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Abstract. We discuss the use of the Singular Value Decomposition as a model
reduction technique in Protein Tertiary Structure prediction, alongside to the
uncertainty analysis associated to the tertiary protein predictions via Particle
Swarm Optimization (PSO). The algorithm presented in this paper corresponds
to the category of the decoy-based modelling, since it first finds a good protein
model located in the low energy region of the protein energy landscape, that is
used to establish a three-dimensional space where the free-energy optimization
and search is performed via an exploratory version of PSO. The ultimate goal of
this algorithm is to get a representative sample of the protein backbone structure
and the alternate states in an energy region equivalent or lower than the one
corresponding to the protein model that is used to establish the expansion (model
reduction), obtaining as result other protein structures that are closer to the native
structure and a measure of the uncertainty in the protein tertiary protein recon‐
struction. The strength of this methodology is that it is simple and fast, and serves
to alleviate the ill-posed character of the protein structure prediction problem,
which is very highly dimensional, improving the results when it is performed in
a good protein model of the low energy region. To prove this fact numerically we
present the results of the application of the SVD-PSO algorithm to a set of proteins
of the CASP competition whose native’s structures are known.
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1 Introduction

In computational biology, there is a wide range of problems that can be formulated as
a sampling problem over a search space with multiple dimensions. Protein tertiary
structure prediction and refinement is solved as the optimization (minimization) of the
energy function of the protein. The protein structure prediction problem it is considered
as one of the foremost challenges in computational biology [1].
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Proteins are biopolymers that are composed of a set of peptide-bonded amino-acids.
The fact that, many spatial conformations of proteins are possible due to the rotation of
the chain on each C_α atom, imply that a wide range of structural differences exist. These
conformational differences are crucial to fully understand protein interactions, functions
and evolution. Large efforts are made in protein structure prediction since the experi‐
mental methods used to study their structure are very costly. The computational predic‐
tion of protein structures implies the understanding of the mechanisms involved in
protein structure and folding, in order to construct good physical models of the protein
energy function and accurately mimic the reality, and also the development of mathe‐
matical approaches to handle this problem [1, 2]. These methods are based on the opti‐
mization of the protein energy function that depends on the protein atoms’ coordinates.
The forward model is crucial, because if the energy function is able of fully describing
the energetics of the protein folds, the minimum energy will correspond to the native
structure, but other plausible configurations might also coexist. The fact that these algo‐
rithms are not able of sampling the entire protein conformational search space implies
that some modelling simplifications are needed. The use of Principal Component Anal‐
ysis performed in a set of templates to reduce the dimension and performing Protein
Tertiary Structure Prediction via Particle Swarm Optimization has been presented [3],
showing that the accuracy of the structure prediction will depend on how the reduced
PCA basis set is constructed. Particularly, the quality of the a priori templates, the
number of PCAs terms, and also on the introduction of a high frequency term which is
able to span high frequency details of the protein structure, play key roles in the algorithm
performance.

In this paper, we assume an accurate energy function, focusing on the method devel‐
oped to sample the conformational space via the SVD-PSO algorithm. The model
reduction is different from PCA since only one good template is needed to achieve the
model reduction. Also, independently of the number of atoms in the protein the sampling
is performed in a three-dimensional space. This drastic dimensionality reduction serves
to sample other templates closer to the native structure and whose tertiary structure is
compatible with the three SVD basis terms.

2 Protein Tertiary Structure Modelling

Our aim is to model protein tertiary structures using SVD as model reduction technique
and PSO as global optimizer and sampler. Therefore, the algorithm presented belongs
to the category of template-based modelling [4]. Proteins are modelled by their free-
energy function, E(𝐦):ℝn

→ ℝ, by finding the protein model that achieves the minimum
energy value, 𝐦

p
:E
(
𝐦

p

)
= min E(𝐦). In this case the model parameters (m) are the

protein coordinates and its dimension is three times the number of atoms of the protein.
Therefore, the prediction of the best protein structure involves the optimization of the
energy function in a high dimensional space with an intricate energy function landscape
[5]. These two issues have to be carefully considered as they may cause the failure of
the optimization problem if the algorithm gets trapped in one flat valley corresponding
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to a local minimum which could be located far from the native backbone structure. If
we assume that 𝐦

p
 is the global optimum, it satisfies the condition, ∇E

(
𝐦

p

)
 = 0.

