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Abstract

The dynamics of individual Deoxyribonucleic acid (DNA) molecules in semidilute solutions undergoing planar extensional flow is simulated

using a multiparticle Brownian dynamics algorithm, which incorporates hydrodynamic and excluded volume interactions in the context of a

coarse-grained bead-spring chain model for DNA. The successive fine-graining protocol [P. Sunthar and J. R. Prakash, Macromolecules 38,

617–640 (2005); R. Prabhakar et al., J. Rheol. 48, 1251–1278 (2004)], in which simulation data acquired for bead-spring chains with increas-

ing values of the number of beads Nb, is extrapolated to the number of Kuhn steps NK in DNA (while keeping key physical parameters invari-

ant), is used to obtain parameter-free predictions for a range of Weissenberg numbers and Hencky strain units. A systematic comparison of

simulation predictions is carried out with the experimental observations of Hsiao et al. [J. Rheol. (in press)], who have recently used sin-

gle molecule techniques to investigate the dynamics of dilute and semidilute solutions of k-phage DNA in planar extensional flow. In

particular, they examine the response of individual chains to step-strain deformation followed by cessation of flow, thereby capturing

both chain stretch and relaxation in a single experiment. The successive fine-graining technique is shown to lead to quantitatively

accurate predictions of the experimental observations in the stretching and relaxation phases. Additionally, the transient chain stretch

following a step strain deformation is shown to be much smaller in semidilute solutions than in dilute solutions, in agreement with exper-

imental observations.VC 2016 The Society of Rheology. [http://dx.doi.org/10.1122/1.4972237]

I. INTRODUCTION

Several studies of single molecules of fluorescently

labeled Deoxyribonucleic acid (DNA) have been carried out

in order to gain insight into the conformational evolution of

polymer chains when subjected to a variety of flow fields

[1–20]. These studies have not only enabled the direct visual

observation of “molecular individualism” [5,21] but have

also proved to be of vital importance for the validation of

molecular theories of polymer dynamics [13,14,16,22–29].

Nearly, all these investigations have been carried out in

either the dilute or concentrated solution regimes, with only

a few in the semidilute regime [15,18,20,28,30]. Given the

importance of semidilute polymer solutions, both from fun-

damental and practical [31–33] points of view, it is essential

to gain an understanding of the fundamental physics that

governs the dynamics of polymer molecules in this regime.

In the dilute regime, single molecules studies have revealed

the importance of properly accounting for hydrodynamic and

excluded volume interactions in molecular theories [22–27].

In semidilute solutions, however, it is known that these inter-

actions gradually get screened with increasing monomer

concentration [34–36]. The recent single molecule experi-

ments of Hsiao et al. on planar extensional flow of unen-

tangled semidilute solutions of k-phage DNA (reported in a

companion paper [37]) provide benchmark data against

which molecular theories can be verified. In particular, one

can examine if theories accurately capture the subtle changes

that occur on the molecular scale, as chains begin to interact

and interpenetrate with each other with increasing concentra-

tion. The aim of this paper is to carry out simulations with a

recently developed multichain Brownian dynamics algorithm

[38,39], which incorporates hydrodynamic and excluded vol-

ume interactions in order to compare predictions with experi-

mental observations. Additionally, the technique of

successive fine-graining [22,40] is used to obtain predictions

that are independent of model parameters.

Over the past two decades, DNA (and in particular,

k-phage DNA) has been used as model polymer to carry out

a number of investigations into single molecule dynamics.

The advantage of DNA lies in the monodispersity of the sol-

utions, and the ease with which the molecules can be stained
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with a dye for visual observation [41]. For instance, in dilute

solutions, single molecule studies of DNA have been used to

examine the stretching dynamics of DNA molecules in

extensional flows [4,5], stretching and tumbling dynamics in

shear flows [6,7], dynamics in mixed shear and extensional

flows [8], direct measurements of diffusion coefficients

[9,42], and relaxation times [10], and to establish the exis-

tence of coil-stretch hysteresis [12]. In concentrated

solutions, single molecule studies have established the valid-

ity of the reptation hypothesis [13] and of scaling theories

for the molecular weight dependence of diffusion coeffi-

cients [14]. Compared to the wealth of experimental infor-

mation on single molecule dynamics in the dilute and

concentrated regimes, there is comparatively little informa-

tion on the behavior of macromolecules in the semidilute

regime, both under equilibrium and nonequilibrium condi-

tions. The classic early work of Chu and coworkers [18,28]

was the first attempt to relate macroscopic rheological

behavior to microscopic dynamics in shear flows. Steinberg

and coworkers have measured the longest relaxation times

for semidilute solutions of T4 DNA by carrying out stretch

relaxation experiments [30]. More recently, Bausch and cow-

orkers [15,20] have correlated the dynamics of semiflexible

polymers in semidilute solutions to the measured depen-

dence of viscosity on shear rate. To our knowledge, there

appear to be no measurements of single molecule dynamics

in extensional flows of unentangled semidilute solutions,

prior to the recent work of Hsiao et al. [37]. It is also worth

noting that experiments on single molecule behavior in

extensional flows of dilute solutions have either separately

examined the unravelling of chains from the coiled to the

stretched state [4,5,12] or the relaxation from the stretched to

the coiled state [10,12]. The experiments of Hsiao et al. [37]
are unique in that they documented the response of single

chains to step-strain deformation followed by cessation of

flow, both in the dilute and semidilute regime, and provide

an opportunity to validate simulation predictions of chain

stretch and relaxation in a single experiment.

In the case of dilute polymer solutions undergoing exten-

sional flow, several studies have shown that it is necessary to

incorporate the finite extensibility of chains, and the presence

of hydrodynamic and excluded volume interactions into

molecular theories in order to obtain an accurate prediction

of experimental measurements [23–27,40,43]. In addition to

having to choose the level of coarse-graining through a

choice of the number of beads in a bead-spring chain, Nb, the

incorporation of these phenomena entails the choice of

parameters associated with each of them when carrying out

simulations. Thus, a choice needs to be made for the values

of the nondimensional finite extensibility parameter, b, the
nondimensional bead radius, h�, which is a measure of the

strength of hydrodynamic interactions, and the nondimen-

sional excluded volume parameter, z�, which is a measure of

the difference between the solution temperature and the theta

temperature. Prakash and coworkers [22,40,44] have shown

that by using the method of successive fine-graining, predic-

tions can be obtained that are independent of the choice of

parameters in the model. The successive fine-graining tech-

nique is a specific protocol by which simulation data acquired

for bead-spring chains with increasing values of Nb is extrap-

olated to the number of Kuhn steps Nk in the polymer chain

being simulated. It essentially exploits the universal behavior

observed in solutions of long chain polymers, to obtain

parameter-free simulation predictions. In dilute solutions, the

use of successive fine-graining has been shown to lead to

quantitatively accurate predictions of the conformational evo-

lution of k-phage DNA in cross-slot cells [22] and the exten-

sional viscosity of both DNA [45] and polystyrene solutions

[40,46] in uniaxial extensional flows. The aim of the present

paper is to use the successive fine-graining technique to pre-

dict the conformational evolution of DNA molecules in unen-

tangled semidilute solutions when subjected to step-strain

deformation followed by cessation of flow, and to verify if

accurate predictions of the experimental measurements of

Hsiao et al. [37] can be obtained.
Several different mesoscopic simulation techniques have

been developed over the past decade for describing the

dynamics of unentangled semidilute polymer solutions

which take into account the presence of intra and intermolec-

ular long-range hydrodynamic interactions [38,47–51]. By

implementing the Kraynik–Reinelt periodic boundary condi-

tions for mixed flows [52,53], Prakash and coworkers [39]

have recently developed an optimized multiparticle

Brownian dynamics algorithm that can simulate arbitrary

planar mixed shear and extensional flows of polymer solu-

tions at finite concentrations. This algorithm is used in the

present work to implement the successive fine-graining tech-

nique in the context of planar extensional flows.

The structure of the paper is as follows. In Sec. II and in

the supplementary material [54], the governing equations for

a bead-spring chain model are given along with the defini-

tions of various observable quantities. In Sec. III, a brief

overview of the successive fine-graining technique is pre-

sented. A detailed comparison of simulation predictions with

the experimental observations of Hsiao et al. [37], in dilute

and in semidilute solutions, is presented in Sec. IV. In partic-

ular, we carry out a qualitative comparison of the probability

distribution of fractional stretch in planar extensional flows,

and a quantitative comparison of the conformational evolu-

tion of individual chains subjected to a step-strain deforma-

tion followed by cessation of flow. A discussion of the

reasons why the successive fine graining scheme may be

expected to work, and the conditions under which it breaks

down are discussed in Sec. V. Finally, in Sec. VI, we sum-

marize the principal conclusions of this work.

