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We discuss applicability of principal component analysis (PCA) for protein tertiary structure
prediction from amino acid sequence. The algorithm presented in this paper belongs to the
category of protein refinement models and involves establishing a low-dimensional space where
the sampling (and optimization) is carried out via particle swarm optimizer (PSO). The reduced
space is found via PCA performed for a set of low-energy protein models previously found using
different optimization techniques. A high frequency term is added into this expansion by pro-
jecting the best decoy into the PCA basis set and calculating the residual model. This term is
aimed at providing high frequency details in the energy optimization. The goal of this research is
to analyze how the dimensionality reduction affects the prediction capability of the PSO pro-
cedure. For that purpose, different proteins from the Critical Assessment of Techniques for
Protein Structure Prediction experiments were modeled. In all the cases, both the energy of the
best decoy and the distance to the native structure have decreased. Our analysis also shows how
the predicted backbone structure of native conformation and of alternative low energy states
varies with respect to the PCA dimensionality. Generally speaking, the reconstruction can be
successfully achieved with 10 principal components and the high frequency term. We also
provide a computational analysis of protein energy landscape for the inverse problem of
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reconstructing structure from the reduced number of principal components, showing that the
dimensionality reduction alleviates the ill-posed character of this high-dimensional energy op-
timization problem. The procedure explained in this paper is very fast and allows testing
different PCA expansions. Our results show that PSO improves the energy of the best decoy
used in the PCA when the adequate number of PCA terms is considered.

Keywords: Principal component analysis; particle swarm optimization; tertiary protein struc-
ture; conformational sampling; protein structure refinement.

1. Introduction

The problem of protein tertiary structure prediction consists of determining the
unique three-dimensional conformation of protein (corresponding to the lowest en-
ergy) from its amino acid sequence. Currently, this problem represents one of the
biggest challenges for biomedicine and biotechnology as it is of utter relevance in
areas such as drug design or design and synthesis of new enzymes with desired
properties that have not yet been appeared naturally by evolution and that fold to a
desired target protein structure. This importance is reflected by the fact that every
two years since 1994, the performance of the state-of-the-art methods for protein
structure prediction are assessed in the CASP (Critical Assessment of Techniques for
Protein Structure Prediction) experiments. The results from recent CASP experi-
ments show that prediction of protein structure from sequence has improved sig-
nificantly but still remains challenging. The progress and challenges in protein
tertiary structure prediction have been reviewed by Zhang.!

Despite the constantly growing number of protein structures deposited in the
Protein Data Bank (PDB), there is a rapidly increasing gap between the number of
protein sequences obtained from large-scale genome and transcriptome sequencing
and the number of PDB structures. Currently, PDB contains over 130,000 macro-
molecular structures with 88% having been solved by crystallography, the majority
of them, ~93%, being proteins, while the UniProt Knowledge base contains around
50 million sequences (after recent redundancy reduction). Thus, less than 1% of
protein sequences have the native structures in the PDB database. Therefore,
accurate computational methods for protein tertiary structure prediction, which are
much cheaper and faster than experimental techniques, are needed.

The main methodologies to generate protein tertiary structure models are divided
into two categories: template-based and template-free modeling. Template-based
homology modeling allows building a model of the target protein based on a template
structure of a homolog (protein with known structure and high (at least 30%)
sequence identity to the target protein) by simulating the process of evolution, i.e.
introducing amino acid substitutions as well as insertions and deletions, while
maintaining the same fold.

Template-free methods predict the protein tertiary structure from physical
principles based on optimizing the energy function that describes the interaction
between the protein residues to find the global minimum without using any template
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information. Some well-known programs in the literature use template-free model-
ing>? mainly when no structural homologs exist in the PDB. Template-based
modeling methods use the known structures (as templates) of the proteins that are
analogous to the target protein to construct structural models.”"

Independently of the methodology that is used (template-based or template-free),
protein tertiary structure prediction constitutes a very high dimensional optimiza-
tion problem, whose dimensionality coincides with the total number of coordinates of
atoms forming the protein (thousands of unknowns). Therefore, the tertiary struc-
ture protein prediction is hampered by the curse of the dimensionality, as these
prediction methods are unable to explore the whole conformational space. The curse
of dimensionality® describes how the ratio of the volume of the hyper sphere enclosed
by the unit hypercube becomes irrelevant for higher dimensionality (more than 10
dimensions). This result also describes the practical impossibility of sampling high
dimensional spaces using random sampling methodologies. This problem is even
more difficult in the case of optimization or inverse problems as the region of non-
linear equivalence has an elongated valley shape.” Therefore, there is a need to
simplify the protein tertiary structure prediction problem by using model reduction
techniques to alleviate its ill-posed character.

Protein refinement methods are a good alternative to approximate the native
structure of a protein using template-based approximate models (see, for instance,
Refs. 10-12). Some of these methods use molecular dynamics, coarse-grained models,
and also spectral decomposition. In our earlier work,'® we applied elastic network
models to protein structure refinement. This mathematical model provides a reliable
representation of the fluctuational dynamics of proteins and explains various con-
formational changes in protein structures. We represented the conformational space
close to the native state by a set of decoys generated by the I-TASSER protein
structure prediction server using template-free modeling, and we found that thermal
motions for some substates overlap significantly with the deformations necessary to
reach the native state. This suggested that structural refinement of poorly resolved
protein models can be significantly enhanced by reduction of the conformational
space to the motions imposed by the dominant normal modes.

In this article, we use the tertiary structure information provided by other decoys
to reduce the dimensionality of the protein tertiary structure prediction problem. We
were able to accomplish this task by constraining the sampling within the subspace
spanned by the largest principal components of a series of templates. These low-
energy protein models (or templates) are previously found using different optimi-
zation techniques, or performing local optimization and using different initial and
reference models, via template-free methods. In the present study, we used as tem-
plates, models submitted by the different prediction groups during the CASP
experiment.

