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Abstract

The dynamics of individual Deoxyribonucleic acid (DNA) molecules in semidilute solutions undergoing planar extensional flow is simulated
using a multiparticle Brownian dynamics algorithm, which incorporates hydrodynamic and excluded volume interactions in the context of a
coarse-grained bead-spring chain model for DNA. The successive fine-graining protocol [P. Sunthar and J. R. Prakash, Macromolecules 38,
617-640 (2005); R. Prabhakar ez al., J. Rheol. 48, 1251-1278 (2004)], in which simulation data acquired for bead-spring chains with increas-
ing values of the number of beads NV,, is extrapolated to the number of Kuhn steps Nk in DNA (while keeping key physical parameters invari-
ant), is used to obtain parameter-free predictions for a range of Weissenberg numbers and Hencky strain units. A systematic comparison of
simulation predictions is carried out with the experimental observations of Hsiao ez al. [J. Rheol. (in press)], who have recently used sin-
gle molecule techniques to investigate the dynamics of dilute and semidilute solutions of A-phage DNA in planar extensional flow. In
particular, they examine the response of individual chains to step-strain deformation followed by cessation of flow, thereby capturing
both chain stretch and relaxation in a single experiment. The successive fine-graining technique is shown to lead to quantitatively
accurate predictions of the experimental observations in the stretching and relaxation phases. Additionally, the transient chain stretch
following a step strain deformation is shown to be much smaller in semidilute solutions than in dilute solutions, in agreement with exper-
imental observations. © 2016 The Society of Rheology. [http://dx.doi.org/10.1122/1.4972237]

l. INTRODUCTION excluded volume interactions in molecular theories [22-27].
In semidilute solutions, however, it is known that these inter-
actions gradually get screened with increasing monomer
concentration [34-36]. The recent single molecule experi-
ments of Hsiao et al. on planar extensional flow of unen-
tangled semidilute solutions of A-phage DNA (reported in a
companion paper [37]) provide benchmark data against
which molecular theories can be verified. In particular, one
can examine if theories accurately capture the subtle changes
that occur on the molecular scale, as chains begin to interact
and interpenetrate with each other with increasing concentra-
tion. The aim of this paper is to carry out simulations with a
recently developed multichain Brownian dynamics algorithm
[38,39], which incorporates hydrodynamic and excluded vol-
ume interactions in order to compare predictions with experi-
mental observations. Additionally, the technique of
successive fine-graining [22,40] is used to obtain predictions
that are independent of model parameters.

Over the past two decades, DNA (and in particular,
A-phage DNA) has been used as model polymer to carry out
a number of investigations into single molecule dynamics.
YAuthor to whom correspondence should be addressed; electronic mail: The advantage of DNA lies in the monodispersity of the sol-
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Several studies of single molecules of fluorescently
labeled Deoxyribonucleic acid (DNA) have been carried out
in order to gain insight into the conformational evolution of
polymer chains when subjected to a variety of flow fields
[1-20]. These studies have not only enabled the direct visual
observation of “molecular individualism” [5,21] but have
also proved to be of vital importance for the validation of
molecular theories of polymer dynamics [13,14,16,22-29].
Nearly, all these investigations have been carried out in
either the dilute or concentrated solution regimes, with only
a few in the semidilute regime [15,18,20,28,30]. Given the
importance of semidilute polymer solutions, both from fun-
damental and practical [31-33] points of view, it is essential
to gain an understanding of the fundamental physics that
governs the dynamics of polymer molecules in this regime.
In the dilute regime, single molecules studies have revealed
the importance of properly accounting for hydrodynamic and
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with a dye for visual observation [41]. For instance, in dilute
solutions, single molecule studies of DNA have been used to
examine the stretching dynamics of DNA molecules in
extensional flows [4,5], stretching and tumbling dynamics in
shear flows [6,7], dynamics in mixed shear and extensional
flows [8], direct measurements of diffusion coefficients
[9,42], and relaxation times [10], and to establish the exis-
tence of coil-stretch hysteresis [12]. In concentrated
solutions, single molecule studies have established the valid-
ity of the reptation hypothesis [13] and of scaling theories
for the molecular weight dependence of diffusion coeffi-
cients [14]. Compared to the wealth of experimental infor-
mation on single molecule dynamics in the dilute and
concentrated regimes, there is comparatively little informa-
tion on the behavior of macromolecules in the semidilute
regime, both under equilibrium and nonequilibrium condi-
tions. The classic early work of Chu and coworkers [18,28]
was the first attempt to relate macroscopic rheological
behavior to microscopic dynamics in shear flows. Steinberg
and coworkers have measured the longest relaxation times
for semidilute solutions of T4 DNA by carrying out stretch
relaxation experiments [30]. More recently, Bausch and cow-
orkers [15,20] have correlated the dynamics of semiflexible
polymers in semidilute solutions to the measured depen-
dence of viscosity on shear rate. To our knowledge, there
appear to be no measurements of single molecule dynamics
in extensional flows of unentangled semidilute solutions,
prior to the recent work of Hsiao et al. [37]. It is also worth
noting that experiments on single molecule behavior in
extensional flows of dilute solutions have either separately
examined the unravelling of chains from the coiled to the
stretched state [4,5,12] or the relaxation from the stretched to
the coiled state [10,12]. The experiments of Hsiao et al. [37]
are unique in that they documented the response of single
chains to step-strain deformation followed by cessation of
flow, both in the dilute and semidilute regime, and provide
an opportunity to validate simulation predictions of chain
stretch and relaxation in a single experiment.

In the case of dilute polymer solutions undergoing exten-
sional flow, several studies have shown that it is necessary to
incorporate the finite extensibility of chains, and the presence
of hydrodynamic and excluded volume interactions into
molecular theories in order to obtain an accurate prediction
of experimental measurements [23-27,40,43]. In addition to
having to choose the level of coarse-graining through a
choice of the number of beads in a bead-spring chain, N,, the
incorporation of these phenomena entails the choice of
parameters associated with each of them when carrying out
simulations. Thus, a choice needs to be made for the values
of the nondimensional finite extensibility parameter, b, the
nondimensional bead radius, 4%, which is a measure of the
strength of hydrodynamic interactions, and the nondimen-
sional excluded volume parameter, z*, which is a measure of
the difference between the solution temperature and the theta
temperature. Prakash and coworkers [22,40,44] have shown
that by using the method of successive fine-graining, predic-
tions can be obtained that are independent of the choice of
parameters in the model. The successive fine-graining tech-
nique is a specific protocol by which simulation data acquired
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for bead-spring chains with increasing values of N,, is extrap-
olated to the number of Kuhn steps N, in the polymer chain
being simulated. It essentially exploits the universal behavior
observed in solutions of long chain polymers, to obtain
parameter-free simulation predictions. In dilute solutions, the
use of successive fine-graining has been shown to lead to
quantitatively accurate predictions of the conformational evo-
lution of A-phage DNA in cross-slot cells [22] and the exten-
sional viscosity of both DNA [45] and polystyrene solutions
[40,46] in uniaxial extensional flows. The aim of the present
paper is to use the successive fine-graining technique to pre-
dict the conformational evolution of DNA molecules in unen-
tangled semidilute solutions when subjected to step-strain
deformation followed by cessation of flow, and to verify if
accurate predictions of the experimental measurements of
Hsiao et al. [37] can be obtained.

Several different mesoscopic simulation techniques have
been developed over the past decade for describing the
dynamics of unentangled semidilute polymer solutions
which take into account the presence of intra and intermolec-
ular long-range hydrodynamic interactions [38,47-51]. By
implementing the Kraynik—Reinelt periodic boundary condi-
tions for mixed flows [52,53], Prakash and coworkers [39]
have recently developed an optimized multiparticle
Brownian dynamics algorithm that can simulate arbitrary
planar mixed shear and extensional flows of polymer solu-
tions at finite concentrations. This algorithm is used in the
present work to implement the successive fine-graining tech-
nique in the context of planar extensional flows.