II. BEAD-SPRING CHAIN MODEL OF DNA

A coarse-grained bead-spring chain model is used to

represent DNA molecules, with each chain consisting of a

sequence of Nb beads (which act as centers of hydrodynamic

resistance) connected by Nb � 1 massless wormlike chain

(WLC) springs that represent the entropic force between two

adjacent beads. A semidilute solution of DNA molecules is

obtained by immersing an ensemble of Nc such bead-spring

chains in an incompressible Newtonian solvent. The bulk

monomer concentration of the solution is defined by
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c ¼ N=V, where N ¼ Nb � Nc is total number of beads per

cubic simulation cell of edge length Lsim, and V ¼ L3sim, is
the volume of each periodic cell. As detailed in the supple-

mentary material [54], the inter- and intramolecular hydrody-

namic interactions between the beads are modeled using the

Rotne–Prager–Yamakawa (RPY) tensor, while bead overlap

is prevented by using a pairwise repulsive narrow Gaussian

excluded volume potential. For the purpose of nondimen-

sionalizing length and time units, a length scale lH
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=H

p
and a time scale kH ¼ f=4H are used, respec-

tively, where T is the temperature, H is the spring constant,

kB is the Boltzmann constant, and f is the hydrodynamic

friction coefficient associated with a bead. Within this frame-

work, the time evolution of the dimensionless position,

r��ðt�Þ, of a typical bead �, is governed by a stochastic differ-

ential equation, which can be numerically integrated with the

help of Brownian dynamics simulations. The specifics of the

integration scheme, along with details of the simulation pro-

tocol, and the particular forms of the spring force and the

hydrodynamic interaction tensor used here, are given in the

supplementary material [54].

DNA solutions used in rheological measurements are typ-

ically buffered aqueous solutions with an excess concentra-

tion of sodium salt, which has been established to be well

above the threshold for observing charge-screening effects

(see Appendix B of Pan et al. [55]). Consequently, DNA
molecules are expected to behave identically to neutral mol-

ecules in good solvents that lie in the crossover regime

between h solutions and athermal solvents, with the solvent

quality described by the variable [55,56],

z ¼ k 1� Th
T

� � ffiffiffiffiffi
M

p
; (1)

where M is the molecular weight, Th is the theta temperature,

and k is a polymer-solvent chemistry dependent constant.

Recently, Pan et al. have estimated that Th � 15 �C for the

DNA solutions that are typically used in rheological experi-

ments, and have also determined the value of the constant k
[55,56]. In particular, they have tabulated the value of z as a
function of temperature and molecular weight for a wide

variety of DNA fragments. Based on their calculations, a

solution of k-phage DNA is estimated to have a solvent qual-

ity z � 0:7 at 22 �C (the temperature at which the experi-

ments reported by Hsiao et al. [37] have been carried out).

Interestingly, Sunthar et al. [22,45] found that using z¼ 1

(rather than z¼ 0 or z¼ 3) in their dilute solution simulations

gave the best agreement between predictions and the experi-

mental measurements of Perkins et al. [4]. At equilibrium,

experiments and simulations show that for z¼ 0.7, Rg

¼ 1:23Rh
g, while at z ¼ 1:0;Rg ¼ 1:29Rh

g (these estimates

can be obtained from Eq. (23) of [57] which gives a formula

for Rg=R
h
g as a function of z that fits both experimental and

simulation data). The difference in equilibrium chain swell-

ing between the two values of z is consequently less than

5%, which is not significant in comparison to experimental

and simulation error bars. Anticipating, therefore, that the

difference between results for these two values of z will not
be significant, we have used a value of z¼ 1 in all our

simulations. However, in order to ensure that this is in fact

the case, we have validated this assumption by carrying out

simulations with z¼ 0.7, at one value of the Weissenberg

number (Wi ¼ 2:6). The results of the study, which are pre-

sented in the supplementary material [54], show that indeed

this assumption is justified.

The solvent quality can be conveniently controlled in simu-

lations with the help of the narrow Gaussian potential [57,58]

E r��l
� �

¼ z�

d�3

� �
exp � 1

2

r��l
2

d�2

� �
; (2)

which determines the force due to excluded volume interac-

tions between any two beads l and �. Here, z� is the strength
of the excluded volume interactions and d� is the range of

the interaction. A mapping between experiments and simula-

tions is achieved by setting z ¼ z�
ffiffiffiffiffiffi
Nb

p
, with z� being a mea-

sure of the departure from the h-temperature, and Nb being

proportional to the molecular weight [57,59]. As a result, for

any choice of Nb, z
� is chosen to be equal to z=

ffiffiffiffiffiffi
Nb

p
such that

the simulations correspond to the given experimental value

of z. For reasons elaborated in [57,60] in the context of dilute

polymer solutions, the parameter d� is irrelevant for suffi-

ciently long chains, and is typically calculated by the expres-

sion d� ¼ Kz�1=5, with K being an arbitrary constant. It is

worth noting that in order to establish that simulation predic-

tions obtained with the successive fine-graining protocol are

truly parameter free, it is necessary to demonstrate indepen-

dence from the choice of the constant K in addition to the

other model parameters discussed earlier. In the present

instance, the influence of K on simulation predictions is

examined in the supplementary material [54], and shown to

be irrelevant as expected.

A majority of the experimental measurements by Hsiao

et al. [37] in the semidilute regime have been carried out at

the scaled concentration c=c� ¼ 1, where c� is the overlap

concentration, which is defined here by the expression,

c� ¼ Nb=½ð4p=3ÞðR0
gÞ

3�, with R0
g being the radius of gyration

for an isolated chain at equilibrium. The value of c=c� is cal-
culated for each simulation reported here by computing R0

g

a priori from single-chain Brownian dynamics (BD) simula-

tions at equilibrium, for the relevant set of parameter values.

The velocity gradient tensor for planar extensional flows

is given by [61]

ðrv*ÞPEF ¼
_�� 0 0

0 �_�� 0

0 0 0

0
B@

1
CA; (3)

where _�� is the elongation rate. Planar extensional flows are

generally difficult to study by computer simulations, since

fluid elements are exponentially stretched in one direction

and contracted in the perpendicular direction. This leads to a

very short window of time to observe the dynamics of single

molecules since the dimensions of the simulation box rapidly

become of order of intermolecular distance. This difficulty

can be resolved by the implementation of Kraynik–Reinelt

periodic boundary conditions [52,62,63]. As mentioned ear-

lier, Jain et al. [39] have implemented these boundary
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conditions for BD simulations in the context of arbitrary pla-

nar mixed flows, and this algorithm has been adopted here.

Simulation predictions are compared with the experimen-

tally measured stretch of molecules, when a semidilute solu-

tion is subjected to a step-strain deformation in a planar

extensional flow. The stretch of a fluorescently dyed DNA

molecule, measured in a cross-slot cell, is the projected

extent of the molecule in the flow direction. For a bead-

spring chain model, this is calculated from

X�
max � maxl;�jr�lx � r��

xj; (4)

where r�l
x is the x-component of the vector r�l of bead l, with

x being the direction of flow. The mean stretch can be

obtained from the bead positions in an ensemble of chain

configurations from the ensemble average,

�X
� ¼ hX�

maxi: (5)

The equilibrium mean stretch is denoted by �X
�
eq. Experimental

measurements of stretch are typically reported in terms of

the nondimensional ratio �X=L, where L is the contour length

of stained k-phage DNA molecules, typically assumed to be

equal to 22 lm. However, we often find it convenient to addi-

tionally use the expansion ratio,

E ¼
�X
�

�X
�
eq

(6)

in simulations.

The longest relaxation time k1 is measured experimentally

by fitting the terminal 30% of the stretch of a molecule, as it

relaxes from a highly extended state, with a single exponen-

tial decay [37]. In simulations, the longest dimensionless

relaxation time k�1 ¼ k1=kH, for any bead-spring chain with

Nb beads, is obtained by initially stretching each chain to

nearly 90% of its fully extended state, and letting it relax to

equilibrium. Details of this procedure are presented in the

supplementary material [54].

III. SUCCESSIVE FINE-GRAINING

The successive fine-graining technique exploits the uni-

versal behavior of polymer solutions to obtain property pre-

dictions that are independent of the choice of model

parameters. At equilibrium, this technique has been widely

used to obtain universal predictions from analytical theories

and molecular simulations [36,56,57,59,64–67]. Essentially,

data are accumulated for finite chains, and subsequently

extrapolated to the long chain limit, Nb ! 1, where the

self-similar character of polymer chains is captured.

Extrapolation to the long chain limit has also been used to

obtain universal predictions in shear flow, where the finite-

ness of chain length is not relevant for sufficiently long

chains at typically measured shear rates [68–73]. In exten-

sional flows, however, where at high extension rates chains

are nearly fully stretched, the finiteness of chain length

plays a crucial role in determining the solution’s properties.

