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I. INTRODUCTION

Mass transport in crystals controls a variety of different phenomena in materials from formation
and growth of precipitates to aging to ionic conductivity to irradiation-induced degradation of ma-
terial properties.! The increasing ability to computationally evaluate rates for atomic scale mecha-
nisms for diffusion using sophisticated first-principles methods>™ has increased the need for accu-
rate and extensible theory that can use jump rates as inputs to produce transport coefficients with-
out the introduction of additional approximations. Generally, solute transport can be divided into
a few general mechanisms: interstitialcy-based, vacancy-mediated, or self-interstitial-mediated,
where the first two are the most common in materials of technological interest. Of these, intersti-
tial diffusion currently has a full mathematical framework for the evaluation of diffusivity in the
dilute solute limit for arbitrary crystal structures and interstitial sites, including derivatives of dif-
fusivity with respect to temperature (activation energy tensor) and strain (elastodiffusion tensor).’
However, the state of quantitative evaluation of transport coefficients for vacancy-mediated diffu-
sion in arbitrary crystal structures is not as well developed. Vacancy-mediated diffusion occurs
via a correlated random walk, which is the source of the complexity and crystal-structure depen-
dence, as has been recognized for decades.®’ This has been followed with specific solutions for
particular structures, such as the five-frequency model for face-centered cubic (FCC) crystals,®’
the four-frequency model for body-centered cubic (BCC) crystals,'®!! the eight-frequency model

in hexagonal close-packed (HCP) crystals,'>!3

and most recently a thirteen-frequency model in
HCP.!'* In all of these models, not only are interactions assumed to end beyond first-neighbor, they

also introduce additional constrains on the rates that do not arise from crystal symmetry.

Outside of these specific crystal structures with particular constraints on the form of rates,
the current approaches for treating vacancy-mediated diffusivity for arbitrary crystal structures is

15-19

either a stochastic approach like kinetic Monte Carlo or a master equation method like the

d?*2! and kinetic mean-field approximation.??~>* Kinetic Monte

self-consistent mean-field metho
Carlo’s appeal lies mainly in being a mathematically “light-weight” approach that requires no ap-
proximations in the form of the rates: once enumerated, pathways are generated and as trajectories
become longer, the stochastic averages converge. This simplicity, however, can limit the practical
use: in cases where there are large differences in rates, very large numbers of steps may be needed
to accurately sample all states and transitions. For example, cases where the vacancy-solute ex-

change rate becomes very large or very small require more clever treatments.”>~>° Furthermore,
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approaching the “dilute” limit requires larger cells and more trajectories to converge. Finally,
using finite differences to evaluate numerical derivatives is significantly more difficult, with se-
vere limitations on the ability to reduce the numerical and stochastic error.*® It remains a useful
methodology, especially for non-dilute diffusivities. An alternative is master equation approaches
which were developed for non-dilute concentrations but are formally exact in the dilute limit:
self-consistent mean field (SCMF) and kinetic mean-field approximation. The SCMF method has
been powerful for investigating the effects of correlation in the presence of non-uniform chemical
potential gradients.’! These methods start from a cluster variation approach, and develop analytic
expressions which can be evaluated numerically but are not fully automated for arbitrary crystal

structures and symmetries,*32-3

nor are they operationally without approximation even for the
dilute limit. For example, in the SCMF, the range of correlations is cutoff at a finite distance,
which is an approximation. The error can be reduced by increasing the cutoff distance*® which
requires considering more and more so-called “kinetic interactions.” Furthermore, the introduc-
tion of the chemical potential gradient is taken to explicitly break crystal symmetry which makes
symmetry analysis less effective. Finally, a related approach is the path probability method for
irreversible thermodynamics®’ which has also been applied to diffusion®, including to non-dilute

tracer concentrations;** however, there are difficulties in producing exact tracer correlation factors

with the method.

While Green function methods were developed more than three decades ago for diffusion,***!

the need to compute the lattice Green function accurately for each new crystal structure became
a serious roadblock. Hence, extending to new structures—or relaxing constraints on the form of
rates—requires a new start with each case to be considered. Watson*? recognized the complexity in
computing the lattice Green function at R = 0, much less for arbitrary sites in a crystal. To compute
diffusion, we require the Green function at a series of sites, which is significantly more difficult
to evaluate analytically, though a few cases have been solved, such as FCC*** and some other
lattices like HCP and tetrahedrally coordinated crystals using matrix methods.***’ In this work,
we develop a generally applicable Green function based method for vacancy-mediated transport
in the dilute-vacancy/dilute-solute limit in arbitrary crystal structures and with arbitrary finite-
ranged solute-vacancy interactions; the methodology is implemented in a fully tested numeric

open-source software.