The structure of the paper is as follows. In Sec. II and in
the supplementary material [54], the governing equations for
a bead-spring chain model are given along with the defini-
tions of various observable quantities. In Sec. III, a brief
overview of the successive fine-graining technique is pre-
sented. A detailed comparison of simulation predictions with
the experimental observations of Hsiao et al. [37], in dilute
and in semidilute solutions, is presented in Sec. IV. In partic-
ular, we carry out a qualitative comparison of the probability
distribution of fractional stretch in planar extensional flows,
and a quantitative comparison of the conformational evolu-
tion of individual chains subjected to a step-strain deforma-
tion followed by cessation of flow. A discussion of the
reasons why the successive fine graining scheme may be
expected to work, and the conditions under which it breaks
down are discussed in Sec. V. Finally, in Sec. VI, we sum-
marize the principal conclusions of this work.

Il. BEAD-SPRING CHAIN MODEL OF DNA

A coarse-grained bead-spring chain model is used to
represent DNA molecules, with each chain consisting of a
sequence of N, beads (which act as centers of hydrodynamic
resistance) connected by N, — 1 massless wormlike chain
(WLC) springs that represent the entropic force between two
adjacent beads. A semidilute solution of DNA molecules is
obtained by immersing an ensemble of N, such bead-spring
chains in an incompressible Newtonian solvent. The bulk
monomer concentration of the solution is defined by
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¢ =N/V, where N = N}, x N, is total number of beads per
cubic simulation cell of edge length Lgy, and V = L2 | is
the volume of each periodic cell. As detailed in the supple-
mentary material [54], the inter- and intramolecular hydrody-
namic interactions between the beads are modeled using the
Rotne—Prager—Yamakawa (RPY) tensor, while bead overlap
is prevented by using a pairwise repulsive narrow Gaussian
excluded volume potential. For the purpose of nondimen-
sionalizing length and time units, a length scale [y
= /kgT/H and a time scale Ay = {/4H are used, respec-
tively, where T is the temperature, H is the spring constant,
kg is the Boltzmann constant, and ( is the hydrodynamic
friction coefficient associated with a bead. Within this frame-
work, the time evolution of the dimensionless position,
ri ("), of a typical bead v, is governed by a stochastic differ-
ential equation, which can be numerically integrated with the
help of Brownian dynamics simulations. The specifics of the
integration scheme, along with details of the simulation pro-
tocol, and the particular forms of the spring force and the
hydrodynamic interaction tensor used here, are given in the
supplementary material [54].

DNA solutions used in rheological measurements are typ-
ically buffered aqueous solutions with an excess concentra-
tion of sodium salt, which has been established to be well
above the threshold for observing charge-screening effects
(see Appendix B of Pan et al. [55]). Consequently, DNA
molecules are expected to behave identically to neutral mol-
ecules in good solvents that lie in the crossover regime
between 0 solutions and athermal solvents, with the solvent
quality described by the variable [55,56],

k(l —?) VM, (1)

where M is the molecular weight, T} is the theta temperature,
and k is a polymer-solvent chemistry dependent constant.
Recently, Pan et al. have estimated that Ty ~ 15°C for the
DNA solutions that are typically used in rheological experi-
ments, and have also determined the value of the constant k
[55,56]. In particular, they have tabulated the value of z as a
function of temperature and molecular weight for a wide
variety of DNA fragments. Based on their calculations, a
solution of A-phage DNA is estimated to have a solvent qual-
ity z~ 0.7 at 22°C (the temperature at which the experi-
ments reported by Hsiao et al. [37] have been carried out).
Interestingly, Sunthar et al. [22,45] found that using z=1
(rather than z =0 or z = 3) in their dilute solution simulations
gave the best agreement between predictions and the experi-
mental measurements of Perkins er al. [4]. At equilibrium,
experiments and simulations show that for z=0.7, R,

=1.23 R9 while at z=1.0,R, = 1. 29R9 (these estimates
can be obtalned from Eq. (23) 0f [57] wh1ch gives a formula
for R, /R’ . as a function of z that fits both experimental and
simulation data). The difference in equilibrium chain swell-
ing between the two values of z is consequently less than
5%, which is not significant in comparison to experimental
and simulation error bars. Anticipating, therefore, that the
difference between results for these two values of z will not
be significant, we have used a value of z=1 in all our
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simulations. However, in order to ensure that this is in fact
the case, we have validated this assumption by carrying out
simulations with z=0.7, at one value of the Weissenberg
number (Wi = 2.6). The results of the study, which are pre-
sented in the supplementary material [54], show that indeed
this assumption is justified.

The solvent quality can be conveniently controlled in simu-
lations with the help of the narrow Gaussian potential [57,58]

B z* 1 I’ZHZ
E(rl’#) - d*3 exXp _E a2 )’ 2

which determines the force due to excluded volume interac-
tions between any two beads u and v. Here, z* is the strength
of the excluded volume interactions and d* is the range of
the interaction. A mapping between experiments and simula-
tions is achieved by setting z = z*v/N,, with z* being a mea-
sure of the departure from the 0-temperature, and N, being
proportional to the molecular weight [57,59]. As a result, for
any choice of N,, z* is chosen to be equal to z/+/N, such that
the simulations correspond to the given experimental value
of z. For reasons elaborated in [57,60] in the context of dilute
polymer solutions, the parameter d* is irrelevant for suffi-
ciently long chains, and is typically calculated by the expres-
sion d* = Kz*!/°, with K being an arbitrary constant. It is
worth noting that in order to establish that simulation predic-
tions obtained with the successive fine-graining protocol are
truly parameter free, it is necessary to demonstrate indepen-
dence from the choice of the constant K in addition to the
other model parameters discussed earlier. In the present
instance, the influence of K on simulation predictions is
examined in the supplementary material [54], and shown to
be irrelevant as expected.

A majority of the experimental measurements by Hsiao
et al. [37] in the semidilute regime have been carried out at
the scaled concentration ¢/c* = 1, where ¢* is the overlap
concentration, which is defined here by the expression,
= Np/[(4n/ 3)(R2)3], with Rg being the radius of gyration
for an isolated chain at equilibrium. The value of ¢/c* is cal-
culated for each simulation reported here by computing R0
a priori from single-chain Brownian dynamics (BD) s1mula—
tions at equilibrium, for the relevant set of parameter values.

The velocity gradient tensor for planar extensional flows
is given by [61]

&0 0
(Vo )pgr=| 0 —¢* 0, (3)
0 0 0

where ¢* is the elongation rate. Planar extensional flows are
generally difficult to study by computer simulations, since
fluid elements are exponentially stretched in one direction
and contracted in the perpendicular direction. This leads to a
very short window of time to observe the dynamics of single
molecules since the dimensions of the simulation box rapidly
become of order of intermolecular distance. This difficulty
can be resolved by the implementation of Kraynik—Reinelt
periodic boundary conditions [52,62,63]. As mentioned ear-
lier, Jain et al. [39] have implemented these boundary
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conditions for BD simulations in the context of arbitrary pla-
nar mixed flows, and this algorithm has been adopted here.
Simulation predictions are compared with the experimen-
tally measured strefch of molecules, when a semidilute solu-
tion is subjected to a step-strain deformation in a planar
extensional flow. The stretch of a fluorescently dyed DNA
molecule, measured in a cross-slot cell, is the projected
extent of the molecule in the flow direction. For a bead-
spring chain model, this is calculated from
X:nax = max,uy|r;x - r:X|v (4)
where r,," is the x-component of the vector r) of bead y, with
x being the direction of flow. The mean stretch can be
obtained from the bead positions in an ensemble of chain
configurations from the ensemble average,
X" = (X ). (5)

max

The equilibrium mean stretch is denoted by X :q. Experimental
measurements of stretch are typically reported in terms of
the nondimensional ratio X /L, where L is the contour length
of stained A-phage DNA molecules, typically assumed to be
equal to 22 um. However, we often find it convenient to addi-
tionally use the expansion ratio,

;;* (6)

eq

E =

in simulations.

