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Abstract

Analysis of the saturation of the Kelvin-Helmholtz (KH) instability is undertaken to determine

the extent to which the conjugate linearly stable mode plays a role. For a piecewise-continuous

mean flow profile with constant shear in a fixed layer, it is shown that the stable mode is nonlinearly

excited, providing an injection-scale sink of the fluctuation energy similar to what has been found

for gyroradius-scale drift-wave turbulence. Quantitative evaluation of the contribution of the stable

mode to the energy balance at the onset of saturation shows that nonlinear energy transfer to the

stable mode is as significant as energy transfer to small scales in balancing energy injected into the

spectrum by the instability. The effect of the stable mode on momentum transport is quantified

by expressing the Reynolds stress in terms of stable and unstable mode amplitudes at saturation,

from which it is found that the stable mode can produce a sizable reduction in the momentum

flux.
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I. INTRODUCTION

Shear flows are encountered in a variety of different systems. In the atmosphere, shear-

flow instabilities are observed in cloud patterns[1]. In fusion devices, turbulence generates

shearing zonal flows whose potential for instability can significantly impact confinement[2, 3].

Shear-flow instabilities are especially important in astrophysics. There, differential veloc-

ities are produced by a host of processes in a variety of settings, including jets driven by

accretion of mass onto compact objects such as protostars or supermassive black holes, inter-

galactic clouds falling into a galaxy, and galaxies plowing through the intracluster medium.

In astrophysical systems, it is thought that shear-flow instabilities induce formation of a

turbulent shear layer, resulting in entrainment of material through turbulent momentum

transport[4], thermal and chemical mixing[5], and the possibility of acceleration of particles

to high energy[6].

Shear-flow instability in a plasma with a uniform magnetic field perpendicular to both

the flow and shear directions has the same growth rate as hydrodynamic shear flow with the

same profile, illustrating that strong connections exist between hydrodynamic and plasma

shear-flow instabilities. The number of potential applications in both systems makes quanti-

tative models of turbulence driven by sheared flows highly desirable. Analytical models that

describe spectral properties are important because both the separation between scales and

Reynolds numbers found in astrophysical systems are much larger than what can typically be

obtained in converged hydrodynamic and magnetohydrodynamic (MHD) simulations[7, 8].

Efforts to characterize the nonlinear state of turbulent systems like those mentioned above

commonly employ the growth rate and mode structure of the dominant linearly unstable

eigenmode, which, after all, drives the turbulence. Examples are mixing-length estimates of

transport, which for unstable systems are built on the linear growth rate and an unstable

wavenumber, and the quasilinear transport approximation, which uses the cross phase of

the unstable eigenmode to approximate the fluctuating correlation responsible for transport.

Such approximations are straightforward to construct because they rely on well-understood

linear properties of instabilities. However, as unstable systems move into the turbulent

regime, there can be no saturation if fluctuations and transport are not modified from the

linear state in some essential fashion. The precise nature of such modifications is not well

understood. The standard assumption is that the modifications can be treated as a cascade
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to smaller scales that eventually become damped, in analogy to externally forced Navier-

Stokes turbulence. This type of approach overlooks stable eigenmodes at the same scales

as the instability, which invariably exist as other roots of the instability dispersion relation,

and may modify the dynamics at the largest scales.

In gyroradius-scale instability-driven turbulence relevant to fusion devices, it has been

recognized for more than a decade that stable modes are important in turbulence and should

not be neglected[9, 10]. Such modes can be represented as eigenmodes of the linearized

system, and occur at the same length scale as the driving instability. Both stable modes,

which have a negative linear growth rate,[11] and subdominant modes, which can have a

growth rate that is positive but smaller than that of the most unstable mode[12], are difficult

to detect in initial value simulations. When perturbations are small and only the linear

dynamics are considered, these modes are negligible compared to the most unstable mode.

However, as the most unstable mode grows in amplitude, nonlinear three-wave interactions

between it and the stable modes can pump energy into the latter, causing them to grow

and have a significant impact on the turbulence. In collisionless trapped electron mode

turbulence, for example, stable modes radically change the dynamics of the system, including

changing the direction of particle flux[11, 13]. In recent studies of plasma microturbulence

in stellerators, quasilinear calculations of energy transport cannot reproduce the results of

nonlinear simulations without including every subdominant unstable mode[12].

While it has been demonstrated that stable modes are universally excited and can have

significant impacts on turbulence in the context of gyroradius-scale instabilities in fusion

plasmas, their effects have not been studied in global-scale hydrodynamic or MHD insta-

bilities. This paper presents an analysis of a hydrodynamic system with global-scale eigen-

modes, demonstrating the nonlinear excitation of stable modes and quantifying their impact

on the turbulence using techniques that were successful in plasma microturbulence. An im-

portant aspect of this paper is that tools developed in previous analytic calculations for

homogeneous systems are extended for analysis of nonlinear excitation in the inhomoge-

neous environment of unstable shear flows. In previous calculations, the PDEs that describe

relevant dynamical quantities were Fourier-transformed to obtain a system of ODEs describ-

ing the time-dependence of the Fourier amplitudes. The ODEs were then linearized about

an unstable equilibrium to obtain a system of equations of the form ḟ = Df , where f(k, t)

is a vector describing the state of the system at wavenumber k, and D is the matrix of
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linear coupling coefficients. The eigenvectors of D are the eigenmodes of the system, and

their eigenvalues are the frequencies and growth rates. The nonlinear excitation of linearly

stable modes was then demonstrated by expanding the nonlinearities of the ODEs in the

basis of the linear eigenmodes. With inhomogeneous systems, eigenmodes are not obtained

by Fourier-transforming the PDEs and diagonalizing a matrix. Consequently, constructing

an invertible transformation between dynamical quantities and linear eigenmodes, and ex-

panding nonlinearities in terms of the eigenmodes, requires appropriate conditioning of the

problem.