Our goal is to evaluate the Onsager transport coefficients in a dilute alloy of solute ““s” in solvent

“A” for the case of vacancy-mediated diffusion. In particular, we are interested in the three tensor
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transport coefficients, LYY, L&Y, and L®® where

3 = —LOVY - LV

ey

J =L = LV

for vacancies “v” and solute “s.” The fluxes J¥ and J* combine to produce the solvent flux
JA = —J¥V — J® due to site conservation. Moreover, the chemical potentials ¥ and y* are de-
fined relative to the solvent chemical potential u*. For our purposes, we are interested in the
motion of vacancies and solute in response to their chemical potential gradients; the response of
solvent atoms, or the response of vacancies and solute to solvent chemical potential gradients, can
be derived from the other transport coefficients.” We work from a master equation framework for
diffusivity” and develop the Green function method*! to include the presence of a solute atom that
can only move in the presence of a vacancy. The full algorithm is implemented in the code On-
saGER™; c.f. Appendix B. We conclude with numerical results for multiple systems, and discuss

future extensions of the method.

A. Master equation

To model this system, we work with a lattice gas model similar to Nastar?*?! and Vaks**-*
containing the three species of interest: solvent “A,” solute “‘s,” and vacancies “v.” If we have
a three dimensional crystal with unit cell vectors a;, a,, a3 and Ny, per unit cell at positions u;,
i = 1...Nges, then we can consider the set of all crystal sites, defined by vectors R = x + u;
for x a lattice vector (a linear combination of unit cell vectors with integer coefficients).* The
choice of unit cell vectors and sites in the unit cell is such that every crystal site R is represented
by exactly one lattice vector x plus unit cell position u. We will work with Born-von Karman
boundary conditions in the thermodynamic limit—Iarge number of sites and system volume Vy)—
to eliminate the introduction of any surfaces; the only defects present will be a vacancy and a
solute, which corresponds to the dilute limit (interactions between several vacancies and/or several
solutes are neglected); moreover, the crystalline sites need only to be those sites that can be visited
by a vacancy or a solute, and hence may represent a sublattice for some systems. A configuration
is a vector n where each element ny determines the site occupancy by species a at site R; the
occupancies are either 0 or 1, and },, ng = 1 for all sites R. We will identify all configuration

dependent quantities with a hat. The system admits possible transitions from configuration n to n’
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defined by the transition rate matrix W(n — n’). Furthermore, this rate matrix gives us the master

equation for the evolution of the system probability P(n, 7) with time  as

dP(n 1)
dt

Zwm—mwmn—wmﬁnwmn 2)

This expression is primarily useful for us to define steady-state and equilibrium in terms of balance
and detailed balance, respectively, where df'(g, 1)/dt = 0. A probability distribution P(g) will be

in balance if it obeys

D W' - mPm) = Y W - n)Pm 3)
for all configurations n. A probability distribution Py(n) will be in detailed balance if it obeys
W' — mPym’) = W(n — n')Po(n) )

for all configurations n and n’. Clearly, detailed balance is sufficient for balance, but not necessary.
In particular, we note that a system satisfying detailed balance will be in equilibrium (zero flux),
while a system satisfying balance will be in steady-state, and may admit non-zero fluxes. Our
approach to determining transport coeflicients is to use near-equilibrium thermodynamics: we
will find steady-state solutions that are the equilibrium distribution plus a small perturbation in
response to a chemical potential gradient Vu along an arbitrary direction. We will then determine
the fluxes and solve directly for the transport coefficients in Eqn. 1.

We assume that our transition matrix corresponds to a physical system with a Hamiltonian
H(n) and equilibrium probability distribution Py(n); in particular, the equilibrium distribution for

chemical potentials y* at temperature kg7 is

Pom) = exp[ ((Do + Zu Z ii—ﬁ(g))] (5)

where @ is a normalization constant—the grand potential—such that ), 130(2) = 1. We will
assume that Iso(g) obeys detailed balance (Eqn. 4), which relates W and H. Note also that H is
a lattice function, and as such will obey symmetry relations of the underlying lattice; i.e., it will
remain invariant with respect to all space-group operations applied to n. Those symmetries also
necessarily translate to W. Moreover, we will assume that all non-zero transition rates W(n — n’)
conserve mass: ).p g = X.rng for all species a. Hence, even though we work in the grand-

canonical ensemble, our particle numbers will remain conserved.
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B. Transport coefficients

In order to introduce a steady-state solution with chemical potential gradients, we will consider

a site-based chemical potential perturbation dug; these perturbations are such that for any two sites
Rand R/,

Oug — Oup = (R=R") - Vu* (6)

where Vu® will be considered a homogeneous constant corresponding to an infinitesimally small
chemical potential gradient vector along an arbitrary direction. Note that we do not require an
explicit form for the perturbation éu, as only differences of the form Eqn. 6 appear in our equations.

