question of topological con-
straints in ring polymers remains important in the case of
single-chain dynamics. This article exposes surprising results
that arise in the elongational flow-induced stretching of ring
polymers in strong flows.” In particular, we observe a coupling
between chain architecture of ring polymers and intramolecular
HI between polymer segments, which becomes highly non-
trivial and leads to changes in the critical flow strength at the
onset of the coil—stretch transition. Interestingly, these
interactions also lead to a transient looped conformation in
the fully stretched polymer ring. This work addresses recent
observations in the literature regarding ring polymers in dilute
solution flows’ and suggests that the coupling between
hydrodynamics and chain connectivity is an area with rich
phenomenology in the context of polymers with nonlinear
topologies.

B METHODS

Simulation. We use standard Brownian dynamics (BD)
methods to model a single ring polymer in an implicit solvent
undergoing an elongational flow.'””**” The model considers
the polymer chain to be composed of N beads of index i at
positions r, We follow the trajectory of these beads in a
potential U given by
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where 7,

;j is the dimensionless distance between beads i and j,
and # is the depth of the Lennard-Jones potential between
spatially adjacent beads. We use a Hookean spring constant K =
200 between connecting beads, which is sufficiently strong such
that the model essentially acts as a bead—rod model. In all
simulations, the bonds stretch no more than 10—15% of their
equilibrium length. This occurs only in very high flow rates,
with most simulations deviating much less than 5—10%. This
minimal stretching, along with the finite size of the beads,
renders chain crossing essentially impossible. All values have
been normalized (denoted by a tilde): distances are in units of
the bead radius 4, energies are in units of the thermal energy
kgT, and time is in units of the single bead diffusion time 7, =
(62na)/ (ks T) where 7 is the solvent viscosity. We primarily
use & = 0.35, which is the ®-condition for polymers.”® Good
solvents are also considered, with % = 0.10.
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Chain dynamics are governed by the Langevin equation:**

ok . . 5 .
[-(F = fon) = D, A, U + &(D)
j

where the mobility matrix y; accounts for the hydrodynamic
interactions between particles i and j. We consider two
behaviors for this matrix: freely draining (FD) and hydro-
dynamically interacting (HI). FD considers no hydrodynamic
coupling between beads, and the only hydrodynamic force is
the drag on a given bead. Therefore, the FD case gives fi; = 5,1,
where §; is the Kronecker delta and I is the identity matrix. The
inclusion of HI considers hydrodynamic coupling between the
beads. In this case, we use the Rotne—Prager—Yamakawa

tensor for i # ]':?’6’37
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A Cholesky decomposition of this tensor is used to calculate
the random velocity &, in order to satisfy the fluctuation—
dissipation theorem (£,(t)&;(t')) = 2kyTu;6(t — #').2®* We note
that the i = j case uses the Stokes friction ji; = 1.”* The term in
eq 2 that includes the dimensionless velocity gradient tensor I’
is the undisturbed velocity field due to the applied fluid flow. In
the case of planar elongational flow, we use

g0 o0
L=y 2o
00 0 4)

where the strain rate is nondimensionalized by the diffusion

time of a single bead, yielding the bead Peclet number é. Figure
1 illustrates the geometry of a planar elongational flow. In the
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Figure 1. This article considers a planar elongational flow. This flow
geometry consists of a principal axis of extension (in this case, x) and a
principal axis of compression (y), while the z-direction has no flow.

case of extensional flow, we also define a dimensionless flow
strength by the Weissenberg number Wi = ng, where 7y is the
dimensionless longest relaxation time of the polymer (see
below). Simulations integrate eq 2 with a time step of Af = (2—
5) x 107* and are generally run for between (20—100) X 10°

time steps.
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Figure 2. Relaxation time 7y as a function of chain length N for ring and linear chains, determined either from the relaxation of a stretched polymer
(solid symbols) or from the time correlation function of polymer dimensions (open symbols, see text for details). (a) Longest relaxation time for
both linear chains and rings in the FD approximation in ®-solvent. The observed scaling 7y ~ N* is expected for Rouse dynamics. The difference in
the best fit intercepts is A log 7z ~ 0.60 + 0.31, consistent with the factor of 4 difference between the relaxation times for the ring and linear chains
(log 4 = 0.6)."***° (b) Longest relaxation time for both linear chains and rings with HI in ®-solvent. The observed scaling is consistent with 7 ~
N2 expected for Zimm dynamics. (c) Longest relaxation times of linear and ring chains with inclusion of EV and HI show the expected result that
3v > 3/2; however, deviations from the theoretical result of 3v = 9/5 are observed, which could be attributed to the slightly attractive L-J potential
used in the simulation. (d) Single molecule conformational relaxation time 7, scaling as a function of molecular weight for circular DNA molecules of
size 25, 45, and 114.8 kbp from Li and co-workers.” Data are replotted by considering spatial resolution when tracking projected polymer extension
for the smallest molecular weight chains (see text for details). Relaxation times are scaled to a solvent viscosity of 1 cP, and error bars correspond to
to standard deviations in the molecular ensemble, and so do not represent true experimental “error”.

