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Abstract

Analysis of the saturation of the Kelvin-Helmholtz (KH) instability is undertaken to determine
the extent to which the conjugate linearly stable mode plays a role. For a piecewise-continuous
mean flow profile with constant shear in a fixed layer, it is shown that the stable mode is nonlinearly
excited, providing an injection-scale sink of the fluctuation energy similar to what has been found
for gyroradius-scale drift-wave turbulence. Quantitative evaluation of the contribution of the stable
mode to the energy balance at the onset of saturation shows that nonlinear energy transfer to the
stable mode is as significant as energy transfer to small scales in balancing energy injected into the
spectrum by the instability. The effect of the stable mode on momentum transport is quantified
by expressing the Reynolds stress in terms of stable and unstable mode amplitudes at saturation,
from which it is found that the stable mode can produce a sizable reduction in the momentum

flux.



I. INTRODUCTION

Shear flows are encountered in a variety of different systems. In the atmosphere, shear-
flow instabilities are observed in cloud patterns[l]. In fusion devices, turbulence generates
shearing zonal flows whose potential for instability can significantly impact confinement[2, 3].
Shear-flow instabilities are especially important in astrophysics. There, differential veloc-
ities are produced by a host of processes in a variety of settings, including jets driven by
accretion of mass onto compact objects such as protostars or supermassive black holes, inter-
galactic clouds falling into a galaxy, and galaxies plowing through the intracluster medium.
In astrophysical systems, it is thought that shear-flow instabilities induce formation of a
turbulent shear layer, resulting in entrainment of material through turbulent momentum
transport|4], thermal and chemical mixing[5], and the possibility of acceleration of particles

to high energy|6].

Shear-flow instability in a plasma with a uniform magnetic field perpendicular to both
the flow and shear directions has the same growth rate as hydrodynamic shear flow with the
same profile, illustrating that strong connections exist between hydrodynamic and plasma
shear-flow instabilities. The number of potential applications in both systems makes quanti-
tative models of turbulence driven by sheared flows highly desirable. Analytical models that
describe spectral properties are important because both the separation between scales and
Reynolds numbers found in astrophysical systems are much larger than what can typically be

obtained in converged hydrodynamic and magnetohydrodynamic (MHD) simulations[7, 8].

Efforts to characterize the nonlinear state of turbulent systems like those mentioned above
commonly employ the growth rate and mode structure of the dominant linearly unstable
eigenmode, which, after all, drives the turbulence. Examples are mixing-length estimates of
transport, which for unstable systems are built on the linear growth rate and an unstable
wavenumber, and the quasilinear transport approximation, which uses the cross phase of
the unstable eigenmode to approximate the fluctuating correlation responsible for transport.
Such approximations are straightforward to construct because they rely on well-understood
linear properties of instabilities. However, as unstable systems move into the turbulent
regime, there can be no saturation if fluctuations and transport are not modified from the
linear state in some essential fashion. The precise nature of such modifications is not well

understood. The standard assumption is that the modifications can be treated as a cascade



to smaller scales that eventually become damped, in analogy to externally forced Navier-
Stokes turbulence. This type of approach overlooks stable eigenmodes at the same scales
as the instability, which invariably exist as other roots of the instability dispersion relation,

and may modify the dynamics at the largest scales.

In gyroradius-scale instability-driven turbulence relevant to fusion devices, it has been
recognized for more than a decade that stable modes are important in turbulence and should
not be neglected[9, 10]. Such modes can be represented as eigenmodes of the linearized
system, and occur at the same length scale as the driving instability. Both stable modes,
which have a negative linear growth rate,[11] and subdominant modes, which can have a
growth rate that is positive but smaller than that of the most unstable mode[12], are difficult
to detect in initial value simulations. When perturbations are small and only the linear
dynamics are considered, these modes are negligible compared to the most unstable mode.
However, as the most unstable mode grows in amplitude, nonlinear three-wave interactions
between it and the stable modes can pump energy into the latter, causing them to grow
and have a significant impact on the turbulence. In collisionless trapped electron mode
turbulence, for example, stable modes radically change the dynamics of the system, including
changing the direction of particle flux[11, 13]. In recent studies of plasma microturbulence
in stellerators, quasilinear calculations of energy transport cannot reproduce the results of

nonlinear simulations without including every subdominant unstable mode[12].