The longest relaxation time 4, is measured experimentally
by fitting the terminal 30% of the stretch of a molecule, as it
relaxes from a highly extended state, with a single exponen-
tial decay [37]. In simulations, the longest dimensionless
relaxation time A} = A;/A4y, for any bead-spring chain with
N, beads, is obtained by initially stretching each chain to
nearly 90% of its fully extended state, and letting it relax to
equilibrium. Details of this procedure are presented in the
supplementary material [54].

lll. SUCCESSIVE FINE-GRAINING

The successive fine-graining technique exploits the uni-
versal behavior of polymer solutions to obtain property pre-
dictions that are independent of the choice of model
parameters. At equilibrium, this technique has been widely
used to obtain universal predictions from analytical theories
and molecular simulations [36,56,57,59,64—67]. Essentially,
data are accumulated for finite chains, and subsequently
extrapolated to the long chain limit, N, — oo, where the
self-similar character of polymer chains is captured.
Extrapolation to the long chain limit has also been used to
obtain universal predictions in shear flow, where the finite-
ness of chain length is not relevant for sufficiently long
chains at typically measured shear rates [68—73]. In exten-
sional flows, however, where at high extension rates chains
are nearly fully stretched, the finiteness of chain length
plays a crucial role in determining the solution’s properties.
Even under these circumstances, provided the flow has not
“penetrated” below the Pincus blob length scale, universal
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behavior is still observed [22,74] (see also discussion
in Sec. V). Prakash and coworkers have modified the succes-
sive fine-graining technique for infinitely long chains, by
making it applicable under conditions where it is important
to account for the finite length of a chain [22,40,44,75].
While at its core, the modification consists of changing the
extrapolation limit from N, — oo to (N, — 1) — N, where
Ny is the number of Kuhn steps in the underlying chain, the
details of the method are more subtle and complex. Sunthar
and Prakash have discussed the procedure in great detail in
[22]. For the sake of completeness, and since it is used in the
context of semidilute solutions here for the first time, we
briefly motivate and explain the salient features of the tech-
nique below.

An example of a universal equilibrium property for dilute
polymer solutions under 0 conditions is the Flory—Fox
constant Uf;R, defined by [35]

n,M

(47/3) (Rg) Ny

where Rg is the radius of gyration, [r], is the zero shear rate
intrinsic viscosity, and N4 is Avagadro’s constant. It is a sur-
prising experimental observation that UgR attains its universal
value of 1.49 = 0.06 for a wide range of polymer-solvent sys-
tems [76], for molecular weights as low as M =50 000 g/mol
[77,78]. As a result, it is clear that the intrinsic viscosity at
the 0 temperature for a majority of dilute solutions of linear
flexible polymers can be calculated once the radius of gyra-
tion of the polymer under 6 conditions is known. For polymer
solutions in the crossover region between 0 and very good
solvents, an additional variable, namely, the solvent quality
parameter z is required to describe the universal behavior.
For instance, for a number of different polymer-solvent

systems, the ratio,
1/3
n
di](T7 M) - u 5 (8)
My

measured at different temperatures and molecular weights, is
found to collapse onto a master plot, when plotted as a func-
tion of z [56,79]. Since

[n)(T M) = [n], % = Uy (%) (47”1?3)3 @)% ©)

it is clear that a knowledge of Rg and the universal properties
U,(;R and o,(z) enables the determination of the intrinsic
viscosity of any dilute linear polymer-solvent system in the
crossover regime. A similar argument can be made for any
other static or dynamic property of a dilute polymer solution,
¢(T,M). Essentially, provided one knows a suitably defined
universal ratio Uf;)R under 0 conditions, and the universal
crossover swelling function a4 (z) = ¢(z)/ ¢y, the property ¢
can be determined for the solution at any temperature and
polymer molecular weight, given Rg and z. This is the basic
content of the two-parameter theory [80], which states that
all static and dynamic properties of a dilute solution of linear
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flexible polymers can be determined once Rg and z are
known.

Bead-spring chain models with Hookean springs need
three parameters {N,,/*,z*} to be specified, when nondi-
mensionalized with the length scale /; and time scale .
While the strength of hydrodynamic interactions is specified
by the draining parameter [81,82], & = h*+/N,,, the strength
of excluded volume interactions [83,84] is determined by
z = z*\/N,. Typically, the parameters 4* and z are kept con-
stant when implementing the successive fine-graining proce-
dure of extrapolating finite chain data to the long chain limit,
Ny — 00 [36,56,57,59,64,66—72]. This implies that universal
property predictions at equilibrium and in shear flow are
obtained in the nondraining limit # — oo (independent of the
particular choice made for 4*), and at a specific location in
the crossover regime specified by the solvent quality z.

The modified successive fine-graining procedure for poly-
mer solutions in extensional flows [22,40] also leads to univer-
sal predictions in the limit of large /& and constant z. However,
the use of finitely extensible springs in place of Hookean
springs, in order to account for finite chain length, leads to sig-
nificant changes in the implementation of the procedure.

When subjected to extensional flow, a dilute polymer
solution in the crossover regime is characterized by the fol-
lowing set of variables: {Rg, z,L, Wi, e}. Here, L is the finite
contour length of the chain, Wi = 1; ¢ is the Weissenberg
number, with € being the extension rate, and € = €t the
Hencky strain, which measures the extent of deformation
from the onset of flow. The protocol for successive fine-
graining of finite chains described briefly below ensures that
universal property predictions are obtained for this set of pre-
scribed experimental variables.

The maximum number of conformational degrees of free-
dom for a finite chain is the number of Kuhn steps, N;.
Extrapolation of finite chain data can consequently only be
carried out to the limit (N, — 1) — Nj. The number of Kuhn
steps in a flexible linear chain can be determined from the
expression,

L2

6(R§)2.

While the 6 temperature for DNA in aqueous solutions with
excess sodium salt (typically used for cross slot flow meas-
urements) has been shown to be roughly 15°C by Pan et al.
[55], there does not yet seem to be an accurate measurement
of Rz. In the absence of information on Rg, N, can also be
found from the expression Ny = L/(24,), where 4, is the
persistence length. In Appendix B of [55], Pan et al. have
reported measurements of /, by various authors, using a
variety of different techniques, to be roughly 50 nm in the
presence of excess sodium salt. As a result, using a contour
length of 16 um, suggests N, = 160. On the other hand, stain-
ing with YOYO-1 dye is known to increase the contour
length [4,5]. The recent experiments by the Doyle group [85]
suggest that the contour length is increased by 38% at full
saturation of one YOYO-1 per four base pairs of DNA. For
A-phage DNA, this implies a stained contour length of
22 um, in agreement with earlier estimates [4,5]. If the

Nj =

(10)
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persistence length remains unchanged subsequent to the
intercalation by the dye, as suggested in [85], then the num-
ber of Kuhn steps would be roughly N; =220. Sunthar and
Prakash [22] have argued that results of the successive fine-
graining procedure are insensitive to a choice of N, in the
range 150-300, and have used N; =200 in their simulations
of dilute Z-phage DNA solutions subjected to extensional
flow. It is worth noting that since results are extrapolated to
the limit /1/Ny, this range of N, values implies extrapolat-
ing finite chain data to either 0.08 or 0.06. While we have
not carried out extensive studies to investigate the influence
of the choice of N for semidilute solutions, we have adopted
the value N, =200 in the current simulations based on these
arguments.

The centrality of the finiteness of chain length is main-
tained in the successive fine-graining procedure by ensuring
that at every level of coarse-graining, the fully stretched
length of the bead-spring chain is identical to the contour
length of the polymer being modeled. As a consequence, for
any choice of the number of beads N,,

L= (N,—1)Vbly. (an

In order to be consistent with the equilibrium properties of
the polymer, it is also required that the radius of gyration of
the bead-spring chain under 6 conditions remains unchanged
with fine-graining.

Defining the dimensionless mean square length of a single
finitely extensible spring in the bead-spring chain, y*(b), by

ﬁw—@> (12)

-3

where (Q?) is the dimensional mean-square end-to-end vector
of a single spring, it is straight forward to show that [22,86]

2 N2 —1
(Rg) — 2(b) (;—Nb) 2. (13)

Evaluating the ratio L2/(Rg)2 from Egs. (11) and (13), and
using the definition of N, in Eq. (10) implies

b 3(Ny+1)
22(b)  Ny(Np — 1)

N;. (14)

Sunthar and Prakash [22] have shown that for WLC,

1
P J dg* q** e 000
2b) 1
=31 ) (15)
b 3 x *x2 —¢r(b,g")
J dq" g~ e "
0
where ¢ is the nondimensional spring potential,
0 q =5 q I —q q |-

Equations (14)—(16) enable the determination of the finite
extensibility parameter b, and the nondimensional mean
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square length of a single spring y?(b), for any choice of N,
and N;. A simple and efficient procedure for calculating b
and y*(b) has been described in [22].

