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ABSTRACT: Oscillatory rheometry has been widely used in
bulk rheological measurements of complex fluids such as
polymer solutions and melts. Despite recent progress on bulk
oscillatory rheology, however, the vast majority of single
polymer studies has focused on chain dynamics in simple on/
off step strain-rate experiments. In order to fully understand
dynamic polymer microstructure and to establish connections
with bulk rheology, there is a clear need to study the dynamics
of single polymers in more realistic, nonidealized model flows
with transient forcing functions. In this work, we study the
dynamics of single polymers in large amplitude oscillatory
extensional (LAOE) flow using experiments and Brownian dynamics (BD) simulations, and we characterize transient polymer
stretch, orientation angle, and average unsteady stretch as functions of the flow strength (Weissenberg number, Wi) and probing
frequency (Deborah number, De). Small and large amplitude sinusoidal oscillatory extensional flow are generated in a cross-slot
microfluidic geometry, which is facilitated by using an automated flow device called the Stokes trap. This approach allows the
conformational dynamics of single DNA molecules to be observed in oscillatory extensional flow for long times. In this way, we
observe a characteristic periodic motion of polymers in LAOE including compression, rotation, and stretching between the time-
dependent principal axes of extension and compression. Interestingly, distinct polymer conformations are observed in LAOE that
appear to be analogous to buckling instabilities for rigid or semiflexible filaments under compression. Average unsteady polymer
extension is further characterized for single polymers in oscillatory extension across a wide range of Wi and De. In the limit of low
Wi, average polymer stretch is interpreted using analytical results based on a Hookean dumbbell model, which can be used to
define a critical Wi at the linear to nonlinear transition in oscillatory extension. These results reveal the existence of a master
curve for average polymer stretch when plotted as a function of an effective Weissenberg number Wi g Experimental results are
compared to BD simulations, and we observe good agreement between simulations and experiments for transient and average
unsteady dynamics. Finally, average transient dynamics in oscillatory extensional flow are further interpreted in the context of
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Pipkin space, defined by the two-dimensional space described by Wi and De.

B INTRODUCTION

Dynamic oscillatory rheometry has been widely used to
investigate the rheological behavior of complex fluids such as
polymer solutions," polymer blends,” entangled polymer melts,’
block copolymers,* and colloidal suspensions.” Oscillatory shear
is one of the most common bulk rheology measurements used
to interrogate soft materials and complex fluids. In particular,
small amplitude oscillatory shear (SAOS) is a classic method to
probe the linear viscoelastic properties of materials based on
estabhshed physical principles in the limit of small deforma-
tion.”” Using this approach, materials are interrogated under
small magnitude sinusoidal strains, and the time-dependent
stress response is measured. Linear viscoelastic measurements
can be used to determine material functions such as the elastic
modulus G'(w) and the loss modulus G” (@), where both linear
viscoelastic moduli are independent of the applied strain,
provided that the strain amplitude is small. Although SAOS is a
convenient and useful method to probe rheological behavior, it
is mainly used to study only the linear response properties of
materials. In most practical applications involved in processing,
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however, materials are exposed to highly nonlinear and
nonequilibrium flow conditions, thereby inducing polymer
deformation under large strains and strain rates during
extrusion or related processes.” Moreover, vastly different
complex fluids may yield deceivingly similar linear viscoelastic
signatures because small magnitude strains are insufficient to
dlstlngulsh ﬁne scale structural differences at the nano- to
microscale.”'? Indeed, for many complex materials, the
distinguishing rheological signatures may be buried in the
nonlinear stress response, despite showing apparently similar
linear viscoelastic responses. From this perspective, there is a
strong need to characterize the nonlinear rheological properties
of complex materials.

In recent years, large amplitude oscillatory shear (LAOS) has
been widely employed to investigate the nonlinear rheological
properites of materials. LAOS can be implemented using fairly
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standard experimental tools including a sliding plate rheometer
(SPR)'" or Fourier transform (FT) rheology based on a
commercial rheometer.'” LAOS is generally performed over a
wide range of strain amplitude and frequency,'’ thereby
revealing the nonlinear rheological response of materials. In
addition, LAOS is performed as a smooth and continuous
process without sudden or discontinuous jumps in applied
strain or strain rate,"" which differs from several other nonlinear
transient rheological measurements such as step strain
experiments. In this way, LAOS can be implemented to
effectively achieve robust control over the strain input with
reduced experimental noise. However, the challenge lies in
interpreting the stress response obtained from LAOS experi-
ments because the transient stress cannot generally be
described using linear viscoelastic theories due to the presence
of higher order harmonics or strong nonlinearities. To address
this issue, Wilhelm et al.'* employed the Fourier transform
(FT) method to analyze the shear stress response as spectra in
Fourier space. Ewoldt et al." used a set of first kind orthogonal
Chebyshev polynomials to characterize the nonlinear stress
response, and this method was based on a nonlinear stress
decomposition (SD) method.’® In this way, certain complex
fluids can be uniquely “fingerprinted”.'” Rogers et al.'®
described the nonlinear stress response as purely elastic to
purely viscous sequences of processes to extract fundamental
physical interpretations of dynamics. In addition to exper-
imental work, Radhakrishnan and Underhill'® studied the
LAOS response of a dilute polymer—nanoparticle mixture with
short-ranged attractive interactions using Brownian dynamics
(BD) simulations. A frequency sweep was performed with a
fixed peak strain rate above the critical polymer globule—stretch
transition strain rate, and transitions between different
conformational states were identified.

In addition to shear rheology, extensional rheology has also
been used to study the nonlinear properties of complex fluids.
Extensional flow is considered a strong flow that is very efficient
at unraveling flexible macromolecules or aligning semiflexible
biofilaments.”” In recent years, large amplitude oscillatory
extension (LAOE) has been developed for bulk-level studies of
materials. Using this approach, Rasmussen et al.>' and
Bejenariu et al.”* examined the soft elasticity of polystyrene
(PS) melts and cross-linked polydimethylsiloxane (PDMS)
networks using a customized filament stretching rheometer
(FSR).*>** A unique periodic response for the elongational
stress 7,, — 7,, was measured in LAOE that is analogous to the
periodic response of shear stress 7,, in LAOS. However, the
application of bulk extensional rheometry can be quite
challenging for some materials due to gravitational effects for
high viscosity samples, which could limit the range of strain
rates that can be explored.”” These problems can be mitigated
by using microfluidic cross-slot devices to generate high strain
rate planar extensional flow. Odell and Carrington™ first
developed the extensional flow oscillatory rheometer (EFOR)
using a cross-slot microfluidic geometry and four electronically
driven piezoelectric pumps. Here, flow-induced conformational
changes to macromolecules are detected using optical
birefringence. Using this approach, Haward and co-workers”**°
measured the extensional viscosity of dilute polymer solutions
from the transient birefringence response in flow. Recently, the
geometry of the microfluidic cross-slot device for EFOR was
optimized to achieve precise extensional flow profiles across the
entire cross-slot region for a wide range of strain rates.”’
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Bulk rheological techniques are essential in measuring
macroscopic stress in complex materials. Nevertheless, these
methods can only be used to indirectly infer flow-induced
deformation at the molecular scale. Single molecule techniques,
on the other hand, allow for the direct observation of dynamic
microstructure in nonequilibrium flow. Recent advances in
single molecule fluorescence imaging have enabled the direct
observation of sin%le polymer dynamics in simple model flows
such as shear flow,”*™>* planar extensional flow,** ¢ and linear
mixed flows.””*® However, the vast majority of single polymer
studies has only focused on chain dynamics using an idealized
on/off flow rate conditions or simple step forcing functions. In
many processing applications, polymers experience complex
time-dependent flows such as oscillatory extension for flow
through porous media or in wavy-wall channels.”” For these
reasons, there is a general need to understand the role of
transient oscillatory flows on the dynamics of polymers and to
establish a connection between single polymer dynamics and
bulk oscillatory rheometry. In this work, we use a single
polymer approach to directly probe the dynamics of DNA
molecules in oscillatory extension using precisely controlled
flows.

