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Abstract. We discuss applicability of Principal Component Analysis and Parti-
cle Swarm Optimization in protein tertiary structure prediction. The proposed 
algorithm is based on establishing a low-dimensional space where the sampling 
(and optimization) is carried out via Particle Swarm Optimizer (PSO). The re-
duced space is found via Principal Component Analysis (PCA) performed for a 
set of previously found low- energy protein models. A high frequency term is 
added into this expansion by projecting the best decoy into the PCA basis set 
and calculating the residual model. Our results show that PSO improves the en-
ergy of the best decoy used in the PCA considering an adequate number of PCA 
terms. 
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1 Introduction 

The problem of protein tertiary structure prediction consists of determining the 
unique three- dimensional conformation of protein (corresponding to the lowest ener-
gy) from its amino acid sequence. Currently, this problem represents one of the big-
gest challenges for biomedicine and biotechnology since it is of utter relevance in 
areas such as drug design or design and synthesis of new enzymes with desired prop-
erties that have not yet been appeared naturally by evolution, that fold to a desired 
target protein structure [1,2]. 
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Despite the constantly growing number of protein structures deposited in the Pro-
tein Data Bank (PDB), there is a rapidly increasing gap between the number of pro-
tein sequences obtained from large-scale genome and transcriptome sequencing and 
the number of PDB structures. Currently PDB contains over 130,000 macromolecular 
structures, while the UniProt Knowledge base contains around 50 million sequences 
(after recent redundancy reduction). Thus, less than 1% of protein sequences have the 
native structures in the PDB database. Therefore, accurate computational methods for 
protein tertiary structure prediction, which are much cheaper and faster than experi-
mental techniques, are needed [1,2]. 

 
The main methodologies to generate protein tertiary structure models are di-

vided into two categories: template-based and template-free modeling. Template-
based homology modeling allows building a model of the target protein based on 
a template structure of a homologue (protein with known structure and high (at least 
30%) sequence identity to the target protein), by simulating the process of evolution - 
i.e. introducing amino acid substitutions as well as insertions and deletions, while 
maintaining the same fold. 

 
Template-free methods predict the protein tertiary structure from physical princi-

ples based on optimizing the energy function that describes the interaction between 
the protein residues to find the global minimum without using any template infor-
mation. Some well-known programs in the literature use template-free modeling [2-
4] mainly when no structural homologs exist in the PDB. Template-based model-
ing methods use the known structures (as templates) of the proteins that are analogous 
to the target protein to construct structural models [5]. 

 
Regardless the method utilized, the tertiary structure protein prediction is hampered 

by the curse of the dimensionality, since these prediction methods are unable to 
explore the whole conformational space. The curse of dimensionality describes how 
the ratio of the volume of the hyper sphere enclosed by the unit hypercube be-
comes irrelevant for higher dimensionality (more than 10 dimensions). Therefore, 
there is a need to simplify the protein tertiary structure prediction problem by using 
model reduction techniques to alleviate its ill-posed character [1]. 

 
Protein refinement methods are a good alternative to approximate the native 

structure of a protein using template-based approximate models. Some of these 
methods use molecular dynamics, coarse-grained models and also spectral decom-
position. In our earlier work, [6] we applied Elastic Network Models to protein 
structure refinement. This mathematical model provides a reliable representation of 
the fluctuational dynamics of proteins and explains various conformational changes in 
protein structures. In this article, we use the tertiary structure information provided by 
other decoys to reduce the dimensionality of the protein tertiary structure prediction 
problem. We were able to accomplish this task by constraining the sampling within 
the subspace spanned by the largest principal components of a series of templates. 
These low-energy protein models (or templates) are previously found using dif-
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ferent optimization techniques, or performing local optimization and using different 
initial and reference models, via template-free methods. In the present study we 
used as templates, models submitted by the different prediction groups during the 
CASP experiment. 

 
This methodology allows the sampling of the lowest-energy models in a low di-

mensional space close to the native conformation. Due to the fact that, the native 
structure is unknown for most cases, the refined protein structure requires its uncer-
tainty assessment in order to gain a deeper understanding of the protein and its alter-
nate states [7]. The number of PCA terms (PCAs) used to construct the reduced 
search space for energy optimization and sampling affects the refined structure. 
Therefore, in this paper we try to understand the effect of PCA dimensionality in 
the protein tertiary structure prediction problem. 