While it has been demonstrated that stable modes are universally excited and can have
significant impacts on turbulence in the context of gyroradius-scale instabilities in fusion
plasmas, their effects have not been studied in global-scale hydrodynamic or MHD insta-
bilities. This paper presents an analysis of a hydrodynamic system with global-scale eigen-
modes, demonstrating the nonlinear excitation of stable modes and quantifying their impact
on the turbulence using techniques that were successful in plasma microturbulence. An im-
portant aspect of this paper is that tools developed in previous analytic calculations for
homogeneous systems are extended for analysis of nonlinear excitation in the inhomoge-
neous environment of unstable shear flows. In previous calculations, the PDEs that describe
relevant dynamical quantities were Fourier-transformed to obtain a system of ODEs describ-
ing the time-dependence of the Fourier amplitudes. The ODEs were then linearized about
an unstable equilibrium to obtain a system of equations of the form f = Df, where f (k,t)

is a vector describing the state of the system at wavenumber k, and D is the matrix of



linear coupling coefficients. The eigenvectors of D are the eigenmodes of the system, and
their eigenvalues are the frequencies and growth rates. The nonlinear excitation of linearly
stable modes was then demonstrated by expanding the nonlinearities of the ODEs in the
basis of the linear eigenmodes. With inhomogeneous systems, eigenmodes are not obtained
by Fourier-transforming the PDEs and diagonalizing a matrix. Consequently, constructing
an invertible transformation between dynamical quantities and linear eigenmodes, and ex-
panding nonlinearities in terms of the eigenmodes, requires appropriate conditioning of the
problem.

The paper is organized as follows. In Sec. II we consider an unstable shear flow and
discuss its unstable and stable eigenmodes. In Sec. III we develop a mapping of the fluctu-
ating flow onto the linear eigenmodes that allows a quantitative description of the energy
transfer between the unstable and stable modes. In Sec. IV we use the tools of previous
calculations to assess the level to which stable modes are excited relative to unstable modes
in saturation. In Sec. V we consider the impact of stable modes on turbulent momentum
transport. Conclusions are presented in Sec. VI.

Though we start from equations that describe a two-dimensional, unmagnetized shear
flow, this system is identical to a magnetized shear flow where the equilibrium magnetic
field is uniform and in the direction perpendicular to both the flow and the gradient of the

flow[14]. Future work will consider the case of a magnetic field in the direction of flow.

II. LINEAR MODES

We investigate a piecewise linear equilibrium flow in the x direction with variation in the
z direction within a finite region of width 2d, referred to as the shear layer. The equilibrium

flow is v = (U(%),0,0), where

Here, U = U*/U, is the flow normalized to the flow speed U, outside the layer, (z,z) =
(x*/d, z*/d) are coordinates normalized to the layer half-width d, and time will be normalized

by t = t*Uy/d.



Constant shear in a shear layer provides the simplest shear-flow instability for which the
nonlinear driving of stable modes can be described analytically. The vortex sheet[14] is
an even simpler manifestation of shear-flow instability, but the discontinuous equilibrium
flow leads to a discontinuous eigenmode structure. Consequently, the eigenmode projection
of the nonlinearity, which is calculated in the following section and involves a product of
derivatives of the eigenmodes [see Eq. (10)], is not well-defined.

Here, flow is assumed to be 2D (0/dy = 0), inviscid, and incompressible. It has been
shown that for unmagnetized shear flows, 2D perturbations are the most unstable[15], so
it suffices to restrict this analysis to the 2D system. The inviscid assumption simplifies the
calculation, although in physical systems at scales much smaller than those considered here,
viscosity acts to remove energy from perturbations. The assumption of incompressibility is
convenient because of the stabilizing effect of compressibility on shear flow instabilities[16].
These assumptions allow the perturbed velocity to be written in terms of a stream function
vy =y X V®(z,2) = (00/02,0,—0P/0x). The perturbed vorticity is then entirely in the
—y direction and is governed by the equation|[15],

o, 0y ODPU DD _, 0D _,
VO U VR — o m S VP - e VD = 0, (1)

This equation follows either from vorticity evolution in hydrodynamics or in MHD when the
mean field is perpendicular to the flow and the fluctuations are electrostatic. We drop terms
nonlinear in ¢ and investigate normal modes of the form ®(z, z,t) = ¢(k, 2) exp[ikz+iw(k)t],
where k = k*d and w = w*d/Uy. If we find that Im(w(k)) < 0 for some mode at wavenumber
k, then the mode is unstable and grows exponentially in time. If Im(w(k)) > 0, the mode is
stable and decays exponentially. If Im(w(k)) = 0, the mode is marginally stable. We take
Fourier modes in x because Eq. (1) is homogeneous in x, but the dependence of U on z
implies that Fourier modes in z are not solutions to the linear equation. This significantly
complicates the analysis of stable mode interactions, as discussed in the following section.

The linearized equation for the normal modes is[17]
d? d*U
k — k)¢ —kp— =0. 2
k) (45 = #2) 0= ko5 =0 )
Solutions of this system are well known[14], but usually only the growth rate of the unstable
mode and its eigenfunction are considered. We reexamine the problem to keep track of
both the unstable and stable modes, in order to investigate their interaction through the

nonlinearities in Eq. (1).