Recently, Zhou and Schroeder reported the use of single
polymer LAOE to construct molecular stretch—strain rate
curves, which are defined as single molecule Lissajou curves.*
The shapes of the single molecule Lissajou curves were
interpreted in the context of polymer chain conformation over
a wide range of flow strength (Weissenberg number, Wi) and
probing frequency (Deborah number, De).”’ In the present
article, we extend beyond this prior work by characterizing the
transient stretch and transient orientation angle for single
polymers in LAOE, and these quantities are analyzed using
autocorrelation and cross-correlation functions to probe the
underlying physics. In addition, we further study average
polymer extension in LAOE, and our results reveal a critical
flow strength Wi, ; at which a linear to nonlinear transition in
stretching behavior is observed. Moreover, we interpret average
stretch results using an analytical model based on a Hookean
dumbbell in time-dependent oscillatory extensional flow.
Finally, transient polymer conformations are characterized in
the context of the two-dimensional space defined by Wi and De,
which is generally known as Pipkin space. Taken together, these
results provide new insights into the dynamics of single
polymer chains in controlled time-dependent flows.

B EXPERIMENTAL METHODS

Materials. In this work, we study the dynamics of double-stranded
A-phage DNA (48.5 kbp, New England Biolabs) in oscillatory
extension. A-DNA is fluorescently labeled with an intercalating dye
(YOYO-1, Thermo Fisher, Molecular Probes) with a dye-to-base pair
ratio of 1:4 for >1 h in the dark at room temperature. DNA is labeled
in an aqueous buffer containing 30 mM Tris/Tris-HCl (pH 8.0), 2
mM EDTA, and 5 mM NaCl. Fluorescently labeled 1-DNA is then
added to an imaging buffer containing 30 mM Tris/Tris-HCl (pH
8.0), 2 mM EDTA, S mM NaCl, sucrose (60% w/w), glucose (S mg/
mL), glucose oxidase (0.05 mg/mL), catalase (0.01 mg/mL), and 4%
v/v f-mercaptoethanol. Sucrose is used to increase the solvent
viscosity of the imaging buffer solution to 48.5 + 1 cP at 22.5 °C,
which was measured using a cone and plate viscometer (Brookfield).
Glucose oxidase/catalase is used as a coupled enzymatic oxygen
scavenging system to suppress photobleaching and photocleaving of
fluorescently labeled DNA. The concentration of labeled DNA in the
imaging buffer is ~107°c*, where c¢* is the polymer overlap
concentration, thereby yielding an ultradilute solution in the absence
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of polymer—polymer interactions. The contour length of fluorescently
labeled A-DNA is taken to be 21.5 um under these conditions.*'

Optics and Imaging. Imaging is performed using an inverted
epifluorescence microscope (IX71, Olympus) coupled to an electron-
multiplying charge coupled device (EMCCD) camera (iXon, Andor
Technology). Labeled DNA samples are illuminated using a 100 W
mercury arc lamp (USH102D, UShio) directed through a 3% neutral
density filter (Olympus), a 482 + 18 nm band-pass excitation filter
(FF01-482/18-2S, Semrock), and a 488 nm single-edge dichroic
mirror (Di01-R488-25%36, Semrock). Fluorescence emission is
collected by a 1.45 NA, 100X oil immersion objective lens
(UPlanSApo, Olympus), and a 488 nm long pass filter (BLPO1-
488R-25, Semrock) is used in the detection path. Finally, images are
acquired by an Andor iXon EMCCD camera (512 X 512 pixels, 16 ym
pixel size) under frame transfer mode at a frame rate of 30 Hz.

Microfluidic Devices. Standard techniques in soft lithography are
used to fabricate single layer microfluidic devices from polydimethyl-
siloxane (PDMS) with a base-to-cross-linker ratio of 5:1.*%** PDMS
devices are bonded to a glass coverslip following oxygen plasma
cleaning. The PDMS/glass hybrid microfluidic device is composed of
two orthogonal microfluidic channels to form a cross-slot geometry.
The inlet/outlet channels are 10 mm long, 400 ym wide, and 90 pm in
depth, and each channel terminates at an inlet port with a diameter of
1.6 mm. DNA imaging is performed in the region near the center of
the cross-slot (imaging area approximately 80 ym X 80 ym in size).
Pressure-driven flow is used to generate a planar extensional flow in
the cross-slot geometry, as described below.

Particle Tracking Velocimetry. The flow field is characterized
prior to single polymer experiments using particle tracking velocimetry
(PTV). Using this approach, fluorescent polystyrene beads (0.84 um,
Spherotech) are added to the imaging buffer and introduced into
microfluidic devices. Imaging for bead tracking is performed using a
standard CCD camera (Grasshopper3, Point Gray, 1920 X 1200
pixels) with an exposure time of 33 ms. Particle trajectories are
determined using a particle tracker algorithm** and Image]J software.*
Using this analysis framework, bead positions are determined (x, y)
and corresponding bead velocities (v,, v,) are calculated. Local analysis
is used to determine the x- and y-direction extensional strain rates
(—éq, €,) by least-squares minimization of

0
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where (xy, y,) are fitting parameters denoting the stagnation point
position and an incompressible fluid is assumed. For bead tracking
experiments, >5000 data points spanning the entire image area are
analyzed to determine the fluid strain rate € as a function of the inlet
pressure. In all cases, we find a linear relation between strain rate and
input pressure. This process is repeated by using both the top/bottom
channels and left/right channels in the cross-slot device as inlets in
separate experiments, which ensures symmetry in flow calibration for
two-dimensional LAOE experiments.*’ Strain rates in the #, y plane are
also determined as a function of the vertical distance (z-position) from
the glass coverslip surface inside the microfluidic channel, and a
parabolic flow profile is observed with respect to the z-direction, which
is consistent with pressure-driven flow of a Newtonian fluid in the gap
between two parallel plates.”