 
The main conclusions are that the dimensionality reduction alleviates the ill-posed 

character of this high-dimensional optimization problem, as well as the possibility to 
increase the uncertainty of the predicted backbone structure. Therefore, a tradeoff 
is required since, determining the minimum number of PCA terms is a crucial step 
for achieving a successful refinement. 

 

2 Computational Methods 

2.1 Protein Energy Function Landscape 

 
In the tertiary structure protein prediction problem the model parameters are the 

proteins coordinates determined by an   atoms,  1 2, , , n
nm m m  m M R

 , 

with 3 an n , being M  the set of admissible protein models elaborated taking into 
account their biological consistency. The tertiary structure of a given protein is de-
fined by knowing the free-energy function, 𝐸(𝐦): 𝐑𝑛 → 𝐑 and finding the modal that 

minimizes that free energy function, 
 minp E




m M
m m

 [8]. 
The main issue with this problem is its high dimensionality. That implies that the 

optimization algorithm utilized in this problem needs to tackle the high dimension of 
the model space consisting of thousands of atoms and also the landscape of the energy 
function.  

Also, assuming that pm
 is the global optimum for the energy function satisfying 

the condition,
 pE m 0

, there exist a set of models 
  :tol tolM E E m m
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whose energy is lower than a given energy cut-off tolE . These models, in the neigh-

borhood of pm
, belongs to the linear hyperquadric [9] : 

 
      

1
2

T

p p p tol pHE E E   m m m m m m
 (1) 

where 
 pHE m

 is the Hessian matrix calculated in pm . Nevertheless, the line-

ar hyper quadric only describes locally in the neighborhood of pm  the global com-
plexity of the energy landscape with one or more flat curvilinear elongated valleys 
with almost null gradients where the local optimization methods might get trapped.  

2.2 Protein model reduction via Principal Component Analysis 

 
Principal component analysis is mathematical model reduction technique that 

transforms a set of correlated variables into a smaller number of uncorrelated ones 
known as principal components. The resulting transformation has the advantage of 
being smaller and being more computationally advantageous while maintaining as 
much as possible the previous variability. This procedure has been applied in several 
fields but, in protein tertiary structure, it was carried out a preliminary application 
utilizing the three largest PCs while optimizing via the Powel method [3]. However, 
in this paper, we perform stochastic sampling in higher dimensions using a member of 
the family of Particle Swarm Optimizers (RR-PSO) [10, 11]. We study the protein 
structure prediction and how the number of PCA terms affects the final protein struc-
ture obtained via RR-PSO. This PCA is of great relevance in protein structure predic-
tion as it aids us sampling the parameters when a correlation among exists, it also 
avoids the issue of a high dimensional problem and alleviates the ill-posed character 
of the tertiary structure optimization problem as the solutions are found in a smaller 
dimensional space: finding  

   ˆ: ,d
k k d k tolE E E   a m μ V a

    (2) 

where , dμ V  are provided by the model reduction technique that it is used. 
The PCA dimensionality reduction is carried out as follows [12]: 

An ensemble of l decoys  n
i Rm  is selected and arranged column wise into a 

matrix:    1 2, , , ,l M n l Χ m m m . The problem consists of finding a set of 

protein patterns 
 1 2, , ,d dV v v v

 that provides an accurate low dimensional 
representation of the original set with d l . This carried out by diagonalizing the 
matrix X as follows:  
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    , ,T
priorC M n n   Χ μ Χ μ

                                 (3) 
where μ  is either the experimental mean of the decoys, the median, or any other 

decoy around we desire to perform the search as a backbone structure. 

Matrix priorC
 has a maximum rank of 1,l   therefore, as a maximum 1l   ei-

genvectors of priorC
 are require to expand the whole prior variability. Thus, it is 

easier to diagonalize 
 ,T

priorC M l l
 and to obtain the 1l   first eigenvectors of 

priorC
 as follows: 

 

2

,
,

(:, ) , 1, , 1.
(:, )

T

T T T
prior

k

V U
C U U B V U

B k k l
B k

  

      

  

Χ μ
Χ μ

v

   (4)  

The centered character of the experimental covariance priorC
 is crucial to main-

tain consistency with the centroid model μ .  