B RESULTS AND DISCUSSION as a function of time. This process is performed for 50—100
trajectories, which are subsequently averaged to produce the
average relaxation curves. We fit the tail end of the relaxation
(less than 20% of the contour length L) to the form Ax*/L* =

Ring Polymer Relaxation. Polymer relaxation is consid-
ered for both linear and ring polymers in the presence and
absence of hydrodynamic interactions (HI) and excluded

volume (EV). We seek to determine the relaxation time of Ae™'" + B,” which yields the longest polymer relaxation time
these polymers in order to establish consistency between our 7, as equilibrium is approached.” Method 2 tracks the projected
results and known theoretical scaling results as well as the extension Ax(t) as a function of time for an unstretched
experimental observations in Li et al'9 We calculate these polymer (in equilibrium). The time correlation of this value
relaxation times using two different methods: (1) a chain (Ax(0)Ax(t)) = Ae™™ + B can be similarly fit to an
extension—relaxation protocol analogous to the experiments exponential relaxation. The time correlation function is
performed by Li et al.” and (2) the time correlation function for calculated over 50—3007g. Each relaxation time is calculated
the equilibrium end-to-end vector. For method 1 we apply an using one of these two procedures; in particular, larger values of
elongational flow above the coil—stretch transition value (Wi > N use method 2, which is more computationally efficient (all
0.5, or &~ 0.01—0.05). Upon relaxation of the stretched time steps contribute to the average, not just the tail end of the
polymer back to an equilibrium conformation, we track the relaxation ), while smaller values of N use method 1, which has a
overall projected extension Ax in the x—y plane of the polymer clear connection to experiment.
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Figure 3. (a) Simulation results for the maximum projected fractional extension Ax/L as a function of Wi = ETR for ring (red) and linear chains
(black) for the FD case for N = 120. Stretching occurs at the same value of Wi for both situations. (b) Simulation results for the maximum projected
extension Ax/L as a function of Wi upon inclusion of HI leads to a difference between ring and linear chains, with ring polymers stretching at a
higher value of Wi. That this effect arises only in the presence of HI and ring topologies suggests that the architecture and hydrodynamics couple
strongly in this situation. Inset: we can rescale Wi — aWi in a fashion similar to Li et al.” If the ring polymer is kept at @ = 1.0, we obtain a value of &
= 1.4S for the linear polymer, which is similar to the literature results. (c) Direct comparison of simulation results to single molecule experimental
data. Results from Li et al.” demonstrate a different stretching transition for ring and linear chains. Experiment and simulation results match for both
rings and linear chains when the simulation plots are rescaled by Wi’ = 0.7SWi, which we attribute to model coarse-graining (see text). N = 120, ©-

conditions (& = 0.35) for all plots.

Figure 2 shows the relaxation time of both chains and rings at
several different values of N. Figure 2a uses the freely draining
approximation (FD), and Figure 2b incorporates HI, both in
the case of @-solvent conditions. The chain length scaling can
be directly compared to theoretical predictions.'”"*** For the
FD case, the linear chain is predicted to exhibit the Rouse
dynamics scaling 7z ~ N2,'>** which is observed in our
simulation. The ring polymer similarly scales as 7, ~ N?, which
is also expected from Rouse dynamics arguments.'>***” For the
HI case, the scaling is 7z ~ N*2 for both the linear chains and
ring chains.'”*® This follows from the equilibrium structure of
these polymer structures. The dynamical scaling predictions for
polymers in the Zimm model can be straightforwardly
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For both the ideal chain and ring, the exponent v = 0.5 for ®-
solvent conditions, leading to the 7z ~ N*? result that is
corroborated by the simulation.*”*

We next studied the relaxation of linear and ring polymers
with HI in the presence of excluded volume (EV) interactions.
Here, we verify that the inclusion of intrachain EV leads to
similar scalings 7, ~ N* for both ring and linear polymers.
Instead of the value of & = 0.35 corresponding to the O-
condition, where bead attraction counteracts excluded volume,
we use now a value of ## = 0.1, which decreases the attractive
portion of the L-] potential such that excluded volume is more
pronounced.”® Figure 2c shows the relaxation times for both
rings and linear chains in the presence of EV and HI as a
function of chain length, and the expected scaling of v > 0.5 is
observed. In particular, we find a scaling of 7z ~ N'** for the
linear case and 7z ~ N for the ring case. These results deviate
slightly from the expected value of 75 ~ N'¥, which could arise
due to the remaining attractive portion of the L-] pair potential
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or (for the linear case) errors in the high-N data points that
require long time averages.