Next, we work with an ansatz steady-state solution

oDy + Z Z OURNR — Z 7%(n) - Vu")
@ R a

where 6@, is a normalization constant, and 7”(n) is a vector lattice function, with the same lattice

(7

. . 1
Pg(n) := Py(n) exp [ T

B

symmetries as H, albeit as a vector, so that rotations also rotate i) (while Hisa scalar). The combi-
nation §°(n) - Vu® acts as the effective Hamiltonian in the self-consistent mean-field notation.?*?!
In order to solve for the steady-state, and determine the fluxes, we introduce the mass-transport

vector

ox (n - 1) = Z ngR - Z ngR = Z (ng —ng)R (8)
R

R R
which is the total transport of species « in the transition n — n’. Given mass-conservation, and as

we work in the laboratory frame, for any non-zero W(n — n’), we have Y, <§xa(g —n’) =0. The
additional symmetries are that (fx(l(g —-n)= —(SAXQ(Q’ — n), which requires that 5X(l(g —-n)=0.
Finally, 0" is a lattice function and as such obeys symmetry operations of the lattice. Then, the
flux of species a can be expressed in a system with total volume V(; for convenience, we multiply
through by the volume and temperature kg7 to get

VoksTJ* = ) 8x"(n - n)W(n — n) (ks T Pis(m)). )

no

If the equilibrium probability Py(n) is used instead, detailed balance and antisymmetry of ox s
sufficient to make J* = O for all species . In the limit of small gradients Vu®, we can expand our

steady-state solution kg T Py,

keTPu(m) = Pom) | kaT +6®0 + > > ity = D iP @) - Vi |+ O (Vi) (10)
B B
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which substitutes into Eqn. 9 to get, to first order in Vu?,

VoksTJ* = 3" 8" (n — n)W(n — n")Py(n)

1 (ea ) )
=3 Z (6x (n — n)W(n — n')Py(n)

ksT +5®g+ > > Sylpiy
5 R

ksT + 6@ + ) Zapﬁn;f]
5 R

- > W - m)Pméx'm - ) Y ifw - v
n.n’ B

+6x (m — mWm' — n)Py(n)

(11)
where the second expression comes from symmetrizing the double summation. This expression
can be simplified in a few quick steps. First, we note by detailed balance and antisymmetry of
ox that 6Axa(g’ — Q)W(g’ — g)?o(g’) = —(fxa(g - g’)W(g — g’)f’o(g). Next, we note that
S Sty — nig) = 6%’ (n > ') - Vb, Then,

1 A A Ao ~
VoksTJ* = = ) [5 > bW - n)6x" @ - )8 (m > )
B n,n’

(12)
+ 3 W - )Pk @ - )| - v
and thus our transport coefficients are
R Z Pom)Wn — n’) lé‘Axa(n S n)e6 (M — 1) +6x (- n)®ifn)
- kBTV()nn, - = T2 - = - = - = =
N (13)

where ® is the outer (or dyad) product of two vectors. The first term is the “bare” (uncorrelated)
mobility, and the second term contains correlations.’

Two brief notes about the second term in the right hand side of Eqn. 13. First, only differences
in #) are important. This can be shown by symmetrizing with respect to n and n’, in a similar

fashion to the first term of Eqn. 13. This gives

A A ~ 1 A A o
2, P — m)sx" - m)eifm = 5 3 PmWa - n)8x" (0 - m)e @) - i m).
N (14)

Secondly, we identify the velocity vector,

wx'(n) := > W(n - n)éx’ (n - n) (15)



which is a non-zero vector when the jumps in one direction occur with a different rate for the

opposite direction. Then, the transport coeflicients are

L@P) —

n’

(16)

C. Balance equation

Finally, we solve for the deviation from the equilibrium probability distribution, #), using bal-

ance. If we take Eqn. 3, to linear order in Vi, we have

kT + 6@+ > > optniy = > i) - Ve
B R B

2 W' - mPym)

(7)

D" Wn - 0)Pom) |ksT + 5D + > > Oty = > () - Vi
n B R B

We apply detailed balance, W(n’ — n)Py(n’) = W(n — n’)Py(n) to the left-hand side of Eqn. 17

to cancel out the first two terms of each side, and rearrange the remaining terms,
D T NP ’ > il " |4 ’ A
DD P@Wm - n)dX - )V = ) PmWa - ) [ @) - @] v (18)
B B

This must hold for any arbitrary direction of V. We define a matrix representation of W, where

. Wn - n') n
Waw = (19)
— Yy Wa—-n) :n=

H
=

=

and, divide out Py(n) from Eqn. 18 to produce

2 W Vi = )y Wk () Vi
B n’

B

" (20)
W) = 3 Wawif ).