Ranking the eigenvalues of 
T
priorC

 in decreasing order allows us to select a certain 
number of PCA terms ( 1d l n   ) to match most of the variability in the 
model ensemble. Additionally, a high frequency term is included within the PCA in 
order to consider the model with the lowest energy, and projecting it into the PCA 
basis as follows: 

1
1

.
d

d BEST i i
i

a



  v m μ v                                                                (5)  

Consequently, any protein model in the reduced base is represented as a unique 
linear combination of the eigen-modes:  

1

1

ˆ .
d

k i i k
i

a




   m μ v μ Va                                        (6) 

The projection of any decoy ˆ km  is very fast, since matrix V  is orthogonal: 

  ˆT
k k a V m μ

.                                                   (7) 
This technique allows global optimization methods to perform efficiently the re-

quired sampling in the reduced search space. The PCA procedure helps alleviating the 
ill-posed character of any highly dimensional problem and we look to study how the 
number of PCA terms affects the final predicted configuration. 
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2.3 The particle swarm optimizer 

For each backbone conformation, we have performed the optimization via Particle 
Swarm Optimization (PSO). This methodology is a stochastic and evolutionary opti-
mization technique, which is inspired in individual’s social behavior (particles) [13-
15]. The sampling problem consists of finding an appropriate sample of protein mod-

els
ˆ k k  m μ V a , such as  ˆ k tolE Em

. Although the search is carried out in 
the reduced search space (PCA), the sampled proteins must be reconstructed in the 
original atom space in order to correctly evaluate their energy. The PSO algorithm is 
as follows: 

We define a prismatic space of admissible protein models, M: 
  , 1 , 1 ,j ji j sizel a u j n i n         (8) 

where , ,j jl u are the lower and upper limits for the j-th coordinate for each model. 

Each plausible model is a particle that is represented by a vector whose length is the 
number of PCA terms. Each model has its own position in the search space. The per-
turbations we produced in the PCA search space required in order to carry out he 
sampling and explore the solutions are represented by the particle velocities.  In our 
case, the search space is designed by projecting back all the decoys to the reduced 
PCA space and finding the lower and upper limits that expand the variability in each 
PCA coordinate.  

At each iterations, the algorithm updates the positions,  i ka , and the velocities, 

 i kv  of each particle swarm. The velocity of each particle, i, at each iteration, k, is 

a function of three major components: 
The inertia term, a real constant, w  that modifies the velocities.  
The social term, the difference between the global best position found thus far in 

the entire swarm,  kg  and the particle’s current position,  i ka . 

The cognitive term, the difference between the particle’s best position found 
 i kl  and the particle’s current position,  i ka . 

Thus, the algorithm is written as follows: [15] 

         

     

1 2

1 1 2 2 1 2

1 ( ) ( )

1 1 ,
, , , (0,1), , , .

k
i i i i i

i i i

g l g l

k k k k k

k k k
r a r a r r U a a

  

  

     

   

   

v v g a l a

a a v
R

  (9) 

1 2,r r  are vectors of random numbers uniformly distributed in (0,1) to weight the 

global and local acceleration constants, ,g la a . 
2

g la a



  is the total mean accel-

eration , crucial in determining the algorithm’s stability and convergence [13]. 
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Protein structure calculations are performed via the Bioshell computational pack-
age [16-18]. Additionally, Bioshell was considered and essential tool in our research 
as it was used to carry out tertiary structure in the different PCA basis dimensions, 
that is, it enabled us to eliminate the distortion of bond angles and lengths accompa-
nying the displacement of protein coordinates when we sample moving along the 
PCA terms. Furthermore, Bioshell package help us maintaining the structure un-
changed and, ultimately, obtaining a backbone structure closer to the determined 
structures via experiments. Finally, Bioshell also evaluates at each time step each 
protein conformation, calculating its residues and performing energy minimization to 
evaluate the energy conformation. 

3 Results 
 

In this section we look to study how different PCA dimension affect the pre-
diction capabilities 

 

 
 

Fig. 1. Energy values of 185 different decoys for protein T0545 (Fig. 1A), is used to construct a 
reliable PCA base (Fig. 1B) 

of the PSO algorithm when applied to different predictions found on the CASP 
database. We consider protein predictions whose native structures are known in 
order to assess how our prediction d i f f e r s  f r o m  t h e  n a t i v e  structure. As it has 
been explained previously in the methodology section we utilize different decoys 
from proteins found in the CASP experiment, we randomly selected the protein 
T0545 to show the energy values of 185 different decoys and plotted in Figure 
1A. If we select every single decoys that is in the 30th energy percentile, that is, 
those with an energy less than this -300, we are capable of constructing a reliable 
PCA base (see Figure 1B). In this sense, it is possible to describe the vast ma-
jority of the backbone conformational variation, a fact that has also been reported 
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by Baker et al. (3) However, we were able to further tune the methodology in order 
to account for the highest energy details by adding an additional term, known as the 
high frequency term. This study suggests that we can efficiently sample and opti-
mize a great number of conformational variations in tertiary protein structures by 
selecting the few first decoys. 