This methodology allows sampling of the lowest-energy models in a low dimen-
sional space close to the native conformation. This fact is very important because for
most of the proteins the native structure is unknown and needs to be determined by
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computational methods. However, a deeper understanding is required in order to
successfully refine the protein structure, that is, the structure that corresponds to the
lowest energy, with its corresponding uncertainty assessment (the median model and
the interquartile range (IQR). The refined structure is affected by the number of
PCA terms used to construct the reduced search space for energy optimization and
sampling.'*16

Therefore, in this paper, we try to understand the effect of PCA dimensionality
in the protein tertiary structure prediction problem. The structure plan of this paper
is as follows: the protein tertiary structure prediction problem and the protein
energy function landscape are analyzed theoretically in Sec. 2, showing the existence
of equivalent protein configurations. Section 3 is devoted to the computational
methods used in this paper, principal component analysis (PCA) and particle swarm
optimization (PSO). Finally, in Sec. 4, the numerical results obtained for the
MvR76 protein (CASP9 code T0545) are presented. Also, the analysis of other
CASP target proteins is provided in Appendix A, confirming the results shown for
T0545.

The main conclusions are that the dimensionality reduction alleviates the ill-
posed character of this high-dimensional optimization problem, as well as the pos-
sibility to show the existing tradeoff between model reduction (number of PCA
terms) and the backbone structure prediction. Therefore, determining the minimum
number of PCA terms is a crucial step for achieving a successful tertiary structure
protein refinement. Besides, the introduction of the high frequency term into the
expansion is crucial for achieving good tertiary structure reconstruction. In addition,
although the set of modeled proteins has been limited, the results show an im-
provement in results in all cases with respect to the best model found. These results
could be further improved using advanced computational resources, given the
intrinsic parallelism of the PSO algorithm.

2. The Protein Tertiary Structure Prediction Problem

Proteins are biological polymers composed of amino acids forming a linear poly-
peptide chain. Proteins can adopt a wide range of three-dimensional conformations
due to possible rotation of the chain about two bonds of each amino acid. This
rotation is responsible for differences in the protein structure. This fact makes the
problem of determining the protein structure very challenging. Moreover, the
knowledge of protein tertiary structure is of great importance for determining
interactions within proteins and between proteins and their surroundings, as well as
for annotating protein function. A consequence is the direct application of tertiary
structure prediction to drug design.'”

The most commonly used methods for determining this structure are X-ray
crystallography and nuclear magnetic resonance (NMR).'® However, due to the
practical impossibility of determining the structure by experimental methods of
all the proteins obtained by large-scale genome sequencing methods, accurate
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computational determination of the tertiary structure of proteins has become a
crucial problem. Nevertheless, one of the main challenges is to obtain an accurate
model with a low uncertainty in the predictions."’

2.1. The protein energy function landscape

In the tertiary structure protein prediction problem, the model parameters are the
protein coordinates determined by n, atoms m = (m;, ms,...,m,) € M C R"?, with
n = 3n,, being M the set of admissible protein models elaborated taking into
account their biological consistency. The tertiary structure of a given protein is
defined by knowing the free-energy function, E(m) : R” — R and finding the pro-
tein model that minimizes this energy function: m, = min,cp E(m).”

The main issue with this optimization problem is its high dimensionality. The
optimization algorithm needs to tackle the high dimension of the model space with
thousands of atoms, and also the complicated landscape of the energy function, with
different isolated curvilinear valleys with almost null gradients.”! This complicated
topography can trigger the failure of local optimization methods that might get
trapped in a different basin, or in one of these flat valleys, in a model far from the
native conformation.

Also, assuming that m,, is the global optimum for the energy function satisfying
the condition VE(m,) = 0, there exist a set of models M, = {m: E(m) < E,}
whose energy is lower than a given energy cut-off E,. M, is the nonlinear equiv-
alence region of energy E,. These models, in the neighborhood of m,,, belong to the

linear hyper-quadric®?':

5 (m —m,)THE(m,)(m — m,) < B, ~ B(m,), 1)
where HE(m,,) is the Hessian matrix calculated in m,,. Nevertheless, the linear hyper-
quadric can only describe locally throughout the neighborhood of m, the global
complexity of the energy landscape with one or more flat curvilinear elongated
valleys with almost null gradients where the local optimization methods might get
trapped and fail to converge close to the native structure. To avoid this problem, it is
important to have at disposal very exploratory global optimization methods that are
able to analyze the nonlinear equivalence region M, in a procedure that is known as
“sampling while optimizing”. Algorithms such as the binary genetic algorithms
reported by Fernandez-Alvarez et al.>> and PSO by Fernéndez-Martinez et al.*>*
are able to perform this task when used in their exploratory form. In our past work,
we successfully applied PSO methodology (in combination with Extreme Learning
Machines) to protein secondary structure prediction.?”** In this paper, we use an
exploratory PSO family member (RR-PSO) to explore the Protein Energy Function
Landscape in the PCA-reduced space. The acronym RR-PSO stands for the
regressive-regressive finite differential schemes that are used to construct this
algorithm of the PSO family.
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3. Computational Methods
3.1. Protein model reduction via PCA

PCA is a mathematical model reduction technique that transforms a set of correlated
variables into a smaller number of uncorrelated ones known as principal components.
The resulting transformation has the advantage of reducing the dimensionality while
maintaining as much as possible the prior models’ variability.?”-?® This procedure has
been applied in different fields, but in protein tertiary structure, a preliminary
application using the three largest PCs was carried out while optimizing via the
Powel method.?” However, in this paper, we perform the stochastic sampling of the
nonlinear equivalence region using a member of the family of PSOs (RR-PSO).*0-%3
These global optimization algorithms can perform a good posterior sampling of the
nonlinear equivalence region when used in their exploratory version.

We study the protein structure prediction and how the number of PCA terms
affects the final protein structure that is obtained. PCA is of great relevance in
protein structure prediction as it allows the sampling of protein coordinates (para-
meters) while taking into account the correlation existing among the atom coordi-
nates in the regions of lower energies (nonlinear equivalence region). PCA also
alleviates the ill-posed character of the tertiary structure optimization problem as
the solutions (protein structures) are found in a smaller dimensional space.