The quantity y>(b) also plays an important role in the
treatment of hydrodynamic and excluded volume interac-
tions in the successive fine-graining procedure. For a bead-
spring chain with finitely extensible springs, the draining
parameter can be shown to be given by the expression [22],
h = h" /Ny, where

~ k"
h =—, )
7(b)
While the solvent quality can be shown to be given by [22],
z = 2"+/N,, where
Z*

= . (18)

Note that y(b) — 1 in the limit N, — oco. When carrying out
the successive fine-graining procedure for infinite chains, as
mentioned earlier, the parameter h* is held constant as
Nj, — oo, while z* is calculated from z* = z/y/N,, at each
level of fine-graining. On the other hand, during the succes-
sive fine-graining procedure for finitely extensible bead-
spring chains, i is held constant at each level of fine-
graining, which implies h* = A" (b), and z* is calculated
from the expression, z* = (z/v/N)[x(b)]’. Sunthar and
Prakash [22] and Pham et al. [44] have shown that at equilib-
rium (where Wi and € are not relevant variables), extrapola-
tion of finite chain data to the limit (N, — 1) — Ny, using
this procedure, leads to property predictions that are in quan-
titative agreement with known results for bead-rod chains
with N, rods. Additionally, Pham et al. [44] established the
validity of the successive fine-graining procedure in steady
shear flow by comparing bead-spring chain results with the
results of a bead-rod model and a stiff FENE-Fraenkel
spring model, both in the absence and presence of hydrody-
namic and excluded volume interactions.

For a polymer solution subjected to extensional flow, if
comparison of simulation predictions is being made with
experimental data at particular values of Wi and ¢, the suc-
cessive fine-graining procedure ensures that at each level
of coarse-graining, simulations are carried out at the same
values of Wi and e. This is achieved by the following series
of steps: (i) For any choice of N,, chains are stretched to
nearly 90% of their fully stretched state and allowed to relax.
The longest relaxation time XT (at that value of N,) is then
found by fitting a single exponential decay to the terminal
30% of the mean stretch, as described in the supplementary
material [54]. (ii) The extension rate ¢* used for simulation
of chains with N, beads is then found from the expression,
¢ = Wi/}, where Wi is the experimental Weissenberg
number. (iii) Once €* is known for any N,, simulations
are carried out until a nondimensional time *, such that
¢ t* = . By maintaining Wi and ¢ identical to experimental
values at each level of fine-graining in this manner, we
ensure that the extrapolated results in the limit (N, — 1) —
N are also at the specified experimental values.
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To date, the successive fine-graining procedure for finite
chains has only been used in the context of dilute polymer
solutions [22,40,44,46]. Recently, Jain et al. [36] have
extrapolated finite chain data to the long chain limit in the
semidilute regime, to obtain universal predictions of the ratio
of semidilute to dilute single chain diffusion coefficients at
various values of concentration. In the present paper, we use
the successive fine-graining procedure for finite chains to
compare simulation predictions for extensional flows of
semidilute solutions with the experimental measurements of
Hsiao et al. [37].

IV. RESULTS AND DISCUSSION

A striking early observation of single molecule experi-
ments in dilute solutions [5] was the enormous variability in
the transient stretching dynamics of the different molecules,
a phenomena characterized by de Gennes as molecular indi-
vidualism [21]. Hsiao et al. [37] have observed a similarly
wide distribution of configurations in their observation of
individual molecular trajectories at c¢/c* =1, albeit with
qualitatively different molecular conformations in semidilute
solutions compared to dilute solutions. Individual trajectories
obtained by simulating 67 chains in the main simulation box
(with N, =45 and parameter values reported in the figure
caption) are displayed by the black curves in Fig. 1. The
dashed curve is the ensemble average over the chains.
Clearly, wide variability in the manner in which chains
unravel from the coiled to the stretched state is also observed
in our simulations of extensional flow. The inset of Fig. 1,
which compares the standard deviation in the experimental
and simulation stretch data as a function of strain, reveals

FIG. 1. Evidence of molecular individualism during stretching. The black
curves are individual trajectories of 67 chains, while the dashed curve is the
ensemble average over the chains (X/L). The inset compares the standard
deviation in the experimental and simulation stretch data as a function of
strain. Parameter values for the simulation are: N, =45, c¢/c* =1,
z=1,i =0.19, N; = 200, and Wi = 2.6.
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that the spread of stretch values is of similar magnitude in
both cases.

A qualitative comparison of the probability distribution of
chain extension observed in a simulation with N, =45, and
the experiments of Hsiao er al. [37], is shown in Fig. 2.
Essentially 50 simulations, each with 67 chains in the main
simulation box, were carried out and the fractional extension
(Xprax /L") for each of the chains was calculated at various
values of e, and the results were binned as indicated in the
figure. Here, L* = (N, — 1) v/b. The number of chains in
each of the bins, 0 < (X} /L") <0.1, 0.1 < (X}, /L")
< 0.2, etc., was divided by 3350 (the total number of chains
in the sample), to obtain the probability distribution. Figure
3 represents the fractional extension of the ensemble of
chains as a cumulative distribution, and gives an alternative
perspective of the same data. Note that the method of
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FIG. 2. Probability distribution of chain extension in a semidilute solution
at ¢/c* = 1. Distributions are shown for a range of accumulated strains e at
a Weissenberg number Wi = 2.6. Histograms compare the experimental
results of Hsiao et al. [37] with the results of Brownian dynamics simula-
tions with parameter values: N, =45, z = 1, n = 0.19, and N, = 200.
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FIG. 3. Cumulative probability distribution of chain extension in a semidi-
lute solution at ¢/c* = 1. Distributions are shown for a range of accumulated
strains € at a Weissenberg number Wi = 2.6. Curves with filled circles are
the experimental results of Hsiao e al. [37], while the curves with filled
squares are the results of Brownian dynamics simulations with parameter
values: N, =45,z =1, W= 0.19, and N, = 200.

successive fine-graining has not been applied and the simula-
tion results are at a single value of N,. Nevertheless, a good
qualitative agreement can be observed, with simulations
reflecting the experimental observation of a broadening of
the distributions as the accumulated strain increases, with the
persistence of chains that remain partially unravelled even at
high strains. There is greater variability between the results
of simulations and experiments at high fractional extensions
and high strain. As will be clear in the subsequent discussion
of the results of successive fine graining, it is essential to



176 SASMAL et al.

capture the many degrees of freedom in the real system in
order to get close agreement between experimental and sim-
ulation results.

As mentioned earlier, the unique character of the single
molecule experiments of Hsiao et al. [37] is the implementa-
tion of a step input on the strain rate ¢, followed by the cessa-
tion of flow once the fluid has accumulated a Hencky strain
of e. This enables the observation of the nonequilibrium
stretching and relaxation dynamics in a single experiment.
Figure 4 compares the experimental measurements of the
ensemble average stretch ratio £ by Hsiao er al. [37] at
¢/c* =1, and Wi = 2.6, with BD simulations carried out at
various values of N,. The flow is maintained until ¢ =13,
before being switched off, and the subsequent relaxation is
observed for a period of time measured in terms of the non-
dimensional units, #/4,. The use of the stretch ratio and non-
dimensional time as the axes enables a direct comparison of
simulation and experiments. Clearly, the qualitative behavior
observed in experiments is captured in the simulations. The
chains unravel from the coiled state and reach a steady-state
value of stretch after about 8 Hencky strain units. While the
curves for the different values of N, are quite different from
each other in the stretch phase, they become more tightly
bunched together as the chains relax toward their equilibrium
coiled state. This is because all chains, regardless of their
length, relax to a common value of E=1 at long times.
Despite the simulation predictions becoming closer to exper-
imental measurements for increasing values of N,, the signif-
icant quantitative difference between simulations and
experiment at all values of N, reported in Fig. 4, points to
the importance of capturing all the degrees of freedom of the
polymer chain being simulated. This is precisely the purpose
of successive fine-graining, which we carry out below.