For both the FD and HI case, chain relaxation occurs more
rapidly for the ring polymer. This can be understood due to the
differences in the mode structure; the ring boundary conditions
do not permit the lowest mode that exists in the chain Rouse
motion, and instead the lowest mode has half the wavelength
(A1,Chain = 241,Ring)- This mode relaxes more quickly, in grinciple
by a factor of 4 for the non-HI case (7, ~ 1/4,%)."*** This
prediction is consistent with the factor between the ring and
linear cases in FD, which is approximately g chain/Trping & 4-
Predictions of g chan/Trring fOr the HI case have been
determined using a number of explicit solvent simulation
methods (such as lattice Boltzmann and stochastic rotation
dynamics).” Fully repulsive potentials are known to exhibit a
smaller-than-FD ratio 7y chain/Trring & 1.1. This is qualitatively
consistent with our observations of a similar decrease in
TR Chain/ TR Ring 25 €Xcluded volume is included.

We can further compare our simulation results for ring
polymer relaxation to recent single molecule experimental
results. Similar scalings for center-of-mass diffusion coefficients
D have been observed for ring and linear chains based on single
molecule translational diffusion experiments.*” In particular,
single chain diffusion measurements revealed similar power-law
scalings for the diffusion coefficients of linear DNA (D ~
L) and circular DNA (D¢ ~ L™°%).*” In principle, single
chain diffusion measurements can be directly compared to
conformation chain relaxation measurements, provided that the
latter is observed at the tail end of the relaxation (i.e., at small
extensions), which is the method that we employ here.”® In
addition, recent single molecule experiments by Li and co-
workers report longest polymer relaxation times for rings
measured directly from conformation relaxation.” In Figure 2d,
we replot the experimental data from Li et al.” with two minor
modifications. First, for the smallest molecular weight circular
chains (25 kbp), we fit the terminal 50% (x/L < 0.5) of the
conformational relaxation trajectory to a double-exponential
function, and we take the longest time constant as the longest
polymer relaxation time 7,. The shorter exponential accounts
for higher-order Rouse mode(s) that are expected to be non-
negligible when more of the chain relaxation is fit, which is
important when it is difficult to resolve only the tail end of the
chain relaxation for small molecules.”® For all other cases
(linear and circular), we use the standard method of fitting the
terminal 30% to a single-exponential decay. For the smallest
molecular weight chains (25 kbp), this method provides a more
accurate estimate for 7; due to experimental error in visual
tracking of projected polymer extension near the coiled state,
which begins to approach the diffraction limit for these
polymers. Second, we include error bars in Figure 2d that
correspond to standard deviations in the molecular ensemble
arising from individual relaxation trajectories. Using this
method, the single molecule conformational relaxation data
for ring polymers are in good agreement with the BD
simulation results for ring polymer with HI and EV. Finally,
we note that recent computational results that consider the
semiflexible nature of double-stranded DNA suggest that
backbone flexibility (or inflexibility) gives rise to a slightly
lower excluded volume exponent vz = 0.54, even in the
context of athermal solvents.* These results appear to agree
with our experimental data.

Coil-Stretch Transition in Elongational Flow. We
further investigated the nonequilibrium stretching dynamics

1965

of single ring polymers in a planar elongational flow.
Experimental results suggest that the coil—stretch transition is
noticeably different between the linear and ring architectures,”’
with the ring stretching at a higher dimensionless flow strength
or Weissenberg number than the linear polymer consistently
for any value of N. To study polymer chain stretching, we
determine the steady-state elongation Ax in the elongational

flow stretching axis at a given value of ¢. We normalize this
value of the flow strength with the relaxation time of the

polymer to calculate the Weissenberg number Wi = %fR.