The optimization problem in the reduced PCA space consists in finding the
coefficients

a, € R?: E(iy) = E(u+ Ugay) < By, (2)

where p, U, are provided by the model reduction technique that is used (PCA in this
case).

The PCA dimensionality reduction is carried out as follows.**?"

(a) An ensemble of [ decoys m; € R" is selected and arranged column wise into a
matrix X = (mq,my,...,m;) € M(n,l). The problem consists of finding a set
of protein patterns Ug = (uq,us,...,uqg) that provides an accurate low di-
mensional representation of the original set with d << [. This is carried out by
performing the diagonalization of the covariance matrix:

Cr=(X-p)(X—p"eMnn), 3)

where p is either the experimental mean of the decoys, the median, or any other
decoy around which we want to perform the conformational search. The centered
character of the experimental covariance C} is crucial to maintain consistency with
the centroid model p.*® Matrix C| is symmetric and has a maximum rank of [ — 1,
because there is a maximum of [ — 1 eigenvectors of C; that are required to
expand the whole protein prior variability. Due to its symmetry, C; admits or-
thogonal diagonalization. Therefore, it can be expanded by the following spectral
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decomposition:

-1
G =UDWT =) N, 4)
k=1

where D, is the diagonal matrix containing [ — 1 nonnull eigenvalues \;, and u; is
the orthonormal basis set of R", that is, the space of decoys that form the column
space of the orthogonal matrix U. The vectors u; are the protein decoys PCAs.
Therefore, the column vectors forming U, are the first d column vectors of U.

The sum of its eigenvalues coincides with the total variability of the decoys in the
protein ensemble. The cumulative energy used to select the number of PCAs in the
reduced basis of decoys is the cumulative sum of these eigenvalues ranked in the
decreasing order. Ranking the nonnull eigenvalues {\;};_1;_ in the decreasing order,
the cumulative energy percentage corresponding to the k first eigenvalues is F(k) =
Z;?:l A;/ Zé;ll A; 100. Therefore, this procedure allows to select a number of PCA
terms (d << 1—1 << n) allowing to match most of the variability in the protein
ensemble, which is Zg;ll Aj.

Numerically, it is simpler and faster to diagonalize the matrix, C,; =
(X — p)T(X — p) € M(1,1) and to obtain the first | — 1 eigenvectors of C;. Taking
into account the connection with the singular value decomposition (SVD), we have:

X —p=UxVT,

Co= (X~ p)T(X — p) = VSISV, (5)

where U, V', ¥ are the matrices obtained from the SVD of X — u. It is worthy to note
that the matrix U is the same that appears in expression (4). ¥ is the SVD of the
centered decoy matrix X — p, and V is one of the orthogonal matrices that is issued
from the SVD of X — p.

Therefore:

B=(X—-p)V=Us,
_ B(;,k)
R ECDIS

where B(:, k) is the kth column vector of matrix B. The matrix D, = 7Y is also
diagonal and has the same nonnull eigenvalues as D;.

Additionally, a high frequency term is included within the PCA in order to
consider the model with the lowest energy, and projecting it into the PCA basis as

(6)

uy k:].,...,l*].,

follows:
d d
MppsT = M+ mi; + Ugyy < Ugyq = MBRgT — B — Z mu;, (7)
i=1 1=1
where m; are the coefficients of mppgr — p into the first d PCA basis terms. The
inclusion of the high frequency term is vital to ensure a proper reconstruction of
the protein model in Cartesian coordinates after the PCA sampling, as it provides

1850005-7



0. Alarez et al.

the high frequency details needed to decrease the energy cost function and achieve a
final solution which is close to the native structure. The inclusion of this term allows
a successful reconstruction of the backbone structure. Besides, an important feature
is the use of Bioshell to compute the protein energies (forward problem of the tertiary
structure protein inverse problem). In this approach, we assume that the energy
function used to model the protein energy allows for the search of the native tertiary
structure. The forward modeling (energy computation) is also an important field of
research in protein prediction.

(b) Consequently, any protein model in the reduced basis set is represented as a
unique linear combination of the main eigenvectors:

d+1
mk:N+Zaiui:N+Qakv (8)
=1
where Q = [u;, uy,...,uy,uy.;]. The projection of any decoy my, is very fast, as
matrix Q is orthogonal:
= QT(ﬁlk — ). (9)

This technique allows global optimization methods to perform efficiently the required
sampling in the reduced search space, which is designed by calculating the maximum
and the minimum values of the different components of the coefficients a;, of all the
decoys used for the PCA expansion. This simple and fast procedure serves to es-
tablish the lower and upper bounds of the search space of the PCA coefficients for
PSO to perform the search of new protein decoys (see, for instance, the graph shown
in Fig. 2).

In this paper, we analyze how the number of PCA terms affects the final predicted
protein configuration, and how the topography of the cost function in the reduced
space changes accordingly.

3.2. PSO

For each backbone conformation, we have performed the optimization via PSO. This
methodology is a stochastic and evolutionary optimization technique, which is in-
spired in an individual’s social behavior (particles).*® The sampling problem consists
of finding an appropriate sample of protein models m; = u+ V -a;, such as
E(m;,) < E,,, where the mean model p and the matrix Vare provided by the PCA,
as it has been explained before. Although the search is carried out in the reduced
search space (PCA), the sampled proteins must be reconstructed in the original atom
space in order to evaluate their energy.

The PSO algorithm is as follows:

(1) We define a prismatic space of admissible protein models, M:

size

1850005-8



PCA in protein tertiary structure prediction

where [, u;, are the lower and upper limits for the jth coordinate for each model,
where ng,, is the size of the swarm. Each plausible model is a particle that is
represented by a vector whose length is the number of PCA terms. Each model
has its own position in the search space. The perturbations we produced in the
PCA search space are required in order to carry out the sampling and to explore
the solutions represented by the particle velocities. In the present case, the search
space is found by projecting back all the decoys to the reduced PCA space and
finding the lower and upper limits of each PCA coordinate.