As described in Sec. III, the successive fine-graining tech-
nique maintains the key experimental variables constant at
each level of fine-graining. For the experimental results dis-
played in Fig. 4, these are: {c/c* =1,z=1, N; =200,

20 T T T T T
Stretch Relaxation

—F—N, =6

—F—N =8
10k —i—Nb= 10
_§_Nb =12

+Experiment
Wi=26, ¢/c"=1.0
0 1 1 1 | 1
0 4 8 12 0 2 4 6

€ t/\

FIG. 4. Transient polymer stretch in a step strain experiment in planar
extensional flow at ¢/c¢* = 1 and Wi = 2.6. The black line and symbols are
experimental measurements of the ensemble average stretch ratio by Hsiao
et al. [37] and the various colored lines and symbols are BD simulations at
the various values of N,, indicated in the legend. Common parameter values
in all the simulations are: z = 1, W= 0.25, and N; = 200. Values of b,
7(b), h*, z*, A}, and " used for each of the simulated values of N,, are calcu-
lated as per the procedure described in Sec. III.
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Wi =2.6}. Note that the choice N;=200 represents our
knowledge of the contour length L, and the persistence
length Z, of Z-phage DNA. For each choice of N,, the param-
eters, b, y(b), h*, z*, A}, and ¢” that correspond to this set of
experimental values can be calculated as described in Sec.
III. A representative set of values of these parameters for
various values of N,, obtained for the case = 0.19, is dis-
played in Table I, along with the values of X:q used for the
calculation of E.

Simulation predictions of the stretch ratio E in a step
strain followed by cessation of flow simulation, both in the
stretch phase (at € = 1.0, e =4.0, ¢ =7.0, and € = 13.0),
and in the relaxation phase (at 7/4; = 0.5, t/1; = 1.0,
t/21 =3.0,and t/1; = 4.0), at two different values of i, for
a set of coarse-grained chains with N, = {6,8,10, 12}, are
shown in Figs. 5 and 6, respectively. In each case, data accu-
mulated for these values of N, are extrapolated to the limit
(1/v/Nx) = 1/+/200. Clearly, in all cases, the extrapolated
value of the expansion factor E is independent of the choice
of value for ﬁ*, within simulation error bars. As mentioned
earlier, for the results to be truly parameter free, it is neces-
sary to demonstrate independence of the extrapolated results
from the choice of the constant K in the narrow Gaussian
potential as well. In the supplementary material [54], we
show that data accumulated for various values of N,, at Wi
= 2.6 for two different values of K, extrapolate to a common
value (within error bars) in the limit (1/1/Nx). This implies
that at Wi = 2.6, in the stretch and relaxation phases, local
details of the chain (such as the nondimensional bead radius
and the range of the excluded volume potential) are masked
from the flow, even though the polymer chains are exposed
to a flow field, and universal predictions independent of
choice of parameter values are obtained.

We can anticipate that at higher Weissenberg numbers,
and large values of strain, as the flow penetrates down to the
shortest length scales of the chains, the different values
chosen for /i~ may get “revealed,” leading to predictions that
are no longer parameter free. In Sec. V, we develop a simple
scaling argument to obtain an estimate of the Weissenberg
number at which this might happen. For all the values of Wi,
e, and t/4; considered in the experiments of Hsiao et al.
[37]: however, we obtain parameter free predictions from the
successive fine-graining procedure.

Hsiao et al. [37] have carried out step strain followed by
cessation of flow experiments, for an ultradilute solution
(c/c* = 107%) and for a semidilute solution (c/c* = 1), for a
range of different Weissenberg numbers. Predictions of the

TABLE 1. Typical values of simulation parameters that arise at each level
of coarse-graining when carrying out the successive fine-graining procedure
for semidilute simulations, corresponding to the following set of experimen-
tal values: {c/c* =1, z=1, Ny =200 and Wi = 2.6}. The hydrodynamic
interaction parameter was maintained constant at h=0.19.

N, b 7(b) z* n* Xe s ét

6 124.04
8  82.652
10 60911
12 47.609

0.3404
0.2805
0.2393
0.2087

0.1788
0.1759
0.1731
0.1705

2.127 = 0.002
2.904 = 0.003
3.455 £0.002
4.047 £0.023

11.021
17.826
25.883
35.104

0.2359
0.1458
0.1004
0.0740
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FIG. 5. Illustration of the extrapolation procedure during the stretching
phase [(a) e=1, (b) e=4, (c) e=7, and (d) e=13], for two values of 1?*,
namely, 0.19 (circles) and 0.25 (squares). Filled symbols are results of simu-
lations, while empty symbols represent extrapolated results. Parameters that
are common to all simulations are: ¢/c¢* =1,z=1, Ny =200, and
Wi = 2.6. The value of X:q used for the calculation of E at the various val-
ues of Nj, are given in Table I. Values of b, x(b), h*, z*, 2], and ¢" used for
each of the simulated values of N, = {6, 8,10, 12}, are calculated as per the
procedure described in Sec. III of the main paper. Lines through the data at
these values of N, indicate extrapolation to the limit 1/\/@

transient stretch ratio, obtained by carrying out the succes-
sive fine-graining procedure for a dilute solution with ¢/c*
=6.25x 107'2 at Wi = 2.1, and for a semidilute solution
with ¢/c* =1 at Wi = {0.6,1.4,2.6}, at each of the mea-
sured values of ¢ in the stretch phase, and 7//; in the relaxa-
tion phase, are shown in Fig. 7, and compared with the
measurements of Hsiao et al. [37]. Clearly, the agreement
between simulations and experiments is remarkable, and
shows the usefulness of the successive fine-graining proce-
dure in obtaining parameter free predictions that are in quan-
titative agreement with measurements. Further, they suggest
that coarse-grained Brownian dynamics simulations appear
to be capable of capturing the important physics that deter-
mine the dynamics of semidilute solutions.

An important experimental observation by Hsiao et al.
[37] is that the average transient fractional extension in start-
up of planar extensional flow in a semidilute solution is much

RIGHTSE LI MN iy

T T T T
10+ @ .
K
5k
0
8
6F
SIS 1
- t/A =10
2r .44//1/ |Nk ] ]
0 0.1 0.2 0.3 04 0.5
1/VN,
2 T T T T

0 0.1 02 03 04 0.5
1/vV/N,
2 1 1 1 I
sk (d |
<3 1 ———_ P -
C 1IN t/A =4.0 |
05 LT / 1 i ] ]
0 0.1 02 03 04 0.5

1/v/N,

FIG. 6. Illustration of the extrapolation procedure during the relaxation
phase [(a) #/4; = 0.5, (b) t/21 = 4.0, (c) t/A; = 3.0, and (d) t/7; = 4.0] for
two values of /" namely 0.19 (circles) and 0.25 (squares). Filled symbols
are results of simulations, while empty symbols represent extrapolated
results. Parameters that are common to all simulations are: ¢/c* =1,z =1,
N; =200 and Wi = 2.6. The value of Y; used for the calculation of E at
the various values of N, are given in Table I. Values of b, x(b), h*, z*, /lT
and ¢ used for each of the simulated values of N, = {6, 8, 10, 12}, are cal-
culated as per the procedure described in Sec. III of the main paper. Lines
through the data at these values of N, indicate extrapolation to the limit

1/+/200.

smaller than in a dilute solution, suggesting that interactions
with surrounding chains restrains the stretching of chains.
The formation of transient structures due to intermolecular
interactions has been proposed in earlier experiments on
semidilute solutions in shear flow [15,18,20,28]. Figure 8(a)
compares the prediction by successive fine-graining of (X /L)
versus ¢, for a dilute solution (at ¢/c* = 6.25 x 107'?) and a
semidilute solution (at ¢/c* = 1), for three different values of
the Weissenberg number. Clearly, (X /L) is smaller for semi-
dilute solutions than for dilute solutions at all values of Wi
and ¢, suggesting that BD simulations also exhibit the strong
inhibition of chain stretching in semidilute solutions observed
in experiments. The precise nature of the intermolecular
interactions that lead to this phenomenon will be investigated
further in the future. Figure 8(b) compares the successive
fine-graining predictions of the average transient fractional
extension in semidilute solutions, with the experimental
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FIG. 7. Comparison of the expansion factor E = X /X predicted by successive fine-graining with the experimental observations of Hsiao et al. [37]. The top panel
corresponds to a dilute solution at Wi = 2.1. The remaining panels correspond to semidilute solutions at ¢/c* =1, and Wi = {0.6,1.4,2.6}, respectively.
Simulations were carried out at fixed values of z= 1 and N, = 200. Hsiao et al. [37] have measured the values of X oq and Z; at the start of each of their sets of
experiments at the different values of Weissenberg number. They are used to plot the experimental data in the figure, and are reported here for convenience:

[Wi, X eq(um), 21 (9)]: [2.1 (dilute), 2.42 * 1.1, 7.0]; [0.6 (semidilute), 1.672 * 0.88,

observations of Hsiao et al. [37]. This comparison is identical
to the one carried out for semidilute solutions in Fig. 7.
However, it is restricted to the stretching dynamics, and is in
terms of the ratio (X /L) rather than E. Figure 8(c) compares
the successive fine-graining predictions of (X/L) for dilute
solutions with experimental observations. At Wi = 0.6, com-
parison is made with the measurements of Perkins et al. [4].
The comparison with the dilute solution measurements of
Hsiao et al. [37] for Wi = 2.1 is identical to the comparison
of stretching dynamics in Fig. 7, but is reported in terms
of (X/L) rather than E. We have not carried out simulations
at Wi = 1.2, for which Hsiao et al. [37] have reported
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4.8]; [1.4 (semidilute), 1.98 = 0.66, 4.8]; [2.6 (semidilute), 2.112 = 0.814, 5.2].

experimental measurements. However, as seen in the figure,
successive fine-graining predictions at Wi = 1.4 are very
close to the experimental values at Wi = 1.2. Figures 8(b)
and 8(c) once again reflect the quantitative accuracy with
which successive fine-graining can predict transient chain
stretch in extensional flows.

V. BREAKDOWN OF SUCCESSIVE FINE GRAINING

It is possible to use scaling arguments based on blob the-
ory to understand the observed independence from the
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FIG. 8. Transient polymer stretch in dilute and semidilute solutions at vari-
ous values of the Weissenberg number. (a) Comparison of transient frac-
tional extension (X /L) in planar extensional flow for dilute and semidilute
solutions (at c¢/c¢* =1) predicted by successive fine-graining. (b)
Comparison of (X /L) for semidilute solutions predicted by successive fine-
graining with experimental observations of Hsiao et al. [37]. (c) Comparison
of (X/L) for dilute solutions predicted by successive fine-graining with
experimental observations of Hsiao et al. [37] and Perkins et al. [4]. Note
that L =22 um has been used to normalize the experimental values of
stretch.

choice of /', and to get an estimate of the value of Wi at
which the successive fine graining scheme may be expected
to breakdown. We first make a simple qualitative argument
for a dilute solution in the good solvent limit z — oo (where
the thermal blob length scale is expected to be of the order
of monomer size), followed by a more general and detailed
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scaling analysis for both dilute and semidilute solutions
below.

In a dilute solution in the good solvent limit, a chain
obeys self avoiding walk (SAW) statistics, with the Flory
exponent v, on all length scales. Consider the conformation
of such a chain when the solution is subjected to extensional
flow at a particular value of Wi. At high values of strain e,
the chain breaks up into a sequence of Pincus blobs of size
&p, which is the length scale at which the stretching energy
in a chain segment becomes of order k7. Under these condi-
tions, the conformation of the chain will be rodlike on length
scales above ¢&p, but for smaller length scales, chain seg-
ments will have equilibrium conformations. In other words,
the flow does not penetrate the chain on length scales below
&p, and equilibrium conditions apply on these short length
scales. The friction experienced by the chain as a whole is
equal to that experienced by a blob-pole, and the friction
coefficient of individual monomers is not relevant, since
they are buried inside the blobs. Provided the conformations
of chains with different local properties are the same on
length scales large compared to the Pincus blob, their long
time and large scale behavior will be identical. This is the
reason why simulation results become independent of n
when sufficient degrees of freedom are taken into account.
The transition length scale &p at which a chain switches from
its equilibrium conformation to a deformed conformation
depends on the Weissenberg number Wi.

An estimate of &p and the critical Weissenberg number
Wi, at which the successive fine graining technique can be
expected to break down, under very general conditions, is
obtained here in two parts. We first consider the case of
dilute solutions, which helps to introduce the notation and
establish the basic procedure for determining these quanti-
ties. A brief consideration of the key issues that are relevant
in the case of semidilute solutions is given in this section,
and because of the many regimes involved in this case, the
details of the derivation of the various scaling laws are pro-
vided in the Appendix, and only the main results summa-
rized in Table II.

A. Dilute solutions

At equilibrium, the conformation of an isolated chain in a
dilute solution is expected to breakup into a sequence of
thermal blobs of diameter &r, which is the length scale at
which the total pairwise excluded volume interaction energy
of all the monomers within a blob is of order kzT. The chain
obeys random walk (RW) statistics below ¢, while the ther-
mal blobs themselves obey SAW statistics on larger length
scales. On the other hand, since hydrodynamic interactions
are present on all length scales, the chain exhibits Zimm
dynamics. Within the blob scaling picture, the solvent qual-
ity z is given by [36]

0,0
Req

.
ép

19)

where Rgc’l() = bKN11</ ? is the mean size of the chain in a dilute
solution under 0 conditions, with bx being the length of a
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TABLE II. Critical Weissenberg number at which the flow penetrates the Pincus blob. Various scaling regimes are determined by the relative magnitudes of
the Pincus blob, the thermal blob and the correlation blob (for semidilute solutions). When the magnitude of the Pincus blob is equal to monomer size

(&p = by), the successive fine graining technique is expected to breakdown.

Dilute
Wi Req Condition Wi,
ér<ép qu fg Ep 2 ép=¢r 2
& < ér R /& b * 27! & = bk NY
Semidilute
Wi Req Condition Wi,
&a<& G<é<& RE/E &u(c/cr) /o2 G=¢ (c/c*)z“”*‘
oS asess (haf) (e O & = 2 (efer) BB
éP < éT < éc ( eq/CP) (C/C )1/61/ 2 b NI/Z 2u— 1( /L ) (2v-1)/(6v-2) CP = bg N?z/(c/ ) (3v=2)/(3v—1)
Ee <<r e <ér<ép /fé érz & =2<r z*
T <e G<&<én Riq/é;‘. &le/er) =& (c/e)
&p <o <&p (R eq/fP) (¢/c*) by N ¢p =Dk Nf(/z(c/c*)
. . 1
monomer. The solvent quality can be viewed as a measure of Ep = Reg Wi3, (20)

the number of thermal blobs on a chain, A'r, since one can
show Nt = 22,

In the presence of extensional flow, the chain conforma-
tion is a blob pole (i.e., an aligned sequence of Pincus blobs)
on large length scales, while within a Pincus blob, the chain
conformation remains at equilibrium. At low values of Wi
(when the Pincus blob size is large), we expect that there
will be many thermal blobs within a Pincus blob. At suffi-
ciently high values of Wi, however, as the stretching energy
of the chain increases, the Pincus blob size is expected to
shrink below that of a thermal blob. These two conditions,
ie., &p > &r and &p < &, lead to different scaling consider-
ations, as detailed below.

1.8p>¢r

If there are mrp thermal blobs in the Pincus blob, then
since the thermal blobs exclude each other, & = &y mi p,
and the Zimm relaxation time is Ap = Ap mTP, where Jt is
the relaxation time of a thermal blob. Clearly, the flow pene-
trates a Pincus blob when Ap = ¢ ' Asa result,

&\ _ 7 o1
- =5 = (;LT 6) .
r AT
The longest (Zimm) relaxation time of the chain is

M = I\ 3", while the mean equilibrium size of the chain is
given by Req = r N7 This implies

M <Req> 3
At &)
From the definition of the Weissenberg number,

3
Wi= e =(n Ny = (?) AT = (%q) '

The size of the Pincus blob is consequently given by
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For Wi ~ O(1), the entire chain is within a Pincus blob. At a
critical value of the Weissenberg number, Wi., the dimen-
sion of the Pincus blob would become of the order of the
thermal blob size, i.e., &p = &r. Since Nt = z? implies

Rea _ . @21
<y

It follows from Eq. (20) that
Wi, = 2%, (22)

As the thermal blobs get smaller with increasing solvent
quality, it takes a higher value of the critical Weissenberg
number before the Pincus blob penetrates the thermal blob.