Note that for the shear layer, d?U/dz? is singular at z = +1. For |z| # 1 however,
d*U/dz* =0, so

dz?
(for |z| # 1). Solutions are given by either w + kU = 0 or (d?/dz* — k*)¢ = 0. While

(w+ kU) (d—z—k2>¢:0

modes that satisfy the former are solutions of the system, we are interested in stable
and unstable modes, which require Im(w) # 0. Therefore we construct eigenmodes from
(d*/dz* — k?)¢ = 0. Tt has been shown that for shear flow instabilities, the initial value
calculation admits additional modes that decay algebraically[18]. While these modes po-
tentially play a role in saturation of the instability and should be considered eventually, it
makes sense to focus first on the interaction between the exponentially growing and decaying
modes. Both the exponentially and algebraically decaying modes are ignored in quasilin-
ear models of turbulence, so to show that these models overlook important, driving-scale
features of the system it suffices to demonstrate the importance of stable modes.

Focusing on solutions of (d?/dz? — k*)¢ = 0, modes are given by

ae~klz z>1
d(z) = qelklz 1 pe-lFlz 1 <2< 1 (3)
celklz z < —1,

with the constants a, b, and ¢ to be determined.

The flow profile U(z) is continuous at the boundaries of the shear layer, which we assume
to be fixed at z = +1. Therefore ¢ must be continuous|[14], so a and ¢ can each be written
in terms of b. Although U(z) and ¢ are continuous at z = £1, the discontinuities in dU/dz
lead to discontinuities in d¢/dz. The jump conditions that determine these discontinuities
are obtained by integrating Eq. (2) from —1 — € to —1 4+ ¢ and from 1 — € to 1 + ¢, then

taking € — 0:
+1

lim(w £ k);i—gb

e—0 z

"4 k(1) = 0. (4)

+1—e¢

After inserting Eq. (3), these form two constraints on b in terms of w(k), which can be solved
to obtain the dispersion relation,

—2|k]

w:jze

Vet —2lk])2 - 1. (5)
Figure 1 shows how the growth rates and frequencies depend on wavenumber. Note that
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FIG. 1. Growth rate Im(w) and frequency Re(w) of the two modes for the inviscid shear layer.
For |k| < 0.64 one mode is unstable and the other is stable, while for |k| 2 0.64 both modes are

marginally stable.

w? < 0 for 0 < |k| < k., where k, =~ 0.64. For k > k., we shall refer to the negative and
positive branches of w as w; and wy respectively, noting that the reality condition requires
wj(—k) = wji(k). For |k| < k., we choose w; to be the unstable root and ws the stable one.
Because b depends on w through Eq. (4) and the eigenmode structure ¢(z) depends on b
through Eq. (3), the two solutions w; correspond to two different eigenmodes ¢;(z). We

identify b; and ¢; as the b and ¢ corresponding to w;. The eigenmodes are then

(62““' +b;) e~lklz 2> 1
¢j(k,2) = e'k‘z + bje_“f‘z —-1<z<1 (6)

(14 e elklz 2 < —1,

where

o1k|(w; + k) — k
bj = 62‘k| J L (7)

satisfies by (k) = by(—k) = b3(k) for |k| < k., and b;(k) = b;(—k) = b5 (k) for |k| > k.. For

w? < 0, the eigenmodes are nearly identical but satisfy ¢;(k,z) = ¢3(k, 2). Figure 2 shows
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FIG. 2. Equilibrium (left column) compared with velocity profiles of the unstable ¢; (middle
column) and the stable ¢9 (right column) at wavenumbers k = 0.4 (top row) and k = 1 (bottom
row) plotted over one wavelength in z and from z = —2 to z = 2. Streamlines are plotted with
color indicating flow speed. The first row is in the unstable range, where ¢ grows exponentially
while ¢o decays exponentially. The second row is a marginally stable wavenumber, where both ¢

and ¢9 oscillate without any growth [see Fig. 1].

the flows corresponding to these eigenmodes for four wavenumbers sampling the unstable
and stable ranges. Previous work has shown that the physical mechanisms for instability of
¢, and stability of ¢9 can be understood in terms of resonant vorticity waves in both the

hydrodynamic[19] and MHD[20] systems.

In standard descriptions of turbulence and quasilinear transport calculations, it is com-
mon practice to neglect stable modes given their exponential decay from a small initial value.
In this paper we account for the nonlinear drive of the stable mode by the unstable mode

and investigate its impact on the evolution of the system.

III. EIGENMODE PROJECTION

In previous calculations of stable mode excitation[11, 21|, fluctuations from equilibrium

were represented by a vector f(k, t) whose components were the Fourier-transformed dynam-
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ical quantities. Because the systems were homogeneous, the linearized, Fourier-transformed
PDEs became ODEs of the form f = Df with the dynamics at each wavenumber k linearly
decoupled. Thus, the eigenmodes of the system were the eigenvectors f; of the NV x N matrix

D, and arbitrary states could be expanded as linear combinations of the eigenvectors:
N
f(k,t) =Y Bk, t)f;(k,1), (8)
j=1

where f3;(k, t) is the component of f in the eigenmode basis. Also called eigenmode ampli-
tudes, the functions §; are not specified by the solutions of the linearized equations except
through an initial condition. Under linear evolution the stable modes subsequently decrease
to insignificance. However, the full nonlinear ODEs can readily be written in terms of the
eigenmodes by substituting the eigenmodes for the dynamical quantities using Eq. (8). From
there, separate equations for each Bj can be derived. These equations for Bj are equivalent
to the original PDEs, but they describe the nonlinear evolution of the system in terms of the
eigenmode amplitudes. We refer to this process, both the expansion of the perturbations
and the manipulation of their governing equations, as an eigenmode decomposition. The
equations for Bj provide powerful insight into the system. The nonlinearities that couple the
dynamical fields at different scales become nonlinearities that couple eigenmodes at differ-
ent wavelengths. Thus, it was shown (and borne out by many simulations[11]) that despite
decaying in the linear regime, the stable modes are nonlinearly driven by the unstable modes.