Figure 3a plots the fractional projected extension Ax/L of a
polymer for the FD case. Both rings and chains are studied
here, with the contour length L of the ring polymer equal to
half of the contour length of the linear counterpart L, = Ly;,/
2. Plotted against Wi, for N = 120 the coil—stretch transition of
the ring occurs at essentially the same value as the linear chain
for the FD case. Figure 3b plots the elongation versus Wi upon
inclusion of HI. In this case, a difference is observed between
the two architectures, with the coil—stretch transition occurring
at higher values of Wi for ring polymers. This is apparent in
both simulation and experiment, which demonstrate almost
exact matching when plotted together in Figure 3c. Excellent
agreement between experiments and simulation for steady-state
fractional extension for linear and ring chains is observed when
the Wi of the simulation results is rescaled by a small constant
value Wi’ = 0.75SWi, which may be attributed to the coarse-
grained representation of the stretching DNA in the experi-
ment. Apparent differences in experimental and computational
results occur at high flow rates, which is likely due to the use of
a bead—rod model that does not display Marko—Siggia force—
extension behavior in the high flow rate limit.** Nevertheless,
the agreement between the experiments and simulations for
two different chain architectures suggests that the model is
capturing the correct physics. Interestingly, the difference
between the coil—stretch transition for the ring and linear
chains only exists upon inclusion of HI, indicating that the
difference is driven largely by hydrodynamic effects. In an
absolute sense, the polymer chain relaxation is much faster for
rings due to the changes in mode structure; however, this
difference is taken out of consideration when Wi is used due to
its normalization by the longest relaxation time scale.
Therefore, additional physics must be responsible that are
not captured in the equilibrium relaxation time of the
hydrodynamic interacting ring polymer.

We hypothesize an explanation for the observed shift in the
coil—stretch transition that stems from intramolecular HI. In
the equilibrium conformation, a monomer in a ring polymer
sees an environment where HI is largely screened. This
changes, however, as the polymer starts to stretch. Chain
stretching affects the conformation by dragging the monomers
away from the center of mass along the x coordinate (direction
of the principal axis of extension). However, each monomer
that moves in this direction must correspond to another
monomer that moves the chain in the same direction such that
the ring constraint is maintained. This is seen in highly
stretched conformations as the two stretched portions of the
ring. In some sense, two polymers that are connected at the
extreme values of x are being stretched simultaneously, and
they also hydrodynamically couple as shown in the schematic in
Figure 4a. In the absence of HI, the fluid flow exerts a force faiow
on a given chain monomer that is directly related to its position.
An entropic restoring force fg pulls this monomer in the other
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Figure 4. The presence of the ring constraint leads to cooperative
chain relaxation that shifts the location of the coil—stretch transition.
(a) Schematic demonstrating the forces on a slightly stretched linear
polymer and on a slightly stretched ring polymer. In both the ring and
the linear polymer, forces such as the Brownian force f; and entropic
spring force f; remain essentially the same. In contrast, the
hydrodynamic force fyy is stronger in the ring, where two stretching
portions of the ring polymer exert a backflow felt by each other. A
stronger applied fluid flow fy,, is thus required to maintain the same
stretch. (b) Calculations of the hydrodynamic forces fiy; (connected
symbols) on stretching polymers in simulation demonstrate this effect.
At intermediate stretching (Ax/L 0.3—0.4), the hydrodynamic
forces are stronger for the ring polymer (closed symbols) than the
linear polymer (open symbols). As the polymer is stretched, the
backflow forces approach the point at which they simply cancel out the
applied flow (and fall along the _,?Flow line, dotted red). For
comparison, forces are normalized by the maximum flow force felt

~
~

by the polymer rngI: and distances are normalized by the maximum
extension length L.

direction, a fluctuation force ]‘Fluc that in equilibrium
corresponds to Rouse/Zimm motions drives the system to
extend, and the sum of these must exactly match the fluid flow
force in steady state. This is the case for both linear and ring
polymers without HI. When HI is included, there is a
disturbance velocity or force on a given bead i due to the
hydrodynamic forces on all other beads j. The fluid velocity at
the position of bead i, v; due to a point force at position j, f; is
given by the Oseen tensor:

1 y
= I+ =5 [f;
] ©)

Vi

The velocity at point i is related to the force on a bead of radius
a at that same point due to the Stokes friction, 6znav; = f, and
therefore the force on a bead at point j exerts a force on the
bead at point i via the relationship

y i |
fi = iN I :]_zu fj
4 T 7)
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now written in dimensionless form. We can thus define a
hydrodynamic force on the chain at a given spatial position
fu(#,) along the principal axis of extension x:

fu @)= oo X {1+

i i ij

il .. .
2 f} 5(n,x - rx)

~ 2
T.