(2) At each iteration tk, the algorithm updates the positions, a;(tk), and the veloc-
ities, v;(tk) of each particle swarm. The velocity of each particle, i, at each
iteration, k, is a function of three major components:

(a) The inertia term, a real constant, w that modifies the velocities.

(b) The social term, the difference between the global best position found thus
far in the entire swarm, g(¢k) and the particle’s current position, a;(tk).

(¢) The cognitive term, the difference between the particle’s best position found
1;(tk) and the particle’s current position, a;(tk).

The PSO algorithm is written as follows®’:

vi(tk + 1) = wv;(tk) + ¢1(g(tk) — a;(tk)) + ¢a(L;(tk) — a;(tk)),
a;(tk + 1) = a;(tk) + v;(tk + 1), (10)
¢1 = 7Alafgv ¢2 =Teq;, T1,T2€ U(Ov 1)7 w, agval € R.

r1,79 are vectors of random numbers uniformly distributed in (0,1) to weight the
global and local acceleration constants, a,,a;. ¢ = (a,+ a;)/2 is the total mean
acceleration, crucial in determining the algorithm’s stability and convergence.*’~>?
In this paper, we used the RR-PSO algorithm obtained by adopting regressive
discretization in acceleration and also in velocity in the PSO continuous model. The
numerical analysis using different analytical benchmark functions has shown that
RR-PSO is one of the most performing algorithms of the PSO family in terms of the
balance between its exploration and exploitation capabilities. The RR-PSO algo-

rithm for any time step At is:

vi(t) + ¢1 At(g(t) — x;(t)) + p2 At (1) — x(t))
1+ (1 —w)At + ¢At2

x;(t + At) = x;(t) + v,;(t + At)At.

1=1 N,

Vz(t‘i-At) = »

B ey

(11)

Its version is obtained for ¢t = tk (iterations) and At = 1. The RR-PSO algorithm has
regions of first- and second-order stochastic stability that are unbounded. It has been
shown that the RR-PSO exploratory parameters sets are concentrated around the
line ¢ = 3(w — 3/2), mainly for inertia values w > 2. This line is independent of the
cost function that is optimized and remains invariant when the number of optimi-
zation parameters increases. Furthermore, this line is located in a region of medium
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attenuation and very high frequency for the swarm particle trajectories. This last
property provides this algorithm with a good balance between exploration and
exploitation, allowing a very efficient and explorative search around the oscillation
center of each particle in the swarm.*

The protein energy calculations are performed in this case via the Bioshell
computational package.’” ™ The PSO algorithm finishes by iterations since the
procedure aims the sampling of the uncertainty space of the tertiary structure pre-
diction problem. Other stopping criteria can be established to finish the PSO sam-
pling, for instance, if the energy does not decrease in a given number of iterations,
and/or if the root-mean-square deviation (RMSD) distance with respect to the model
of lower energy found does not decrease.

4. Numerical Results

In this section and in Appendix A, we show the application of this methodology to
different proteins from the CASP experiment to show how this refinement method
works in practice and how the number of PCAs used in the expansion affects to the
final reconstruction and sampling.

4.1. MvR76 protein (CASP9 code T0545)

In this section, we study how different PCA dimensions affect the prediction capa-
bilities of the PSO algorithm when applied to the protein Uracil DNA glycosylase
from Methanosarcina acetivorans (CASP9 code T0545) whose native structure is
known and reported as the Northeast Structural Genomics Consortium Target.*’
This native structure has been obtained via NMR spectroscopy which makes it
possible to obtain detailed and valuable information about the three-dimensional
structure, dynamics, and function. Figure 1(a) represents the cumulative distribu-
tion function (cdf) of the energy values corresponding to the 185 decoys predicted by
different research groups in the CASP9 competition. Each decoy comprises a total
amount of 1271 atoms corresponding to 158 residues. It can be obseved that the
maximum energy (worst decoy) is around —100 and the mimimum close to —350,
and the median energy a little bit higher than —300. In order to generate an accurate
PCA basis that accurately represents the tertiary protein structure, all the decoys
(56) with an energy lower than —300 are selected. This energy cut-off corresponds to
the percentile 30 of the cdf energy profile, that is, the 30% best models are selected to
produce the reduced PCA basis set.

Optimizing protein tertiary structure models requires an efficient sampling of a
search space formed by the decoys that have been selected. In this case, the proce-
dure that is used consists in a combination of PCA and PSO, a sampling and global
optimization algorithm which can be easily parallelized. RR-PSO is used in its
sampling while optimizing modality, that is, promoting its exploratory behavior.
Determining the prior number of PCA terms that might be needed for the expansion
is a straightforward procedure. It consists of adding the eigenvalues of the covariance
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Fig. 1. Protein T0545. (a) Energy cdf of the 185 decoys downloaded from the CASP9 experiment website.
To generate the PCA reduced basis, we had considered 56 decoys with energy less than —300 that
correspond to the percentile 30 of the energy cdf distribution. (b) Cumulated energy of the PCA
decomposition. With the first PCA term, we expand 62% of the energy of the decoys database (prior total
variability of the decoys). When a second PCA is added the cumulative energy is 75%, and around 40-50
PCAs we expand almost 100% of the variability.
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matrix and calculating the ratio of the cumulated energy with respect to the total
prior variance, as it has been explained before using the cumulative energy plot
shown in Fig. 1(b). Generally speaking, as reported by Baker and co-workers,'® the
first PCA term can generally describe between 40% and 90% of the backbone con-
formational variation. In the present case, we were able to expand 60-75% of the
decoys variability with one and two PCA terms, as it can be observed in Fig. 1(b).
We achieved this by performing a preliminary selection of the 56 best decoys. This
study suggests that we can efficiently sample and optimize a great number of con-
formational variation in tertiary protein structures by selecting the first
PCA. Therefore, in order to study how the predicted protein structure varies with
respect to the number of PCA dimensions, we select different PCA bases containing
3,5, 7,9, and 11 terms, corresponding to a cumulative energy of the covariance
matrix ranging from 82% to 94%. Additionally, a last high frequency term is added in
order to span the details of best model found (with the lowest energy). Nevertheless,
it is always needed to check whether the prior number of PCAs is enough to explore
the protein energy landscape and whether the number of PCA terms should be
increased. This situation occurs when the minimum energy found gets stable and
high along the PSO iterations. Figure 2 shows the search space used for search and
optimization with 11 PCA terms plus the high frequency term. We also show the
coordinates of the native structure in this basis set. The width of the first PCA
coordinate interval is bigger and, afterwards, it starts getting narrower as the PCA
index increases. Once the number of the PCA terms is fixed, we perform the PSO