Even under these circumstances, provided the flow has not

“penetrated” below the Pincus blob length scale, universal

behavior is still observed [22,74] (see also discussion

in Sec. V). Prakash and coworkers have modified the succes-

sive fine-graining technique for infinitely long chains, by

making it applicable under conditions where it is important

to account for the finite length of a chain [22,40,44,75].

While at its core, the modification consists of changing the

extrapolation limit from Nb ! 1 to ðNb � 1Þ ! Nk, where

Nk is the number of Kuhn steps in the underlying chain, the

details of the method are more subtle and complex. Sunthar

and Prakash have discussed the procedure in great detail in

[22]. For the sake of completeness, and since it is used in the

context of semidilute solutions here for the first time, we

briefly motivate and explain the salient features of the tech-

nique below.

An example of a universal equilibrium property for dilute

polymer solutions under h conditions is the Flory–Fox

constant Uh
gR, defined by [35]

Uh
gR ¼

g½ �hM

4p=3ð Þ Rh
g

	 
3
NA

; (7)

where Rh
g is the radius of gyration, ½g�h is the zero shear rate

intrinsic viscosity, and NA is Avagadro’s constant. It is a sur-

prising experimental observation that Uh
gR attains its universal

value of 1.496 0.06 for a wide range of polymer-solvent sys-

tems [76], for molecular weights as low as M¼ 50 000 g/mol

[77,78]. As a result, it is clear that the intrinsic viscosity at

the h temperature for a majority of dilute solutions of linear

flexible polymers can be calculated once the radius of gyra-

tion of the polymer under h conditions is known. For polymer

solutions in the crossover region between h and very good

solvents, an additional variable, namely, the solvent quality

parameter z is required to describe the universal behavior.

For instance, for a number of different polymer-solvent

systems, the ratio,

ag T;Mð Þ ¼
g½ �
g½ �h

 !1=3

; (8)

measured at different temperatures and molecular weights, is

found to collapse onto a master plot, when plotted as a func-

tion of z [56,79]. Since

g½ � T;Mð Þ ¼ g½ �h a
3
g ¼ Uh

gR
NA

M

� �
4p
3
Rh
g

� �3

ag zð Þ
� �3

; (9)

it is clear that a knowledge of Rh
g and the universal properties

Uh
gR and agðzÞ enables the determination of the intrinsic

viscosity of any dilute linear polymer-solvent system in the

crossover regime. A similar argument can be made for any

other static or dynamic property of a dilute polymer solution,

/ðT;MÞ. Essentially, provided one knows a suitably defined

universal ratio Uh
/R under h conditions, and the universal

crossover swelling function a/ðzÞ ¼ /ðzÞ=/h, the property /
can be determined for the solution at any temperature and

polymer molecular weight, given Rh
g and z. This is the basic

content of the two-parameter theory [80], which states that

all static and dynamic properties of a dilute solution of linear
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flexible polymers can be determined once Rh
g and z are

known.

Bead-spring chain models with Hookean springs need

three parameters fNb; h
�; z�g to be specified, when nondi-

mensionalized with the length scale lH and time scale kH.
While the strength of hydrodynamic interactions is specified

by the draining parameter [81,82], h ¼ h�
ffiffiffiffiffiffi
Nb

p
, the strength

of excluded volume interactions [83,84] is determined by

z ¼ z�
ffiffiffiffiffiffi
Nb

p
. Typically, the parameters h� and z are kept con-

stant when implementing the successive fine-graining proce-

dure of extrapolating finite chain data to the long chain limit,

Nb ! 1 [36,56,57,59,64,66–72]. This implies that universal

property predictions at equilibrium and in shear flow are

obtained in the nondraining limit h ! 1 (independent of the

particular choice made for h�), and at a specific location in

the crossover regime specified by the solvent quality z.
The modified successive fine-graining procedure for poly-

mer solutions in extensional flows [22,40] also leads to univer-

sal predictions in the limit of large h and constant z. However,
the use of finitely extensible springs in place of Hookean

springs, in order to account for finite chain length, leads to sig-

nificant changes in the implementation of the procedure.

When subjected to extensional flow, a dilute polymer

solution in the crossover regime is characterized by the fol-

lowing set of variables: fRh
g; z; L;Wi; �g. Here, L is the finite

contour length of the chain, Wi ¼ k1 _� is the Weissenberg

number, with _� being the extension rate, and � ¼ _� t the

Hencky strain, which measures the extent of deformation

from the onset of flow. The protocol for successive fine-

graining of finite chains described briefly below ensures that

universal property predictions are obtained for this set of pre-

scribed experimental variables.

The maximum number of conformational degrees of free-

dom for a finite chain is the number of Kuhn steps, Nk.

Extrapolation of finite chain data can consequently only be

carried out to the limit ðNb � 1Þ ! Nk. The number of Kuhn

steps in a flexible linear chain can be determined from the

expression,

Nk ¼
L2

6 Rh
g

	 
2 : (10)

While the h temperature for DNA in aqueous solutions with

excess sodium salt (typically used for cross slot flow meas-

urements) has been shown to be roughly 15 �C by Pan et al.
[55], there does not yet seem to be an accurate measurement

of Rh
g. In the absence of information on Rh

g, Nk can also be

found from the expression Nk ¼ L=ð2kpÞ, where kp is the

persistence length. In Appendix B of [55], Pan et al. have
reported measurements of kp by various authors, using a

variety of different techniques, to be roughly 50 nm in the

presence of excess sodium salt. As a result, using a contour

length of 16 lm, suggests Nk¼ 160. On the other hand, stain-

ing with YOYO-1 dye is known to increase the contour

length [4,5]. The recent experiments by the Doyle group [85]

suggest that the contour length is increased by 38% at full

saturation of one YOYO-1 per four base pairs of DNA. For

k-phage DNA, this implies a stained contour length of

22 lm, in agreement with earlier estimates [4,5]. If the

persistence length remains unchanged subsequent to the

intercalation by the dye, as suggested in [85], then the num-

ber of Kuhn steps would be roughly Nk¼ 220. Sunthar and

Prakash [22] have argued that results of the successive fine-

graining procedure are insensitive to a choice of Nk in the

range 150–300, and have used Nk¼ 200 in their simulations

of dilute k-phage DNA solutions subjected to extensional

flow. It is worth noting that since results are extrapolated to

the limit
ffiffiffiffiffiffiffiffiffiffi
1=Nk

p
, this range of Nk values implies extrapolat-

ing finite chain data to either 0.08 or 0.06. While we have

not carried out extensive studies to investigate the influence

of the choice of Nk for semidilute solutions, we have adopted

the value Nk¼ 200 in the current simulations based on these

arguments.

The centrality of the finiteness of chain length is main-

tained in the successive fine-graining procedure by ensuring

that at every level of coarse-graining, the fully stretched

length of the bead-spring chain is identical to the contour

length of the polymer being modeled. As a consequence, for

any choice of the number of beads Nb,

L ¼ ðNb � 1Þ
ffiffiffi
b

p
lH: (11)

In order to be consistent with the equilibrium properties of

the polymer, it is also required that the radius of gyration of

the bead-spring chain under h conditions remains unchanged

with fine-graining.

Defining the dimensionless mean square length of a single

finitely extensible spring in the bead-spring chain, v2ðbÞ, by

v2 bð Þ ¼ hQ2i
3 l2H

; (12)

where hQ2i is the dimensional mean-square end-to-end vector

of a single spring, it is straight forward to show that [22,86]

Rh
g

	 
2
¼ v2 bð Þ N2

b � 1
� �

2Nb
l2H: (13)

Evaluating the ratio L2=ðRh
gÞ

2
from Eqs. (11) and (13), and

using the definition of Nk in Eq. (10) implies

b

v2 bð Þ ¼
3 Nb þ 1ð Þ
Nb Nb � 1ð ÞNk: (14)

Sunthar and Prakash [22] have shown that for WLC,

v2 bð Þ
b

¼ 1

3

ð1
0

dq� q�4 e�/�
c b;q�ð Þ

ð1
0

dq� q�2 e�/�
c b;q�ð Þ

; (15)

where /�
c is the nondimensional spring potential,

/�
c b; q�ð Þ ¼ b

6
2 q�2 þ 1

1� q�
� q�


 �
: (16)

Equations (14)–(16) enable the determination of the finite

extensibility parameter b, and the nondimensional mean
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square length of a single spring v2ðbÞ, for any choice of Nb

and Nk. A simple and efficient procedure for calculating b
and v2ðbÞ has been described in [22].