Large Amplitude Oscillatory Extensional Flow. In order to
generate controlled LAOE flows while simultaneously confining single
polymers for long times, we used the Stokes trap,’® which relies on
model predictive control (MPC) to precisely position and manipulate
single or multiple particles in flow. In brief, the center-of-mass position
of a target polymer is determined in real time using fluorescence
imaging and image analysis software (LabView). This information is
then communicated to the controller that rapidly determines the
optimal flow rates within 500 ps. Based on controller output, the
LabView program actuates four independent pressure transducers
(Proportion Air) to drive fluid flow in the cross-slot channel at a target
strain rate while confining single polymers near the center of the cross-
slot. The time required for one iteration of the control loop is

8020

approximately 30 ms. Further details of the implementation of the
Stokes trap for LAOE can be found elsewhere.*’

A schematic of the experimental setup is shown in Figure 1. Imaging
buffer with fluorescently labeled DNA is introduced into one of the
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Figure 1. Experimental setup for single polymer dynamics in large
amplitude oscillatory extension (LAOE). (a) Schematic of the
experimental setup for the LAOE experiment. (b) Sinusoidal strain
rate input function for one full cycle. Inset: schematics showing the
oscillatory extensional flow profile in the microfluidic cross-slot during
the first half (0 < t < T/2) and second half period (T/2 < t < T) of the

cycle.

four sample reservoirs, and imaging buffer without DNA is used in the
other three reservoirs. Microfluidic adapters (Elveflow) are used to
connect fluid reservoirs (1.5 mL Eppendorf tubes, Elveflow) to
pressure transducers and the microfluidic flow cell. A custom-fitted
cooling jacket is connected to a circulating water bath to precisely
control the temperature of the buffer solution. All experiments are
conducted isothermally at 22.5 °C.

In this work, a sinusoidal strain rate input is implemented to study
polymer dynamics in oscillatory extensional flow:

e(t) = —¢, sin(z?”t) o

. . (2

€y(t) =€ sm(?t) 3)
where T is the period of the sinusoidal cycle and &, is the maximum
strain rate (Figure 1b). During the first half-cycle for 0 < t < T/2, the
y-axis is the extensional axis and the x-axis is the compressional axis
(&.(t) <0, éy(t) > 0). During this phase, fluid is introduced into the
microfluidic device through ports 1 and 3 via pressure-driven flow,
such that the pressure values for ports 1 and 3 are equal (P, = P;) and
are chosen to achieve the desired strain rate in the channel. During the
first half-cycle, ports 2 and 4 are pressured to small pressure values ,
and J,, wherein the values of §, and §, are obtained from the feedback
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controller and are used to effectively confine the target molecule near
the center of the cross-slot. Importantly, the magnitudes of 6, and &,
are much smaller that the pressures applied in ports 1 and 3 to
generate the primary flow (6, < P,; and §, < P,3), such that the
application of secondary pressures 9§, and &, results in negligible
changes to the strain rate €. During the second half-cycle for T/2 <t <
T, the y-axis is the compressional axis and x-axis is the extensional axis
(&,(t) > 0, 'ey(t) < 0). During the second half-cycle, the processes
essentially reverses compared to the first half-cycle explained above.
For all experiments, DNA molecules are imaged for at least 10T, which
corresponds to 10 strain rate cycles. In this work, we focus only on
polymer dynamics at long times in oscillatory extensional flow,
considering transient dynamics only after the initial transients (during
start-up) have died out. In this way, we focus on times ¢ > T and ¢ >
7, where 7 is the polymer longest relaxation time.*’

The maximum strain rate &, is nondimensionalized to define a
maximum Weissenberg number Wi, = é,7, and the cycle period T is
nondimensionalized to obtain a Deborah number De = 7/T. We
measure 7 by first stretching DNA molecules in steady extensional flow
at high strain rates Wi > 1, followed by cessation of flow. Next, we
record the polymer relaxation trajectory after flow cessation, and the
maximum projected polymer extension I(¢) is tracked over time. This
process is repeated for an ensemble of polymer chains. A single-
exponential decay function is fit to the average maximum fractional
extension squared ({I(t))/L)? = A exp(—t/7) + B over the linear elastic
regime I/L < 0.3, where L is the contour length, A and B are fitting
parameters, and (-) corresponds to an average quantity. Using this
approach, we determined a longest polymer relaxation time 7 = 4.5 +
0.1 s in 48.5 + 1 cP imaging buffer, which is consistent with previous
single polymer studies.”****" Single polymer experiments are
performed in the range 0 < Wi < 10 and 0 < De < 1 by adjusting
the input pressures and strain rate cycle periods. Moreover, only
polymers near the center plane of the microchannel (with respect to
the z-direction) are analyzed. Single polymer images are analyzed
using a custom algorithm®® that allows for clear visualization of
polymer conformation and determination of polymer extension and
orientation angle.

Particle tracking velocimetry is also used to determine the
characteristic response time St for actuating fluid flow in response to
a sudden pressure change in the microdevice.” In brief, the finite
response time arises due to the elasticity of PDMS and flow lines. For
the extreme case of a large step pressure impulse of 1.2 psi (yielding a
strain rate increase of € = 1 s™'), we found that 6t &~ 1 s. However,
LAOE experiments reported in this work are performed with
continuously varying pressure changes with small incremental changes
that yield much smaller characteristic response times. Nevertheless, we
choose cycle time T to be much larger than the maximum
characteristic “rise” time Ot corresponding to a large step input flow
rate.

B BROWNIAN DYNAMICS SIMULATIONS

We employed a coarse-grained bead—spring model for polymer
chains in dilute solutions to simulate the dynamics of single
polymers in LAOE. The details of the BD simulations can be
found elsewhere.”"*” Briefly, the equation of motion for each
bead i in an N-particle system is described by the Langevin
equation. The system is overdamped such that particle
momenta relax much faster than particle configurations:

my,=F° + F' + F ~0 (4)
where subscript i denotes bead i, m is the mass of bead i, FPis
the Brownian force on bead i, F{ is the hydrodynamic drag
force on bead i, and F; is the net entropic spring force on bead
i. In this work, we consider only free-draining polymers in the
absence of intramolecular hydrodynamic interactions (HI) and
excluded volume (EV) interactions. In this model, the drag
force on bead i is given by
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d _ Voo _ ﬁ)
k= C( T (s)

where { is the (constant) drag coefficient, v° is the solvent
velocity at bead i, and r; is the position vector of bead i. We
assume a homogeneous velocity field such that v{° = k-r; where
Kk is the velocity gradient tensor. For the time-dependent
oscillatory extensional flow studied in this work, the velocity
gradient tensor has the form