800 T T T T T T T T T I

—&— Lower Limit
—+— Upper Limit
—+— Best Protein

PCA coordinates

600 L I 1 Il Il I I L L 1
1 2 3 4 5 [ 7 8 9 10 11 12

PCA index

Fig. 2. Lower and upper limits of the search space for PSO of the PCA coefficients for 11 PCA terms. The
high frequency term is added to span the details. These bounds are calculated projecting all the templates
into the PCA basis set using expression” and finding their minimum and maximum for each coefficient. We
also provide the projection of the best decoy into the PCA basis set.
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search and optimization with a swarm of 40 particles during 100 iterations. The
sampling and optimization are carried via RR-PSO, a member of the family of PSOs,
whose exploration capabilities are very important and make it suitable to accomplish
the approximate posterior sampling.*® The width of the search space might be in-
creased when a high percentage of particles hits the lower and upper bounds through
iterations. Besides, it is possible to play with the time step At if needed. Values
higher than 1 serve to increase the exploration and values lower than 1 to cool down
the particle dynamics.

Figure 3 shows the convergence rate (Fig. 3(a)) and swarm dispersion (Fig. 3(b))
for different PCA expansions. For each case, the algorithm begins with a high energy
between —10 and —200 and in approximately 20 iterations it reaches an energy
plateau, corresponding to the optimum energy value. The optimum energy value of
protein T0545 was found to be —256.8 with three PCA terms and —345.5 with 11
PCA terms, which is 1% lower than the energy of the best model found in the CASP
experiment for this protein (—342.1). The energy of the native structure is —348.8. It
is worth observing that the sampling occurs in a reduced space that it is one di-
mension higher than the number of PCA terms that have been adopted. Another
point that is worth mentioning is the ability to explore the energy landscape of the
PCA search space. The monitoring of the exploration is carried out by measuring the

0 T T T T T T T T T

\ ——NPCA=3
——NPCA=5
——NPCA=7 ||
——NPCA =9
——MNPCA = 117

50 60 70 80 90 100
Iterations

(a)

100 T T T T T T T T T

Swarm Dispersion (%)

Iterations

(b)

Fig. 3. T0545 protein: (a) convergence curve and (b) median dispersion curve (%).

1850005-13



0. Alarez et al.

median distance for each particle and the center of gravity and, normalizing it with
respect to the first iteration (considered to be a 100%). When the median dispersion
falls below 3-5%, we can assume that the swarm has collapsed toward the global
best, and we can either stop sampling or increase the exploration using time steps
much greater than 1 to expand the swarm. When the swarm collapse happens, all the
particles of the same iteration will be considered as a unique particle in the posterior
sampling. Figure 3(b) shows smaller dispersion when a low number of PCA terms
(Npca = 3 and Npgy = 5) is used. This fact explains that when the number of PCA
is very low, the algorithm is unable to optimize further the energy, and the swarm
collapses toward the global best very early. This phenomenon of premature con-
vergence is also related to the number of PCA terms adopted, as the PCA expansion
does not allow to span the backbone structure of the protein model. In contrast, as
the number of PCA terms increases, the dispersion also increases, showing that RR-
PSO is able to sample the nonlinear equivalence region.

Figures 4(a) and 4(b) present the root mean square distance between the different
models that have been sampled in the region of energy below —200. As observed,
depending on the PCA terms utilized to construct the search space, the minimum
energy achieved varies, as also shown in Fig. 3. Additionally, we can observe a
symmetric behavior with a large quantity of models sampled within the region of 1.8
and 2.0 units with respect to the centroid. This illustrates the complexity of the
energy landscape. Furthermore, Table 2 illustrates the RMSD of atomic positions of
the optimized structure for each case compared with the best model submitted in the

-200 T ——— T — 1 -

220 : i i B

230} B .

Energy (< -200)
.
.

240

260 L 1 1 1 1 I
1.2 14 16 1.8 2 22 24 26

RMSD distance

(a)

Fig. 4. (a) RMS distance between different decoys sampled considering three PCA terms plus a high
frequency term. (b) RMS distance between different decoys sampled with 11 PCA terms plus a high
frequency term.
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Fig. 4. (Continued)

CASP experiment. The RMSD is defined as follows:

(12)

where ¢, is the distance between the atom I of the protein and the native structure
that was used as reference, and N is the total number of atoms of the backbone
structure.

PSO was found to succesfully reduce the RMSD of each structure except for
TO0580, where it is almost similar to the result found in the CASP experiment.
Finally, Fig. 5 shows the best configurations obtained by RR-PSO for each number of
PCA terms (Npcy) compared with the best model submitted in the corresponding
CASP experiment. In this sense, we can assess qualitatively the prediction capabil-
ities of including a varying number of PCA terms. As observed, when three PCA
terms are considered, the structure is not well defined compared with the native
structure. In contrast, considering 11 PCA terms, the structure is better defined and
gets closer to the native structure. In each case, the dimension of the optimization
that is involved is the number of PCA terms plus one, due to the high frequency
term. The PCAs come from the ensemble of decoys that are used to calculate the
covariance matrix that is diagonalized, whereas the high frequency term is calculated
from the best decoy, projecting it into the PCA basis set and calculating the residual.
This result suggests as expected that a minimum amount of details (higher PCA
terms) is needed to achieve a succesful tertiary reconstruction.
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7

PN

Fig. 5. (a) Best decoy structure compared with structures obtained with (b) 3 PCA terms, (c) 5 PCA
terms, (d) 7 PCA terms, (e) 9 PCA terms, and (f) 11 PCA terms.