The quantity v2ðbÞ also plays an important role in the

treatment of hydrodynamic and excluded volume interac-

tions in the successive fine-graining procedure. For a bead-

spring chain with finitely extensible springs, the draining

parameter can be shown to be given by the expression [22],

h ¼ ~h
� ffiffiffiffiffiffi

Nb

p
, where

~h
� ¼ h�

v bð Þ ; (17)

While the solvent quality can be shown to be given by [22],

z ¼ ~z�
ffiffiffiffiffiffi
Nb

p
, where

~z� ¼ z�

v bð Þ
� �3 : (18)

Note that vðbÞ ! 1 in the limit Nb ! 1. When carrying out

the successive fine-graining procedure for infinite chains, as

mentioned earlier, the parameter h� is held constant as

Nb ! 1, while z� is calculated from z� ¼ z=
ffiffiffiffiffiffi
Nb

p
at each

level of fine-graining. On the other hand, during the succes-

sive fine-graining procedure for finitely extensible bead-

spring chains, ~h
�
is held constant at each level of fine-

graining, which implies h� ¼ ~h
�
vðbÞ, and z� is calculated

from the expression, z� ¼ ðz=
ffiffiffiffiffiffi
Nb

p
Þ½vðbÞ�3. Sunthar and

Prakash [22] and Pham et al. [44] have shown that at equilib-
rium (where Wi and � are not relevant variables), extrapola-

tion of finite chain data to the limit ðNb � 1Þ ! Nk, using

this procedure, leads to property predictions that are in quan-

titative agreement with known results for bead-rod chains

with Nk rods. Additionally, Pham et al. [44] established the

validity of the successive fine-graining procedure in steady

shear flow by comparing bead-spring chain results with the

results of a bead-rod model and a stiff FENE–Fraenkel

spring model, both in the absence and presence of hydrody-

namic and excluded volume interactions.

For a polymer solution subjected to extensional flow, if

comparison of simulation predictions is being made with

experimental data at particular values of Wi and �, the suc-

cessive fine-graining procedure ensures that at each level

of coarse-graining, simulations are carried out at the same

values of Wi and �. This is achieved by the following series

of steps: (i) For any choice of Nb, chains are stretched to

nearly 90% of their fully stretched state and allowed to relax.

The longest relaxation time k�1 (at that value of Nb) is then

found by fitting a single exponential decay to the terminal

30% of the mean stretch, as described in the supplementary

material [54]. (ii) The extension rate _�� used for simulation

of chains with Nb beads is then found from the expression,
_�� ¼ Wi=k�1, where Wi is the experimental Weissenberg

number. (iii) Once _�� is known for any Nb, simulations

are carried out until a nondimensional time t�, such that
_�� t� ¼ �. By maintaining Wi and � identical to experimental

values at each level of fine-graining in this manner, we

ensure that the extrapolated results in the limit ðNb � 1Þ !
Nk are also at the specified experimental values.

To date, the successive fine-graining procedure for finite
chains has only been used in the context of dilute polymer

solutions [22,40,44,46]. Recently, Jain et al. [36] have

extrapolated finite chain data to the long chain limit in the

semidilute regime, to obtain universal predictions of the ratio

of semidilute to dilute single chain diffusion coefficients at

various values of concentration. In the present paper, we use

the successive fine-graining procedure for finite chains to

compare simulation predictions for extensional flows of

semidilute solutions with the experimental measurements of

Hsiao et al. [37].

IV. RESULTS AND DISCUSSION

A striking early observation of single molecule experi-

ments in dilute solutions [5] was the enormous variability in

the transient stretching dynamics of the different molecules,

a phenomena characterized by de Gennes as molecular indi-

vidualism [21]. Hsiao et al. [37] have observed a similarly

wide distribution of configurations in their observation of

individual molecular trajectories at c=c� ¼ 1, albeit with

qualitatively different molecular conformations in semidilute

solutions compared to dilute solutions. Individual trajectories

obtained by simulating 67 chains in the main simulation box

(with Nb¼ 45 and parameter values reported in the figure

caption) are displayed by the black curves in Fig. 1. The

dashed curve is the ensemble average over the chains.

Clearly, wide variability in the manner in which chains

unravel from the coiled to the stretched state is also observed

in our simulations of extensional flow. The inset of Fig. 1,

which compares the standard deviation in the experimental

and simulation stretch data as a function of strain, reveals

FIG. 1. Evidence of molecular individualism during stretching. The black

curves are individual trajectories of 67 chains, while the dashed curve is the

ensemble average over the chains ( �X=L). The inset compares the standard

deviation in the experimental and simulation stretch data as a function of

strain. Parameter values for the simulation are: Nb ¼ 45; c=c� ¼ 1;
z ¼ 1; ~h

� ¼ 0:19, Nk ¼ 200, andWi ¼ 2:6.
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that the spread of stretch values is of similar magnitude in

both cases.

A qualitative comparison of the probability distribution of

chain extension observed in a simulation with Nb¼ 45, and

the experiments of Hsiao et al. [37], is shown in Fig. 2.

Essentially 50 simulations, each with 67 chains in the main

simulation box, were carried out and the fractional extension

ðX�
max=L

�Þ for each of the chains was calculated at various

values of �, and the results were binned as indicated in the

figure. Here, L� ¼ ðNb � 1Þ
ffiffiffi
b

p
. The number of chains in

each of the bins, 0 	 ðX�
max=L

�Þ < 0:1; 0:1 	 ðX�
max=L

�Þ
< 0:2, etc., was divided by 3350 (the total number of chains

in the sample), to obtain the probability distribution. Figure

3 represents the fractional extension of the ensemble of

chains as a cumulative distribution, and gives an alternative

perspective of the same data. Note that the method of

successive fine-graining has not been applied and the simula-

tion results are at a single value of Nb. Nevertheless, a good

qualitative agreement can be observed, with simulations

reflecting the experimental observation of a broadening of

the distributions as the accumulated strain increases, with the

persistence of chains that remain partially unravelled even at

high strains. There is greater variability between the results

of simulations and experiments at high fractional extensions

and high strain. As will be clear in the subsequent discussion

of the results of successive fine graining, it is essential to

FIG. 2. Probability distribution of chain extension in a semidilute solution

at c=c� ¼ 1. Distributions are shown for a range of accumulated strains � at
a Weissenberg number Wi ¼ 2:6. Histograms compare the experimental

results of Hsiao et al. [37] with the results of Brownian dynamics simula-

tions with parameter values: Nb ¼ 45; z ¼ 1; ~h
� ¼ 0:19, and Nk¼ 200.

FIG. 3. Cumulative probability distribution of chain extension in a semidi-

lute solution at c=c� ¼ 1. Distributions are shown for a range of accumulated

strains � at a Weissenberg number Wi ¼ 2:6. Curves with filled circles are

the experimental results of Hsiao et al. [37], while the curves with filled

squares are the results of Brownian dynamics simulations with parameter

values: Nb ¼ 45; z ¼ 1; ~h
� ¼ 0:19, and Nk¼ 200.
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capture the many degrees of freedom in the real system in

order to get close agreement between experimental and sim-

ulation results.

As mentioned earlier, the unique character of the single

molecule experiments of Hsiao et al. [37] is the implementa-

tion of a step input on the strain rate _�, followed by the cessa-
tion of flow once the fluid has accumulated a Hencky strain

of �. This enables the observation of the nonequilibrium

stretching and relaxation dynamics in a single experiment.

Figure 4 compares the experimental measurements of the

ensemble average stretch ratio E by Hsiao et al. [37] at

c=c� ¼ 1, and Wi ¼ 2:6, with BD simulations carried out at

various values of Nb. The flow is maintained until �¼ 13,

before being switched off, and the subsequent relaxation is

observed for a period of time measured in terms of the non-

dimensional units, t=k1. The use of the stretch ratio and non-

dimensional time as the axes enables a direct comparison of

simulation and experiments. Clearly, the qualitative behavior

observed in experiments is captured in the simulations. The

chains unravel from the coiled state and reach a steady-state

value of stretch after about 8 Hencky strain units. While the

curves for the different values of Nb are quite different from

each other in the stretch phase, they become more tightly

bunched together as the chains relax toward their equilibrium

coiled state. This is because all chains, regardless of their

length, relax to a common value of E¼ 1 at long times.

Despite the simulation predictions becoming closer to exper-

imental measurements for increasing values of Nb, the signif-

icant quantitative difference between simulations and

experiment at all values of Nb reported in Fig. 4, points to

the importance of capturing all the degrees of freedom of the

polymer chain being simulated. This is precisely the purpose

of successive fine-graining, which we carry out below.

As described in Sec. III, the successive fine-graining tech-

nique maintains the key experimental variables constant at

each level of fine-graining. For the experimental results dis-

played in Fig. 4, these are: fc=c� ¼ 1; z ¼ 1; Nk ¼ 200;

Wi ¼ 2:6g. Note that the choice Nk¼ 200 represents our

knowledge of the contour length L, and the persistence

length kp of k-phage DNA. For each choice of Nb, the param-

eters, b, vðbÞ; h�; z�, k�1, and _�� that correspond to this set of

experimental values can be calculated as described in Sec.