In these previous calculations, the homogeneous nature of the system made the set of
linear eigenmodes a complete basis: at every time ¢ and wavevector k, the state vector f
could be expanded in a basis of the eigenmodes [i.e. Eq. (8)]. Due to the inhomogeneity of
the present system, the linear solutions are not simply Fourier modes in z, so this system
does not readily lend itself to the vector representation of Ref. [11]. Moreover, Eq. (1) admits
only two eigenmodes which are expected not to span arbitrary perturbations that satisfy
the boundary conditions[18]. So the true state of the system cannot be written exactly in
the form of Eq. (8) with N = 2. In order to properly describe the evolution of the system
given an arbitrary initial condition, the system could be expanded in appropriate orthogonal
polynomials or investigated as an initial value problem with additional time-dependent basis
functions that are linear solutions of the problem. Previous work has demonstrated that for
inviscid shear flows, the initial value calculation leads to the “discrete” eigenmodes with time-

dependence expliwt| described in the previous section, and an additional set of “continuum”
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modes[18]. These continuum modes either oscillate with frequency k or decay algebraically.
For the present calculation we only consider perturbations that can be expressed as linear
combinations of the two discrete eigenmodes ¢; and ¢,, representing a truncation of the
complete system. If we are able to demonstrate a significant impact from ¢, that suffices to
demonstrate the importance of stable modes, relative to existing models that only consider
the unstable mode.

By focusing on perturbations that are linear combinations of ¢; and ¢, (i.e. limiting
ourselves to the subspace spanned by ¢; and ¢9), the vector representation and invertible
linear transformation between the state of the system and the eigenmode amplitudes of
Ref. [11] can be recovered. Consequently, the governing Eq. (1) can be manipulated to
derive nonlinear equations that describe the evolution of the eigenmode amplitudes and
their interactions. The method relies on the jump conditions given in Eq. (4). Since the
jump conditions for one eigenmode differ from those for the other eigenmode, one can form
an invertible map between the discontinuity of d¢/dz at each interface and the amplitude
of each eigenmode. Additionally, because there are two jump conditions that will serve
as our dynamical quantities, only the two eigenmodes of the previous section are needed
to construct an invertible map between eigenmodes and dynamical quantities. To derive
equations describing the nonlinear interaction between the eigenmodes, we start by deriving
nonlinear jump conditions.

First, let ¢(k, z,t) = F[®(x, z,t)] be the Fourier transformed stream function, and assume

~

ok, z,t) = Bi(k, t)p1(k, 2) + Ba(k, t)pa(k, 2). 9)

The nonlinear jump conditions are obtained by performing the same steps that led to Eq. (4)
without dropping nonlinear terms (and explicitly taking the Fourier transform rather than
assuming normal modes). Taking the Fourier transform and integrating from +1 — € to

+1 + € with € — 0 yields

oo

0

Ak’ d +1+e€
i |

Ay +ikAy + iko(k, 1) + lim ik / — —&(k',z)ié(k”,z) =0, (10)
e—0 2m | dz dz 1

where k" = k — k', while
A . d - d »
Ai(k,t) =lim d—qb(k;, +1+et)— y ok, £1 — €, )
2z

e—0 z

= f1(k, t)As1 (k) + Ba(k, 1) Asa(k)
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and

. d d
Asj(k) = lim | —5(k, £1+¢) — -y (k, £1 — ¢)

are the discontinuities in d¢/dz and doj/dz at z = £1. With ¢ given by Eq. (9) and b,
given by Eq. (6), one can show that

_ Ay A
L) = 0 SR
and
N A
. _1 — J ].
¢5(k, 1) 2|k|e2kl  2|k|

The ¢(k,+1) term in Eq. (10) can then be written in terms of A to yield

A A N
9 : | _p - . + ’ (1)
0
t\A_ A N_
with
L o 1 372“‘7‘
, 21k 21k
D = Zk ‘—e|72‘k‘ 1‘ | 9 (12)
o e Tl

and N, representing the nonlinearities in Eq. (10). Note that taking N. — 0 and 0/0t — iw
reduces this to the linear system solved in the previous section.