Figure 6 shows the results of the uncertainty analysis using the sampled protein
decoys whose energy is below —200 for three PCA terms, whereas Fig. 7 shows the
same graphics for 11 PCA terms. For each case, we show the median protein as a
matrix with rows containing the coordinates x,y and z and the columns containing
the atoms in the protein. In this graphic, we show for each coordinate the median of
the coordinates of the decoys that have been sampled and fulfill the above-mentioned
energy condition. The median protein obtained this way is to be compared with the
native structure. Additionally, this figure also shows the IQR of each coordinate
based on the sampled decoys and the IQR versus the median ratio. The methodology
to produce the IQR plot is the same as for the median. These two last graphs are used
to quantify the uncertainty and variations of the protein models around the median
for different PCA expansions. This kind of representing the proteins is aimed at
better visualizing the uncertainty corresponding to the tertiary structure prediction
problem. These graphs show that the higher variations in the coordinates occur at
the protein surface. Additionally, as the number of PCA terms decreases, the var-
iations are smaller, that is, the ill-conditioned character of the tertiary protein
structure prediciton problem is reduced. Nevertheless, the structures that are
obtained are far from the native structure. In contrast, the more PCA terms, the

1850005-16



PCA in protein tertiary structure prediction

|iﬁmll I

[lm IIII

200 400 600 1200
Atoms

(a) Median protein

0.03
0.02
0.01
Atoms
(b) IQR
0.06
0.04
0.02
200 400 600 800 1000 1200
Atoms

(c) IQR/Median (%)

Fig. 6. Uncertainty analysis using the protein decoys that have been sampled in the energy lower than
—200 for three PCAs. The graphs show the median protein configuration, the IQR, and the IQR versus the
median ratio (%).
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Fig. 7. Uncertainty analysis using the protein decoys that have been sampled in the energy lower than
—200 for 11 PCAs. The graphs show the median protein configuration, the IQR, and the IQR versus the
median ratio (%).
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more ill-conditioned the optimization problem is as it considers more spatial har-
monics (PCAs) for the expansion. Therefore, a tradeoff exists between the ill-
conditioning of the tertiary protein prediction problem in the reduced space and the
realiability of the reconstruction as the number of PCAs increases. This result could
be also expected taking into account the prior variablity curve (Fig. 1(b)) as a
function of the number of PCAs, since it can be seen that as the number of PCA
terms increases, the information of the initial matrix is greater, resulting in a greater

Fig. 8. T0545 protein energy landscape for four different PCA expansions: (a) 3 PCAs; (b) 5 PCAs;
(c) 9 PCAs; and (d) 11 PCA.
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Fig. 8. (Continued)

capability of minimizing the energy function. Therefore, as we decrease the
dimensionality of the PCA search space, some crucial information required to get a
good prediction is lost in the model simplification procedure, and the sampling
algorithm accounts for fewer structural variations.

Figure 8 shows the topography of the cost function in the first two PCA coor-
dinates of this protein, which has been interpolated from the PSO samples for the
different PCA expansions treated in this paper. It can be observed that the
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topography is more or less the same, with a central valley of low energies, whose
orientation is North-South. The landscape becomes more complex when 11 PCAs are
used, showing an East-West prolongation of the basin with its typical banana-
shape.? This graph is useful to assess the mathematical complexity of the protein
tertiary structure prediction problem by observing the complexity of the intricated
valleys of the energy function in lower dimensions.

4.2. Modeling of other proteins from CASP experiment

Additional information is presented in order to support the theoretical benchmark
described in the paper. We tested additional proteins utilizing PCA and PSO to
prove its suitability for protein refinement purposes. Table 1 presents the summary
of the computations carried out with different proteins detailing the energy and the
number of PCA terms utilized to construct the search space. After this table, a more
thorough desciption of each protein is introduced, including the algorithm

Table 1. Summary of the computational experiments performed in this paper, via PCA and PSO.

Native Best 3 PCA 5 PCA 7PCA 9PCA 11 PCA

Protein CASP9 code  structure decoy terms terms terms terms terms
T0545 —348.8 —342.1 —256.8 —299.0 —343.5 3446 3455
Proteins in Appendix A
T0557 —278.9 —-273.7 -2753 2752 2754 2772 2776
T0580 —258.3 —253.8 —-196.4  —250.8 —249.7 —249.5 —250.8
T0637 —384.5 —372.0 —46.7  —103.7 —369.2 —371.4 —3724
T0643 —234.3 —209.4  —1389 —209.2 —-209.5 —-210.0 -—-210.0

Note: Energy of the best decoy used in the PCA and lower energy found after PSO optimization. Bold
faces indicate the cases in which the energy after optimization improved. The results concerning the
proteins T0557 to T0643 are given in Appendix A.

Table 2. Summary of the computational experiments performed in this paper, via

PCA and PSO.
Best 3PCA 5PCA T7PCA 9PCA 11PCA
Protein CASP9 code  decoy terms terms terms terms terms
T0545 1.942 9.231 1.931 1.923 1.919 1.889
Proteins in Appendix A

T0557 1.617 1.696 1.606 1.596 1.024 0.780
T0580 1.284 1.716 1.331 1.303 1.304 1.291
T0637 4.961 12.610 7.468 4.966 4.964 4.286
T0643 3.882 20.670 19.800 3.728 3.432 2.915

Note: RMSD of atomic positions of the best decoy used in the PCA and the model
with lower energy found after PSO optimization. The RMSD is calculated with
respect to the native structure, which is known for these proteins. Bold faces indicate
the cases in which the RMSD after optimization improved. The results concerning
the proteins T0555 to T0643 are given in Appendix A.
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performance, protein structures, and uncertainty analysis. Further details can be
found in Appendix A. Other proteins could be equally modeled, but the aim of this
section is not to show an exhaustive analysis of a large set of proteins, but to show
that the methodology provides systematically good results. Nevertheless, some ad-
ditional numerical results are shown in Tables A.1 and A.2 (Appendix A). This set of
proteins has been randomly chosen, but the results show a systematic improvement
with respect to the best model found.