2.¢p <ty
If there are gp monomers in a Pincus blob, then since RW
statistics are obeyed within a thermal blob, p = by gl/ 2, nd

the Zimm relaxation time of the Pincus blob is Ap = A¢ gP ,

where /g is the monomer relaxation time. Since the flow pen-

etrates a Pincus blob when 2p = ¢!

&)
bk }vo
If there are gr = (Nx/N'1) monomers in a thermal blob,

then & = by ng/ ?_ and the Zimm relaxation time of a thermal

2 Tt follows that

i (Y
/10 bK ’
which implies

R Gl
)~0 )uT 40 ér bx -

(Joe)™

blob is Ar = Ao gi/
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Since

Req=ErN% =bgi "N = bV PN = b Ny P22,
(23)

we get

Req\’  /bk\> [Reg\®  [Reg\’
Wi = ine = (loé °Q) :(_> <_q) :(ﬂ) .
: Go )(bK p bk &p
We see that in this case as well, the size of the Pincus blob is
given by

Ep = Reg Wi, (24)

For sufficiently large Weissenberg numbers, the dimension
of the Pincus blob would become of the order of monomer
size, at which point the local chain details would no longer
be shielded from the flow. Thus, for & = bg, Egs. (23) and
(24) imply that the successive fine graining procedure would
breakdown at

Wi, = Ny/22073, 25)
. /2 .
Since z ~ N7, it follows that
Wi, ~ Ny

This is inline with our expectation that universal behavior is
exhibited until higher Weissenberg numbers for longer
chains. For /-phage DNA, with Nk =~ 200, this implies
Wi, ~ O(10%) to O(10%). It must be borne in mind that this
is a very rough estimate, based on scaling arguments, which
do not predict prefactors. It is also in some sense an upper
bound on the Weissenberg number, since the influence of the
flow on the local details could occur when &p is of the order
of many monomer sizes. In the results of successive fine
graining for dilute DNA solutions reported in [22], it was
observed that extrapolated results were parameter free at
Wi =2 for all strains, while universality broke down at
Wi = 55, for high values of e.

B. Semidilute solutions

At equilibrium, the onset of the semidilute regime occurs
at the concentration ¢*, where chains just begin to overlap
each other. Within the blob ansatz, at higher concentrations,
chain conformations breakup into a sequence of correlation
blobs of diameter &, with sections of chains within a blob
behaving as they would in a dilute solution. The correlation
blobs themselves are assumed to be space filling, so the solu-
tion behaves like a melt of correlation blobs on length scales
larger than &.. Since dilute solution dynamics are observed
within a correlation blob, chain segments within these blobs
are further subdivided into thermal blobs, whose magnitude
and number depend on the quality of the solvent. On length
scales above ¢, since melt dynamics are observed, chains
obey RW statistics and Rouse dynamics [35]. A phase dia-
gram in the {z,¢/c*} space, with a derivation of the various

RIGHTSE LI MN iy

scaling laws that operate in the different regimes, has been
presented recently in [36].

For concentrations less than or equal to ¢*, since the entire
chain is within a correlation blob, the same arguments as
those used for dilute solutions above would apply at the
onset of flow. For ¢/c* > 1, however, we expect that there
will be a subtle interplay between the different blob length
scales that are present, with different scaling laws governing
the different regimes. At equilibrium, one can distinguish
two cases: (i) &y < &., which would hold for ¢* < ¢ < ¢*,
and (ii) &, < &r, which would hold for ¢™* < ¢ (note that ¢**
is defined as the concentration at which &. = &t). Once
extensional flow is switched on, the magnitude of &p relative
to &t and &, depends on the value of Wi, and this in turn
determines which microscopic physics is relevant.

There are three possible scenarios. Consider the case,
Er < .. At low extension rates, there will be many correla-
tion blobs within a Pincus blob with their number decreasing
as the Pincus blobs decrease in size with increasing strain
rate, until the size of the Pincus blob becomes of the order of
the correlation blob size. At higher Weissenberg numbers,
the Pincus blobs become smaller than the correlation blobs,
until they become of order of the thermal blob size.
Eventually, at sufficiently high Weissenberg numbers, the
Pincus blob penetrates the thermal blob, and its size becomes
comparable to the monomer size. We anticipate that the suc-
cessive fine graining procedure will breakdown at this point,
since the local details of the chain would be exposed to the
flow. For the case, &, < &r, the roles of the correlation and
thermal blobs are interchanged in the above sequence of
events. The critical Weissenberg numbers at which the
Pincus blob size becomes equal to the correlation and ther-
mal blob sizes and to the monomer size can be estimated in
the various cases, as shown in the Appendix.

All the scaling expressions derived here for dilute and
semidilute solutions are summarized in Table II. As men-
tioned earlier, prefactors cannot be determined within the
framework of scaling arguments, but must rather be deter-
mined by careful simulations that explore the threshold
Weissenberg number at which results are no longer parame-
ter free.

VI. CONCLUSIONS

The dynamics of DNA molecules in semidilute solutions
undergoing planar extensional flow has been simulated using
a coarse-grained bead-spring chain model which incorpo-
rates hydrodynamic and excluded volume interactions.
When applied to semidilute solutions, the successive fine-
graining methodology is shown to lead to parameter-free
predictions for a range of Weissenberg numbers and Hencky
strain units, as was observed previously for dilute solutions
[22,40,46]. A systematic comparison of simulation predic-
tions with the experimental observations of Hsiao et al. [37],
of the response of individual chains to step-strain deforma-
tion followed by cessation of flow, shows that the successive
fine graining technique gives quantitatively accurate predic-
tions in the experimentally explored range of Weissenberg
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numbers. In agreement with experimental observations, sim-
ulations indicate that the transient chain stretch following a
step strain deformation is much smaller in semidilute solu-
tions than in dilute solutions.

The current work has been focussed on comparing simu-
lation predictions with the experimental observations of
Hsiao et al. [37], which have all been carried out at
¢/c* = 1. Clearly, a thorough examination of the influence
of concentration on the stretching and relaxation dynamics,
particularly with a view to understanding the nature of the
interchain interactions that lead to restriction in chain
stretching, is required in the future.

The simple scaling analysis based on the blob picture in
Sec. V suggests that the relative magnitudes of Pincus and
correlation blobs depend on the key variables that determine
semidilute solution dynamics: {Req,L,c/c*,Wi}. The inter-
play between these two length scales in turn influences the
manner in which hydrodynamic interactions are screened,
which is at the heart of the rich physics observed in semidi-
lute polymer solutions. By making it possible to study long
chain behavior by simulating shorter chains, the method of
successive fine graining provides a means of studying local
chain structure as a function of these variables (via, for
instance, the dynamic structure factor). Future studies in this
direction would give insight into their influence on the
screening of hydrodynamic interactions.
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APPENDIX: SCALING REGIMES FOR Wi IN
SEMIDILUTE SOLUTIONS

(1) &p < &, (RW statistics below &1 and above &.; SAW sta-
tistics above &1 and below ¢&.; Zimm dynamics below &;
Rouse dynamics above ¢&,).

(@) &r < & < &p.

At sufficiently low Weissenberg numbers, if there are
mgp correlation blobs in a Pincus blob, then
&p=2¢ mé/Pz , and the Rouse relaxation time is
Ap = e mg_yp, where /. is the Zimm relaxation time of a
correlation blob. Since the flow penetrates a Pincus blob
when Jp = ¢!