2

—€&, sin(—ﬂt) 0
T
2

€ sin(—”t) 0
T

0 0

0

0 (6)
where T is the cycle period.
The Brownian forces FP are defined to satisfy the
fluctuation—dissipation theorem such that
E(0) = 0 o)
2k TCH;
d

(BP(OF)(t + dt)) = 2ksT8,5(dt) =~ ®

is the second-order isotropic tensor, 5(t) is the Dirac
50,51

where &;;
delta function, and dt is the discrete simulation time step.
Ignoring bead inertia, eq 4 can now be written as a set of
stochastic differential equations for the positions of beads i = 1

to N:

2k, T

dr, = (nq + éFf) dt + dw,

)

For each of the N equations, dW; represents an independent
three-dimensional Wiener process” whose value is represented

as the product of +/dtf and a randomly distributed Gaussian
vector n; with zero mean and unit variance. Equation 9 is
nondimensionalized using a characteristic time scale ¢, = {/4H,,

length scale I, = /kT/H,, and force scale F, = ,/kTH,, where
H, = 3kT/N, b;” is the Hookean spring constant.”” The Kuhn
step size is by, the number of Kuhn steps per spring is Ny, and
the total number of Kuhn steps in the polymer is Ny, = (N —
1)N;. The internal configuration of a bead—spring polymer
chain is described by a series of connector vectors Q, =r;,; — r;
where i ranges from 1 to N — 1. Equation 9 is recast into
dimensionless form in terms of connector vectors Q; as

dQ, = I:Pe(KhQi) + i(Ff_1 — 2F; + F§+1)] dt + %(d\/\@r1 — dw)
(10)

where x = sin(27t/T)(=6,.6,, + 8,,0,,), the bead Péclet
number is Pe = é,(/4H, and  and T are dimensionless time
and the dimensionless cycle period, respectively. The maximum
flow strength is given by the Weissenberg number Wi, = Pe7,
and the dimensionless cycle frequency is given by the Deborah
number De = 7/T, where 7 is the dimensionless longest
relaxation time for the bead—spring chain. We used the
Marko—Siggia entropic force relation between two consecutive
beads in the bead—spring chain such that>®
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Figure 2. Single polymer dynamics in large amplitude oscillatory extension (LAOE). (a) The total extension in the x—y plane is J, the x-direction
projected extension is [,, the y-direction projected extension is I, and the orientation angle is ¢. (b) Snapshots of a single DNA molecule over one
LAOE cycle (scale bar = S um). (c) Experimental trajectories of fractional projected extension I/L at Wi, = 4.3 and De = 0.4S. Here, 34 individual
experimental trajectories (gray) are used to calculate the ensemble average extension I/L (black). (d) Experimental trajectories of x-direction
fractional projected extension /L (red) and y-direction fractional projected extension [/l (blue). (f) Experimental trajectories of polymer
orientation angle ¢). Here, 34 individual experimental trajectories (gray) are used to calculate the ensemble average angle ¢ (black). (f—h) Results
from BD simulations showing I/L, I./L, I,/L, and ¢ corresponding to the experimental data in parts c—e, respectively. For BD simulations, 250

polymer chains are included in the ensemble.

s kT|1 1 2Q (Q;

i b_k Em Q, |Q, (11)

where Q is the scalar magnitude of the connector vector Q; and
Qy is the maximum extensibility of a spring given by Q, = N, b;.
The stochastic differential equations given by eq 10 were solved
using a semi-implicit predictor—corrector algorithm.”> Polymer
chains in the simulated ensemble are allowed to equilibriate for
107 before initiating oscillatory extensional flow in order to
ensure random conformational distributions. For this work, we
use N, = 10 and Ny = 15, which is similar to prior work on -
DNA 5455

1
2

B RESULTS AND DISCUSSION

Transient Dynamics in LAOE. We began the experiment
by studying the dynamics of single -DNA molecules in LAOE
(Figure 2). Single chain dynamics are observed and analyzed in
the x, y plane, wherein the x- and y-directions continuously
switch roles as the extensional and compressional axes in the
oscillatory flow field, as defined by eqs 2 and 3. Single molecule
images are analyzed using the quantities defined in Figure 2a,
and individual polymer backbones are tracked using custom
image analysis code (Methods). Using this approach, we
directly determine the maximum (total) polymer extension in
the x—y plane [, the x-direction projected extension [,, and the
y-direction projected extension I. These quantities can be
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converted to fractional extension by normalizing with the
polymer contour length L. The orientation angle ¢ is defined as
¢ = tan"'(L,/1,), and for the purposes of this analysis, the
directionality of I, and I, is not taken into consideration such
that the value of ¢ ranges from 0 to /2.

Representative images of single polymers in a full LAOE
cycle at Wiy = 4.3 and De = 0.45 are shown as a series of single
molecule snapshots in Figure 2b. Under these conditions, the
flow strength Wi, > 1, which suggests that polymers should be
stretched to high degrees of extension, at least in the context of
steady extensional flow at De 0. However, for these
conditions, the cycle time is approximately twice the longest
polymer relaxation time (De = 0.45), which means that the
transient polymer extension will be a competition between the
rate of stretching and duration of each cycle. Indeed, we
observe that single polymers indeed stretch beyond equilibrium
coil dimensions at Wi, = 4.3 and De = 0.45; however, the
maximum stretch in LAOE (I,,../L =~ 0.3) appears to be less
than that observed under steady extensional flow at Wi, = 4.3
and De = 0 (I,,.,/L = 0.8, as reported in Figure S and in prior
work®). The interplay between Wi and De in determining
chain dynamics is explored in more detail throughout this
article, though to begin this discussion, it is instructive to
consider transient polymer dynamics during a characteristic
LAOE cycle.
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Snapshots of a single polymer undergoing one complete
LAOE cycle are shown in Figure 2b, and the corresponding
ensemble average transient polymer stretch (I(t)/L, 1(t)/L,
ly(t) /L) and the transient orientation angle ¢(t) at Wi, = 4.3
and De = 0.45 are shown in Figures 2c—e. Here, the polymer is
exposed to a transient cycle of LAOE defined by strain rates
shown in Figure 1b. On the basis of these data, we can describe
the dynamic behavior of a single polymer chain in steady LAOE
by a characteristic periodic cycle. At the start of the cycle at t =
0T, a polymer chain begins in a nonequilibrium stretched state
in the x-direction because the x-axis served as the prior
extensional axis for £~ < 0. At time ¢ = 0, peaks are observed for
both I and ,, and valleys are seen for the J, trajectory and the ¢
trajectory. Intuitively, as the majority of the polymer stretch
appears in the x-direction, the y-direction stretch I, is essentially
zero. Next, in the first quarter of the LAOE cycle (0T < t <
0.25T), the y-axis is the extensional axis and the x-axis is the
compressional axis. The strain rate in the y-direction increases,
which results in the polymer chain compressing in the x-
direction while rotating toward the y-direction. At the same
time, the polymer begins to stretch along the y-axis, which is
reflected in an increase in the values of /, and ¢ with a
corresponding decrease in I,.