Consequently, there is a set of models MTOL =
{
𝐦:E(𝐦) < ETOL

}
, whose energy is

lower than a specific cut-off value ETOL. This set in the neighbourhood of 𝐦
p
:, can be

approximated by the linear hyper-quadric [5, 6]:

1
2
(
𝐦 −𝐦

p

)T
HE

(
𝐦

p

)(
𝐦 −𝐦

p

)
≤ ETOL − E

(
𝐦

p

)
(1)

where HE
(
𝐦

p

)
 is the Hessian matrix evaluated at 𝐦

p
. To avoid, the global optimization

method to be trapped in flat, curvilinear elongated and intricate valleys, we require high
explorative global optimization methods to explore the non-linear equivalence region
MTOL. Algorithms such as the binary genetic and Particle Swarm Optimization (PSO)
are capable of performing this task [7]. In this paper, we use an explorative member of
the PSO family, denoted as RR-PSO to sample the free-energy function in a reduced
space. The main difference with respect to others heuristic approaches is that RR-PSO
parameters are tuned based in stochastic stability analysis results [15].

3 Protein Tertiary Structure Refinement Algorithm

3.1 The SVD-PSO Algorithm

Protein prediction, as other real problems from science, has a large number of parame‐
ters. As pointed, the relatively high number of atoms and its associated coordinates
determine the value of the free-energy function. This feature, alongside the accuracy
required to make good predictions, make these problems highly undetermined and ill-
posed. Consequently, good “a priori” information is required to make good predictions
using global optimization methods. The high numbers of atoms precludes the use of
highly explorative optimization algorithms (RR-PSO). In this paper, we show how to
construct a reduced search space utilising SVD. Constructing a reduced search space
via SVD helps us regularizing the inverse problem and finds the atom coordinates that
minimise the protein free-energy function [8].

The utilization of SVD allows the optimization of the free-energy function to be
performed in a very low dimensional search space and can be written as follows: finding

𝐚k ∈ ℝ
d: E

(
𝐦̂𝐤

)
= E

(
𝛍 + 𝐕𝐝𝐚𝐤

)
≤ ETOL, (1)

where 𝛍 is the mean protein (it could be null) and 𝐕𝐝 contains as columns the basis set
of vectors provided by the SVD.

Focusing on the SVD model reduction, the idea consists in writing the protein in a
matrix format 𝐦̂𝐤 ∈ M

(
3, natoms

)
, storing in each column the [x, y, z] coordinates of each

atom of the protein structure. Then, it can be factorized, as follows via the SVD:

𝐦̂𝐤 = 𝐔𝚺𝐕𝐓 =
∑3

k=1
𝛼k𝐮𝐤𝐯

𝐓

𝐤
(2)
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where 𝐔,𝐕 are orthogonal matrices whose column vectors are respectively 𝐮𝐤, 𝐯𝐓
𝐤
, and

Σ is the SVD of 𝐦̂𝐤, that has 3 non-null singular values 
(
α1, α2, α3

)
. The previous expres‐

sion is known as the spectral decomposition of a matrix and, in this case, it implies that
the protein tertiary structure prediction problem can be performed over the reduced basis
𝐮𝐤𝐯

𝐓
𝐤
 without any loss of energy (information). In this reduced basis set the protein 𝐦̂𝐤

has only these 3 coordinates.
Once the reduced base is defined, any other protein decoy will be spanned as a unique

linear combination as 𝐦̂𝐧𝐞𝐰 =
∑3

k=1 βk𝐮𝐤𝐯
𝐓
𝐤
, and the coordinates 

(
β1, β2, β3

)
 are found via

PSO optimization. The SVD allows a drastic dimensionality reduction from 3natoms to 3
dimensions provided by the spectral basis set 

{
𝐮𝟏𝐯

𝐓
𝟏
, 𝐮𝟐𝐯

𝐓
𝟐
, 𝐮𝟑𝐯

𝐓
𝟑

}
. Then, the PSO

sampling (while optimzing) is performed efficiently in a reduced search space as the
protein atoms coordinates are not sampled independently. Consequently, the ill-deter‐
mination of the problem is reduced [9]. This procedure works fairly well due to the
deterministic nature of the protein energy function landscape, and should be considered
as a protein refinement method, with the advantage that the PSO sampling allows to
assess the uncertainty of the protein structure reconstruction in the SVD basis set. The
aim of this paper is not demonstrating superiority with respect to existing methods, but
to provide a new algorithm for tertiary protein prediction refinement.