We now have all of the necessary tools to treat this system in a manner similar to the
previously-mentioned calculations[11, 21]. Using our definitions for A, and Ayj, the z-

derivative of Eq. (9) evaluated between z = £1 4 € and z = 1 — ¢ with € — 0 is

A
) om () (13)
A Ba
where
Al A 11
M= " T = —2k|e , (14)
A—l A_Q bl b2

and b; is given in Eqn. (7). Equation (13) is equivalent to Eq. (8): for this calculation,
the dynamical quantities that we use to specify the state of the system are Ai, and their
eigenmode structure is given by the columns of the matrix M. The governing nonlinear

PDE, Eq. (1) has been rewritten as a system of nonlinear ODEs, Eq. (11). The linearized

11



system of ODEs (Eq. (11) with N. — 0) can be diagonalized: substituting A for §; via
Eq. (13) and multiplying by M~! on the left gives

51 _wmom |2 , (15)

Ba Ba
where the matrix M™'DM is diagonal with entries iw;.
The nonlinear interactions between the eigenmodes can now be investigated. Applying
the steps that led to Eq. (15) to the full, nonlinear Eq. (11) yields

; N
) Zweom [ et (Y , (16)

B2 52 N_
where, again, Ny are the nonlinearities in Eq. (10). Using Eq. (9) and the forms for ¢, given
by Eq. (6), N1 can be written in terms of products of the form 3;5; with 4, j each taking

values 1,2. Equation (16) then becomes

0 = + | 2O 8 + Otk K0
~ (17

%wwmwmwwammmmmw]

T dK

) = B0 + [ 5 [Du KB OB + Dl )1 4988
ES (18)

-wMWMW%WHMwMMMMM}

The coefficients C;, D; arise from writing the nonlinearities Ny in the basis of the linear
eigenmodes, so their functional forms include information about both the linear properties
of the system and the nonlinearities Ny. The exact expressions for C}, D; are given in the
Appendix, where it is shown that Cy(k, k') = C3(k, k — k'), so that the C3 integral is equal
to the Cy integral. Equations (17) and (18) are equivalent to Eq. (11), but they directly
show how (3; and [, interact.

An analogy can be made here to the use of Elsésser variables in incompressible, homoge-
neous MHD turbulence, which are a familiar example of an eigenmode decomposition that
makes explicit the nonlinear interaction of the linear eigenmodes. The linearized equations

have as solutions counterpropagating, noninteracting waves of the form z* = v4b/(47py)'/2.
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FIG. 3. Three of the eight nonlinear coupling coefficients in Eqgs. (17) and (18), C1,C5, and Dy,
evaluated over the most relevant scales. Color indicates absolute values of the coefficients. The
coefficients are all roughly the same magnitude, indicating significant coupling between stable and

unstable eigenmodes.

Expressing the nonlinear equations in terms of z*, the nonlinearity in the equation for
0z* /0t is zT - Vz*, which describes the nonlinear interactions between linearly noninteract-
ing modes. In the present calculation, the linearly noninteracting ¢, ¢o are comparable to
z*, and the terms proportional to 8y (k") B2(k") and B (k") B2(k') are comparable to z¥ - Vz*.
However, unlike the z* equations, the Bj equations include other nonlinear terms that are
proportional to (1 (k")51 (k") and Bo(k")B2(k”). If all of the nonlinearities are zero except
for the Cy term, then the evolution of (k) is just a combination of its linear drive iw; (k)
and three-wave interactions with (k') and fi(k — k'), allowing ¢; to saturate through a
Kolmogorov-like cascade to smaller scales. This is effectively the assumption of standard
quasilinear calculations of momentum transport, where only ¢;,w; are considered. Figure 3
shows some of the nonlinear coupling coefficients plotted over a range of wavenumbers. Since
Dy, C5, and C3 are not identically zero, there is some interaction between the eigenmodes.
Systems where such interactions have been identified are all gyroradius-scale, quasihomoge-
neous systems driven by drift-wave instabilities[11, 21]. Equations (17) and (18) represent
a demonstration that these interactions occur for larger-scale, inhomogeneous plasmas and

neutral fluids.
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IV. THE THRESHOLD PARAMETER

By comparing the nonlinearities that transfer energy to stable modes with those that
cause the Kolmogorov-like cascade of energy to small scales, one can investigate how impor-
tant stable modes are in instability saturation. A quantity known as the threshold parameter
P, has been used to evaluate the relative importance of the stable eigenmodes in situations
where instability saturation is described by eigenmode-projected ODEs. The threshold pa-
rameter P, estimates the relative importance in saturation of the nonlinearities responsible
for energy transfer to the stable mode versus the nonlinearity of the forward cascade[11]. If
P, is small compared to unity, it indicates that the instability saturates via a Kolmogorov-
like transfer of energy to smaller scales, and only the term in Eq. (8) corresponding to the
most unstable eigenmode needs to be included to accurately describe the system. If P, 2 0.3,
it was found that the transfer of energy from the unstable mode to other modes at similar
scales is an important mechanism in saturation. In that case, additional terms in Eq. (8)
must therefore be included[21].