Thus, the diffusion problem involves solving Eqn. 20 for # to evaluate Eqn. 16.
There are a few approaches to solve Eqn. 20. The equation as written does not rely on assump-
tions about the dilute limit, and is valid for interstitial diffusion;> we will consider, going forward,

the case of vacancy-mediated diffusion in the dilute limit. One approach is the self-consistent
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mean-field method (SCMF).22! The SCMF approach solves Eqn. 20 by (a) selecting a particular
direction for diffusion, (b) multiplying by Py(n) and summing over n to convert the equation into
thermodynamic averages, (c) writing out #j(n) in terms of pair interactions that are invariant along
the diffusion direction, and (d) are cutoff after a fixed distance (setting #fj(n) = 0 for vacancy-solute
distance greater than a cutoff). This is an approximate solution for the effective Hamiltonian,
which becomes more accurate as the cutoff distance is increased. Note that truncating #(n) is
different than truncating the interaction energy between a solute and a vacancy: even for the case
of a radioisotopic tracer where the interaction energy is exactly zero, truncating the correlation
effects at a finite distance introduces error, as the Green function has infinite range. The second
approach—Ilaid out here—is a Green-function approach, which is fairly straightforward for the
dilute-vacancy/solute limit for vacancy-mediated diffusion, and is exact. The Green function ap-
proach to the problem seeks to solve Eqn. 20 by constructing the exact pseudo-inverse of VAVM for
the dilute-vacancy/dilute-solute limit; we treat a single vacancy and single solute in the total vol-
ume V), while we take the thermodynamic limit of Vi — co. We do this by (a) breaking W@, into
three contributions—the bare vacancy, vacancy near a solute, and vacancy-solute exchange—and
(b) taking advantage of translational invariance for our lattice functions. Moreover, we will also
take advantage of space-group symmetry operations to maximally reduce the rank of the linear
problem to be solved. Note that this is similar in approach to Koiwa and Ishioka;*!' we automate
the computation of the Green function for the vacancy and the vacancy-solute complex for an

arbitrary crystal, where we can take advantage of automated crystal symmetry analysis.*®

D. Matrix symmetrization

Before we reduce to the dilute-vacancy/dilute-solute limit, we rewrite Eqn. 20 in terms of the

pseudo-inverse of a symmetric matrix. Define the components of the matrix Oy,

N 512, s H-1/2

O 1= Pof* () Wow P () D
which is symmetric by detailed balance,

Ouy = PP @)W Py 2(0') = P52 () Py(n) Waw P} () o)
= PV () WonPo@) P, (') = P2 () Win P> (@) = On-
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This form of the matrix can be related to the linear-interpolated migration barrier (LIMB)

approximation;>>! from Eqn. 5,

(23)

P2m)P;'*(m') = exp [—H(g/) — H(Q)}

2kgT
as we only consider transitions that conserve particle number. If we have a transition state energy
E'\*traHS(E _ E/) — EtraHS(g/ _ E) between n and I_l/ so that W(E N E/) o eXp(—(EtranS(g _ E/) _

Hm))/(kgT)), then for n # n’,

A E"™s(n—n') — (H(') + H(n))/2
Qn < €XpP | — — — — (24)
- kBT
which is constant for allowed jumps in the LIMB approximation.
Next we define, the bias vector, in terms of the velocity vector
b (m) := Py (m)wx" () (25)
and the symmetrized correction vector,
P = P @i (). (26)
which then, by Eqn. 20, gives
Py b m) = ) Waw P59 @)
b m) = " P2 @) Waw £y (@) () 27
= ) mH@).
Let the pseudo-inverse of @ be g, the Green function. Then,
7 = ) 2ab@) (28)
and
> Pywx'm @ i) = Y PP @b m) @ 2y )i m)
: - (29)

= > 5" & 2u B’ (@).

This shows that L? = L% as g,n = gwn. It also means that we only need to find gny for those

configurations where f)“(g) # 0. Thus, our transport coefficients are

L@P — 1
- kgT Vo

1 A A ~A O ~ A 7N
> 5P o P @ - ) @ 8 (n - ) + B ® g B ). (30)
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E. Dilute-vacancy/dilute-solute limit

For the dilute-vacancy/dilute-solute limit, our state n simplifies to the position of the solute and
the vacancy. With only a single solute and a single vacancy, the solute concentration ¢ = 1/V)
and the vacancy concentration ¢, = 1/V,. We will take advantage of translational invariance;
moreover, we will specify the position of the vacancy relative to the unit cell of the solute: X, + u;
will be the position of the solute in the lattice, and X, + X + u;, the position of the vacancy—thus,
the state of our system is captured by xisX,i,. We assume that the vacancy and solute have a finite
interaction range, so that for large enough x,, the site probability PO(x,isXyiy) o exp(—Ei‘lZ (x)/kgT)
is independent of Xy, and instead is given by the product of solute and vacancy probabilities. We
construct the transition rate matrix by adding three contributions: vacancy without solute, vacancy
near solute, and vacancy-solute exchange. We use the historical nomenclature, and identify these
rates with superscripts “0,” “1,” and “2.”