The paper is organized as follows. In Sec. II we consider an unstable shear flow and

discuss its unstable and stable eigenmodes. In Sec. III we develop a mapping of the fluctu-

ating flow onto the linear eigenmodes that allows a quantitative description of the energy

transfer between the unstable and stable modes. In Sec. IV we use the tools of previous

calculations to assess the level to which stable modes are excited relative to unstable modes

in saturation. In Sec. V we consider the impact of stable modes on turbulent momentum

transport. Conclusions are presented in Sec. VI.

Though we start from equations that describe a two-dimensional, unmagnetized shear

flow, this system is identical to a magnetized shear flow where the equilibrium magnetic

field is uniform and in the direction perpendicular to both the flow and the gradient of the

flow[14]. Future work will consider the case of a magnetic field in the direction of flow.

II. LINEAR MODES

We investigate a piecewise linear equilibrium flow in the x direction with variation in the

z direction within a finite region of width 2d, referred to as the shear layer. The equilibrium

flow is v0 = (U(z), 0, 0), where

U(z) =























1 z ≥ 1

z −1 ≤ z ≤ 1

−1 z ≤ −1.

Here, U = U∗/U0 is the flow normalized to the flow speed U0 outside the layer, (x, z) =

(x∗/d, z∗/d) are coordinates normalized to the layer half-width d, and time will be normalized

by t = t∗U0/d.
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Constant shear in a shear layer provides the simplest shear-flow instability for which the

nonlinear driving of stable modes can be described analytically. The vortex sheet[14] is

an even simpler manifestation of shear-flow instability, but the discontinuous equilibrium

flow leads to a discontinuous eigenmode structure. Consequently, the eigenmode projection

of the nonlinearity, which is calculated in the following section and involves a product of

derivatives of the eigenmodes [see Eq. (10)], is not well-defined.

Here, flow is assumed to be 2D (∂/∂y ≡ 0), inviscid, and incompressible. It has been

shown that for unmagnetized shear flows, 2D perturbations are the most unstable[15], so

it suffices to restrict this analysis to the 2D system. The inviscid assumption simplifies the

calculation, although in physical systems at scales much smaller than those considered here,

viscosity acts to remove energy from perturbations. The assumption of incompressibility is

convenient because of the stabilizing effect of compressibility on shear flow instabilities[16].

These assumptions allow the perturbed velocity to be written in terms of a stream function

v1 = ŷ × ∇Φ(x, z) = (∂Φ/∂z, 0,−∂Φ/∂x). The perturbed vorticity is then entirely in the

−ŷ direction and is governed by the equation[15],

∂

∂t
∇2Φ+ U

∂

∂x
∇2Φ−

∂Φ

∂x

d2U

dz2
+

∂Φ

∂z

∂

∂x
∇2Φ−

∂Φ

∂x

∂

∂z
∇2Φ = 0. (1)

This equation follows either from vorticity evolution in hydrodynamics or in MHD when the

mean field is perpendicular to the flow and the fluctuations are electrostatic. We drop terms

nonlinear in Φ and investigate normal modes of the form Φ(x, z, t) = φ(k, z) exp[ikx+iω(k)t],

where k = k∗d and ω = ω∗d/U0. If we find that Im(ω(k)) < 0 for some mode at wavenumber

k, then the mode is unstable and grows exponentially in time. If Im(ω(k)) > 0, the mode is

stable and decays exponentially. If Im(ω(k)) = 0, the mode is marginally stable. We take

Fourier modes in x because Eq. (1) is homogeneous in x, but the dependence of U on z

implies that Fourier modes in z are not solutions to the linear equation. This significantly

complicates the analysis of stable mode interactions, as discussed in the following section.

The linearized equation for the normal modes is[17]

(ω + kU)

(

d2

dz2
− k2

)

φ− kφ
d2U

dz2
= 0. (2)

Solutions of this system are well known[14], but usually only the growth rate of the unstable

mode and its eigenfunction are considered. We reexamine the problem to keep track of

both the unstable and stable modes, in order to investigate their interaction through the

nonlinearities in Eq. (1).
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Note that for the shear layer, d2U/dz2 is singular at z = ±1. For |z| 6= 1 however,

d2U/dz2 = 0, so

(ω + kU)

(

d2

dz2
− k2

)

φ = 0

(for |z| 6= 1). Solutions are given by either ω + kU = 0 or (d2/dz2 − k2)φ = 0. While

modes that satisfy the former are solutions of the system, we are interested in stable

and unstable modes, which require Im(ω) 6= 0. Therefore we construct eigenmodes from

(d2/dz2 − k2)φ = 0. It has been shown that for shear flow instabilities, the initial value

calculation admits additional modes that decay algebraically[18]. While these modes po-

tentially play a role in saturation of the instability and should be considered eventually, it

makes sense to focus first on the interaction between the exponentially growing and decaying

modes. Both the exponentially and algebraically decaying modes are ignored in quasilin-

ear models of turbulence, so to show that these models overlook important, driving-scale

features of the system it suffices to demonstrate the importance of stable modes.