In the second quarter of the LAOE cycle (0.25T < t < 0.5T),
the y-axis remains as the extensional axis, but the strain rate in
the y-direction begins to decrease. Passing the maximum strain
rate value €, at £ = 0.25T, the polymer chain continues to be
stretched along the y-direction, albeit with a small amount of
retraction. Hence, at t = 0.5T, the maximum polymer stretch
occurs along the y-axis with essentially no stretch at the x-
direction. The orientation angle ¢ continues to increase from
approximately /5 to a peak close to /2. In the third quarter
of the cycle (0.5T < t < 0.75T), the flow switches direction such
that the x-axis is the new extensional axis and the y-axis is the
new compressional axis. The dynamic cycle essentially follows
the reverse process described in the first half-cycle, albeit with
the roles of the x- and y-directions switched. At t = 0.5T, the
polymer chain is stretched along the y-axis, but at the cycle
proceeds, the polymer begins to compress along the y-direction
and rotates toward the x-axis. The cycle proceeds for the final
quarter (0.7ST < t < T) until the end of cycle at t = T, where
polymer chain is again stretched along the x-axis, and the cycle
begins anew.

To complement single molecule experiments, we also studied
the dynamics of single polymers in LAOE using free-draining
Brownian dynamics simulations. Simulation results for transient
trajectories of I(t)/L, I(t)/L, L(t)/L, and the transient
orientation angle ¢(t) at Wiy, = 4.2 and De = 0.45 are shown
in Figures 2f—h. Overall, we observe good agreement between
the experiments and simulation trajectories for transient
polymer dynamics under these conditions. In prior work, we
also investiagated the role of intramolecular hydrodynamic
interactions (HI) and excluded volume (EV) interactions in
describing the dynamics of A-DNA in LAOE in the range 0 <
Wiy <10 and 0 < De < 2.4 1n general, we found that inclusion
of HI and EV into the BD simulations results in fairly minor
differences in describing chain dynamics compared to free-
draining simulations. Moreover, the role of HI and EV lessens
even further at low De, wherein polymer chains are able to
unravel to high extensions during a cycle and intramolecular
interactions are relatively weak.** For these reasons, we focus
our attention on free-draining BD simulations in this work.
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As shown in Figure 2, the dynamic trajectories of [, I, ly, and
¢ show high degrees of periodicity. We further investigated the
periodic cycle of polymer motion by examining the power
spectral density (PSD) of the x—y plane extension ! and the
orientation angle ¢ (Figure 3). By observing the power of a
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Figure 3. Power spectral densities (PSDs) of transient quantities in
oscillatory extension from both experiments and simulations. (a), (c),
and (e) show PSDs for polymer extension ! in the x—y plane at
different combinations of Wi, and De. (b), (d), and (f) show PSDs of
polymer orientation angle ¢ in LAOE at different combinations of Wi,
and De.

fluctuating signal in frequency space, the underlying time and
frequency dependencies can be conveniently characterized. The
PSD is defined as the Fourier transform of the autocorrelation
function of a (éuantity (or cross-correlation of two quanti-
ties).>*3¥*7°%¢ The autocorrelation function of a real-valued,
integrable fluctuating quantity x(t) is defined as

C,(4) = (x(t)x(t + 1)) (12)

where t denotes time, A is the offset time and (-) denotes a
time-averaged quantity. The PSD of x(t) is given by

P = [ c e a )

where P is power, f is frequency, and i is the imaginary unit.
Here, the data are multiplied by a Welch window before
computing the Fourier transform using a fast Fourier transform
(EFT) algorithm.*® For both experiments and simulations, the
PSD of the projected extension [ is nondimensionalized by the
quantity Lz, where L is the contour length and 7 is the longest
polymer relaxation time. The PSD for the orientation angle ¢ is
nondimensionalized by 7, and frequency is nondimensionalized
by the cycle period time T.

PSDs of polymer extension ! and orientation angle ¢ from
experiments and simulations are shown in Figure 3, where the
data correspond to two different Wi, (at constant De) and two
different De (at constant Wi;). From a broad perspective, we
observe good agreement for PSDs between experiments and
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simulations. For PSDs of polymer extension ! (Figures 3a,ce),
distinct peaks are observed at fT = 2, which corresponds to a
frequency equal to the inverse half-cycle time (T/2)7". These
data indicate that polymer chains reach their maximum
extension in the x—y plane exactly twice in one LAOE cycle,
which includes polymer chain stretching along the x-axis and y-
axis in the cycle discussed above. We observe this characteristic
periodicity across a wide range of flow strength Wi, and
probing frequency De. Figures 3b,d,f show the PSDs of the
orientation angle ¢ from experiments and simulations. In terms
of orientation angle, peaks in the PSD are observed at fT = 1,
which corresponds to a frequency equal to the inverse cycle
time T~". PSDs of ¢ imply that polymer chains can fully rotate
exactly once within one LAOE cycle from ¢p = 0 to ¢p = 7/2 and
back to ¢ = 0 again, at least across the range of Wi, and De
considered in these data. Interestingly, these results show that
the characteristic periodic dynamics of polymers in LAOE can
emerge even under relatively weak flow strength (Wi, = 1.6),
though the precise dynamics will depend on the specific values
of Wi, and De.

To further understand the coupled dynamics between I, and
I, in the x—y plane, we determined the cross-correlation
function for fluctuations in the projected extensions I, and I

Y
(Figure 4). Here, we define fluctuations in the projected
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Figure 4. Cross-correlations of x-direction projected extension I, and
y-direction projected extension I, from single polymer LAOE
experiments at (a) Wiy = 1.6 and De = 0.4S, (b) Wi, = 4.3 and De
= 045, (c) Wiy = 6.5 and De = 0.45, and (d) Wi, = 4.3 and De = 0.1.

extensions as the mean value subtracted from the instantaneous
value such that [(t) = 1,(t) — (1,) and [(t) = L(t) — (1), where

(-) denotes a time-averaged quantity. The cross-correlation

function Cy, ; is given by
wone+a) [ T IO+ 2) dt
(LAOXLAD)

RO
(14)

where the function Cy ; is normalized by the product of the

Cz;,zy’(/l)

mean-squared fluctutations in extension in the x- and y-
directions. The cycle period T is used to nondimensionalize the
offset time A. Using this approach, we observe some similarities
in cross-correlations for these data, at least in the range of Wi
and De considered here. First, the results show that all cross-
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correlations defined by C;; are symmetric with respect to 4 = 0.