(8)

where & is the unit vector in the x-direction. Perhaps not
surprisingly, for the linear chain in the presence of HI, fiy
manifests as a restoring force (Figure 4a, left).

In the context of ring polymers, the presence of HI becomes
important due to the proximity of the two, coupled and
stretched segments (Figure 4a, right). Each segment exerts this
“backflow” on both themselves as well as the other segment,
resulting in an additional force orthogonal to the chain
stretching direction. To maintain the same fractional chain
extension as in the absence of HI, the flow strength must be
increased to counter this cooperative relaxation. To account for
this relationship, we note that the force on a bead j is

~ E) This force

exerts a backflow on neighboring segments, given by an fyy; that

proportional to the flow strength (]"]

,Flow

is similarly proportional to the flow strength (fHI ~ ¢&). We

have introduced ¢ = fHI/fFIOW, which is a proportionality
constant between the force applied on a bead and the effect of
its hydrodynamic force on a neighboring strand. Importantly,
we can use this hydrodynamic cooperativity to explain the shift
in the stretch transition for a ring versus a linear chain. If the
flow strength required to stretch a ring polymer in the absence

of HI is fHOWo ~ 50) then the addition of a hydrodynamic
restoring force due to a neighboring chain fHI ~ & will require

to maintain the same
low,0

equilibrium stretch when compared to the FD case. For the
same extension, we can write the equation froy0 ~ feiow + far-
We can thus write the equation

a stronger flow force fFlow ~ € > fF

3k
€o

1 ¢

where the value &* is the flow rate where the coil—stretch
transition occurs when there is the nearby stretching strand and

o

€* ~

©)

g: is the bare coil—stretch transition for the noninteracting
strand. Of course, the precise value of the shift depends on the
value of ¢ = fpiow/fry Which is a proportionality constant that
relates the force of the flow on a stretched polymer segment
friow; to the force that that segment then exerts on a
neighboring stretched segment f;. We can provide a rough
estimate of this value by taking both forces to be along the
primary extensional axis, which leads to an approximate
relationship obtained via eq 7:*°

i HIj

3 -
[1 + A"CZ:U;IC»W,i

47 (10)

Consider the case where only the closest segments of the
neighboring chains lead to dominant interactions. Here, we can
make the approximation that the distance 7 between
neighboring segments is of order unity. Furthermore, we are
only considering nearest-neighbor interactions between mono-
mers on the two nearby chain segments; these monomers are
located at roughly the same x position, so Ax = 0. If we
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Figure S. (a) Ring extension Ax/L as a function of strain € = EfR at Wi = 4.86. Stretching of a ring molecule often proceeds unhindered.
Occasionally, however, ring stretching can become temporarily trapped as shown in the highlighted trajectory. Arrows denote snapshots, shown in
(b), of the hairpin conformation that drives this slow unfolding. Furthermore, looping in the Z direction is observed when HI is present (¢ > 1.23).
We hypothesize that previous observations of transiently hindered molecular conformations are due to this conformation.” (¢) At full extension, a
large loop is formed in the x—z plane that is absent in the x—y plane. The y—x plane is typically observed in experiment and includes the compressive
axis of the flow field 7, as indicated in the figure. This figure also denotes the primary extensional axis, 7,, in both the x—y and x—z planes.
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consider the closest distance that two segments can approach (¥
= 2), then this leads to a simple relation for ¢:

3
(N (11)

This simple model yields a constant shift of the effective

elongation rate o = E*/E: ~ 1/(1 — 3/8) = 1.6. Despite the
approximations used in this simple model, this shift in the
critical Wi at the coil—stretch transition is similar to what is
observed in both our simulations and experiments.”

This behavior is directly observed in BD simulations. Figure
4b plots the average hydrodynamic forces fi;; (normalized by

the maximum extension force ¢1.) felt by the chain as a function
of the distance from the center of mass %/L (normalized by the

chain length L). The flow force is jFlow = gic, so when the

force fuo is plotted in Figure 4b normalized by ¢L, both axes
are in terms of /L and the flow force is plotted independent of

&. This normalization thus ensures that both topologies and all
values of Wi have directly comparable flow forces Frtow- Values
for fiy are calculated from eq 8 at steady state for both linear
(open symbols) and ring (filled symbols) polymers at the same
relative extensions (A%)/L. For low to intermediate extensions
(Ax)/L, the difference between the ring and the linear chains is
pronounced. At the same extension, the hydrodynamic force on
the ring polymer is significantly larger, representing a strong
hydrodynamic force driving the molecule toward a relaxed

1967

state. This is true relative to the applied flow rate _jl:low,
denoted by the dotted green line. The local density of
stretching “chains” of the ring polymer is low at high
extensions, so the HI force for the ring matches with the
result for the linear chain. This fi; balances completely with the
flow force fro., as demonstrated by the matching with the
dotted green line —fg,,, in Figure 4b, and is just a manifestation
of the no-net-flow boundary condition at the chain.