Focusing on solutions of (d2/dz2 − k2)φ = 0, modes are given by

φ(z) =























ae−|k|z z > 1

e|k|z + be−|k|z −1 < z < 1

ce|k|z z < −1,

(3)

with the constants a, b, and c to be determined.

The flow profile U(z) is continuous at the boundaries of the shear layer, which we assume

to be fixed at z = ±1. Therefore φ must be continuous[14], so a and c can each be written

in terms of b. Although U(z) and φ are continuous at z = ±1, the discontinuities in dU/dz

lead to discontinuities in dφ/dz. The jump conditions that determine these discontinuities

are obtained by integrating Eq. (2) from −1 − ǫ to −1 + ǫ and from 1 − ǫ to 1 + ǫ, then

taking ǫ → 0:

lim
ǫ→0

(ω ± k)
dφ

dz

∣

∣

∣

±1+ǫ

±1−ǫ
± kφ(±1) = 0. (4)

After inserting Eq. (3), these form two constraints on b in terms of ω(k), which can be solved

to obtain the dispersion relation,

ω = ±
e−2|k|

2

√

e4|k|(1− 2|k|)2 − 1. (5)

Figure 1 shows how the growth rates and frequencies depend on wavenumber. Note that
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FIG. 1. Growth rate Im(ω) and frequency Re(ω) of the two modes for the inviscid shear layer.

For |k| . 0.64 one mode is unstable and the other is stable, while for |k| & 0.64 both modes are

marginally stable.

ω2 < 0 for 0 < |k| < kc, where kc ≈ 0.64. For k > kc, we shall refer to the negative and

positive branches of ω as ω1 and ω2 respectively, noting that the reality condition requires

ωj(−k) = ω∗
j (k). For |k| < kc, we choose ω1 to be the unstable root and ω2 the stable one.

Because b depends on ω through Eq. (4) and the eigenmode structure φ(z) depends on b

through Eq. (3), the two solutions ωj correspond to two different eigenmodes φj(z). We

identify bj and φj as the b and φ corresponding to ωj . The eigenmodes are then

φj(k, z) =























(

e2|k| + bj
)

e−|k|z z > 1

e|k|z + bje
−|k|z −1 < z < 1

(

1 + bje
2|k|

)

e|k|z z < −1,

(6)

where

bj = e2|k|
2|k|(ωj + k)− k

k
(7)

satisfies b1(k) = b2(−k) = b∗2(k) for |k| < kc, and bj(k) = bj(−k) = b∗j (k) for |k| > kc. For

ω2 < 0, the eigenmodes are nearly identical but satisfy φ1(k, z) = φ∗
2(k, z). Figure 2 shows

7



FIG. 2. Equilibrium (left column) compared with velocity profiles of the unstable φ1 (middle

column) and the stable φ2 (right column) at wavenumbers k = 0.4 (top row) and k = 1 (bottom

row) plotted over one wavelength in x and from z = −2 to z = 2. Streamlines are plotted with

color indicating flow speed. The first row is in the unstable range, where φ1 grows exponentially

while φ2 decays exponentially. The second row is a marginally stable wavenumber, where both φ1

and φ2 oscillate without any growth [see Fig. 1].

the flows corresponding to these eigenmodes for four wavenumbers sampling the unstable

and stable ranges. Previous work has shown that the physical mechanisms for instability of

φ1 and stability of φ2 can be understood in terms of resonant vorticity waves in both the

hydrodynamic[19] and MHD[20] systems.

In standard descriptions of turbulence and quasilinear transport calculations, it is com-

mon practice to neglect stable modes given their exponential decay from a small initial value.

In this paper we account for the nonlinear drive of the stable mode by the unstable mode

and investigate its impact on the evolution of the system.

III. EIGENMODE PROJECTION

In previous calculations of stable mode excitation[11, 21], fluctuations from equilibrium

were represented by a vector f(k, t) whose components were the Fourier-transformed dynam-

8



ical quantities. Because the systems were homogeneous, the linearized, Fourier-transformed

PDEs became ODEs of the form ḟ = Df with the dynamics at each wavenumber k linearly

decoupled. Thus, the eigenmodes of the system were the eigenvectors fj of the N×N matrix

D, and arbitrary states could be expanded as linear combinations of the eigenvectors:

f(k, t) =
N
∑

j=1

βj(k, t)fj(k, t), (8)

where βj(k, t) is the component of f in the eigenmode basis. Also called eigenmode ampli-

tudes, the functions βj are not specified by the solutions of the linearized equations except

through an initial condition. Under linear evolution the stable modes subsequently decrease

to insignificance. However, the full nonlinear ODEs can readily be written in terms of the

eigenmodes by substituting the eigenmodes for the dynamical quantities using Eq. (8). From

there, separate equations for each β̇j can be derived. These equations for β̇j are equivalent

to the original PDEs, but they describe the nonlinear evolution of the system in terms of the

eigenmode amplitudes. We refer to this process, both the expansion of the perturbations

and the manipulation of their governing equations, as an eigenmode decomposition. The

equations for β̇j provide powerful insight into the system. The nonlinearities that couple the

dynamical fields at different scales become nonlinearities that couple eigenmodes at differ-

ent wavelengths. Thus, it was shown (and borne out by many simulations[11]) that despite

decaying in the linear regime, the stable modes are nonlinearly driven by the unstable modes.