Moreover, the cross-correlation analysis reveals that the
fluctuations in polymer stretch in the x- and y-directions are
esssentially perfectly anticorrelated. At zero lag (4 = 0T), the
quantities [, and [, are negatively correlated, suggesting that
peaks in [, correspond to valleys in I, which is consistent with
the general behavior shown in Figure 2. As the lag increases to
A = T/4, zero correlation is observed between I; and I, which
suggests that polymer stretch in the x- and y-directions
becomes completely uncorrelated in one-quarter cycle time
(T/4) relative to zero lag. In fact, for any

A/T), = i(% + i), n € Z, zero correlation is observed,

which reflects the underlying periodic nature of the LAOE flow.
As the lag further increases to 4 = T/2, the quantities [, and ly’
are perfectly correlated, which is again consistent with the
dynamic behavior shown in Figures 2d and 2g. In order to
interpret the cross-correlation function, consider the behavior
on either side of zero lag. Moving forward in lag from from 4 =
0 to A = T/4, the correlation is negative, suggesting that future
positive fluctuations in y-direction extension are correlated with
negative fluctuations in the x-direction extension. For example,
stretching along the y-axis implies that the polymer chain
compresses along the x-axis. Alternatively, this behavior
similarly implies that future negative fluctuations in y-direction
extension are correlated with positive fluctuations in the x-
direction extension. For negative time lags, similar arguments
can be made; for example, prior negative fluctuations in I, give
rise to stretching in the x-direction. Taken together, this
dynamic behavior is consistent with a time-dependent
oscillatory process as shown in Figure 2.

Average Transient Extension in LAOE. In addition to
transient dynamics, we also studied the average polymer
extension in oscillatory extensional flow (Figure 5). Unlike

1.0 —T— —T T
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L —e— Perkins et al. (De=0) |
'Y —o— Simulation (De=0)
—A— Experiment(De=0.1
08F periment( )
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<[>/L

Figure S. Average fractional projected extension (I)/L as a function of
Wi, and De, including steady extensional flow (De = 0) and periodic
extensional flow (De > 0). Experimental results are compared to BD
simulations of A-DNA.

steady extensional flow (De = 0), polymer chains do not exhibit
a stable steady-state extension in LAOE. Rather, the long time
dynamics exhibit a periodic transient motion of unsteady
polymer stretching. Nevertheless, we can determine the average
polymer extension in the x—y plane (I) by averaging transient
polymer extension I(t) trajectories over long times in
experiments or simulations.”” As noted earlier, in this work
we only consider dynamic behavior after the initial start-up
phase of LAOE (t > 7 and t > T), and therefore we only
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consider the dynamic behavior after the initial transients have
died out. The average fractional steady-state extension (I)/L as
a function of Wij and De is shown in Figure S. For experimental
data, >30 individual DNA molecules are analyzed at each Wi,
and De. In all cases, single polymers are confined near the
stagnation point using the Stokes trap in order to achieve
arbitrarily long residence times.

We began the experiment by studying dynamics in steady
extensional flow, which corresponds to De = 0 in Figure S. Our
experimental and simulation results agree well with previously
reported data on steady-state extension of A-DNA in steady
planar extensional flow.”*>> We next studied average polymer
extension in oscillatory extension by increasing the frequency to
De = 0.1. In the limit of small 0 < De < 1, the dynamic behavior
of polymers can be referred to as quasi-steady. Under quasi-
steady-state conditions, the oscillatory period T is larger than
the longest relaxation time 7 such that De = 7/T < 1, which
means that a polymer generally has sufficient time to respond
to flow during a cycle (relative to the longest relaxation time).
Interestingly, at De = 0.1, we observe that the average transient
extension is much smaller compared to steady extensional flow
at De = 0. Physically, the presence of flow oscillations decreases
the average polymer extension in each phase of the cycle. Upon
further increasing the frequency to De = 0.4S, the average
transient extension at equivalent Wi, further decreases
compared to average chain extension at De = 0.

The average polymer extension in oscillatory extensional flow
was characterized over a wide range of Wi, and De using BD
simulations (Figure 6). As shown in Figure 6a, the average
extension curves from BD simulations follow the same trends as
discussed above, such that the average polymer stretch
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Figure 6. Average transient polymer extension in oscillatory
extensional flow from BD simulations. (a) Average fractional extension
(I)/L over a wide range of Wi, and De. (b) Master curve for average
transient fractional extension in oscillatory extensional flow by plotting
(I)/L as a function of Wi
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gradually decreases upon increasing De. In considering Figure
6a, a question arises: can the average extension curves in LAOE
be recast into a master curve? To address this question, we
derived an analytical expression for the transient polymer
extension in oscillatory extensional flow using a Hookean
dumbbell model. The rheological equation of state for a
suspension of elastic single-mode Hookean dumbbells is>’

TP + }'HTP(I) = —VlkTﬂHy (15)

where 7, is the polymer contribution to the total stress, 7 is the
deformation tensor, Ay is the relaxation time for a Hookean
dumbbell, and the subscript (1) denotes the operation of
codeformational differentiation.”” For oscillatory extension, the
deformation tensor 7 can be taken as the velocity gradient
tensor K given by eq 6. Stress is nondimensionalized by the
quantity nkT, where n is the number density of polymers, and
the deformation rate is nondimensionalized by Ay. In this way,
the following dimensionless differential equations are obtained
from eq 15:

d 2z 2z
1+ Ay— .. + Wi sin(—t)f = Wi sin(—t)
( de) xx 0 T XX 0 T (16)

= —Wi, sin(z—ﬂt)
T
(17)
Given an appropriate set of initial conditions, 7,, and 7,, can be
solved analytically for Hookean dumbbells in oscillatory
extensional flow, albeit in the context of low Wi, Moreover,

the fractional extension in the x—y plane /() can be determined
using the relation

i R - o T T,
\ 3 (18)

L
where R, is equilibrium end-to-end distance and L is the
contour length. In this way, eqs 16 and 17 can be solved to
yield the following expressions for transient fractional extension
I(t)/L for a Hookean dumbbell:

d Y ¥ 4
(1 + AHE)TW - Wi, sm(?t)ryy

eq
L

I(t) _ Reg 1 t (2xDe, N 1l
= ea) /0 Wiy sin| 254 | exp(=A (1)) d
1 t o . [2aDe , , 172
— exp(—B wi B(t)) d
+ 5 e (-B() S wio ( i t)exp< (t)) dt'] (9)
where
Wil cos(anet) — 2t
De An
A(t) = j
247
Wik cos(anet) + 2mt
De H
B(t) =
247 (20)