Molecular Individualism. One of the key features evident
in early investigations of single polymer dynamics was the
appearance of molecular individualism.'”*>*® This corresponds
to the variety of different molecular stretching pathways and
trajectories that are observed under the same set of flow
conditions, even for the same polymer chain under different
realizations.” Elongational flows yield a wide variety of
molecular conformations, such as dumbbell, half-dumbbell,
and hairpin topologies.” These conformations exhibit different
trajectories throughout the coil—stretch transition, with (for
example) hairpins taking an extended period of time or a larger
accumulated strain to unravel.”> Alternatively, collapsed
molecules in poor solvents typically stretch through a well-
defined pathway;*" however, the presence of knots has been
reported for some of these conditions.””* Experimental
observations of ring stretching have suggested the possibility
of transiently hindered topological states,” signified by the
presence of fluorescent “spots” near the center of a stretching
molecule that leads to long-lasting intermediate states that
eventually unravel to the fully extended state.’

DOI: 10.1021/acs.macromol.5b02357
Macromolecules 2016, 49, 1961-1971


http://dx.doi.org/10.1021/acs.macromol.5b02357

Macromolecules

Ring with HI

Wi = 10.0

140

Iy

Figure 6. (a) Extension versus Wi for a ring polymer with HI (N = 120). The primary extension direction of the flow is Ax, and the compression
direction of the flow is Ay. HI and the ring topology lead to stretching in the Az-direction above the coil—stretch transition, leading to a looped
conformation. (b) Extension versus Wi for a ring polymer without HI (FD, open symbols) and for a linear polymer with HI (filled symbols). In
contrast to (a), stretching only happens in the Ax-direction, and both Ay and Az decrease above the coil—stretch transition. Both HI and ring
topologies are needed to observe looping conformations. (c) Fraction extension Ax/L as a function of N (Wi = 10.0), demonstrating that Ax and Az
scale roughly linearly with N. The ratio of the length and width of the loop is therefore roughly constant. (d) Simulation snapshot of a loop

conformation, indicating the dimensions considered in (a—c).

We characterize the stretching of ring polymers directly from
simulation, and we quantify this in terms of the transient
fractional Ax/L in flow (Figure Sa). Most ring polymers stretch
in an unhindered fashion (Figure Sa, light gray trajectories),
analogous to the dumbbell conformations observed in linear
polymers.*> Occasionally, however, the extending chains
become kinetically trapped the stretching process. This is
observed in Figure Sa as a hindered state indicated by a
darkened trajectory. The coarse-grained spatial resolution of the
simulation permits direct observation of the conformation in
this state. Snapshots along this trajectory are shown in Figure
5b as a “hairpin” similar to that seen in linear polymers.* If the
ring polymer doubles back on itself, which happens far less
frequently due to the looping constraint, then the chain is
trapped in a state that may persist for large amounts of
accumulated fluid strain. In Figure Sb, the ring polymer appears
to occupy a large spatial dimension in the nonflow (z)
direction, which is apparent for strains € > 1. This “bunching
up” of internal polymer segments may be responsible for these
observations from single molecule experiments despite the
presence of a hairpin conformation and leads to large loops at
full extension (Figure Sc, € > 2.18). It is apparent that the loop
conformation in Figure Sc is transiently observed in the
trajectories leading to the fully extended conformation (Figure
Sb, € = 0.88, 1.23, 1.73). The breakup of these loops, which
requires nonlooped conformations (Figure Sb, € = 2.18), may
lead to “stuck” conformations along the stretching trajectory
such as those observed in Figure Sa and Li et al.”