In these previous calculations, the homogeneous nature of the system made the set of

linear eigenmodes a complete basis: at every time t and wavevector k, the state vector f

could be expanded in a basis of the eigenmodes [i.e. Eq. (8)]. Due to the inhomogeneity of

the present system, the linear solutions are not simply Fourier modes in z, so this system

does not readily lend itself to the vector representation of Ref. [11]. Moreover, Eq. (1) admits

only two eigenmodes which are expected not to span arbitrary perturbations that satisfy

the boundary conditions[18]. So the true state of the system cannot be written exactly in

the form of Eq. (8) with N = 2. In order to properly describe the evolution of the system

given an arbitrary initial condition, the system could be expanded in appropriate orthogonal

polynomials or investigated as an initial value problem with additional time-dependent basis

functions that are linear solutions of the problem. Previous work has demonstrated that for

inviscid shear flows, the initial value calculation leads to the “discrete” eigenmodes with time-

dependence exp[iωt] described in the previous section, and an additional set of “continuum”
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modes[18]. These continuum modes either oscillate with frequency k or decay algebraically.

For the present calculation we only consider perturbations that can be expressed as linear

combinations of the two discrete eigenmodes φ1 and φ2, representing a truncation of the

complete system. If we are able to demonstrate a significant impact from φ2, that suffices to

demonstrate the importance of stable modes, relative to existing models that only consider

the unstable mode.

By focusing on perturbations that are linear combinations of φ1 and φ2 (i.e. limiting

ourselves to the subspace spanned by φ1 and φ2), the vector representation and invertible

linear transformation between the state of the system and the eigenmode amplitudes of

Ref. [11] can be recovered. Consequently, the governing Eq. (1) can be manipulated to

derive nonlinear equations that describe the evolution of the eigenmode amplitudes and

their interactions. The method relies on the jump conditions given in Eq. (4). Since the

jump conditions for one eigenmode differ from those for the other eigenmode, one can form

an invertible map between the discontinuity of dφ/dz at each interface and the amplitude

of each eigenmode. Additionally, because there are two jump conditions that will serve

as our dynamical quantities, only the two eigenmodes of the previous section are needed

to construct an invertible map between eigenmodes and dynamical quantities. To derive

equations describing the nonlinear interaction between the eigenmodes, we start by deriving

nonlinear jump conditions.

First, let φ̂(k, z, t) = F [Φ(x, z, t)] be the Fourier transformed stream function, and assume

φ̂(k, z, t) = β1(k, t)φ1(k, z) + β2(k, t)φ2(k, z). (9)

The nonlinear jump conditions are obtained by performing the same steps that led to Eq. (4)

without dropping nonlinear terms (and explicitly taking the Fourier transform rather than

assuming normal modes). Taking the Fourier transform and integrating from ±1 − ǫ to

±1 + ǫ with ǫ → 0 yields

∂

∂t
∆̂± ± ik∆̂± ± ikφ̂(k,±1) + lim

ǫ→0
ik

∞
∫

−∞

dk′

2π

[

d

dz
φ̂(k′, z)

d

dz
φ̂(k′′, z)

]±1+ǫ

±1−ǫ

= 0, (10)

where k′′ ≡ k − k′, while

∆̂±(k, t) ≡ lim
ǫ→0

[

d

dz
φ̂(k,±1 + ǫ, t)−

d

dz
φ̂(k,±1− ǫ, t)

]

= β1(k, t)∆±1(k) + β2(k, t)∆±2(k)
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and

∆±j(k) ≡ lim
ǫ→0

[

d

dz
φj(k,±1 + ǫ)−

d

dz
φj(k,±1− ǫ)

]

are the discontinuities in dφ̂/dz and dφj/dz at z = ±1. With φ̂ given by Eq. (9) and φj

given by Eq. (6), one can show that

φj(k, 1) =
−∆+j

2|k|
−

∆−j

2|k|e2|k|
,

and

φj(k,−1) =
−∆+j

2|k|e2|k|
−

∆−j

2|k|
.

The φ̂(k,±1) term in Eq. (10) can then be written in terms of ∆̂± to yield

∂

∂t





∆̂+

∆̂−



 = D





∆̂+

∆̂−



+





N+

N−



 , (11)

with

D = ik





1
2|k|

− 1 e−2|k|

2|k|

−e−2|k|

2|k|
− 1

2|k|
+ 1



 , (12)

and N± representing the nonlinearities in Eq. (10). Note that taking N± → 0 and ∂/∂t → iω

reduces this to the linear system solved in the previous section.

We now have all of the necessary tools to treat this system in a manner similar to the

previously-mentioned calculations[11, 21]. Using our definitions for ∆̂± and ∆±j , the z-

derivative of Eq. (9) evaluated between z = ±1 + ǫ and z = ±1− ǫ with ǫ → 0 is





∆̂+

∆̂−



 = M





β1

β2



 , (13)

where

M =





∆+1 ∆+2

∆−1 ∆−2



 = −2|k|e|k|





1 1

b1 b2



 , (14)

and bj is given in Eqn. (7). Equation (13) is equivalent to Eq. (8): for this calculation,

the dynamical quantities that we use to specify the state of the system are ∆̂±, and their

eigenmode structure is given by the columns of the matrix M. The governing nonlinear

PDE, Eq. (1) has been rewritten as a system of nonlinear ODEs, Eq. (11). The linearized
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system of ODEs (Eq. (11) with N± → 0) can be diagonalized: substituting ∆̂± for βj via

Eq. (13) and multiplying by M−1 on the left gives





β̇1

β̇2



 = M−1DM





β1

β2



 , (15)

where the matrix M−1DM is diagonal with entries iωj.