III. A representative set of values of these parameters for

various values of Nb, obtained for the case ~h
� ¼ 0:19, is dis-

played in Table I, along with the values of �X
�
eq used for the

calculation of E.
Simulation predictions of the stretch ratio E in a step

strain followed by cessation of flow simulation, both in the

stretch phase (at � ¼ 1:0, � ¼ 4:0, � ¼ 7:0, and � ¼ 13:0),
and in the relaxation phase (at t=k1 ¼ 0:5, t=k1 ¼ 1:0,
t=k1 ¼ 3:0, and t=k1 ¼ 4:0), at two different values of ~h

�
, for

a set of coarse-grained chains with Nb ¼ f6; 8; 10; 12g, are
shown in Figs. 5 and 6, respectively. In each case, data accu-

mulated for these values of Nb are extrapolated to the limit

ð1=
ffiffiffiffiffiffi
Nk

p
Þ ¼ 1=

ffiffiffiffiffiffiffiffi
200

p
. Clearly, in all cases, the extrapolated

value of the expansion factor E is independent of the choice

of value for ~h
�
, within simulation error bars. As mentioned

earlier, for the results to be truly parameter free, it is neces-

sary to demonstrate independence of the extrapolated results

from the choice of the constant K in the narrow Gaussian

potential as well. In the supplementary material [54], we

show that data accumulated for various values of Nb, at Wi
¼ 2:6 for two different values of K, extrapolate to a common

value (within error bars) in the limit ð1=
ffiffiffiffiffiffi
Nk

p
Þ. This implies

that at Wi ¼ 2:6, in the stretch and relaxation phases, local

details of the chain (such as the nondimensional bead radius

and the range of the excluded volume potential) are masked

from the flow, even though the polymer chains are exposed

to a flow field, and universal predictions independent of

choice of parameter values are obtained.

We can anticipate that at higher Weissenberg numbers,

and large values of strain, as the flow penetrates down to the

shortest length scales of the chains, the different values

chosen for ~h
�
may get “revealed,” leading to predictions that

are no longer parameter free. In Sec. V, we develop a simple

scaling argument to obtain an estimate of the Weissenberg

number at which this might happen. For all the values of Wi,
�, and t=k1 considered in the experiments of Hsiao et al.
[37]: however, we obtain parameter free predictions from the

successive fine-graining procedure.

Hsiao et al. [37] have carried out step strain followed by

cessation of flow experiments, for an ultradilute solution

(c=c� ¼ 10�5) and for a semidilute solution (c=c� ¼ 1), for a

range of different Weissenberg numbers. Predictions of the

FIG. 4. Transient polymer stretch in a step strain experiment in planar

extensional flow at c=c� ¼ 1 and Wi ¼ 2:6. The black line and symbols are

experimental measurements of the ensemble average stretch ratio by Hsiao

et al. [37] and the various colored lines and symbols are BD simulations at

the various values of Nb indicated in the legend. Common parameter values

in all the simulations are: z ¼ 1; ~h
� ¼ 0:25, and Nk ¼ 200. Values of b,

vðbÞ; h�; z�; k�1, and _�� used for each of the simulated values of Nb are calcu-

lated as per the procedure described in Sec. III.

TABLE I. Typical values of simulation parameters that arise at each level

of coarse-graining when carrying out the successive fine-graining procedure

for semidilute simulations, corresponding to the following set of experimen-

tal values: fc=c� ¼ 1; z ¼ 1; Nk ¼ 200 and Wi ¼ 2:6g. The hydrodynamic

interaction parameter was maintained constant at ~h
� ¼ 0:19.

Nb b vðbÞ z� h� �X
�
eq k�1 _��

6 124.04 0.9413 0.3404 0.1788 2.1276 0.002 11.021 0.2359

8 82.652 0.9258 0.2805 0.1759 2.9046 0.003 17.826 0.1458

10 60.911 0.9114 0.2393 0.1731 3.4556 0.002 25.883 0.1004

12 47.609 0.8976 0.2087 0.1705 4.0476 0.023 35.104 0.0740
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transient stretch ratio, obtained by carrying out the succes-

sive fine-graining procedure for a dilute solution with c=c�

¼ 6:25� 10�12 at Wi ¼ 2:1, and for a semidilute solution

with c=c� ¼ 1 at Wi ¼ f0:6; 1:4; 2:6g, at each of the mea-

sured values of � in the stretch phase, and t=k1 in the relaxa-

tion phase, are shown in Fig. 7, and compared with the

measurements of Hsiao et al. [37]. Clearly, the agreement

between simulations and experiments is remarkable, and

shows the usefulness of the successive fine-graining proce-

dure in obtaining parameter free predictions that are in quan-

titative agreement with measurements. Further, they suggest

that coarse-grained Brownian dynamics simulations appear

to be capable of capturing the important physics that deter-

mine the dynamics of semidilute solutions.

An important experimental observation by Hsiao et al.
[37] is that the average transient fractional extension in start-

up of planar extensional flow in a semidilute solution is much

smaller than in a dilute solution, suggesting that interactions

with surrounding chains restrains the stretching of chains.

The formation of transient structures due to intermolecular

interactions has been proposed in earlier experiments on

semidilute solutions in shear flow [15,18,20,28]. Figure 8(a)

compares the prediction by successive fine-graining of ð �X=LÞ
versus �, for a dilute solution (at c=c� ¼ 6:25� 10�12) and a

semidilute solution (at c=c� ¼ 1), for three different values of

the Weissenberg number. Clearly, ð �X=LÞ is smaller for semi-

dilute solutions than for dilute solutions at all values of Wi
and �, suggesting that BD simulations also exhibit the strong

inhibition of chain stretching in semidilute solutions observed

in experiments. The precise nature of the intermolecular

interactions that lead to this phenomenon will be investigated

further in the future. Figure 8(b) compares the successive

fine-graining predictions of the average transient fractional

extension in semidilute solutions, with the experimental

FIG. 5. Illustration of the extrapolation procedure during the stretching

phase [(a) �¼ 1, (b) �¼ 4, (c) �¼ 7, and (d) �¼ 13], for two values of ~h
�
,

namely, 0.19 (circles) and 0.25 (squares). Filled symbols are results of simu-

lations, while empty symbols represent extrapolated results. Parameters that

are common to all simulations are: c=c� ¼ 1; z ¼ 1; Nk ¼ 200, and

Wi ¼ 2:6. The value of �X
�
eq used for the calculation of E at the various val-

ues of Nb are given in Table I. Values of b, vðbÞ; h�; z�; k�1, and _�� used for

each of the simulated values of Nb ¼ f6; 8; 10; 12g, are calculated as per the

procedure described in Sec. III of the main paper. Lines through the data at

these values of Nb indicate extrapolation to the limit 1=
ffiffiffiffiffiffiffiffi
200

p
.

FIG. 6. Illustration of the extrapolation procedure during the relaxation

phase [(a) t=k1 ¼ 0:5, (b) t=k1 ¼ 4:0, (c) t=k1 ¼ 3:0, and (d) t=k1 ¼ 4:0] for
two values of ~h

�
namely 0.19 (circles) and 0.25 (squares). Filled symbols

are results of simulations, while empty symbols represent extrapolated

results. Parameters that are common to all simulations are: c=c� ¼ 1; z ¼ 1;
Nk ¼ 200 and Wi ¼ 2:6. The value of �X

�
eq used for the calculation of E at

the various values of Nb are given in Table I. Values of b, vðbÞ; h�; z�, k�1
and _�� used for each of the simulated values of Nb ¼ f6; 8; 10; 12g, are cal-
culated as per the procedure described in Sec. III of the main paper. Lines

through the data at these values of Nb indicate extrapolation to the limit

1=
ffiffiffiffiffiffiffiffi
200

p
.
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observations of Hsiao et al. [37]. This comparison is identical

to the one carried out for semidilute solutions in Fig. 7.

However, it is restricted to the stretching dynamics, and is in

terms of the ratio ð �X=LÞ rather than E. Figure 8(c) compares

the successive fine-graining predictions of ð �X=LÞ for dilute

solutions with experimental observations. At Wi ¼ 0:6, com-

parison is made with the measurements of Perkins et al. [4].
The comparison with the dilute solution measurements of

Hsiao et al. [37] for Wi ¼ 2:1 is identical to the comparison

of stretching dynamics in Fig. 7, but is reported in terms

of ð �X=LÞ rather than E. We have not carried out simulations

at Wi ¼ 1:2, for which Hsiao et al. [37] have reported

experimental measurements. However, as seen in the figure,

successive fine-graining predictions at Wi ¼ 1:4 are very

close to the experimental values at Wi ¼ 1:2. Figures 8(b)

and 8(c) once again reflect the quantitative accuracy with

which successive fine-graining can predict transient chain

stretch in extensional flows.