3.2 Minimisation of the Free-Energy Function

Most of the advances in reducing computational costs and efficiency are based on amino-
acid sequences homology [3, 10–13] However, other algorithms are capable of storing
the ongoing protein structure information during the sampling [14]. In this sense, PSO
has been confirmed as a major improvement on sampling a specific protein backbone
structure and evaluating its alternate states by Fernández-Martínez et al. [3].

Hence, we perform the minimization of the energy function for each through an
explorative member of the family of Particle Swarm Optimizers (RR-PSO) [15]. RR-
PSO is a stochastic and evolutionary optimization algorithm, which was motivated by
individual’s (particle) social behaviour [16]. The task consists of sampling an appro‐
priate protein model that satisfies the condition, E

(
𝐦̂𝐤

)
≤ ETOL,. The sampled model

must be reconstructed in the original atom space in order to evaluate the energy, atom
coordinates and forces. These forward calculations are performed through the Bioshell
package developed by Gont et al. [17–19].

The PSO algorithm starts by defining a prismatic space of admissible protein models:

lj ≤ aji ≤ uj, 1 ≤ j ≤ n, 1 ≤ i ≤ nsize

where lj, uj are the lower and upper limits for the j-th coordinate for each model and nsize

is the size of the swarm. In this particular case, the sampling is performed in the three-
dimensional SVD reduced base. In the algorithm, each particle (model) has its own
position in the reduced search space. The particle velocity corresponds to the applied
atom coordinates perturbations required in order the particle to explore the search space.
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4 Numerical Results

4.1 2L3F PDB Code Protein

We applied the model reduction technique utilizing a SVD to the protein Uracil DNA
glycolase from Methanosarcina acetivorans whose native structure is known and
reported by the Northeast Structural Genomics Consortium Target [20]. This native
structure has been obtained via Nuclear Magnetic Resonance (NMR) which helps
obtaining valuable information about the 3D protein structure, dynamics, nucleic acids
and its derived complexes.

The assessment of the algorithm performance over a reduced search space is carried
out by evaluating two different decoys corresponding to the best decoy and the 10th
percentile decoy listed in the CASP9 competition. Each decoy comprises 1271 atoms
corresponding to 158 residues. When these two decoys are projected over the reduced
search space, the energy of each basis term comprises the three decoy eigenvalues;
consequently, the protein sampling would be carried out with a lower ill-posed character
while maintaining the prediction accuracy. Information about the algorithm perform‐
ance over the reduced Search Space is given in Fig. 1.

Fig. 1. Protein 2L3F. (A) Convergence curve. (B) Median dispersion curve (%).

As observed in Fig. 1A, the algorithm starts with an energy value which is very close
to the optimum. Additionally, the protein refinement algorithm is strongly influenced
by the “a priori” model utilized, that is, better initial models yield to better refinements.
In Fig. 1B, we show the algorithm performance by plotting the median distance for each
particle with respect to the centre of gravity normalized with respect to the first iteration
(considered to be 100% dispersion). The qualitative assessment of the protein refinement
is shown in Fig. 2, where the best configuration found for each case is presented and
compared to the best prediction in CASP9 competition. In this sense, good predictions,
similar to the native structure were obtained.
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Fig. 2. Protein 2L3F backbone structures corresponding to the (A) best model, (B) result of best
model refinement, (C) result of 10th percentile decoy refinement.

We quantitatively analyse the refined structures via the Root Mean Squared Distance
(RMSD) with respect to the native. Table 1 summarizes the results obtained with
different expanded initial models. It can be observed how the algorithm is capable of
improving almost the entire decoy set from CASP9 competition. The major drawback
is that a good “a priori” model, situated within the valley where the optimum value exists,
is required as a starting point as observed by the poor improvement in the energy func‐
tion. However, despite the energy function is seldom improved, the RMSD suffers
improvements; due to the fact that, RR-PSO samples within the valley where the energy
function does not vary substantially, however, it is capable of finding a new backbone
conformation with a lower RMSD.

Table 1. Summary of the computational experiments performed in this paper, via Singular Value
Decomposition and Particle Swarm Optimization. The table shows the results obtained with
different initial models to perform the SVD expansion (initial energy).