The nonlinear interactions between the eigenmodes can now be investigated. Applying

the steps that led to Eq. (15) to the full, nonlinear Eq. (11) yields





β̇1

β̇2



 = M−1DM





β1

β2



 +M−1





N+

N−



 , (16)

where, again, N± are the nonlinearities in Eq. (10). Using Eq. (9) and the forms for φj given

by Eq. (6), N± can be written in terms of products of the form βiβj with i, j each taking

values 1, 2. Equation (16) then becomes

β̇1(k) = iω1(k)β1(k) +

∞
∫

−∞

dk′

2π

[

C1(k, k
′)β1(k

′)β1(k
′′) + C2(k, k

′)β1(k
′)β2(k

′′)

+C3(k, k
′)β1(k

′′)β2(k
′) + C4(k, k

′)β2(k
′)β2(k

′′)

]

,

(17)

β̇2(k) = iω2(k)β2(k) +

∞
∫

−∞

dk′

2π

[

D1(k, k
′)β1(k

′)β1(k
′′) +D2(k, k

′)β1(k
′)β2(k

′′)

+D3(k, k
′)β1(k

′′)β2(k
′) +D4(k, k

′)β2(k
′)β2(k

′′)

]

.

(18)

The coefficients Cj, Dj arise from writing the nonlinearities N± in the basis of the linear

eigenmodes, so their functional forms include information about both the linear properties

of the system and the nonlinearities N±. The exact expressions for Cj, Dj are given in the

Appendix, where it is shown that C2(k, k
′) = C3(k, k − k′), so that the C3 integral is equal

to the C2 integral. Equations (17) and (18) are equivalent to Eq. (11), but they directly

show how β1 and β2 interact.

An analogy can be made here to the use of Elsässer variables in incompressible, homoge-

neous MHD turbulence, which are a familiar example of an eigenmode decomposition that

makes explicit the nonlinear interaction of the linear eigenmodes. The linearized equations

have as solutions counterpropagating, noninteracting waves of the form z± = v±b/(4πρ0)
1/2.
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FIG. 3. Three of the eight nonlinear coupling coefficients in Eqs. (17) and (18), C1, C2, and D1,

evaluated over the most relevant scales. Color indicates absolute values of the coefficients. The

coefficients are all roughly the same magnitude, indicating significant coupling between stable and

unstable eigenmodes.

Expressing the nonlinear equations in terms of z±, the nonlinearity in the equation for

∂z±/∂t is z∓ ·∇z±, which describes the nonlinear interactions between linearly noninteract-

ing modes. In the present calculation, the linearly noninteracting φ1, φ2 are comparable to

z±, and the terms proportional to β1(k
′)β2(k

′′) and β1(k
′′)β2(k

′) are comparable to z∓ ·∇z±.

However, unlike the z± equations, the β̇j equations include other nonlinear terms that are

proportional to β1(k
′)β1(k

′′) and β2(k
′)β2(k

′′). If all of the nonlinearities are zero except

for the C1 term, then the evolution of β1(k) is just a combination of its linear drive iω1(k)

and three-wave interactions with β1(k
′) and β1(k − k′), allowing φ1 to saturate through a

Kolmogorov-like cascade to smaller scales. This is effectively the assumption of standard

quasilinear calculations of momentum transport, where only φ1, ω1 are considered. Figure 3

shows some of the nonlinear coupling coefficients plotted over a range of wavenumbers. Since

D1, C2, and C3 are not identically zero, there is some interaction between the eigenmodes.

Systems where such interactions have been identified are all gyroradius-scale, quasihomoge-

neous systems driven by drift-wave instabilities[11, 21]. Equations (17) and (18) represent

a demonstration that these interactions occur for larger-scale, inhomogeneous plasmas and

neutral fluids.
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IV. THE THRESHOLD PARAMETER

By comparing the nonlinearities that transfer energy to stable modes with those that

cause the Kolmogorov-like cascade of energy to small scales, one can investigate how impor-

tant stable modes are in instability saturation. A quantity known as the threshold parameter

Pt has been used to evaluate the relative importance of the stable eigenmodes in situations

where instability saturation is described by eigenmode-projected ODEs. The threshold pa-

rameter Pt estimates the relative importance in saturation of the nonlinearities responsible

for energy transfer to the stable mode versus the nonlinearity of the forward cascade[11]. If

Pt is small compared to unity, it indicates that the instability saturates via a Kolmogorov-

like transfer of energy to smaller scales, and only the term in Eq. (8) corresponding to the

most unstable eigenmode needs to be included to accurately describe the system. If Pt & 0.3,

it was found that the transfer of energy from the unstable mode to other modes at similar

scales is an important mechanism in saturation. In that case, additional terms in Eq. (8)

must therefore be included[21].