5. Conclusions

In this paper, we present a study of the PCA dimensionality and how this can affect
the energy optimization and tertiary structure prediction of a protein from the
CASP9 experiment (Uracil DNA glycosylase from M. acetivorans). The algorithm
utilized succesfully establishes a low-dimensional space in order to apply the energy
optimization procedure via a member of the family of PSOs. This model reduction
has been performed in order to obtain four different search spaces (3, 5, 7, 9, and 11
dimensions in addition to a high frequency term) with views of performing the energy
optimization later on. The optimizer was capable of modeling the protein sequence
and sampling the selected decoys projected over the five different PCA search spaces.
Different energy optimum values were obtained depending on the dimensions of the
PCA search space. It was concluded that as the number of PCA terms increases, it is
possible to obtain a better refinement of both the protein energy and the backbone
structure of the native protein and its alternative states. As the number of PCA
increases, a greater level of information on the decoys used to construct the PCA is
included, and a lower enegy and uncertainty is obtained in the predictions. The
introduction of the high frequency term corresponding to the best model submitted is
crucial to expand high frequency details of the tertiary structure and being able to
lower the energy getting closer to the native structure. We believe that the results
shown in this paper could be significantly improved using higher computational
resources to improve the PSO sampling, which can be intrinsically parallelized. Also,
in some cases, a higher number of PCAs would also help to improve the predictions.

Finally, this paper helps to explain how the model reduction technique serves to
alleviate the ill-posed character of this high-dimensional optimization problem and
how to choose an appropiate model expansion by taking into account the existing
trade-off between prior variability expansion and the energy optimization to find
models close to the native structure.

Appendix A

T0557— N-terminal domain of putative ATP-dependent DNA helicase
RecG-related protein from Nitrosomonas European

The native structure of this protein has been obtained through NMR by Eletsky
et al.*? at the Northeast Structural Genomics Consortium. Figure A.1 represents the
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Fig. A.1. T0557 protein. (a) Convergence curve for different numbers of PCAs. (b) Swarm dispersion (%).

convergence and dispersion curves for the T0557. As it can be observed, the behavior
of the convergence curves is similar in order to obtain practically the same final
energy regardless of the number of PCA terms that is employed. The algorithm
reaches in all the cases the lower energy before 20 iterations. The main difference
among these graphics is the lower energy at the first iterations for a higher number of
PCA terms. This fact explains that when high frequency details are added to the
expansion, it is easier to attend lower energy regions of the backbone structure.
Besides, the dispersion is higher for lower dimensions. In this sense, analyzing solely
the energy at which the algorithm collapses provides us with the tantalizing idea that
the protein refinement barely improved the structure. Also, no variations are
observed in the different structures predicted for different search space dimensions
(Fig. A.2). However, imperceptible variations in atom coordinates could be observed
in Fig. A.3, which shows the uncertainty analysis of the protein structure with 11
PCAs. Similar graphics can be produced for other PCA expansions. In conclusion, it
is possible to observe how adding PCA terms to the search space expands the in-
formation contained in the decoys and, consequently, the PSO samples better de-
scribe the energy landscape of the protein, yielding a protein refinement with a lower
uncertainty. In this case, the PCA-PSO procedure clearly improved the results
concerning the best decoy. The native structure has energy of —278.3; the best decoy
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(d)

Fig. A.2. T0557 protein. (a) Native structure compared with structures obtained with (b) 3 PCA terms,
(c) 5 PCA terms, (d) 7 PCA terms, (e) 9 PCA terms, and (f) 11 PCA terms.
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Fig. A.3. T0557 protein. Uncertainty analysis obtained for 11 PCAs. (a) Median protein. (b) Interquartile
range (IQR). (c) IQR versus median ratio (%).
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submitted —273.7; and the best model found with 11 PCAs —277.6 (Table 1). The
RMSD distance (Table 2) between the best decoy and the native structure was
decreased from 1.617 to 0.780 with 11 PCAs.

T0580 — The lactose-specific IIB component domain structure of the
phosphoenolpyruvate: Carbohydrate phosphotransferase system (PTS)
from Streptococcus pneumoniae

Protein T0580 corresponds to a different case, where the dimensionality of the search
space plays a key role in the successful prediction of the protein structure. T0580
protein from CASP9 has been reported by Cuff et al.*’ and is considered a hypo-
thetical structure. Figure A.4 shows the convergence and dispersion curves for dif-
ferent numbers of PCAs and how including a higher number of PCA terms allows
bettering sample the energy landscape of the protein. With only four dimensions,
part of the information is missing and the algorithm is not able to reconstruct a
proper protein structure (Fig. A.5). Figure A.6 shows the uncertainty analysis with
11 PCA terms showing the recovered median structure and also the regions where
the uncertainty in the reconstruction is bigger (red areas in the IQR). Although it is
not shown, these graphics are similar for different PCA expansions. In this case, the
PCA-PSO procedure did not improve the results concerning the best decoy. The
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Fig. A.4. T0580 protein. (a) Convergence curve for different numbers of PCAs. (b) Swarm dispersion (%).
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Fig. A.5. T0580 protein. (a) Native structure compared with structures obtained with (b) 3 PCA terms,
(c) 5 PCA terms, (d) 7 PCA terms, (e) 9 PCA terms, and (f) 11 PCA terms.
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Fig. A.6. T0580 protein. Uncertainty analysis obtained for 11 PCAs. (a) Median protein. (b) IQR. (c¢) IQR
versus median ratio (%).
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native structure has energy of —258.3; the best decoy —253.8; and the best model
found with 11 PCAs has energy of —250.8 (Table 1). Interesting, the RMSD distance
(Table 2) between the best decoy and the native structure (1.284) is very similar to
the distance obtained with 11 PCAs (1.291). We believe that these results could be
further improved augmenting the number of PCAs and the number of particles used
in the PSO sampling.