First, we consider the migration of the vacancy without solute. For this case, we track the solute
state only in anticipation of later contributions; otherwise, the solute is ignored. The vacancy can
occupy the same state as the solute (which will be corrected with a subsequent contribution), and

so we ensure translational invariance for the transition rate matrix. A vacancy at the site X,i,

.. . 0 0,iyi,
transitions to another size x|, with rate w_"",, so
470 e A BV A WS, 0,iyi
WOk = 00X, xs)é,s,;{wxv_x,v 5%y = X)) W } 31)
Xi

where 0 is the Kronecker delta function, and the second term gives the correct value for VAV@.

Because this contribution to the transition matrix ignores any solute-vacancy interaction,

&, i = WY e (P [P (32)

: . VT : H VT
XslsXyly, Xl Xy Ly XslsXyly,XglgXyly

where P?’V is the probability for a vacancy to occupy the unit cell site i. In the special case of
a Bravais lattice, the ratio of probabilities is 1. The transition matrix W° (and &) has the space
group symmetry of the lattice; the corresponding Green function for the vacancy without a solute
is derived in Section II.

Next, we consider the contribution from solute-vacancy exchange. For a solute at x, + u;, and
a vacancy at X + X, + u;,, exchange will place the solute at (X, + X,) + u,,, and the vacancy at
(Xs + Xy) — X, + u,.. In the dilute limit, there is only one solute and one vacancy, and so if exchange

is possible for a state, there is only one endpoint state where the solute changes to a new position
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with a non-zero rate. As a shorthand, define X i X,i, := (X + Xy)iy — X,is, the final state in solute-

vacancy exchange. Then, we identify the set of all states {xi;X,i,} where W # 0 as the

XslsXyly,XslsXyly

exchange space. Note that if Xgi X, i, is in the exchange space, so is Xsi;Xyiy; and XgisXyly = XgisXyly.

Then, we define

"1/2 . . ~ "_1/2 . . . Pt - n
Py (XX i)Wy i s Po T (XslsXoly) 1 X(EX(T, = XigXyly € exchange space
D2 v = =W (XX = XX,y € exchange space
XslsXyly,XslsXyly XglsXyly,XslsXyly © Aslsrviy T AstsAviv g¢ sp
0 : otherwise

(33)
as the symmetrized transition rate matrix for solute exchange. Note that we do not explicitly
require that the solute-vacancy exchange occur with the same jump vectors as the vacancy jumps,
but only that the same crystalline lattice is used for solute and vacancy migration. The diagonal
components of &? correct the escape rate for complexes that are in the exchange space.

The final contribution corresponds to the vacancy jumping around the solute and contains all the
remaining changes in rates of the vacancy where the solute does not change position. This includes
the changes in site probability (solute-vacancy interaction), “site exclusion,” where solutes and

vacancies cannot occupy the same site, and the subsequent escape rate changes for a complex. We

define

~l . SI/2c - o TR B—1/2,0 + o>
o e = (X = x;)a,-s,-;{(l = 8(%,)81,i,)(1 = 6(X)S11 )Py * (XX i) Wit Py 2 (XX 1)

. P
XslsXyly,XslsXy Ly

~0 ’ E 1
- wXSiSXViV,XSiSX(,iQ - 6(Xv - XV)(sivi\,/ Wxsisxviv’xsiin}
Xi
(34)

which will be zero as x, gets far away from the solute. The solute position remains unchanged,
and we first consider the changes in rates when the vacancy does not jump into or originate from
the solute site. The next term is the replacement of the simple vacancy rates: removing the jump
where the vacancy would occupy the position of the solute, and the change in the escape rate (for
X(i.Xi;, = XsisXyiy). The final summation corrects the escape rate for a complex corresponding
to the changed rates but excluding solute-vacancy exchange already included in &?. This also
includes so-called “association” (vacancy coming into the interaction range) and “dissociation”
(vacancy leaving the interaction range) jumps that correspond to the formation/dissolution of the
vacancy-solute complex.

2

Thus, we have & = &° + @' + &*. This breakdown partly follows the labeling of the five-
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frequency model, though both “3” (dissociation) and “4” (association) jumps are subsumed as part
of @', and produce non-zero bias vectors for sites at the edge of association for a solute-vacancy
complex. We assume vacancy-solute interactions to be zero outside some finite range, which

makes both &' and &? local.

F. Green function solution

The separation of jumps allows for the solution of the Green function first for @°, which will
be g°, followed by the corrections due to 6@ := &' + @&*. This is particularly useful as & is strictly

zero beyond a finite range; hence, the full Green function can be found exactly using
=@ "+ = 1+ %), (35)