The quantity Pt is the ratio of the C1β1β2 and C2β1β1 terms in Eq. (17) and therefore

includes information about both linear and nonlinear properties of the system. In previous

work[11, 21], simplifying assumptions – such as treating growth rates γj = −Im(ωj) as

independent of wavenumber – allowed the threshold parameter to be written as

Pt =
2D1C2

C2
1(2− γ2/γ1)

(19)

for γ2 < 0. This form of Pt is useful because it illustrates how Pt depends on different

parameters of the system: the size of Pt relative to unity is determined by the ratiosD1C2/C
2
1

and γ1/γ2. When the former is small, stable modes are only weakly coupled to unstable

modes and have little impact on saturation dynamics. When the latter is small, stable

modes decay too quickly to achieve significant amplitude by the time the instability saturates

unless D1C2/C
2
1 ≫ 1 and compensates. Previous work evaluated this form of Pt in several

systems and found that whenever Pt is at least a few tenths, energy transfer to stable modes

becomes comparable to the energy injection rate of the instability[21]. Note that in the

system considered here |γ1/γ2| = 1, and numerically evaluating Cj , Dj shows that D1 and

C2 are of the same order as or even larger than C1 [see Fig. 3]. These features alone yield

Pt ≈ 0.7, which implies stable modes are important for KH saturation.

14



Here we extend previous analyses of Pt by including the full wavenumber dependence

of γj, Cj, and Dj. Consider the evolution of the system from a small initial amplitude βi.

When amplitudes are small every nonlinear term is negligible, so the dynamics are linear

with β2 decaying and β1 growing exponentially at every wavenumber. Eventually couplings

in
∫

(dk′/2π)D1(k, k
′)β1(k

′)β1(k− k′) dominate in Eq. (18). This occurs in the linear phase,

before saturation, because nonlinearities dominate the decaying linear response of β2 long

before matching the growing linear response of β1. Thus, Eq. (18) can be approximated as

β̇2(k) = iω2(k)β2(k) +

∞
∫

−∞

dk′

2π
D1(k, k

′)β1(k
′)β1(k

′′). (20)

Note that for these times β2 ≪ β1 therefore the D1 terms are the largest of the Dj terms.

Since the Cj nonlinearities have not reached the amplitudes of the growing linear terms, β1

can be approximated as βi exp[iω1t]. These approximations are referred to as the parametric

instability approximations[11]. Then Eq. (20) is solved by

β2(k, t) =

∞
∫

−∞

dk′

2π

D1(k, k
′)β2

i

i (−ω2(k) + ω1(k′) + ω1(k − k′))

[

ei(ω1(k′)+ω1(k−k′))t − eiω2(k)t
]

+ βie
iω2(k)t.

(21)

In assessing Pt the above integral is only taken over unstable wavenumbers, as they drive β2

more strongly than marginally stable modes.

To evaluate Pt, the ratio of the largest β1β2 term and the largest β1β1 term in Eq. (17)

is taken at the time of saturation ts:

Pt =

[

max |2C2β1(k
′)β2(k

′′)|

max |C1β1(k′)β1(k′′)|

]

t=ts

, (22)

where ts is defined as the time at which one of the nonlinearities in Eq. (17) reaches the

same amplitude as the linear term. Figure 4 shows the size of these terms at saturation for

k = 0.4 with an initial amplitude of βi = 0.01. We choose k = 0.4 because it is the most

unstable wavenumber and is therefore the wavenumber of the most dominant unstable mode

leading into saturation. From Fig. 4, it is inferred that Pt ≈ 6, indicating that even before

the nominal saturation time energy transfer to stable modes has become as important to

the saturation of the unstable mode at k = 0.4 as the Kolmogorov-like transfer to unstable

modes at other scales.

In previous calculations of Pt, the parameter was independent of the initial amplitude βi

(which is assumed to be the same for each k). However, in the above evaluation of Pt, we
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FIG. 4. Nonlinear terms in Eq. (17) at saturation for k = 0.4 and βi = 0.01, with k′ and k − k′

ranging from −0.6 to 0.6. The C1 term is responsible for the Kolmogorov-like saturation of the

instability by energy transfer to unstable modes at smaller wavelengths. The C2 term represents

the previously-neglected coupling between unstable modes at k and k′ with stable modes at k′′.

The threshold parameter is evaluated by dividing the peak value of the C2 term by the peak value

of the C1 term. Here we find Pt ≈ 6, indicating that stable modes are important in KH saturation.

do find that it depends on βi; for instance, reducing βi to 0.001 yields Pt ≈ 15. In previous

calculations, the lack of dependence of Pt on βi is an artifact of treating growth rates as

independent of wavenumber[11]. In considering Eq. (17) for the most unstable wavenumber,

both β1(k
′) and β1(k

′′) were assumed to grow at the same rate as the most unstable mode,

when in fact three-wave interactions require k 6= k′. When including wavenumber depen-

dence, these nonlinear terms will necessarily grow at less than twice the peak growth rate.

On the other hand, stable modes near k = 0 can be driven by D1β1β1 terms where one of

the driving modes is near k = 0.4 and the other is near k = −0.4. Thus, our inclusion of

the wavenumber dependence of ωj causes β2 to grow large enough that Eq. (20) becomes

invalid before saturation time. This makes the precise value of Pt less meaningful, as the

stable modes have grown so large that the approximations made in obtaining Pt are invalid.

16



FIG. 5. Time evolution of |βj(k, t)| for a three-wavenumber truncation with k = 0.3, k′ = 0.9,

and k − k′ = −0.6. As expected from the Pt analysis, the stable mode decays linearly, then is

nonlinearly pumped to an amplitude that is comparable to the unstable mode.

However, the size of β2 relative to β1 and the comparable amplitudes of C2 and C1 imply

Pt & 1, and therefore Pt & 0.3 is still well satisfied.