The search space utilized is based on the PCA expansion. It is observed that, re-
gardless the PCA coordinates we consider, the width of the first PCA coordinate 
interval is bigger and, afterwards, it starts getting narrower as the PCA index 
increases. Additionally, we consider another PCA with eleven terms plus the High 
Frequency term, in this case, a higher variability within the protein decoys is consid-
ered. 

 
Once the PCAs are determined, we perform the PSO search and optimization 

by adopting a swarm of 40 particles and 100 iterations. To carry out the PSO sam-
pling and optimization, we used the RR-PSO family member while its exploration 
capabilities were monitored in order to ensure that a good exploration of the PCA 
search space is performed. The monitoring is, then, carried out by measuring the 
median distance for each particles and the center of gravity and, normalizing it with 
respect to the first iteration, considered to be a 100%. When the median disper-
sion falls below 3%, we can assume that the swarm has collapsed towards the global 
best, and we can either stop sampling or increase the exploration utilizing steps much 
greater than 1. When the collapse happens, all the particles of the same iteration will 
be considered as a unique particle in the posterior sampling. 

 
As shown in Table 1, the predictions utilizing three PCA terms are not of good 

quality with the majority of the predictions with energies far from the native struc-
tures. On the other hand, those predictions carried out with a higher dimensionality 
yield to lower energies. This point is due to the fact that the explorative character of 
the PSO is strongly correlated with the number of dimensions utilized in con-
structing the search space. That is, the more dimensions we use, the better the ex-
ploration of the protein structure conformational variations and, as a consequence, 
the final energy predicted. 

 
Protein 

CASP9 Code 
Native 

structure 
Best decoy 3 PCA 

terms 
5 PCA 
terms 

7 PCA 
terms 

9 PCA 
terms 

11 PCA 
terms 

T0545 -348.8 -342.1 -256.8 -299.0 -343.5 -344.6 -345.5 
T0557  278.9 -273.7 -275.3 -275.2 -275.4 -277.2 -277.6 
T0555 -389.4 -370.6 23.67 18.68 -370.9 -370.9 -371.3 
T0561 -483.6 -448.6 13.28 -400.8 -447.7 -449.4 -450.2 
T0580 -258.3 -253.8 -196.4 -250.8 -249.7 -249.5 -250.8 

 
  T0635 -466.5 -462.8 -43.7 -324.1 -361.7 -463.1 -463.6 
  T0637 -384.5 -372.0 -46.7 -103.7 -369.2 -371.4 -372.4 
  T0639 -380.6 -343.6 -102.3 -335.5 -345.4 -345.7 -345.4 
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  T0643 -234.3 -209.4 -138.9 -209.2 -209.5 -210.0 -210.0 

Table 1.  Summary of the computational experiments performed in this paper, via Principal 
Component Analysis and Particle Swarm Optimization. Energy of the best decoy used in 
the PCA and lower energy found after PSO optimization. Bold faces indicate the cases 
where the energy after optimization improved. 

 
The point remarked by the energy predictions is further confirmed when the Root 

Mean Squared (RMS) distance is scrutinized in Table 2. Predictions obtained with a 
PCA with low dimensions are structurally far from the native structures as shown by 
the RMS, whose values are extremely high. However, when we increase the dimen-
sionality, it is possible to obtain better RMS closer to the native structure. 

 
 

Protein CASP9 
Code 

Best decoy 3 PCA 
terms 

5 PCA 
terms 

7 PCA 
terms 

9 PCA 
terms 

11 PCA 
terms 

T0545 1.942 9.231 1.931 1.923 1.919 1.889 
T0555 8.566 14.411 8.568 8.566 8.522 8.516 
T0557 1.617 1.696 1.606 1.596 1.024 0.780 
T0561 5.898 14.156 5.941 5.899 5.895 5.892 
T0580 1.284 1.716 1.331 1.303 1.304 1.291 
T0635 2.450 12.520 9.238 6.388 2.225 2.222 
T0637 4.961 12.610 7.468 4.966 4.964 4.286 
T0639 7.944 13.390 10.310 8.967 6.068 4.693 
T0643 3.882 20.670 19.800 3.728 3.432 2.915 

Table 2. Summary of the computational experiments performed in this paper, via Principal 
Component Analysis and Particle Swarm Optimization. RMSD of the best decoy used in 
the PCA and lower energy found after PSO optimization. Bold faces indicate the cases 
where the RMSD after optimization improved. 