V. BREAKDOWN OF SUCCESSIVE FINE GRAINING

It is possible to use scaling arguments based on blob the-

ory to understand the observed independence from the

FIG. 7. Comparison of the expansion factor E ¼ �X= �Xeq predicted by successive fine-graining with the experimental observations of Hsiao et al. [37]. The top panel
corresponds to a dilute solution at Wi ¼ 2:1. The remaining panels correspond to semidilute solutions at c=c� ¼ 1, and Wi ¼ f0:6; 1:4; 2:6g, respectively.
Simulations were carried out at fixed values of z¼ 1 and Nk¼ 200. Hsiao et al. [37] have measured the values of �Xeq and k1 at the start of each of their sets of

experiments at the different values of Weissenberg number. They are used to plot the experimental data in the figure, and are reported here for convenience:

[Wi; �XeqðlmÞ; k1 (s)]: [2.1 (dilute), 2.426 1.1, 7.0]; [0.6 (semidilute), 1.6726 0.88, 4.8]; [1.4 (semidilute), 1.986 0.66, 4.8]; [2.6 (semidilute), 2.1126 0.814, 5.2].
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choice of ~h
�
, and to get an estimate of the value of Wi at

which the successive fine graining scheme may be expected

to breakdown. We first make a simple qualitative argument

for a dilute solution in the good solvent limit z ! 1 (where

the thermal blob length scale is expected to be of the order

of monomer size), followed by a more general and detailed

scaling analysis for both dilute and semidilute solutions

below.

In a dilute solution in the good solvent limit, a chain

obeys self avoiding walk (SAW) statistics, with the Flory

exponent �, on all length scales. Consider the conformation

of such a chain when the solution is subjected to extensional

flow at a particular value of Wi. At high values of strain �,
the chain breaks up into a sequence of Pincus blobs of size

nP, which is the length scale at which the stretching energy

in a chain segment becomes of order kBT. Under these condi-
tions, the conformation of the chain will be rodlike on length

scales above nP, but for smaller length scales, chain seg-

ments will have equilibrium conformations. In other words,

the flow does not penetrate the chain on length scales below

nP, and equilibrium conditions apply on these short length

scales. The friction experienced by the chain as a whole is

equal to that experienced by a blob-pole, and the friction

coefficient of individual monomers is not relevant, since

they are buried inside the blobs. Provided the conformations

of chains with different local properties are the same on

length scales large compared to the Pincus blob, their long

time and large scale behavior will be identical. This is the

reason why simulation results become independent of ~h
�

when sufficient degrees of freedom are taken into account.

The transition length scale nP at which a chain switches from

its equilibrium conformation to a deformed conformation

depends on the Weissenberg numberWi.
An estimate of nP and the critical Weissenberg number

Wic at which the successive fine graining technique can be

expected to break down, under very general conditions, is

obtained here in two parts. We first consider the case of

dilute solutions, which helps to introduce the notation and

establish the basic procedure for determining these quanti-

ties. A brief consideration of the key issues that are relevant

in the case of semidilute solutions is given in this section,

and because of the many regimes involved in this case, the

details of the derivation of the various scaling laws are pro-

vided in the Appendix, and only the main results summa-

rized in Table II.

A. Dilute solutions

At equilibrium, the conformation of an isolated chain in a

dilute solution is expected to breakup into a sequence of

thermal blobs of diameter nT, which is the length scale at

which the total pairwise excluded volume interaction energy

of all the monomers within a blob is of order kBT. The chain
obeys random walk (RW) statistics below nT, while the ther-
mal blobs themselves obey SAW statistics on larger length

scales. On the other hand, since hydrodynamic interactions

are present on all length scales, the chain exhibits Zimm

dynamics. Within the blob scaling picture, the solvent qual-

ity z is given by [36]

z ¼
R0;h
eq

nT
; (19)

where R0;h
eq ¼ bKN

1=2
K is the mean size of the chain in a dilute

solution under h conditions, with bK being the length of a

FIG. 8. Transient polymer stretch in dilute and semidilute solutions at vari-

ous values of the Weissenberg number. (a) Comparison of transient frac-

tional extension ð �X=LÞ in planar extensional flow for dilute and semidilute

solutions (at c=c� ¼ 1) predicted by successive fine-graining. (b)

Comparison of ð �X=LÞ for semidilute solutions predicted by successive fine-

graining with experimental observations of Hsiao et al. [37]. (c) Comparison

of ð �X=LÞ for dilute solutions predicted by successive fine-graining with

experimental observations of Hsiao et al. [37] and Perkins et al. [4]. Note
that L ¼ 22lm has been used to normalize the experimental values of

stretch.
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monomer. The solvent quality can be viewed as a measure of

the number of thermal blobs on a chain, N T, since one can

show N T ¼ z2.
In the presence of extensional flow, the chain conforma-

tion is a blob pole (i.e., an aligned sequence of Pincus blobs)

on large length scales, while within a Pincus blob, the chain

conformation remains at equilibrium. At low values of Wi
(when the Pincus blob size is large), we expect that there

will be many thermal blobs within a Pincus blob. At suffi-

ciently high values of Wi, however, as the stretching energy

of the chain increases, the Pincus blob size is expected to

shrink below that of a thermal blob. These two conditions,

i.e., nP > nT and nP < nT, lead to different scaling consider-

ations, as detailed below.

1. nP > nT

If there are mT;P thermal blobs in the Pincus blob, then

since the thermal blobs exclude each other, nP ¼ nT m
�
T;P,

and the Zimm relaxation time is kP ¼ kT m3�
T;P, where kT is

the relaxation time of a thermal blob. Clearly, the flow pene-

trates a Pincus blob when kP ¼ _��1. As a result,

nP
nT

� �3

¼ kP
kT

¼ kT _�ð Þ�1
:

The longest (Zimm) relaxation time of the chain is

k1 ¼ kTN 3�
T , while the mean equilibrium size of the chain is

given by Req ¼ nTN �
T. This implies

k1
kT

¼ Req

nT

� �3

:

From the definition of the Weissenberg number,

Wi ¼ k1 _� ¼ kT _�ð ÞN 3�
T ¼ nT

nP

� �3

N 3�
T ¼ Req

nP

� �3

:

The size of the Pincus blob is consequently given by

nP ¼ Req Wi�
1
3: (20)

For Wi 
 Oð1Þ, the entire chain is within a Pincus blob. At a

critical value of the Weissenberg number, Wic, the dimen-

sion of the Pincus blob would become of the order of the

thermal blob size, i.e., nP ¼ nT. Since N T ¼ z2 implies

Req

nT
¼ z2�: (21)

It follows from Eq. (20) that

Wic ¼ z6�: (22)

As the thermal blobs get smaller with increasing solvent

quality, it takes a higher value of the critical Weissenberg

number before the Pincus blob penetrates the thermal blob.

2. nP < nT

If there are gP monomers in a Pincus blob, then since RW

statistics are obeyed within a thermal blob, nP ¼ bK g
1=2
P , and

the Zimm relaxation time of the Pincus blob is kP ¼ k0 g
3=2
P ,

where k0 is the monomer relaxation time. Since the flow pen-

etrates a Pincus blob when kP ¼ _��1

nP
bK

� �3

¼ kP
k0

¼ k0 _�ð Þ�1

If there are gT ¼ ðNK=N TÞ monomers in a thermal blob,

then nT ¼ bK g
1=2
T , and the Zimm relaxation time of a thermal

blob is kT ¼ k0 g
3=2
T . It follows that

kT
k0

¼ nT
bK

� �3

;

which implies

k1
k0

¼ k1
kT

kT
k0

¼ Req

nT

� �3 nT
bK

� �3

¼ Req

bK

� �3

:

TABLE II. Critical Weissenberg number at which the flow penetrates the Pincus blob. Various scaling regimes are determined by the relative magnitudes of

the Pincus blob, the thermal blob and the correlation blob (for semidilute solutions). When the magnitude of the Pincus blob is equal to monomer size

(nP ¼ bK), the successive fine graining technique is expected to breakdown.