The quantity P; is the ratio of the C15;8; and Csf;5; terms in Eq. (17) and therefore
includes information about both linear and nonlinear properties of the system. In previous
work[11, 21], simplifying assumptions — such as treating growth rates v; = —Im(w;) as

independent of wavenumber — allowed the threshold parameter to be written as

2D102

P = —-—
"TCH2 = e/m)

(19)

for 79 < 0. This form of P, is useful because it illustrates how P, depends on different
parameters of the system: the size of P, relative to unity is determined by the ratios D;Cy/C?
and 71 /7v2. When the former is small, stable modes are only weakly coupled to unstable
modes and have little impact on saturation dynamics. When the latter is small, stable
modes decay too quickly to achieve significant amplitude by the time the instability saturates
unless D;Cy/ 6'12 > 1 and compensates. Previous work evaluated this form of P, in several
systems and found that whenever P, is at least a few tenths, energy transfer to stable modes
becomes comparable to the energy injection rate of the instability[21]. Note that in the
system considered here |y, /72| = 1, and numerically evaluating C;, D; shows that D; and
Cy are of the same order as or even larger than Cy [see Fig. 3]. These features alone yield

P, =~ 0.7, which implies stable modes are important for KH saturation.
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Here we extend previous analyses of P, by including the full wavenumber dependence
of 7;,C;, and D;. Consider the evolution of the system from a small initial amplitude ;.
When amplitudes are small every nonlinear term is negligible, so the dynamics are linear
with £, decaying and [, growing exponentially at every wavenumber. Eventually couplings
in [(dk'/27)D1(k, k)51 (k") 1 (k — k") dominate in Eq. (18). This occurs in the linear phase,
before saturation, because nonlinearities dominate the decaying linear response of (3 long

before matching the growing linear response of ;. Thus, Eq. (18) can be approximated as

Ba0) = n(0)5al) + [ SEDu B (). (20)

2T
Note that for these times 8, < 3 therefore the D; terms are the largest of the D; terms.
Since the C; nonlinearities have not reached the amplitudes of the growing linear terms, 5,
can be approximated as f3; exp[iw;t]. These approximations are referred to as the parametric

instability approximations[11]. Then Eq. (20) is solved by

_ dk’ Dl(k7 k/)ﬁzz i(w1 (k") +w1(k—k"))t iwa (k)t iwa (k)t
Palh,1) = / 27 i (—wa (k) + w1 (K) + wn (k — k) g ¢ A

—0o0

(21)

In assessing P, the above integral is only taken over unstable wavenumbers, as they drive [,
more strongly than marginally stable modes.

To evaluate P, the ratio of the largest 81> term and the largest 8;; term in Eq. (17)

is taken at the time of saturation ¢,:

max |20 01 (k') B2 (k")
max |C1 51 (k) B (R")] |,y

where t; is defined as the time at which one of the nonlinearities in Eq. (17) reaches the

(22)

t:

same amplitude as the linear term. Figure 4 shows the size of these terms at saturation for
k = 0.4 with an initial amplitude of 5; = 0.01. We choose k = 0.4 because it is the most
unstable wavenumber and is therefore the wavenumber of the most dominant unstable mode
leading into saturation. From Fig. 4, it is inferred that P, ~ 6, indicating that even before
the nominal saturation time energy transfer to stable modes has become as important to
the saturation of the unstable mode at £ = 0.4 as the Kolmogorov-like transfer to unstable
modes at other scales.

In previous calculations of P;, the parameter was independent of the initial amplitude j;

(which is assumed to be the same for each k). However, in the above evaluation of P, we
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FIG. 4. Nonlinear terms in Eq. (17) at saturation for £ = 0.4 and 3; = 0.01, with &’ and k — ¥
ranging from —0.6 to 0.6. The '} term is responsible for the Kolmogorov-like saturation of the
instability by energy transfer to unstable modes at smaller wavelengths. The C5 term represents
the previously-neglected coupling between unstable modes at k& and k' with stable modes at k.
The threshold parameter is evaluated by dividing the peak value of the Cy term by the peak value

of the C term. Here we find P; =~ 6, indicating that stable modes are important in KH saturation.

do find that it depends on [;; for instance, reducing ; to 0.001 yields P; &~ 15. In previous
calculations, the lack of dependence of P, on f; is an artifact of treating growth rates as
independent of wavenumber[11]. In considering Eq. (17) for the most unstable wavenumber,
both £ (k") and (k") were assumed to grow at the same rate as the most unstable mode,
when in fact three-wave interactions require k # k. When including wavenumber depen-
dence, these nonlinear terms will necessarily grow at less than twice the peak growth rate.
On the other hand, stable modes near k = 0 can be driven by D;(;3; terms where one of
the driving modes is near £ = 0.4 and the other is near £ = —0.4. Thus, our inclusion of
the wavenumber dependence of w; causes (5 to grow large enough that Eq. (20) becomes
invalid before saturation time. This makes the precise value of P, less meaningful, as the

stable modes have grown so large that the approximations made in obtaining F; are invalid.
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FIG. 5. Time evolution of |3;(k,t)| for a three-wavenumber truncation with k& = 0.3,k" = 0.9,
and kK — k' = —0.6. As expected from the P; analysis, the stable mode decays linearly, then is

nonlinearly pumped to an amplitude that is comparable to the unstable mode.