The above nonlinear analysis demonstrates that energy transfer to stable modes is sig-

nificant relative to energy transfer to smaller scales, modifying the usual understanding of

instability saturation by a cascade to small scales. The analysis employs approximations,

hence it is instructive to consider a second, complementary form of approximate nonlinear

analysis based on a three-wavenumber truncation of Eqs. (17) and (18). Such a calculation

complements the Pt analysis because it makes different assumptions. The Pt analysis makes

parametric instability approximations when considering the evolution of β2 (c.f. Eq. (21)),

but samples a broad continuum of wavenumbers. On the other hand, a three-wavenumber

truncation makes no assumptions about the evolution of the modes, and instead limits the

system to only three wavenumbers that are evolved according to Eqs. (17) and (18).

The result of a three-wavenumber truncation is plotted in Fig. 5, showing the time evo-

lution of βj(k, t) obtained by solving Eqs. (17) and (18) numerically with only interactions

between k = 0.3, k′ = 0.9, and k − k′ = −0.6 considered. The linear growth phase of
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β1 is clearly seen, as is the linear decay and nonlinear driving of β2. The linear growth

phase for β1 ends with both eigenmodes reaching comparable amplitudes, consistent with

the Pt analysis. Once the stable mode reaches a value that is comparable to the unstable

mode there is continuous exchange of energy between the two modes. The saturation levels

slowly grow as t → ∞. That can be understood as a consequence of the inviscid dynamics

in a three-mode system, in that previous work has demonstrated that a necessary condi-

tion for bounded solutions to three-mode truncations is that the sum of the growth rates is

negative[22]. Without viscosity, the present system does not meet the necessary condition.

Note that the time scale for nonlinear energy exchange is very short compared to the time

scale of the saturation level increase, strongly suggesting that the nonlinearities of Eqs. (17)

and (18) conserve energy. This calculation demonstrates that the system can saturate by

energy transfer to stable modes, and shows that the assumptions made regarding the growth

of β1 and β2 in the Pt analysis are reasonable.

As an illustration of the effect of finite β2 on the fluctuating flow, Fig. 6 shows the flows

arising from linear combinations of β1 and β2 with the weight of β2 varied. The flow arising

purely from the unstable mode is strikingly different from the flow that combines β1 and

β2 with equal weights. Regions of hyperbolic flow appear to be less likely for the equally

weighted combination, suggesting that secondary structure generation and cascading may

be weakened when the stable mode is excited. This will be the subject of future research.

V. MOMENTUM TRANSPORT

Reynolds stresses and the associated momentum transport due to unstable modes tend

to broaden the original flow profile. Here we show that stable modes have the potential to

reduce the broadening of the profile. The transport of momentum in the x direction across

the interface at z = 1 is found by integrating the x-component of the divergence of the stress

tensor τij = 〈v1iv1j〉 across the interface. Integrating dτxz/dz across the interface gives

S = − lim
ǫ→0

1+ǫ
∫

1−ǫ

dz〈v1xv1z〉 = − lim
ǫ→0

1+ǫ
∫

1−ǫ

dz
d

dz
〈
dΦ

dz

∂Φ

∂x
〉
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FIG. 6. Examples of superpositions of stable and unstable modes at k = 0.4 plotted over one

wavelength in x and from z = −2 to z = 2 (cf. Fig. 2). In the right column, the unstable and

stable modes have an equal contribution to the overall flow. In the top and bottom rows, the

relative phase between the two modes is +π and −π, respectively.

where 〈〉 denotes averaging in x, while v1 is the perturbed velocity. Taking Φ = F−1[φ̂] with

φ̂ = β1φ1 + β2φ2 gives

S =

∞
∫

−∞

dk

2π
4k2e2|k|

[

Im(ω∗
1)|β1|

2 + Im(ω∗
2)|β2|

2

+Im [(ω∗
2 + k)β1β

∗
2 ] + Im [(ω∗

1 + k)β2β
∗
1 ]

]

.

(23)

When the stable modes are ignored, only the first term contributes to S. The coefficient

4k2e2|k| is positive, and Eq. (5) shows that Im(ω∗
1) ≤ 0 and Im(ω∗

2) = −Im(ω∗
1), indicating

that the transport due to unstable modes alone is negative, and the second term acts against

the first to reduce |S|. Clearly the amplitude of β2(k) relative to β1(k) has a significant

impact on the momentum transport in this system. The relative phase between β2(k) and

β1(k) determines the contribution of the last two terms. If |β2(k)| = |β1(k)|, then the first

two terms cancel and the transport is entirely determined by the last two terms. Analysis

of other systems shows there are situations where eigenmode cross correlations significantly
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affect transport[9, 23].

To determine the actual properties of S, it is necessary to solve Eqs. (17) and (18) for

βj(k) and integrate Eq. (23), either analytically or numerically. This is beyond the scope

of the present paper, but will be considered in the future. In lieu of such solutions, we

construct an estimate of the ratio |β2(k)|/|β1(k)| using the threshold parameter.

In the previous section the threshold parameter was defined as the ratio of the maximum

amplitudes of the C2 terms and the C1 terms in Eq. (17) at the onset of saturation. An

estimate of |β2(k)|/|β1(k)| in terms of Pt is obtained by taking

Pt ∼
|2C2β1(k

′)β2(k
′′)|

|C1β1(k′)β1(k′′)|
= 2

∣

∣

∣

∣

C2

C1

∣

∣

∣

∣

|β2(k
′′)|

|β1(k′′)|
∼ 2

∣

∣

∣

∣

β2(k)

β1(k)

∣

∣

∣

∣

.