Dilute

Wi Req Condition Wic

nT < nP R3
eq=n

3
P nT z

2� nP ¼ nT z6�

nP < nT R3
eq=n

3
P bKN

1=2
K z2��1 nP ¼ bK N3�

K

Semidilute

Wi Req Condition Wic

nT < nc nT < nc < nP R4
eq=n

4
P nc c=c�ð Þ1=6��2 nP ¼ nc c=c�ð Þ2=3��1

c� < c < c�� nT < nP < nc Req=nP
� �3

c=c�ð Þ1=6��2 nT z
2� c=c�ð Þ� 2��1ð Þ= 6��2ð Þ nP ¼ nT z6� c=c�ð Þ� 3��2ð Þ= 3��1ð Þ

nP < nT < nc Req=nP
� �3

c=c�ð Þ1=6��2
bKN

1=2
K z2��1 c=c�ð Þ� 2��1ð Þ= 6��2ð Þ nP ¼ bK N3�

K c=c�ð Þ� 3��2ð Þ= 3��1ð Þ

nc < nT nc < nT < nP R4
eq=n

4
P nT z nP ¼ nT z4

c�� < c nc < nP < nT R4
eq=n

4
P ncðc=c�Þ nP ¼ nc ðc=c�Þ4

nP < nc < nT ðReq=nPÞ3ðc=c�Þ bKN
1=2
K nP ¼ bK N

3=2
K c=c�ð Þ
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Since

Req¼nTN �
T¼bKg

1=2
T N �

T¼bKN
1=2
K N ð2��1Þ=2

T ¼bKN
1=2
K z2��1;

(23)

we get

Wi ¼ k1 _� ¼ k0 _�ð Þ Req

bK

� �3

¼ bK
nP

� �3 Req

bK

� �3

¼ Req

nP

� �3

:

We see that in this case as well, the size of the Pincus blob is

given by

nP ¼ Req Wi�
1
3: (24)

For sufficiently large Weissenberg numbers, the dimension

of the Pincus blob would become of the order of monomer

size, at which point the local chain details would no longer

be shielded from the flow. Thus, for nP ¼ bK , Eqs. (23) and
(24) imply that the successive fine graining procedure would

breakdown at

Wic ¼ N
3=2
K z6��3: (25)

Since z 
 N
1=2
K , it follows that

Wic 
 N3�
K :

This is inline with our expectation that universal behavior is

exhibited until higher Weissenberg numbers for longer

chains. For k-phage DNA, with NK � 200, this implies

Wic 
 Oð103Þ to Oð104Þ. It must be borne in mind that this

is a very rough estimate, based on scaling arguments, which

do not predict prefactors. It is also in some sense an upper

bound on the Weissenberg number, since the influence of the

flow on the local details could occur when nP is of the order

of many monomer sizes. In the results of successive fine

graining for dilute DNA solutions reported in [22], it was

observed that extrapolated results were parameter free at

Wi ¼ 2 for all strains, while universality broke down at

Wi ¼ 55, for high values of �.

B. Semidilute solutions

At equilibrium, the onset of the semidilute regime occurs

at the concentration c�, where chains just begin to overlap

each other. Within the blob ansatz, at higher concentrations,

chain conformations breakup into a sequence of correlation

blobs of diameter nc, with sections of chains within a blob

behaving as they would in a dilute solution. The correlation

blobs themselves are assumed to be space filling, so the solu-

tion behaves like a melt of correlation blobs on length scales

larger than nc. Since dilute solution dynamics are observed

within a correlation blob, chain segments within these blobs

are further subdivided into thermal blobs, whose magnitude

and number depend on the quality of the solvent. On length

scales above nc, since melt dynamics are observed, chains

obey RW statistics and Rouse dynamics [35]. A phase dia-

gram in the fz; c=c�g space, with a derivation of the various

scaling laws that operate in the different regimes, has been

presented recently in [36].

For concentrations less than or equal to c�, since the entire
chain is within a correlation blob, the same arguments as

those used for dilute solutions above would apply at the

onset of flow. For c=c� > 1, however, we expect that there

will be a subtle interplay between the different blob length

scales that are present, with different scaling laws governing

the different regimes. At equilibrium, one can distinguish

two cases: (i) nT < nc, which would hold for c� < c < c��,
and (ii) nc < nT, which would hold for c�� < c (note that c��

is defined as the concentration at which nc ¼ nT). Once

extensional flow is switched on, the magnitude of nP relative

to nT and nc depends on the value of Wi, and this in turn

determines which microscopic physics is relevant.

There are three possible scenarios. Consider the case,

nT < nc. At low extension rates, there will be many correla-

tion blobs within a Pincus blob with their number decreasing

as the Pincus blobs decrease in size with increasing strain

rate, until the size of the Pincus blob becomes of the order of

the correlation blob size. At higher Weissenberg numbers,

the Pincus blobs become smaller than the correlation blobs,

until they become of order of the thermal blob size.

Eventually, at sufficiently high Weissenberg numbers, the

Pincus blob penetrates the thermal blob, and its size becomes

comparable to the monomer size. We anticipate that the suc-

cessive fine graining procedure will breakdown at this point,

since the local details of the chain would be exposed to the

flow. For the case, nc < nT, the roles of the correlation and

thermal blobs are interchanged in the above sequence of

events. The critical Weissenberg numbers at which the

Pincus blob size becomes equal to the correlation and ther-

mal blob sizes and to the monomer size can be estimated in

the various cases, as shown in the Appendix.

All the scaling expressions derived here for dilute and

semidilute solutions are summarized in Table II. As men-

tioned earlier, prefactors cannot be determined within the

framework of scaling arguments, but must rather be deter-

mined by careful simulations that explore the threshold

Weissenberg number at which results are no longer parame-

ter free.

VI. CONCLUSIONS

The dynamics of DNA molecules in semidilute solutions

undergoing planar extensional flow has been simulated using

a coarse-grained bead-spring chain model which incorpo-

rates hydrodynamic and excluded volume interactions.

When applied to semidilute solutions, the successive fine-

graining methodology is shown to lead to parameter-free

predictions for a range of Weissenberg numbers and Hencky

strain units, as was observed previously for dilute solutions

[22,40,46]. A systematic comparison of simulation predic-

tions with the experimental observations of Hsiao et al. [37],
of the response of individual chains to step-strain deforma-

tion followed by cessation of flow, shows that the successive

fine graining technique gives quantitatively accurate predic-

tions in the experimentally explored range of Weissenberg
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numbers. In agreement with experimental observations, sim-

ulations indicate that the transient chain stretch following a

step strain deformation is much smaller in semidilute solu-

tions than in dilute solutions.

The current work has been focussed on comparing simu-

lation predictions with the experimental observations of

Hsiao et al. [37], which have all been carried out at

c=c� ¼ 1. Clearly, a thorough examination of the influence

of concentration on the stretching and relaxation dynamics,

particularly with a view to understanding the nature of the

interchain interactions that lead to restriction in chain

stretching, is required in the future.

The simple scaling analysis based on the blob picture in

Sec. V suggests that the relative magnitudes of Pincus and

correlation blobs depend on the key variables that determine

semidilute solution dynamics: fReq; L; c=c
�;Wig. The inter-

play between these two length scales in turn influences the

manner in which hydrodynamic interactions are screened,

which is at the heart of the rich physics observed in semidi-

lute polymer solutions. By making it possible to study long

chain behavior by simulating shorter chains, the method of

successive fine graining provides a means of studying local

chain structure as a function of these variables (via, for

instance, the dynamic structure factor). Future studies in this

direction would give insight into their influence on the

screening of hydrodynamic interactions.
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APPENDIX: SCALING REGIMES FOR Wic IN
SEMIDILUTE SOLUTIONS

(i) nT < nc (RW statistics below nT and above nc; SAW sta-

tistics above nT and below nc; Zimm dynamics below nc;
Rouse dynamics above nc).

(a) nT < nc < nP:
At sufficiently low Weissenberg numbers, if there are

mc;P correlation blobs in a Pincus blob, then

nP ¼ nc m
1=2
c;P , and the Rouse relaxation time is

kP ¼ kc m2
c;P, where kc is the Zimm relaxation time of a

correlation blob. Since the flow penetrates a Pincus blob

when kP ¼ _��1

nP
nc

� �4

¼ kP
kc

¼ kc _�ð Þ�1
:

In the semidilute regime, the longest (Rouse) relaxation

time of the chain is k1 ¼ kc N 2
c , where N c is the number

of correlation blobs in a chain, and the mean equilibrium

size of the chain is given by Req ¼ nc N 1=2
c . It follows

that

Wi ¼ k1 _� ¼ kc _�ð ÞN 2
c ¼

nc
nP

� �4

N 2
c ¼

Req

nP

� �4

:

At low Weissenberg numbers, the size of the Pincus blob

is consequently given by

nP ¼ Req Wi�
1
4: (A1)

The Pincus blob in a semidilute solution (in this sub-

case), appears to decrease more slowly in size than in a

dilute solution. The number of correlation blobs in a

chain can be related to the scaled concentration through

[36]

N c ¼
c

c�

� �1=3��1

: (A2)

As a result, Req ¼ ncðc=c�Þ1=ð6��2Þ
, and the Weissenberg

number at which nP ¼ nc is given by

Wic ¼
c

c�

� �2=3��1

: (A3)

At this Weissenberg number the conformation of a typical

chain is a blob pole, with the blobs representing both the

length scale at which the stretching energy is of order kBT
(Pincus blob), and the length scale at which hydrodynamic

and excluded volume interactions are screened (correlation

blob). Pan et al. [55] have shown that for DNA solutions,

the unentangled semidilute regime appears to extend to

roughly c=c� ¼ 5. The range of Weissenberg numbers at

which the two blob sizes become equal is then (for

� ¼ 0:6),Wi 
 Oð1Þ toOð55Þ for 1 	 ðc=c�Þ 	 5.