which can be done for any subspace of states where é@ = 0 for all states not in the subspace. This
Dyson equation solution is exact for any value of dw; it does not rely on 6& being “small” in any
sense, only that the full @ = &° + 6& is not a pathological transition matrix. We briefly outline the
approach that takes advantage of translational invariance: First, we solve for g° by transforming
@° to reciprocal space; the inverse is written as the sum of a pole, a discontinuity, and a smooth
periodic function, which are transformed back to real space analytically for the first two terms, and
numerically for the last. Next, we consider the subspace of states with non-zero bias vectors, and
express our bias and correction vectors in a fully symmetrized representation, called vector-stars;
the Green function, and the changes in rates @ can be written as matrices in this representation.
We also note that, due to translational invariance in the solute position for the bias vector, we
only need to consider &* in reciprocal space at q; = 0 (i.e., summed over all combinations of
X; — X;). Finally, we can write Eqn. 35 as a finite-dimensional matrix inversion problem, which
can be solved numerically and used in Eqn. 30 to construct the transport coefficients. The use
of a symmetrized representation—stars, and introducing vector-stars—also dictates the minimum
information required for the computation of site probabilities (energies) and rates (energy barriers),

providing for an automated computation of transport coefficients that is also efficient.

II. VACANCY GREEN FUNCTION

We solve for the Green function g°, the pseudoinverse of @°. We note first that @° is diagonal

and invariant in Xis, X i;, SO0 we will simplify by writing everything in terms of x,i,, X;i;, only, and

s”s?
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(13 ”

we will drop the unnecessary subscript throughout this section; we will also use @ and S8 to
index eigenvalues rather than specify chemical species. Next, &° only depends on the difference
of vacancy unit cells x — x’, so it will be block-diagonal in reciprocal space. The approach that
follows is similar that Yasi and Trinkle>? for the lattice Green function; however, the treatment of
the pole is different in this formulation, leading to a simpler solution without the need for truncated
spherical harmonic expansions. The first step is a change of basis to reciprocal space and with

the eigenvectors of @° at q = 0; for a crystal with N, per unit cell, identify the non-positive

eigenvalues ¥, @ = 0... Nges — 1 and normalized real eigenvectors s¢ such that

> [Z aﬁa,x/b] sy = rsy (36)
x'.b X

for all @ and a. As @° is singular and negative-definite, there is one zero eigenvalue which we
identify as a = 0; all other 7* < 0 for @ > 0. The corresponding eigenvector is s0 = -/ P2, the
square root of the probability for a vacancy to occupy the unit cell site a. Note that the eigenvalues

r® and vectors s* depend on the rates, and hence the temperature kg 7. We construct basis vectors

(2

axa ‘= Sgexp(iq - (X + u,))/ VN for a periodic system with N unit cells (Born-von Karman

boundary conditions), so that

1 c ! ’
(f)aﬁ(q, q):= N Z iq- (Xﬂl“)sad)ga » bsie—zq (X +up)

xa,x’b (37)
=oa-q )Z Sa ‘“0a xb be’q (ug—(x+up))

x,ab

is the Fourier transform of @°; as it is only nonzero for q = q’, we will use the shorthand
&"(q,q") = 6(q — q)w™(q). Note that the vector (X + u,) — u, corresponds to 6Xg,x, for the

vacancy jump. Then, our inverse Fourier transform is given by

(I)ga’x/b _ 1 Z —iq-(x+u,) GAaﬁ(q q )S‘Belq o +up)
qa qaB (38)
v f A9 gy ()
sz (2m)3 ’

where V = V,/N is the volume per unit cell in the lattice and we replace the sum with an integral
in the thermodynamic limit. We take advantage of similar definitions for the Fourier transform of
gxa ) 10 get 2%(q), and find that for all q, g(q) = (w(q))" the pseudoinverse of w(q). For all q # 0
in the Brillouin zone, w(q) is non-singular and so the pseudoinverse is the inverse; at q = 0, w(q)

is diagonal with one zero entry corresponding to ° = 0. Thus,

N d el (x+u, -x'—u a -
gga,x’b = Vf (27_33 0t Y Z Sa(w((I))a[]géﬁ, (39)
BZ B
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and we need only to evaluate the integral in Eqn. 39 to find the Green function.

A. Block inversion and Taylor expansion

To integrate Eqn. 39, we first block w(q) in the {s*} basis, and Taylor expand the blocks in
series from q at the origin. The @ = 0 eigenvector corresponds to the equilibrium distribution,
which we call a diffusive mode; the @ > 0 eigenvectors correspond to distributions that decay with
time (as r* < 0), which we call relaxive modes.’® Note that relaxive modes are only possible for

Niies > 1. We write our block matrix,

DD(q)| DR(q)
RD(q) | RR(q)

w™(q) = (40)

where DD(q) is a real 1 x 1 matrix corresponding to @ = 8 = 0, DR(q) = RD7(q) is a 1 X (Nyjes— 1)
matrix corresponding to @ = 0 and 8 > 0, and RR(q) is a Hermitian (Ngjes — 1) X (Nsies — 1) matrix
corresponding to & > 0 and 8 > 0. For small magnitude g, the leading order of DD is ¢, of DR
and RD is ig, and of RR is ¢°. For DD(q), we have