 
 
It can be observed, when three PCA terms are considered, the structure is not 

well defined compared to the native structure, on the other hand, considering 11 
PCA terms, the structure is better defined and closer to the native structure, as ex-
pected based on the previous analysis of the RMS and the energy function optimiza-
tion results. 

 
We computed the median coordinates of the sampled protein decoys that full-

fil that the energy is below -200 for each PCA search space case. For each case, we 
presented the protein as a matrix with rows containing the coordinates x, y and z 
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and the columns containing the atoms in the protein. This way of representing 
the protein helps us visualizing better the uncertainty behind the coordinates. We 
observed, that larger variations ins the coordinates occurs in  the protein borders. 
Additionally, as the number of PCA terms decreases, the variations are observed 
to be smaller, a possible confirmation that, as the terms gets reduced, the ill-
conditioned character of the tertiary protein structure prediction problem is re-
duced. On the other hand, the more PCA terms, the more ill-conditioned the op-
timization problem is as it is considering more information. As it can be observed, 
there is a trade-off between the ill-conditioned character and the prediction capability 
of the model. This is due to the fact that, as we reduce the PCA Search Space, some 
crucial information required to get a good prediction is lost in the model reduction 
procedure when accounting for fewer structural variations. 

4 Conclusions 

In this study, we present an study of the Principal Component Analysis dimension-
ality and how this can affect the energy prediction and tertiary structure of proteins 
from the CASP9 competition. The algorithm utilized successfully establishes a low 
dimensional space in order to apply the energy optimization procedure via a member 
of the family of Particle Swarm Optimizers. This model reduction has been per-
formed in order to obtain four different search spaces (3, 5, 7, 9 and 11 dimen-
sions plus a high frequency term) to perform the energy optimization later on. 
The optimizer was capable o modelling the protein sequence and sample the selected 
decoys projected over the four different PCA Search spaces. Different energy 
optimum values were obtained depending on the dimensions of the PCA Search 
Space. It was concluded that as the number of PCA terms increases, it is possible to 
obtain a better refinement of both the protein energy and the backbone structure of the 
native protein and its alternative states. As the number of PCA increases, a greater 
level of information of the decoys utilized to construct the PCA is included and, a 
lower energy and uncertainty is obtained in the predictions. 

 
Finally, this paper serves to explain how the model reduction technique serves to 

alleviate the ill-posed character of this high-dimensional optimization problem and 
how to choose an appropriate 

5 Acknowledgements 

A. K. acknowledges financial support from NSF grant DBI 1661391 and from The 
Research Institute at Nationwide Children’s Hospital. 



11 

6 References 

1. Progress and challenges in protein structure prediction. Zhang, Y. 2008, Curr. Opin. Struc. 
Biol., Vol. 18, pp. 342-348. 

2. De novo prediction of three-dimensional structures for major protein families R. Bonneau, 
C. E. Strauss, C. A. Rohl, D. Chivian, P. Bradley, L. Malmstrom, T. Robertson and D. Baker, 
2002. J. Mol. Biol., Vol. 322, pp. 65-78. 

3. Rosetta predictions in CASP5: successes, failures, and prospects for complete automation, P. 
Bradley, D. Chivian, J. Meiler, K. Misura, C. Rohl, W. W. W. Schief, O. Schueler-Furman, 
P. Murphy and J. Schonbrun,  Proteins, 2003, Vol. 53, pp. 457-468. 

4. Automated prediction of CASP‐5 structures using the Robetta server , D. Chivian, D. E. 
Kim, L. Malmstrom, P. Bradley, T. Robertson, P. Murphy, C. E. Strauss, R. Bonneau, C. 
A. Rohl and D. Baker, 2003, Proteins, vol. 53, pp. 524-533. 

5. The Extent of Cooperativity of Protein Motions Observed with Elastic Network Models Is 
Similar for Atomic and Coarser-Grained Models. Sen TZ, Feng Y, Garcia JV, Klocz-
kowski A, Jernigan RL., 2006,  J Chem Theory Comput.,Vol. 2, 696-704. 

6. Elastic network normal modes provide a basis for protein structure refinement,  
Gniewek P1, Kolinski A, Jernigan RL, Kloczkowski A., 2012, J Chem Phys. Vol.136, 
195101. 