Chain Looping. Planar extensional flow is described by a
principal axis of extension (x-direction) and an orthogonal
principal axis of compression (y-direction). In this flow, the
third direction (z-direction) is stagnant with no imposed fluid
flow. Interestingly, for ring polymers in a planar extension flow,
we observe a large degree of polymer stretch in the z-direction,
which is consistently found in our simulations over a wide
range of flow conditions. It is intuitive to consider a stretched
ring that primarily extends only in the flow direction at the
expense of stretching in the orthogonal dimensions. This is
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certainly the case for linear chains at high stretching
dimensions; """ however, this does not appear to be the case
for stretched ring polymers in a planar extensional flow. A
“loop” conformation is observed in simulation snapshots shown
in Figure Sc, which is characterized by a large amount of
stretching in the z-direction that is concomitant with stretching
in the x-direction (the principal axis of extension) due to the
applied elongational fluid flow. Chain looping and exaggerated
chain stretch only occur in the z-direction, rather than the y-
direction (the principal axis of compression) where the applied
fluid flow drives the polymer toward its center of mass in that
coordinate.

This looping behavior is a marked example of the coupling
between HI and chain topology. We demonstrate this by
tracking chain dimensions in all three dimensions across the
coil—stretch transition. For a ring polymer with HI, we plot the
dimensions Ax/L, Ay/L, and Az/L as a function of Wi (Figure
6a). The extension of the chain Ax in the principal axis of
extension is accompanied by a similar increase in the chain
dimension in the z-direction. This contrasts with the stretching
behavior when HI is removed (Figure 6b, open symbols) or the
chain is linear (Figure 6b, closed symbols). Upon removing
either one of these aspects, Az decreases for flow strengths
above the coil—stretch transition.

We quantify the geometry of the looped conformation as the
contour length of the ring polymer is increased from N = 50 to
N =120 (Figure 6¢). At an intermediate to large flow rate Wi =
10.0, we measure the normalized extension of the ring along the
stretching direction Ax/L as well as the extension of the ring
along the z-direction Az/L. We also plot the extension in the y-
direction, which as expected becomes small.™ In the Ax/L
direction, the stretching is consistently significantly less than
the maximum due to the large extension of Az/L. The ratio of
these two Ax/Az remains essentially constant at all values of N.
A snapshot of an extended ring is shown in Figure 6d,
demonstrating the various dimensions and the nearly constant
ratio of Ax/Az =~ 4.
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Figure 7. (a) Schematic demonstrating how loop conformations arise in planar elongational flow. The flow in the x-direction exerts a force}Flow that
is counteracted by a backflow due to HI with the corresponding force fiy;. This flow exerts a flow on the top and bottom of the loop in the z-
direction. (b) We approximate the loop conformation as a rectangular loop, with force along the sides fS tot due to the applied flow and a force along
the bottom fB tot due to the presence of HI. Symmetric forces along the top and left side are present, but not drawn. The dimensions of this
rectangular ring are A% in the x-direction and A% in the z-direction. (c) The average force per monomer on the bottom and top ( fB o/ A%) and the
average force per monomer on the sides ( fs i/ AZ) are plotted. A number of rectangles are considered, with fixed top and bottom lengths A% as a
function of the side lengths AZ. The condition where the force per distance fB ot/ A% and fS ot/ AZ are equal represents the equilibrium dimensions of

a fully stretched ring polymer. This intersection can be plotted on a graph of

the dimensions of the loop are essentially constant.

= A%Z/A% as a function of N = A% + A% (inset) to demonstrate that

This behavior can be qualitatively understood via the
schematic in Figure 7a. As a polymer is extended by the flow,
the stretched chain exerts an opposing force on the fluid. This
force propagates via a secondary flow through the solvent,
producing a counterflow in the direction of the light blue
arrows. In an elongated geometry, there is a net flow in the
negative z-direction from the upper and side portions of the
ring acting on the lower portion and a net flow in the positive z-
direction due to the lower portion and sides of the ring acting
on the upper portion. Therefore, these hydrodynamic back-
flows push the two extended portions of the ring polymer away
from each other in the z-direction. A similar hydrodynamic
effect has been observed in linear chains near surfaces.**™°

We further provide a quantitative argument for these
observations on ring polymer looping in flow. From the
snapshots of the simulation (Figures S and 6), we can
approximate the chain conformation as a rectangle with sides
of length Az and Ax in the appropriate directions (Figure 7b).
We calculate the forces per monomer of both segments for a
given elongational flow rate. As a first approximation, we
assume that any given monomer has essentially the same radial
force acting upon it. This is essentially the idea that the free
energy is minimized because if there is a stronger force on (for
example) the z-oriented segment, then an increase in its length
at the expense of the x-oriented segment is going to occur as
this decreases the overall energy of the system.

To calculate the extent of chain looping, we consider the
force on a monomer i (f;) due to an applied force on monomer
j (f) This can be described by the Oseen tensor:>®

3 i [
471‘;‘ 7.