12 .
DD(q) := ) (PSPYY) @, e i) (41)
x,ab
. o ) 12 . o
which can be simplified by noting that, from Eqn. 32, (Pg’ng’V) d)ga,xb = Wga’beg’V, which is the

rate for the vacancy to transition from 0a to xb times the probability to be at unit cell site a. The
combination x + u, — u,, is the displacement vector for that same transition, 6Ax0a,xb. Then, we can
Taylor expand exp(—iq - 5AX0a,xb) up to fourth order in g to get

A S 1 - i . 1 -
DD(g) = ) W&,x,,PS’“{l i - SXoaxy ~ 5(a X0u)’ = (A Oxoaw)’ + 57(Q - Sxoap)” + 0(q5>}

x,ab

1 R A A
=—q- |:§ Z 6X0a,xb ® 6X0a,XbW(())a,XbP2’v

x,ab

1 3 1 v
A+ 57 D Bxua) W, Pl + O°)

x,ab

(42)
where the ¢° term is zero as Y, W(())a,xb = 0 for all a, and all terms containing odd powers of (ona,xb
sum to zero because of detailed balance and antisymmetry of ox for the reverse jumps. The first
term in braces is the same as the first term in Eqn. 16 (after multiplying by a factor of kg7 '/cy), or
the “bare” (uncorrelated) contribution to the vacancy diffusion. For RD(q), we have

1/2 .
RD™(Q) 1= 3 s6(P)Y) " dg e (43)

x,ab
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. o . 02 0 o ov\1/2
which can be simplified by noting that, from Eqn. 32, (P ) =W (Pa ) . Then, we

Oab 0a,xb

can Taylor expand exp(—iq - (S‘Axomxb) up to third order in g to get

A 1/2 e 1 . i .
RD™(q) = Z SZW(())a,xb(Pg’v) {1 — iq * 0Xoaxp — E(q - OXaxb)” — g(q - OXgap)” + 0(q4)}

x,ab
~ —iq- [Z s San,xbW&,xb(PS’V)l/z] (44)
a x,b

1 - i . A 1/2
- Z 53[5((1 ’ 6X0a,xb)2 + g(q ' 6X0a,xb)3]W(())a’xb(P2’V) + 0(q4)

x,ab

where the ¢° term is zero as be = 0 for all a. The first term in brackets is the bias

Oa xb
vector (c.f. Eqn. 15) for the vacancy at sites a, rotated into the relaxive basis s*. Similarly,

DR%(q) = (RD*(q))*. Finally, for RR(q), we have

RRVP(q) := ) s, et e 6 (45)
x,ab
which does not admit any obvious simplification. Then, we can Taylor expand exp(—iq - 6Ax0a,x;,)

up to second order in ¢ to get

e 1 .
RRaﬁ(q) = Z asﬁwoa xb 1- q- 6X0a,xh - E(q : 6X0a,xh)2 + 0(‘]3)}
x,ab | (46)
= 1"00p — Z sZsi[iq  OXgqxp + E(q : 5X0a,xb)2]@)8a,xb +0(q)

x,ab

where the ¢° term is diagonal, as s¢ are the eigenvectors of Y, & in Eqn. 36. As RR(q) is

wOa xb

diagonal for q = 0, we can also Taylor expand RR(q)~! up to second order in ¢ to get

N 1 N
(RR@™Y = 07 6o+ D07 525507 i ¥ + 5@ SRouss)? |

x,ab

- Z Z(r IREHCRE T I () S0 A D YA T R R 2 PR O
v>0 x,b

(47)

As an intermediate step to the block inversion of w®(q), we scale reciprocal and real space

vectors based on the eigenvalues of the vacancy diffusivity. We construct the 1 X 1 matrix

D(q) := DD(q) — DR(q) (RR(q)"") RD(q) (48)
which is the Schur complement of RR(q), and using Eqn. 42, Eqn. 44, and Eqn. 47, we can Taylor

16



expand

D(q) =—q- [% Z é:\XOa,xb ® S\XOa,th(?a’beg’v + Z(Z é\xoa,th(?a,xb(Pg,v)l/z)
x,b

x,ab aa’

(Z sa(r) 7 sg )(Z &Oa',xngaf,xb(P gzv)l/z)
x,b

a>0

49)
-q+ 0(g").