7. Model reduction and uncertainty analysis in inverse problems. Fernández-Martínez, J.L. 
2015, Leading Edge, Vol. 34, pp. 1006-1016. 

8. From crystal structure prediction to polymorph prediction: interpreting the crystal ener-
gy landscape. Price, S.L. 2008, Phys. Chem. Chem. Phys., Vol. 2008, pp. 1996-2009. 

9. On the topography of the cost functional in linear and nonlinear inverse problems. Fer-
nández-Martínez, J.L. et al. 2012, Geophysics, Vol.77 pp. W1-W15. 

10. Stochastic stability analysis of the linear continuous and discrete PSO models. Fernán-
dez-Martínez, J.L. and García-Gonzale, E. 2011, Trans. Evol. Comp., Vol. 15, pp. 405-
423. 

11. Stochastic stability and numerical analysis of two novel algorithms of the PSO family: 
PP-PSO and RR-PSO. 

12. Fernández-Martínez, J.L. and García-Gonzalo, E. 2012, Int. J. Artif. Intell. Tools, Vol. 
21, p. 1240011. 

13. Jolliffe, I. Principal Component Analysis. s.l. : Springer, 2002. 
14. A New Optimizers using Particle Swarm Theory. Kennedy, J. and Eberhart, R. 1995, Proc. 

Sixth Int. Symp. Micro Mach. Human Sci., Vol. 1, pp. 39-46. 
15. The generalized PSO: a new door to PSO evolution. Fernández-Martínez, J.L. and Gar-

cía-Gonzalo, E. 2008, J. Artif. Evol. Appl., Vol. 2008 p. 861275. 
16. The PSO family: deduction, stochastic analysis and comparison. Fernández-Martínez, 

J.L. and García-Gonzalo, E. 2009, Swarm Intell., Vol. 3, pp. 245-273. 
17. Bioshell - A package of tools for structural biology prediction. Gront, D. and Kolinski, 

A. 2006, Bioinformatics, Vol. 22, pp. 621-622. 
18. Utility library for structural bioinformatics. Gront, D. and Kolinski, A. 2008, Bioinfor-

matics, Vol. 24, pp. 584- 585. 
19. BioShell - Threading: A Versatile Monte Carlo Package for Protein Threading. Gniewek, 

P., Kolinski, A., Jernigan R.L. and Kloczkowski, A., 2014, BMC Bioinformatics, Vol. 
22, p. Art. 22. 

20. Solution NMR Structure of a putative Uracil DNA glycosylase from Methanosarcina 
acetivorans. Aramini, J.M. et al. 2010, Northeast Structural Genomics Consortium Tar-
get MvR76. 



12 

21. Solution NMR structure of the PBS linker polypeptide domain (fragment 254-400) of 
phycobilisome linker protein ApcE from Synechocystis sp. PCC 6803. Ramelot, T.A. et 
al., Northeast Structural Genomics Consortium Target SgR209C. 

22. Solution NMR Structure of the N-terminal Domain of Putative ATP-dependent DNA 
Helicase RecG-related Protein from Nitrosomonas europaea, Eletsky, A. et al. 2010, 
Northeast Structural Genomics Consortium Target NeR70A 

23. The Structural Basis for Recognition of J-Base containing DNA by a Novel DNA-
Binding Domain in JBP1, Heidebrecht, T. et al. 2010, Northeast Structural Genomics 
Consortium and others. 

24. The lactose-specific IIB component domain structure of the phosphoenolpy-
ruvate:carbohydrate phosphotransferase system (PTS) from Streptococcus pneumoniae. 
Cuff, M.E. et al., 2010, Midwest Center for Structural Genomics Target TIGR4. 

25. Structure of putative HAD superfamily (subfamily III A) hydrolase from Legionella 
pneumophila, Ramagopal. 

26. U.A. et al. 2010, New York Structural Genomics Research Center Target 3N1U. 
27. Crystal Structure of the Hypothetical Protein PA0856 from Pseudomonas Aeruginosa, 

Oke, M. et al. 2010, Joint Center for Structural Genomics NP_249547.1. 
28. The Crystal Structure of Functionally Unknown Protein from Neisseria Meningitidis 

MC58, Zhang, R. et al.2010, Midwest Center for Structural Genomics Target 3NYM. 
29. Crystal Structure of the N-Terminal Domain of DNA-Binding Protein SATB1 from Homo 

Sapiens, Forouhar, F. et al. 2010, Northeast Structural Genomics Consortium Target 
HR4435B. 