However, the size of [, relative to §; and the comparable amplitudes of Cy and C imply

P, 2 1, and therefore P, 2 0.3 is still well satisfied.

The above nonlinear analysis demonstrates that energy transfer to stable modes is sig-
nificant relative to energy transfer to smaller scales, modifying the usual understanding of
instability saturation by a cascade to small scales. The analysis employs approximations,
hence it is instructive to consider a second, complementary form of approximate nonlinear
analysis based on a three-wavenumber truncation of Egs. (17) and (18). Such a calculation
complements the P, analysis because it makes different assumptions. The P, analysis makes
parametric instability approximations when considering the evolution of 5y (c.f. Eq. (21)),
but samples a broad continuum of wavenumbers. On the other hand, a three-wavenumber
truncation makes no assumptions about the evolution of the modes, and instead limits the

system to only three wavenumbers that are evolved according to Eqgs. (17) and (18).

The result of a three-wavenumber truncation is plotted in Fig. 5, showing the time evo-
lution of B;(k,t) obtained by solving Eqs. (17) and (18) numerically with only interactions
between £ = 0.3, ¥ = 0.9, and k — &’ = —0.6 considered. The linear growth phase of
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[ is clearly seen, as is the linear decay and nonlinear driving of ;. The linear growth
phase for ; ends with both eigenmodes reaching comparable amplitudes, consistent with
the P, analysis. Once the stable mode reaches a value that is comparable to the unstable
mode there is continuous exchange of energy between the two modes. The saturation levels
slowly grow as t — oo. That can be understood as a consequence of the inviscid dynamics
in a three-mode system, in that previous work has demonstrated that a necessary condi-
tion for bounded solutions to three-mode truncations is that the sum of the growth rates is
negative[22]. Without viscosity, the present system does not meet the necessary condition.
Note that the time scale for nonlinear energy exchange is very short compared to the time
scale of the saturation level increase, strongly suggesting that the nonlinearities of Eqs. (17)
and (18) conserve energy. This calculation demonstrates that the system can saturate by
energy transfer to stable modes, and shows that the assumptions made regarding the growth

of 51 and B in the P, analysis are reasonable.

As an illustration of the effect of finite S5 on the fluctuating flow, Fig. 6 shows the flows
arising from linear combinations of 8; and [y with the weight of 35 varied. The flow arising
purely from the unstable mode is strikingly different from the flow that combines ; and
B with equal weights. Regions of hyperbolic flow appear to be less likely for the equally
weighted combination, suggesting that secondary structure generation and cascading may

be weakened when the stable mode is excited. This will be the subject of future research.

V. MOMENTUM TRANSPORT

Reynolds stresses and the associated momentum transport due to unstable modes tend
to broaden the original flow profile. Here we show that stable modes have the potential to
reduce the broadening of the profile. The transport of momentum in the x direction across
the interface at z = 1 is found by integrating the z-component of the divergence of the stress
tensor 7;; = (v1;01;) across the interface. Integrating dr,./dz across the interface gives

1+4€ 1+e¢

. . d d®od
S = —11_{% dz(vizv12) = —11_1% dz%<d—2%>
1—e 1—e
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FIG. 6. Examples of superpositions of stable and unstable modes at k = 0.4 plotted over one
wavelength in = and from z = —2 to z = 2 (cf. Fig. 2). In the right column, the unstable and
stable modes have an equal contribution to the overall flow. In the top and bottom rows, the

relative phase between the two modes is +m and —, respectively.

where () denotes averaging in @, while vy is the perturbed velocity. Taking ® = F (@] with
¢ = Bio1 + Pags gives

5= [ Grawe i)l + In(u)] P
™
K (23)

+Im [(w3 + k) B185] + Im [(wi + k) B281] |-

When the stable modes are ignored, only the first term contributes to S. The coefficient
4k2e2¥ is positive, and Eq. (5) shows that Im(w?) < 0 and Im(wj) = —Im(w}), indicating
that the transport due to unstable modes alone is negative, and the second term acts against
the first to reduce |S|. Clearly the amplitude of fBy(k) relative to (k) has a significant
impact on the momentum transport in this system. The relative phase between [2(k) and
B1(k) determines the contribution of the last two terms. If |52(k)| = |B1(k)|, then the first
two terms cancel and the transport is entirely determined by the last two terms. Analysis

of other systems shows there are situations where eigenmode cross correlations significantly

19



affect transport[9, 23].

To determine the actual properties of S, it is necessary to solve Egs. (17) and (18) for
B;(k) and integrate Eq. (23), either analytically or numerically. This is beyond the scope
of the present paper, but will be considered in the future. In lieu of such solutions, we
construct an estimate of the ratio |S2(k)|/|F1(k)| using the threshold parameter.