The average polymer extension (I)/L at any Wi, and De is then
calculated numerically by integrating eq 19 over at least five
cycles in oscillatory extensional flow at long times after the
initial transients have died out. Of course, the Hookean
dumbbell model can only be used to quantitatively determine
the linear flow response of polymers in extensional flow.””
Nevertheless, this model can be used to define an approximate
critical flow strength Wi, ;; for a given De at which the behavior
transitions from a linear to nonlinear response in oscillatory
extensional flow. In examining the steady-state polymer
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extension at De = 0, the coil—stretch transition occurs at Wi i,
~ 0.5, for which the average fractional extension is (I)/L = 1/2.
Using this logic, we define the transition from linear to
nonlinear behavior to occur at a critical Weissenberg number
Wiy i at which the average polymer extension (I)/L = 0.5.
Interestingly, using these criteria, we found that the critical
Weissenberg number Wi, ;; scales linearly with De over a wide
range of De such that Wi ; o kDe + 1, where k is a numerical
constant. One aspect of this definition should be noted before
proceeding. This definition of Wi is appropriate for a linear
model because the polymer extension diverges at Wi > 1 for a
Hookean dumbbell in steady planar extensional flow. For this
reason, it is physically reasonable to define the linear to
nonlinear transition in terms of average polymer extension,
rather than an arbitrary critical flow strength. Indeed, the
following section shows that this definition is consistent with an
alternative (albeit similar) definition of Wi, based on an
effective Weissenberg number Wi in oscillatory extension. In
any event, we emphasize that the Hookean dumbbell model is
primarily used to motivate a functional form for an effective
Weissenberg number Wi in oscillatory extensional flow.

On the basis of these results, we can define an effective
Weissenberg number Wi for oscillatory extensional flow:

Wi Wi,

T De + 1 (21)
where k is a numerical constant (k = 17.4 for the Hookean
dumbbell model). Using the definition of Wiy in eq 21, we
replotted the average polymer extension data from multimode
BD simulations in Figure 6a as a function of Wi, and the
results are shown in Figure 6b. Remarkably, all average
extension curves in oscillatory extensional flow collapse onto
a single master flow curve when plotted against Wi.g, where k =
25.1 gives the best fit to collapse data from BD simulation
results. We conjecture that the small difference in the numerical
constant k between Hookean dummbell model and multimode
simulations is due to the inclusion of finite extensibility and
multiple modes in the BD simulations.

Finally, the effective Weissenberg number Wi in eq 21 can
be physically motivated by considering the amount of fluid
strain €1/, applied during a half-cycle:

/T/Z 27
€ = €, sin|] —t
ey (T) (22)

Of course, the total fluid strain applied during a full cycle (0 < ¢
< T) is exactly zero (¢ = 0). Thus, the strain in a half-cycle 1/,
can be rewritten as

Wi,

De

T
dt = e,—
T

Crr2 = (23)
Hence, the inverse scaling behavior of Wit and De in eq 21
indicates an interplay between the flow strength Wi, and cycle
frequency De that ultimately determines the amount of
accumulated fluid strain during a half-cycle in oscillatory
extensional flow. Physically, one would expect that larger
amounts of fluid strain €1, will result in larger polymer
deformations during an LAOE cycle. Indeed, this is observed in
our experiments.

Single Polymer Dynamics in Pipkin Space. Dynamic
behavior in LAOE can be described by a two-dimensional space
known as Pipkin space, which is defined by flow strength Wi,
and frequency De.’® Figure 7 shows a sketch of polymer
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Figure 7. Average polymer stretching dynamics in oscillatory
extensional flow as visualized in the context of Pipkin space, which
is defined in the two-dimensional space of Wi, and De. Here, we
identify six differnt regimes, with the transition between linear and
nonlinear behavior predicted from BD simulations (solid line) and a

Hookean dumbbell model (dashed line).

behavior in oscillatory extensional flow in the context of Pipkin
space. Under these conditions, polymer dynamics can be
generally classified by six regimes: (1) Regime I: linear, steady-
state behavior for Wiy < Wiy and De = 0; (2) Regime II:
linear, quasi-steady-state behavior for Wiy < Wiy . and De < 1;
(3) Regime III: linear, unsteady behavior at Wi, < Wi, and
De > 1; (4) Regime IV: nonlinear, steady-state behavior at Wi,
> Wiy and De = 0; (S5) Regime V: nonlinear, quasi-steady-
state behavior for Wiy > Wi, and De < 1; and (6) Regime VI:
nonlinear, unsteady behavior at Wi, > Wiy and De > 1.
Steady extensional flow corresponds to zero frequency or
infinite cycle times (De = 0), denoted by Regimes I and IV
(shaded black) on the far left side of plot in Figure 7. At De = 0,
the critical Weissenberg number at the coil—stretch transition
(CST) is Wigim = 0.5 from kinetic theory,” which is in good
agreement with experimental observations.”* In constructing
the dynamic phase diagram for oscillatory extensional flow, a
key question arises: what defines the critical flow strength
Wigeie at the boundary between the linear and nonlinear
regimes?

We determined the critical Weissenberg number at the linear
to nonlinear transition Wi%ﬁﬁE using multimode BD simulations
and the effective Weissenberg number Wi, defined in eq 21. In
this way, the critical Wiy in oscillatory extension can be
related to the critical Weissenberg number in steady extensional
flow Wig,sCrit by the relation

Wigh2F(De) = Wijs.(kDe + 1)

(24)

In eq 24, the critical flow strength is formally defined to occur
at Wi = 0.5, which is in good agreement with the master curve
shown in Figure 6b. Using this framework, the dynamic
behavior of polymers in oscillatory extensional flow can be
schematically illustrated in Pipkin space, as shown in Figure 7.
Here, the linear regime corresponds to the linear portion of the
average flow extension curves in Figure 6a. In this regime,
polymer chains are only slightly perturbed beyond equilibrium.
Upon increasing the flow strength Wi, into the nonlinear
regime, polymer chains can be deformed into highly stretched
states depending on the De. For Wi, > Wi%,ji\r?tE and De < 1,
quasi-steady-state conditions such that the cycle times are
longer than the polymer relaxation time, which results in highly
stretched conformations in each half-cycle. Upon increasing the
De further at high Wi, > Wi%?r?tE, complex chain dynamics are
expected to be observed under highly unsteady conditions.
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Figure 8. Dynamic polymer conformations in oscillatory extension. (a) Average conformational space for an ensemble of single DNA molecules as a
function of Wi, and frequency De. For these data, fluorescence images were superimposed for a series of experiments at a particular Wi, and De, and
the center-of-mass of the polymer was centered at the origin. Scale bar = 2 ym. (b) Single molecule snapshots showing different transition
conformational structures observed during a switch in the extensional/compressional axes. Different apparent buckling structures are observed. The
time between each single polymer snapshot is T/10. Scale bar = S ym. (c) Histograms showing probabilities of different transition structures as a

function of Wi, and De above the critical Weissenberg number Wi
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These results can be further analyzed to determine the
amount of fluid strain required to drive a polymer from the
linear to nonlinear state in LAOE, which can be approximated
as the strain in a half-cycle at Wi = 0.5. We found that the
strain required to transition from the linear to nonlinear regime
during a half-cycle is € ~ 4. Interestingly, this value is close to
the amount of strain required to uncoil a polymer molecule
before reaching a steady state stress or extension (¢ ~ 2—6) as
determined using a filament stretching rheometer (FSR).*" In
addition, the linear to nonlinear transition predicted from single
polymer LAOE is very similar to the linear and nonlinear
rheological features of wormlike micelle solutions determined
by LAOS, which is a physical process that includes the breakage
and re-forming of an entangled physical network.”” From this
perspective, there appear to be similarities in the underlying
physics governing the linear to nonlinear transitions for
complex fluids in oscillatory flows, despite the fact that these
materials are quite different in nature.