2
i (12)

To find the total force due to the top (T) of the rectangle (in
the x-direction) on the bottom (B) of the rectangle (in the z-
direction), we calculate the following integral:

1969

- _ 3 Ax/2 Ax/z Az(‘@l _ xz)
fTB,tot T4 _/_M/Z /A 2/2 2fT|: Az + (%, —9?2)2)3/2
(13)
B @A~
Fow = —3€8 “la(az - VA2 + AR) + Az
< ln VAZ® + AZ® + A%
AZ* + AR — AX (14)

= —¢€X&, is the force of the chain on the surrounding

where f’T

fluid. Likewise, the side of the rectangle has a similar effect on
the bottom of the rectangle:

- 3 —Ax Az
fSB,tot - f dx/ dzfs|:(~2 )3/2] (15)

3EAR

[(VAZ® + Az?

fSB,tot - A& - Az]

(16)

where J?s = —EAE/Z is the force of the sides on the

surrounding fluid. There is a factor of 2 difference between
the prefactor for this and fTB ot due to the inclusion of both
sides. The total force on the bottom of the loop is fB tot = fTB tot
+ fSB tor- The side of the rectangle feels a force primarily due to

the applied fluid flow, fStot = (—:AxAz/ 4.

Figure 7c¢ plots }B,tot/ A% and]‘s,m/ AZ as a function of AZ for a
number of values A%. The point at which both values intersect
roughly represents a steady-state situation (i.e., the force per
distance along all edges of the rectangle are equivalent). The
ratio of & = AZ/AX at which this occurs is plotted in the inset
of Figure 7c as a function of the total chain length N = A% +
Az At all values of N considered here, this calculation
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demonstrates that the geometry converges on a value of E &

0.22, which is essentially independent of N and ¢. This
corresponds to the simulation results in Figure 6, which are in
near-quantitative agreement with this result. We expect that
deviations from this theoretical result could be associated with
the approximation of the loop as a rectangle, which limits this
result to regimes well above the coil—stretch transition where
the ring is strongly stretched.

B CONCLUSIONS

Ring polymers represent a model architecture that provides
insight into the effect of topological constraints on their
dynamics. While a great deal of prior work has focused on melt
rheology,l’z‘_8 we demonstrate that nontrivial effects emerge
even in dilute solution. Our work provides a physical basis for
understanding many of the single molecule experimental results
of Li et al.” and provides new insight into the ways that polymer
topology and hydrodynamic interactions couple. In particular,
there are two effects that emerge from the ring architecture: the
hydrodynamic perturbation of the coil—stretch transition and
the large looping behavior of rings in flow. Indeed, these effects
are apparent only in highly out-of-equilibrium scenarios,
whereas equilibrium chain dynamics (i.e., relaxation times)
experience minor deviations from standard linear chain
dynamics.'>"**%*” We attribute both the shift in the coil—
stretch transition and the looping behavior to the ring topology
and its effect on hydrodynamics, which leads to a coupled
backflow that is not present in linear chains. Theoretical
arguments support this observation.

We expect the coupling between hydrodynamics and
topology to manifest differently in other flows. For example,
uniaxial extension will likely demonstrate similar shifts in the
coil—stretch transition; however, looping behavior may be
suppressed due to the inward flow along both compressional
flow directions. Likewise, linear mixed flows may result in
interesting combinations of polymer chain tumbling and
looping that warrant a promising area of further inquiry.
Eventually, an expanded parameter space (e.g., chain flexibility,
concentration) will hopefully help inform the broader effort to
understand the rheology of ring polymers.

The effects elucidated in this work may provide new
opportunities for the manipulation of topologically interesting
polymers. Many biomacromolecules possess looped structures,
including genomic DNA.>" ™’ The ability of elongational flows
to drive looped conformations may present ways to sort or
manipulate both biological and synthetic ring polymers.
Furthermore, other topologies (star polymers, dendritic
polymers, branched polymers) may demonstrate similar effects.
In general, the ability of chain architecture to influence
hydrodynamics may present the opportunity to “design in”
handles to manipulate single chains, such that branches or
looped sections can be included to dictate single-chain
dynamics. This behavior may also inform the behavior of
single chains in nondilute systems. In some sense, a stretched
ring polymer is similar to two linear polymers stretching in
close proximity; based on our results, it is possible that new and
interesting hydrodynamic effects may also arise if this condition
is imposed by high local polymer concentrations rather than
chain connectivity.
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