In the previous section the threshold parameter was defined as the ratio of the maximum
amplitudes of the Cy terms and the C) terms in Eq. (17) at the onset of saturation. An
estimate of |fBa(k)|/|f1(k)| in terms of P, is obtained by taking

_ 12CB1(K) Ba (k")) Ca | [5a(K")]

Ll R
=& 1) 2 '

B~ e ~2e, Bu(k)

While the threshold parameter estimates the relative amplitudes of the modes, it does not

capture information about their cross-phase. Taking By = f; expl[ifh2|P;/2 allows S to be

rewritten as
o) 2
s= [ Sraweks {Imwr) (1 - PZ) gm0 Sm(””m}' 2y
T

Due to the form of w; [see Fig. 1], the first term is only nonzero for |k| < 0.64, and the
second term is only nonzero for |k| 2 0.64. It is clear that P; ~ 1 reduces the magnitude of
the first term, while the contribution of the second term to S depends significantly on the
cross-phase 615 between the eigenmodes.

Having shown that momentum transport can be affected by stable mode activity, we next

summarize the main findings of this paper.

VI. CONCLUSION

Shear-flow instabilities are widely studied due to their potential to drive turbulence in
systems where the turbulent transport of momentum, particles, and heat are of interest.
While the linear regime of these instabilities are generally well-understood, saturation and
the resulting nonlinear flows are difficult to model. We have presented a nonlinear analysis
of an unstable shear layer with piecewise-linear shear flow, showing that the complex con-
jugate stable linear eigenmode is excited nonlinearly and strongly affects saturation. This
result is significant because it represents the first demonstration that nonlinear excitation of

linearly stable modes is an important aspect of saturation in global-scale unstable plasma
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and hydrodynamic systems. Previous studies were limited to quasihomogeneous systems
on gyroradius scales[11, 21]. A critical aspect of this work is the development of a map-
ping technique that allows analytical saturation analyses derived for spatially homogeneous
systems to be applied to the strongly inhomogeneous situation of shear flow instability.

Assuming the flow is a linear combination of the linear eigenmodes allows the global
state of the system to be described in terms of its behavior at the edges of the shear layer
(as is also done to determine the dispersion relation). The nonlinearity, originally written
in terms of flow components and their spatial derivatives, is then written in terms of the
eigenmodes to demonstrate that unstable modes nonlinearly pump stable modes. This allows
the eigenfunctions of this system to be treated similarly to the eigenvectors of previous
systems. Using a parameter that quantifies the threshold for a stable mode to impact
saturation, we have estimated the impact of stable modes on instability saturation and
found it to be significant.

Analysis of the flow associated with stable modes indicates that, at the predicted satu-
ration levels, the fluctuating flow undergoes significant topological changes relative to flows
characterized by the unstable mode alone. Such changes may affect the propensity for the
turbulent flow structure to generate secondary structures through transient amplification
and other processes. Because the system described here is inviscid, this work indicates that
stable modes have the potential to modify the evolution of instabilities even when they are
not subject to dissipation.

Finally, we consider the contribution of stable modes to momentum transport and give
an estimate in terms of the threshold parameter, demonstrating that stable modes can
significantly reduce the broadening of the shear layer, thereby counteracting the effect of
the unstable modes. One may similarly expect that stable modes can affect other transport
channels such as matter entrainment and heat transport. This line of inquiry will be left for

future investigations.
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Appendix A: Coupling Coefficients

In Egs. (17) and (18), the nonlinear coupling coefficients C}, D;, which are obtained by

expressing the nonlinearities of Eq. (16) in terms of the eigenmode amplitudes f3;, are as

follows:
Ci = a [(bab) + )| 4 (bob] + ;)]
Co = a [(bab], + )™ + (bobl) + b’)eQ"”
Cy = | (Babhy + )€™ - (bob] -+ B
Ci=a _(b2b’ + 1) 4 (bbl + )
(A1)
Dy = —a ( + 0™ + (b b"+b’1)e2lk'\
Dy = —a [(bat] + b)) " + (bt + e |
Dy = —a (b + 00 - (gl + B )
Dy = —« ( bubly + b)e2 4 (bybl + by)e1] |
where -

||| e K 1187
20k =)
with 0 = b;(k") and b} = b;(k"). For convenience, the definition of b;(k) is repeated here:
€2|k\2|k|(wj + k) — k‘.
k
Notice that a(k, k') = a(k,k — k') and Cs(k, k') = Cy(k,k — kK’). Thus, changing the

bj:

integration variable to k” = k — k' in the C3 integral yields

/_oo Z—k/cs(k KB (K")Ba(K') = /_oo C;—klcé(/f ") B (k") B2 (K)

— [ GGl KBkl — k)

- /_ d_k/Cz(k‘ KB () Ba(k — k),

so the C3 and C integrals in Eq. (17) are identical.
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