Protein PDB code Model Initial
energy

Best fit
energy

“Initial”
RMSD

Best fit
RMSD

2L3F Best model −342.1 −341.5 1.9424 1.8884
10th percentile −311.8 −312.5 2.0179 2.0178

2L06 Best model −369.9 −371.4 5.9876 5.9570
10th percentile −322.3 −323.6 6.6480 4.6003

2KYY Best model −273.7 −277.1 1.6171 1.6051
10th percentile −247.4 −248.3 3.6767 3.6508

2L02 Best model −448.6 −450.1 7.2553 7.1511
10th percentile −373.3 −376.0 14.5460 9.8897

3NBM Best model −253.6 −249.6 0.9829 0.9055
10th percentile −233.5 −233.9 1.4245 1.3309

3N1U Best model −464.4 −465.8 0.6949 0.6945
10th percentile −438.1 −439.9 0.8601 0.8945

2X3O Best model −369.2 −369.2 8.2840 3.2162
10th percentile −334.9 −335.3 11.3852 8.070

3NYM Best model −343.6 −343.0 8.9442 6.1692
10th percentile −299.3 −301.8 10.8898 6.3731

3NZL Best model −209.4 −210.0 3.8829 3.8128
10th percentile −177.1 −177.8 4.1682 4.1648
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Figure 3 shows the median coordinates of the sampled protein models over the
energy region below −200. We show the protein as a matrix with rows containing the
coordinates x, y and z and the columns containing the atoms. This representation helps
us visualizing better the uncertainty behind the coordinates in the form of coordinate
variation and interquartile range.

Fig. 3. Median protein and the protein uncertainty for predictions based on the sampling
performed over the (A) best model in the energy region below −320 PCAs; (B) 10th percentile
decoy and within the energy region below −300.

This graph is used to quantify different conformations of the protein structure. In this
case, the higher variations occur in the border coordinates, those atoms corresponding
to the protein ends. Besides, the uncertainty is bigger for case (B) concerning the 10th

percentile decoy. Therefore, the protein structure seems to be better constraint when the
sampling is performed using the best decoy found.

Figure 4 shows the topography of the energy in the first two PCA coordinates; those
two reduce search space coordinates that store the majority of the information. As

Fig. 4. Protein 2L3F energy landscape for samplings performed over a search space obtained via
SVD performed on: (A) the best model, (B) 10th percentile best decoy. It could be observed that
both maps have a similar structure.
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observed, the topography is similar, with a central valley of low energies, whose orien‐
tation is North-South. These graphics serve to assess the mathematical complexity of
the protein tertiary structure prediction problem, by observing the intricate valleys of
the energy function in lower dimensions. In this case we have used PCA as a visuali‐
zation tool to produce this plot, because the projection onto a 2D dimensional space has
to be done using different sampled templates with different energy.

4.2 Prediction of Other Proteins via SVD and PSO

We present additional information to expand this research benchmark. We have tested
additional protein (21–26) utilising SVD model reduction and the RR-PSO algorithm
to prove this technique as protein tertiary structure refinement technique. Table 1
summarizes the results obtained, where we show the energy and RMSD of the initial
model used to perform the expansion, and the same descriptors obtained after optimi‐
sation in the SVD reduced basis set. The case of 2L06, 2X30 and 3NBM are special,
since a drastic improvement with respect each decoy has not been achieved as in the
other cases. We propose to use this method as a final refinement step, after a good protein
model has been found via other existing methodologies. Besides, the No-free lunch
theorem in search and optimization [20] states that no algorithm is superior to the rest
when it is used over the whole set of problems. Therefore, research is always needed to
provide new mathematical-based, elegant and simple algorithms.

5 Conclusions

In this paper, we describe a model reduction technique applied to a decoy-based model‐
ling algorithm. The application of SVD is capable of successfully establishing a three-
dimensional Search Space in order to perform the sampling of protein structures via RR-
PSO. The SVD model reduction technique is able of preserving the complete informa‐
tion of a given protein backbone structure, consequently, it has been proven to further
refine and lower the energy when the optimization is carried out. In this sense, it has
been shown that a better refinement is achieved compared to other model reduction
techniques such as Principal Component Analysis. The main difference with respect to
PCA is that the SVD model reduction is performed in one protein template, while PCA
needs different templates to diagonalize their experimental covariance matrix and
finding the reduced basis set. Besides, independently of the number of atoms, the
sampling is always performed in the SVD spectral basis set, which is three dimensional.
Additionally, the SVD model reduction combined with PSO, allows us to sample the
equivalent nonlinear region, that helps us understand the protein backbone structure and
its alternate states. The SVD model reduction serves to alleviate the ill-posed character
of this highly-dimensional optimization problem without losing information when the
protein that is used to calculate the basis set is expressed in this reduced search space.
Therefore, the SVD-PSO methodology should be used as a protein structure refinement
method.
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