4

In the semidilute regime, the longest (Rouse) relaxation
time of the chainis 4; = A, N z, where N/, is the number

|3
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of correlation blobs in a chain, and the mean equilibrium
size of the chain is given by Req = & N, i/ * 1t follows
that

4 4
Wi= i = (e ) N2 = (5_) A = (ﬁ) .
Sp ¢p

At low Weissenberg numbers, the size of the Pincus blob
is consequently given by

Ep = Reg Wi, (A1)

The Pincus blob in a semidilute solution (in this sub-
case), appears to decrease more slowly in size than in a
dilute solution. The number of correlation blobs in a
chain can be related to the scaled concentration through
(36]

A
Ne= (—) : (A2)

c*

As a result, Req = E.(c¢/ c*)l/ (6=2) "and the Weissenberg
number at which &p = £, is given by

c 2/3v—1
Wi, — (C—> . (A3)

At this Weissenberg number the conformation of a typical
chain is a blob pole, with the blobs representing both the
length scale at which the stretching energy is of order kzT
(Pincus blob), and the length scale at which hydrodynamic
and excluded volume interactions are screened (correlation
blob). Pan et al. [55] have shown that for DNA solutions,
the unentangled semidilute regime appears to extend to
roughly ¢/c* = 5. The range of Weissenberg numbers at
which the two blob sizes become equal is then (for
v=0.6), Wi ~ O(1) to O(55) for 1 < (c/c*) <5.
(b) &r < &p < e

At higher Weissenberg numbers, there will be several
Pincus blobs within a correlation blob. Since the Pincus
blobs within a correlation blob are expected to form a blob
pole, we anticipate the correlation blobs to be anisotropic
in structure, with width ~¢&p, but length of order several
&p. A careful examination of the different blob length
scales that are present in a semidilute solution subjected to
extensional flow, and the resultant chain conformations,
has been carried out recently by Prabhakar et al. [87].
However, we are interested in the equilibrium conditions
that exist within a Pincus blob, and in equilibrium chain/
blob dimensions and relaxation times.

If there are mrp thermal blobs in the Pincus blob,
then {p = {rmifp, and the Zimm relaxation time is
Ap = A1 m%”P. Since the flow penetrates a Pincus blob
when Ap = e

<5P>3 e
=) == (Jré)
fT AT
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Using similar arguments to those above, one can show
that

As a result,
Wi=Jé=IN>é=(Iré) (%)NZ
3 3 3
-(5) E)r- ()
Since & = Req N 1/ 2, one can show that
Y (;) 1/2(3%1), "

where Eq. (A2) has been used. The size of the Pincus
blob is consequently given by

1 c 1/6(3v—1)
Ep = Wi Ry (F) . (AS5)

We are interested in determining the Weissenberg number
at which &p = &r. In order to do so, it is necessary to relate
Req to &p. If there are mr . thermal blobs in a correlation

blob, then Req = &N é = Crmy ./\/% In the double cross-
over region, Jain et al. [36] have derived the following
expression for mt . as a function of the solvent quality and
the scaled concentration

—(1/3v—1)
c
mrc = Z2 <F> .

It follows that

c —(2v—1)/(6v-2)
) (A6)

Req = fTZzV (E
and the critical Weissenberg number at which the Pincus
blob and the thermal blob length scales are identical is
given by

c —(3v-2)/(3v—1)
Wi, = 2% (7) . (A7)
This reduces to the expression for the critical
Weissenberg number for {p = &t in dilute solutions [Eq.
(22)], when (¢/c*) = 1.

An estimate of the critical Weissenberg number can
be obtained from the following arguments. If we assume
that the unentangled semidilute regime for DNA is in the
range [55] 1 < (¢/c*) < 5, then the number of correla-
tion blobs in this range (for v =0.6) is 1 <N, < 8
[from Eq. (A2)]. Since the number of thermal blobs must
be greater than the number of correlation blobs in this

RIGHTSE LI MN iy

subcase, we assume that N't = 16 (at least two thermal
blobs in each correlation blob). This implies z =4 (since

z= \/N?). Substituting these numbers into Eq. (A7)
leads to Wi, ~ O(1) to O(220), for 1 < (¢/c*) < 5.

(©) &p < ép <&

If there are gp monomers in a Pincus blob, then
Ep = by gll,/ 2, and the Zimm relaxation time of the
Pincus blob is Ap = Ag gf,/ 2. Since the flow penetrates a

Pincus blob when 2p = ¢!

(ﬁf o)

bk /10

Clearly

b I de 2<éc)3<fT)3 (5c>3 )
_——=— :N —_— —_— = — N .
A et o “\ér bk bk ¢
It follows that
, 3 3
i) (3 (&)
éc>3 2
== N°.
(5)

Using Eq. (A4), we can find the dependence of the size
of the Pincus blob on the Weissenberg number to be

1 c 1/6(3v—1)
ép - Wl_? Req (—*> . (Ag)
c

From Eq. (19), we see that &1 = bKN11</ 2 -1, Combined
with Eq. (A6) for R, this leads to

c —(v-1)/(6v-2)
) . (A9)

Req - bKNII(/222V71 (—*

c

Substituting Eq. (A9) into Eq. (A8), and setting &p = by,

we find the critical Weissenberg number at which the

successive fine graining method is expected to break
down to be

(A10)

—(3v-2)/(3v—-1)
Wi, = NJ/2700=3 (i)
c

This reduces to the expression for Wi, for dilute solu-
tions [Eq. (25)], when (¢/c*) = 1. Since z ~ N11</2, it fol-
lows that

¢ —(3v-2)/(3v-1)
Wi ~N§{< ) :

c

Assuming Ng = 200 for DNA, this leads to (for v = 0.6)
Wi, ~ O(10%) to O(10*) for 1 < (¢/c*) < 5.

(i) & < & (RW statistics on all length scales; Zimm

dynamics below &.; Rouse dynamics above &.).

We consider only solutions where Ny, and ¢ are not
large enough for entanglements to play a role, and that
further crossover to reptation dynamics does not need to
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(b)

(©)
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be taken into account. It should be pointed out that Hsiao
et al. [37] have not carried out any experiments in this
regime, nor have we carried out any simulations.
Nevertheless, the results are presented here for the sake
of completeness; basically as a tabulation of critical
Weissenberg numbers at which local details would begin
to effect predictions of coarse-grained models (which is
essentially what is implied by the breakdown of succes-
sive fine graining). The three scenarios in this case are
discussed in turn below.

Ce<ér<ip

If m.p is the number of correlation blobs in a Pincus
blob, then &p = £, mi/ﬁ , and the Rouse relaxation time is
Jp = dem?p. Since the flow penetrates a Pincus blob

when Ap = ¢,

& Yo
&) e

From the scaling expressions for the Rouse relaxation
time and the mean equilibrium size of the chain in terms
of the number of correlation blobs, it follows that

4 4
Wi= =R &) N = (5—> N = (Re‘*> .
p ¢p

(Je&) "

The size of the Pincus blob is consequently given by
Ep = Reg Wi, (A11)

Since the chain obeys RW statistics on all length scales,
Req = éTN”}/Z = éT Z.

As a result, the Pincus blob size becomes equal to the
size of the thermal blob when

Wi, = *.

S <& <ir
In this case as well, using arguments similar to those
above, one can show that

éP = Req Wl._%~ (A12)

In this concentration regime [36]

2
c
Nc == <C* .
As a result, since Req = & C/2 =& (¢/c*), it follows
that the Pincus and correlation blobs become equal in

size at a critical Weissenberg number given by

c 4
e (£)’
C
éP<éc<fT

Since Zimm dynamics are obeyed below &., we have
Ep = by g}lj/ ? and the Zimm relaxation time of the
Pincus blob is Ap = 4 gf,/ 2. The flow penetrates a Pincus
blob when Jp = ¢~'. As a result
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&\ e -1

— ) =—=(4 .
(bK A0 (%0)
If there are g. monomers in a correlation blob, then

. =bg gi/ 2, and the Zimm relaxation time of a correla-
tion blob is 4. = /g gg/z. As a result,

)

i e (& ’
},Oiic/“uoi/\/c b/

It follows that

. . N b\ (&N
Wi=/ie = — == =
i 1€ (“’6)(10) (fp) > N
é,c>3 2
== N..
(51» ¢
Since &N = R3 (c/c*), the size of the Pincus blob
depends on the Weissenberg number through

1

3

Ep = Wi~ Reg (5) .
12

RW statistics at all length scales implies Req = bgNy'~.
Consequently, at high Weissenberg numbers, when
&p = bk, the successive fine graining procedure is
expected to breakdown at

Wi =NY? (Ci) .

Je
o’

Clearly
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