Dynamic Polymer Conformations in LAOE. We further
investigated the dynamic conformations of single polymers in
LAOE (Figure 8). We began by studying the average
conformational phase space of single polymers experiments as
a function of Wi, and De, as shown in Figure 8a. Here, we
superimposed single molecule fluorescence images across all
experiments at a particular Wi, and De, such that the center-of-
mass of the polymer was fixed at the origin for all images.” In
this way, the dynamic conformational phase space becomes
visually apparent for nonequilibrium flows. We observe several
trends in these data. When the flow strength Wi, (at a
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frequency De) is below the critical Weissenberg number
Wi]d‘gr?tE(De), the conformational space for single polymers
appears as an isotropic blob. This behavior occurs for the case
of Wiy, = 1.6 and De = 0.4S, wherein critical Weissenberg
number Wi]d’zr?tE(De) =~ 6.1 > Wi, = 1.6. These data indicate
that polymer chains (on average) experience minor deforma-
tions and perturbations from an equilibrium coil. Upon
increasing the flow strength Wi, above Wi&’éﬁE(De), the
conformational space in LAOE adopts a symmetric orthogonal
cross shape. This behavior is rationalized by considering that
both the x- and y-axis serve as alternating principal axes of
extension in LAOE. As an example, the conformational space
for Wi, = 6.5 and De = 0.45 appears as a bright cross, which is
consistent with the flow strength above the critical Wi%?r?tE (De)
~ 6.1 under these conditions. Upon increasing the Wi, or
decreasing the De, the shape of the cross sharpens and thins,
which is apparent for the case of Wi, = 4.3 and De = 0.1
wherein Wigho'(De) ~ 1.8 < Wi, = 4.3. In general, these
observations are consistent with the linear—nonlinear transition
behavior in oscillatory extension discussed above.

In addition to the average conformational space, we also
investigated the dynamic chain conformations during tran-
sitions between stretched states. In prior work, several studies
have focused on flow-driven buckling instabilities for semi-
flexible filaments with I, ~ L such as actin filaments.”'
However, for globally flexible polymers with [, < L, buckling
instabilities have also been observed and characterized using
optical birefringence.”” In our work, A-DNA molecules have
~400 persistence lengths,> which is considered as globally
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flexible. We hypothesized that the transient switching of
extensional and compressional axes in LAOE could induce
buckling in single polymers as bourne out by the appearance of
different modes. Figure 8b shows four panels containing a series
of single molecule snapshots showing intermediate transition
structures during buckling events. For each event, we
qualitatively assign the number of modes associated with the
buckling event, up to 3-fold events. Figure 8c shows the
probability of encountering different buckling events as
functions of Wi, and De. The upper panel in Figure 8c shows
trends for this behavior upon increasing the flow strength at a
constant frequency De = 0.45. Upon approaching the critical
Wigh®(De) =~ 6.1, the occurrence of 1-fold and 2-fold
structures increases with flow strength while the occurrence
of 3-fold structures decreases. We conjecture that this behavior
arises because at higher flow strengths, the role of thermal
fluctuations in inducing higher-order modal structures likely
lessens. Additionally, we find that DNA stretching at higher Wi,
is facilitated by adopting a lower mode transition structure
without returning back to a highly coiled state in LAOE, which
experimentally confirms prior predictions that oscillatory
extensional flow can enhance the unraveling of DNA molecules
by Larson and co-workers.”* Finally, we also consider the
conformational stretching behavior at constant Wi, (above
WighOF(De)) while changing the probing frequency De (lower
panel, Figure 8c). At a lower frequency De = 0.1 relative to De =
0.4S, the probability of the coiled structure in the transition
increases, which is consistent with the notion that a polymer
may have sufficient time to relax to a more compact coiled
conformation at low De.

B CONCLUSIONS

In this work, we investigate the dynamics of single DNA
molecules in small and large amplitude oscillatory extension
using a combination of experiments and BD simulations. Good
agreement is found between the experimental and simulation
results for polymer extension in the x—y plane I, the x- and y-
direction projected extensions I, and [, and the polymer
orientation angle ¢. In general, single polymers undergo
continuous cycles of compression, rotation, and extension along
the x- and y-axes that can be described by a characteristic
periodic cycle. PSDs of polymer extension I and orientation
angle ¢ show characteristic peaks at 2fT and fT, respectively,
which correspond to periodic extension and reorientation in
the oscillatory flow. Moreover, cross-correlation analysis of x-
and y-direction projected extension reveal that I, and I, are
anticorrelated such that prior negative fluctuations in I,
correspond to positive fluctuations in I. These results are
consistent with the periodic nature of the flow.

We further characterized the average extension of single
polymers in oscillatory extensional flow at long times using
both experiments and simulations. BD simulations are used to
predict the polymer dynamic behavior over a wide range of Wi,
and De. Interestingly, average polymer extension in LAOE are
self-similar and collapse onto a master average extension curve
by defining an effective Weissenberg number Wi Physical
arguments are used to show that the accumulated fluid strain in
a half-cycle is related to the effective Weissenberg Wi, such
that larger amounts of strain result in higher effective flow
strengths. Moreover, the definition of Wiy is further
substantiated using analytical model based on a Hookean
dumbbell in oscillatory extension. The dynamic behavior of
polymers in oscillatory extensional flow is also viewed in the
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context of two-dimensional Pipkin space defined by Wi, and
De, where polymer behavior can be classified into several
different regimes as linear or nonlinear or quasi-steady or
unsteady. In the present work, we mainly studied dynamics
near the boundaries of the linear to nonlinear transitions in
LAOE, as shown schematically in Figure 7. Recent work has
elucidated the microstructural and stress dynamics for colloids
and polgrmers in LAOS under strongly nonlinear condi-
tions.®”®® In future work, it would be interesting and
informative to study single polymer dynamics in the highly
nonlinear, unsteady regime (Regime VI in Figure 7) in the
context of high flow strength Wi, and probing frequency De in
LAOE. Finally, the average conformational space and buckling
transition structures of single DNA molecules are characterized
in LAOE, with probability distributions showing that DNA
molecules tend to buckle into lower fold structures at higher
flow strengths. Taken together, these results shed new light
onto our understanding of nonequilibrium polymer dynamics
in time-dependent flows.
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