(b) nT < nP < nc:
At higher Weissenberg numbers, there will be several

Pincus blobs within a correlation blob. Since the Pincus

blobs within a correlation blob are expected to form a blob

pole, we anticipate the correlation blobs to be anisotropic

in structure, with width 
nP, but length of order several

nP. A careful examination of the different blob length

scales that are present in a semidilute solution subjected to

extensional flow, and the resultant chain conformations,

has been carried out recently by Prabhakar et al. [87].
However, we are interested in the equilibrium conditions

that exist within a Pincus blob, and in equilibrium chain/

blob dimensions and relaxation times.

If there are mT;P thermal blobs in the Pincus blob,

then nP ¼ nT m
�
T;P, and the Zimm relaxation time is

kP ¼ kT m3�
T;P. Since the flow penetrates a Pincus blob

when kP ¼ _��1

nP
nT

� �3

¼ kP
kT

¼ kT _�ð Þ�1
:
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Using similar arguments to those above, one can show

that

kc
kT

¼ nc
nT

� �3

:

As a result,

Wi ¼ k1 _� ¼ kcN 2
c _� ¼ kT _�ð Þ kc

kT

� �
N 2

c

¼ nT
nP

� �3 nc
nT

� �3

N 2
c ¼

nc
nP

� �3

N 2
c :

Since nc ¼ Req N�1=2
c , one can show that

n3cN
2
c ¼ R3

eq

c

c�

� �1=2 3��1ð Þ
; (A4)

where Eq. (A2) has been used. The size of the Pincus

blob is consequently given by

nP ¼ Wi�
1
3 Req

c

c�

� �1=6 3��1ð Þ
: (A5)

We are interested in determining the Weissenberg number

at which nP ¼ nT. In order to do so, it is necessary to relate
Req to nT. If there are mT;c thermal blobs in a correlation

blob, then Req ¼ ncN
1
2
c ¼ nTm

�
T;c N

1
2
c. In the double cross-

over region, Jain et al. [36] have derived the following

expression for mT;c as a function of the solvent quality and

the scaled concentration

mT;c ¼ z2
c

c�

� �� 1=3��1ð Þ
:

It follows that

Req ¼ nTz
2� c

c�

� �� 2��1ð Þ= 6��2ð Þ
(A6)

and the critical Weissenberg number at which the Pincus

blob and the thermal blob length scales are identical is

given by

Wic ¼ z6�
c

c�

� �� 3��2ð Þ= 3��1ð Þ
: (A7)

This reduces to the expression for the critical

Weissenberg number for nP ¼ nT in dilute solutions [Eq.

(22)], when ðc=c�Þ ¼ 1.

An estimate of the critical Weissenberg number can

be obtained from the following arguments. If we assume

that the unentangled semidilute regime for DNA is in the

range [55] 1 < ðc=c�Þ < 5, then the number of correla-

tion blobs in this range (for � ¼ 0:6) is 1 < N c < 8

[from Eq. (A2)]. Since the number of thermal blobs must

be greater than the number of correlation blobs in this

subcase, we assume that N T ¼ 16 (at least two thermal

blobs in each correlation blob). This implies z¼ 4 (since

z ¼
ffiffiffiffiffiffiffi
N T

p
). Substituting these numbers into Eq. (A7)

leads to Wic 
 Oð1Þ to Oð220Þ, for 1 	 ðc=c�Þ 	 5.

(c) nP < nT < nc:
If there are gP monomers in a Pincus blob, then

nP ¼ bK g
1=2
P , and the Zimm relaxation time of the

Pincus blob is kP ¼ k0 g
3=2
P . Since the flow penetrates a

Pincus blob when kP ¼ _��1

nP
bK

� �3

¼ kP
k0

¼ k0 _�ð Þ�1
:

Clearly

k1
k0

¼ k1
kc

kc
kT

kT
k0

¼ N 2
c

nc
nT

� �3 nT
bK

� �3

¼ nc
bK

� �3

N 2
c :

It follows that

Wi ¼ k1 _� ¼ k0 _�ð Þ k1
k0

� �
¼ bK

nP

� �3 nc
bK

� �3

N 2
c

¼ nc
nP

� �3

N 2
c :

Using Eq. (A4), we can find the dependence of the size

of the Pincus blob on the Weissenberg number to be

nP ¼ Wi�
1
3 Req

c

c�

� �1=6 3��1ð Þ
: (A8)

From Eq. (19), we see that nT ¼ bKN
1=2
K z�1. Combined

with Eq. (A6) for Req, this leads to

Req ¼ bKN
1=2
K z2��1 c

c�

� �� 2��1ð Þ= 6��2ð Þ
: (A9)

Substituting Eq. (A9) into Eq. (A8), and setting nP ¼ bK,
we find the critical Weissenberg number at which the

successive fine graining method is expected to break

down to be

Wic ¼ N
3=2
K z6��3 c

c�

� �� 3��2ð Þ= 3��1ð Þ
: (A10)

This reduces to the expression for Wic for dilute solu-

tions [Eq. (25)], when ðc=c�Þ ¼ 1. Since z 
 N
1=2
K , it fol-

lows that

Wic 
 N3�
K

c

c�

� �� 3��2ð Þ= 3��1ð Þ
:

Assuming NK ¼ 200 for DNA, this leads to (for � ¼ 0:6)
Wic 
 Oð103Þ to Oð104Þ for 1 	 ðc=c�Þ 	 5.

(ii) nc < nT (RW statistics on all length scales; Zimm

dynamics below nc; Rouse dynamics above nc).
We consider only solutions where Nb and c are not

large enough for entanglements to play a role, and that

further crossover to reptation dynamics does not need to
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be taken into account. It should be pointed out that Hsiao

et al. [37] have not carried out any experiments in this

regime, nor have we carried out any simulations.

Nevertheless, the results are presented here for the sake

of completeness; basically as a tabulation of critical

Weissenberg numbers at which local details would begin

to effect predictions of coarse-grained models (which is

essentially what is implied by the breakdown of succes-

sive fine graining). The three scenarios in this case are

discussed in turn below.

(a) nc < nT < nP
If mc;P is the number of correlation blobs in a Pincus

blob, then nP ¼ nc m
1=2
c;P , and the Rouse relaxation time is

kP ¼ kc m2
c;P. Since the flow penetrates a Pincus blob

when kP ¼ _��1,

nP
nc

� �4

¼ kP
kc

¼ kc _�ð Þ�1
:

From the scaling expressions for the Rouse relaxation

time and the mean equilibrium size of the chain in terms

of the number of correlation blobs, it follows that

Wi ¼ k1 _� ¼ kc _�ð ÞN 2
c ¼

nc
nP

� �4

N 2
c ¼

Req

nP

� �4

:

The size of the Pincus blob is consequently given by

nP ¼ Req Wi�
1
4: (A11)

Since the chain obeys RW statistics on all length scales,

Req ¼ nTN 1=2
T ¼ nT z:

As a result, the Pincus blob size becomes equal to the

size of the thermal blob when

Wic ¼ z4:

(b) nc < nP < nT
In this case as well, using arguments similar to those

above, one can show that

nP ¼ Req Wi�
1
4: (A12)

In this concentration regime [36]

N c ¼
c

c�

� �2

:

As a result, since Req ¼ ncN 1=2
c ¼ nc ðc=c�Þ, it follows

that the Pincus and correlation blobs become equal in

size at a critical Weissenberg number given by

Wic ¼
c

c�

� �4

:

(c) nP < nc < nT
Since Zimm dynamics are obeyed below nc, we have

nP ¼ bK g
1=2
P , and the Zimm relaxation time of the

Pincus blob is kP ¼ k0 g
3=2
P . The flow penetrates a Pincus

blob when kP ¼ _��1. As a result

nP
bK

� �3

¼ kP
k0

¼ k0 _�ð Þ�1
:

If there are gc monomers in a correlation blob, then

nc ¼ bK g
1=2
c , and the Zimm relaxation time of a correla-

tion blob is kc ¼ k0 g
3=2
c . As a result,

nc
bK

� �3

¼ kc
k0

:

Clearly

k1
k0

¼ k1
kc

kc
k0

¼ N 2
c

nc
bK

� �3

:

It follows that

Wi ¼ k1 _� ¼ k0 _�ð Þ k1
k0

� �
¼ bK

nP

� �3 nc
bK

� �3

N 2
c

¼ nc
nP

� �3

N 2
c :

Since n3cN
2
c ¼ R3

eqðc=c�Þ, the size of the Pincus blob

depends on the Weissenberg number through

nP ¼ Wi�
1
3 Req

c

c�

� �1
3

:

RW statistics at all length scales implies Req ¼ bKN
1=2
K .

Consequently, at high Weissenberg numbers, when

nP ¼ bK, the successive fine graining procedure is

expected to breakdown at

Wi ¼ N
3=2
K

c

c�

� �
:
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