T0639 — C'rystal structure of functionally unknown protein from
Neisseria meningitidis MC58

Protein T0639 from CASP9 competition is a protein from Neisseria meningitidis
MC58, whose native structure was obtained by Zhang et al.** at the Midwest Center
for Structural Genomics via X-ray diffraction. Similar to the case of T0637, this
protein is susceptible to the search space dimensionality. In this sense, it possible to
observe in Fig. A.7 that the more dimensions included the better the energy re-
finement. Also with only four PCAs it is impossible to attend the minimum energy,
while for the other configurations less than 40 iterations are needed to attend it.
Figure A.8 shows the reconstructed protein structures and Fig. A.9 shows the cor-
responding uncertainty analysis for 11 PCAs. It is possible to observe very low
uncertainties. Nevertheless, for lower PCA dimensions, the uncertainty grows con-
siderably (these graphs are not shown). In this sense, the algorithm is not capable of
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Fig. A.7. T0637 protein. (a) Convergence curve for different numbers of PCAs. (b) Swarm dispersion (%).
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(d) (e (£)

Fig. A.8. T0637 protein. (a) Native structure compared with structures obtained with (b) 3 PCA terms,
(c) 5 PCA terms, (d) 7 PCA terms, (e¢) 9 PCA terms, and (f) 11 PCA terms.

sampling the entire conformational space of the protein structure and, moreover, it is
not able to reconstruct it after carrying out the PSO sampling. In this case, the PCA-
PSO procedure improved the results concerning the best decoy submitted. The na-
tive structure has energy of —380.6; the best decoy submitted —343.6; and the best
model found with 9 PCAs —345.7 (Table 1). Therefore, the energy of the native
structure is still far from the structure that has been found. The RMSD distance
(Table 2) between the best decoy and the native structure (7.944) was decreased to
4.693 with 11 PCAs. We also think that these results could be further improved by
increasing the number of PCAs used and the number of particles in the PSO
sampling.

T0643 — Crystal structure of the N-terminal domain of DNA-binding
protein SATB1 from Homo sapiens

Protein T0643 was also considered, which corresponds to the N-terminal domain of
DNA-binding protein SATB1, whose native structure was obtained through X-ray
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Fig. A.9. T0637 protein. Uncertainty analysis obtained for 11 PCAs. (a) Median protein. (b) IQR. (c¢) IQR
versus median ratio (%).

diffraction by Forouhar et al.** Figure A.10 shows very high energies when only four

dimensions are considered. At higher dimensions, the PSO algorithm is capable of
sampling the conformational space of the protein structure, obtaining better energy
predictions. Furthermore, this idea is also supported by Figs. A.11 and A.12, where
at low dimensions, not enough information is obtained to reconstruct the proteins,
yielding to structures that do not correspond to the reality yielding high uncer-
tainties. At higher dimensions, PSO successfully samples the energy function
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Fig. A.10. T0643 protein. (a) Convergence curve for different numbers of PCAs. (b) Swarm dispersion (%).
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Fig. A.10. (Continued)
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Fig. A.11. T0643 protein. (a) Native structure compared with structures obtained with (b) 3 PCA terms,
(c) 5 PCA terms, (d) 7 PCA terms, (e¢) 9 PCA terms, and (f) 11 PCA terms.

landscape and the structures are similar to the best decoy in CASP9 competition
with its corresponding low uncertainty.

In this case, the PCA-PSO provided results similar to the best decoy. The native
structure has energy of —234.3; the best decoy —209.4 and the best model found with
seven PCAs —209.5 (Table 1). The RMSD distance (Table 2) between the best decoy
and the native structure (3.882) was clearly decreased with 11 PCAs (2.915). We
believe that the results could be further improved by augmenting the number of
PCAs and the number of particles in the PSO sampling using higher computational
resources.
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Fig. A.12. T0643 protein. Uncertainty analysis obtained for 11 PCAs. (a) Median protein. (b) IQR.
(c) IQR versus median ratio (%).

Proteins shown in Tables A.1 and A.2

Tables A.1 and A.2 show some additional results for other proteins of the CASP
competition. In all the cases, the energy and the RMSD have decreased with respect
to the best decoy, although in some cases the energy is still far from the native
structure. It might be recommended a higher exploration and adding more PCA
terms to the expansion. For instance, we have predicted T0561 and T0639 increasing
the number of PCAs to 18, using a swarm of 200 particles. The energy of T0561
decreased to —471.4 with RMSD with respect to the native of 5.814, whereas in the

Table A.1. Additional numerical results.

Protein CASP9 Native Best 3 PCA 5 PCA 7TPCA 9PCA 11PCA

code structure decoy terms terms terms terms terms
TO0555 —389.4 —370.6 23.67 18.68 —370.9 —-370.9 —-371.3
T0561 —483.6 —448.6 13.28  —400.8 —447.7  —4494 —450.2
T06358 —466.5 —462.8 —43.7 —324.1 —-361.7 —463.1 —463.6
T0639 —380.6 —343.6 —102.3 —335.5 —345.4  —345.7 —345.4

Note: Summary of the computational experiments performed in this paper via PCA and PSO.
Energy of the best decoy used in the PCA and lower energy found after PSO optimization. No
graphical outputs are given for these proteins.
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Table A.2. Additional numerical results.

Protein CASP9 Best 3 PCA 5 PCA 7PCA 9 PCA 11 PCA

code decoy terms terms terms terms terms
T0555 8.566 14.411 8.568 8.566 8.522 8.516
T0561 5.898 14.156 5.941 5.899 5.895 5.802
T0635 2.450 12.520 9.238 6.388 2.225 2.222
T0639 7.944 13.390 10.310 8.967 6.068 4.693

Note: Summary of the computational experiments performed in this paper, via PCA
and PSO. RMSD of the best decoy used in the PCA and lower energy found after
PSO optimization. No graphical outputs are given for these proteins.

case of T0639 the energy decreased to —360.2 with RMSD of 4.586. Therefore, the
results can be improved in most of the cases using advanced computational resources.

It should be understood that solving this optimization problem in higher
dimensions and locating their global energy optimum is like finding a needle in a
haystack (in words of Albert Tarantola'®). Besides, in some cases, the energy func-
tion might not take into account all the physical phenomena involved in the protein
energy landscape.
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