While the threshold parameter estimates the relative amplitudes of the modes, it does not

capture information about their cross-phase. Taking β2 = β1 exp[iθ12]Pt/2 allows S to be

rewritten as

S =

∞
∫

−∞

dk

2π
4k2e2|k||β1|

2

{

Im(ω∗
1)

(

1−
P 2
t

4

)

+
Pt

2
Im [ω∗

1(2i sin(θ12))]

}

. (24)

Due to the form of ω1 [see Fig. 1], the first term is only nonzero for |k| . 0.64, and the

second term is only nonzero for |k| & 0.64. It is clear that Pt ∼ 1 reduces the magnitude of

the first term, while the contribution of the second term to S depends significantly on the

cross-phase θ12 between the eigenmodes.

Having shown that momentum transport can be affected by stable mode activity, we next

summarize the main findings of this paper.

VI. CONCLUSION

Shear-flow instabilities are widely studied due to their potential to drive turbulence in

systems where the turbulent transport of momentum, particles, and heat are of interest.

While the linear regime of these instabilities are generally well-understood, saturation and

the resulting nonlinear flows are difficult to model. We have presented a nonlinear analysis

of an unstable shear layer with piecewise-linear shear flow, showing that the complex con-

jugate stable linear eigenmode is excited nonlinearly and strongly affects saturation. This

result is significant because it represents the first demonstration that nonlinear excitation of

linearly stable modes is an important aspect of saturation in global-scale unstable plasma
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and hydrodynamic systems. Previous studies were limited to quasihomogeneous systems

on gyroradius scales[11, 21]. A critical aspect of this work is the development of a map-

ping technique that allows analytical saturation analyses derived for spatially homogeneous

systems to be applied to the strongly inhomogeneous situation of shear flow instability.

Assuming the flow is a linear combination of the linear eigenmodes allows the global

state of the system to be described in terms of its behavior at the edges of the shear layer

(as is also done to determine the dispersion relation). The nonlinearity, originally written

in terms of flow components and their spatial derivatives, is then written in terms of the

eigenmodes to demonstrate that unstable modes nonlinearly pump stable modes. This allows

the eigenfunctions of this system to be treated similarly to the eigenvectors of previous

systems. Using a parameter that quantifies the threshold for a stable mode to impact

saturation, we have estimated the impact of stable modes on instability saturation and

found it to be significant.

Analysis of the flow associated with stable modes indicates that, at the predicted satu-

ration levels, the fluctuating flow undergoes significant topological changes relative to flows

characterized by the unstable mode alone. Such changes may affect the propensity for the

turbulent flow structure to generate secondary structures through transient amplification

and other processes. Because the system described here is inviscid, this work indicates that

stable modes have the potential to modify the evolution of instabilities even when they are

not subject to dissipation.

Finally, we consider the contribution of stable modes to momentum transport and give

an estimate in terms of the threshold parameter, demonstrating that stable modes can

significantly reduce the broadening of the shear layer, thereby counteracting the effect of

the unstable modes. One may similarly expect that stable modes can affect other transport

channels such as matter entrainment and heat transport. This line of inquiry will be left for

future investigations.
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Appendix A: Coupling Coefficients

In Eqs. (17) and (18), the nonlinear coupling coefficients Cj, Dj, which are obtained by

expressing the nonlinearities of Eq. (16) in terms of the eigenmode amplitudes βj, are as

follows:

C1 = α
[

(b2b
′
1 + b′′1)e

2|k′′| + (b2b
′′
1 + b′1)e

2|k′|
]

C2 = α
[

(b2b
′
1 + b′′2)e

2|k′′| + (b2b
′′
2 + b′1)e

2|k′|
]

C3 = α
[

(b2b
′
2 + b′′1)e

2|k′′| + (b2b
′′
1 + b′2)e

2|k′|
]

C4 = α
[

(b2b
′
2 + b′′2)e

2|k′′| + (b2b
′′
2 + b′2)e

2|k′|
]

D1 = −α
[

(b1b
′
1 + b′′1)e

2|k′′| + (b1b
′′
1 + b′1)e

2|k′|
]

D2 = −α
[

(b1b
′
1 + b′′2)e

2|k′′| + (b1b
′′
2 + b′1)e

2|k′|
]

D3 = −α
[

(b1b
′
2 + b′′1)e

2|k′′| + (b1b
′′
1 + b′2)e

2|k′|
]

D4 = −α
[

(b1b
′
2 + b′′2)e

2|k′′| + (b1b
′′
2 + b′2)e

2|k′|
]

,

(A1)

where

α =
ik|k′||k′′|e−|k|−|k′|−|k′′|

2|k|(b1 − b2)
,

with b′j ≡ bj(k
′) and b′′j ≡ bj(k

′′). For convenience, the definition of bj(k) is repeated here:

bj = e2|k|
2|k|(ωj + k)− k

k
.

Notice that α(k, k′) = α(k, k − k′) and C3(k, k
′) = C2(k, k − k′). Thus, changing the

integration variable to k′′ = k − k′ in the C3 integral yields
∫ ∞

−∞

dk′

2π
C3(k, k

′)β1(k
′′)β2(k

′) =

∫ ∞

−∞

dk′

2π
C2(k, k

′′)β1(k
′′)β2(k

′)

=

∫ ∞

−∞

dk′′

2π
C2(k, k

′′)β1(k
′′)β2(k − k′′)

=

∫ ∞

−∞

dk′

2π
C2(k, k

′)β1(k
′)β2(k − k′),

so the C3 and C2 integrals in Eq. (17) are identical.
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