The terms cubic in g must vanish, as they are purely imaginary, and D(q) is real by virtue of being

a Hermitian matrix. The ¢* term can be expressed as a fourth-order homogeneous polynomial in

0

0axb for @ > 0, the matrix

the components of q. Then, as r* are the nonzero eigenvalues of ), &
a0 sg(r“)‘lsg, is the pseudoinverse. The two vectors dotted into that matrix are the bias vectors,

as identified earlier, and so by Eqn. 30, we can write

D(@) = -q-D"-q+0(q") (50)
where®
DY = kB—TL(VV) = l Z S\X()a oy (SAXOa xbW(? PO’V + Z b’ ® (Z Sa(ra)—lsa/) b’, (51)
o Cv 2 x,ab ’ ’ e aa’ ‘ a>0 ‘ ‘ ‘
for the bare vacancy bias vector
v 2 570 ov)!/?
b} = ) Sxoans Wo(P)Y) (52)
X,b

Note that the second-rank tensor D" is symmetric and positive-definite; therefore, it has three real,
positive eigenvalues d; with corresponding orthonormal eigenvectors e;. Note that if D" is isotropic
(e.g., a cubic system), d; = d, = d;. We define the following coordinate transforms to “scaled”

reciprocal and real space coordinates,
pii=d;* (&), yi:=d; e x) (53)

and then

q= Z dl._l/zp,-e,», X = Z dil/zy,-e,- (54)
so that —q - D" - q = —|p|* and exp(—iq - X) = exp(—ip - y). In this scaled coordinate system,

Dp)=-p*+ > D plpRps+ 0, (55)

ni+ny+nz=4
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“

, and
[n1nan3]

where we have explicitly introduced the components of the fourth order expansion, D
the expansions in Eqn. 42, Eqn. 44, and Eqn. 47 retain the same form in p. Finally, we Taylor

expand D(p)~! up to order p°,

_ 1 PPy Py
ppt=-=- > Dl =i+ 0P, (56)

ny+ny+n3=4

Because all of the Taylor expansions involve products of (q - é‘Ax), all terms of order ¢" (or p") are
strictly homogeneous polynomials of order n in components of q (or p). Note that the eigenvalues
d; and vectors e; depend on the diffusivity, and hence the temperature kg7 .

We can block invert w(q) in the {s*} basis with scaled coordinates p, and analytically treat terms
that behave as p~2, p~!, and p° at the origin. The block inverse of Eqn. 40 is most easily written in

terms of the inverses of D(p) (Eqn. 56) and RR(p) (Eqn. 47),

” D(p)"” | (D)) DR(p) (RR(p)™)

§7(p)
—(RR(p)~") RD(p) (D(p)™) ‘ RR(p)™ + (RR(p)™") RD(p) (D(p)™") DR(p) (RR(p)™)
(57)

This form is chosen as the two matrix inverses—D(p)~! and RR(p)~!—admit straightforward Tay-
lor series expansions by virtue of their isotropic (in p) leading order terms: p? for D(p) and
r*8ap for RR(p). The leading order of the diffusive-diffusive block is —p~2; the leading order
of the relaxive-diffusive (and diffusive-relaxive) blocks is ~ ip/p* ~ p~'; the leading order of
the relaxive-relaxive block is ~ pp/p? ~ p°, which can appear as a discontinuity at the origin (ap-
proaching the origin from different directions will give different values®?). In the subsequent series
expansions, all terms up to p® can be written as homogenous polynomials of order four or lower
divided by a power of p. We follow a semicontinuum approach®>>*>> and expand each block as
a sum of terms of order p~2, ip~!, and p° multiplied by a Gaussian, and a finite, smooth, periodic

function; for example,

exp(=p*/ D) Py Py Py
g"(p) = e exp(-p* /b)) Qﬁi?w% +g%@,  (58)

ni+ny+ns =4

for a width pp., (described below) and where the (smooth) semicontinuum piece ggf(q) is the
difference between the first two terms and D(p)~!. The first term is a second-order pole in p, while
the second term is a discontinuity at p = 0; it has different values in the limit as p — 0 depending
on the direction for approaching the origin. Note also that as p — 0, g%(p = 0) = —1/p2 ... The

first two terms needs to be inverse Fourier transformed analytically, while the last term can be
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evaluated numerically on a finite grid of q in the Brillouin zone.’>>® We will evaluate the analytic
inverse Fourier transforms by expanding the integral in Eqn. 39 to all space. This requires that
exp(—p?/ pfnax) be sufficiently small at the Brillouin zone edge; hence, the width pp,.« is chosen so

that

inf{q - D" - q : q € BZ boundary}\'/?
pmaxs( {a-D"-q:q y}) (59)

—In Ethreshold
for a threshold &gyeshold; then exp(—p?/ pﬁm) < Emreshold €verywhere on the boundary of the Bril-
louin zone. Note that smaller values of p,,,x require more grid points for the inverse Fourier trans-

0

form of g%(q). Note also that large anisotropy in D" may necessitate an associated anisotropy in

the grid of q; see Section II D.

B. Inverse transform of second-order pole

When we inverse fourier transform the p~2 pole, we recover the large x diffusive behavior where

the Green function is inversely proportional to x. First,

_ Vf d3q e—iq~(x+ua—x’—ul,) CXp(—pz/pilax) _ Vv dsp e—ip-y exp(_pz/pﬁlax)
B

z (2m)’ P (ddd)? ) 2y 7 » (60)

where we have taken the limits of integration from the Brillouin zone out to all space; see below
for an estimate of the error induced. The function to inverse Fourier transform is spherically

symmetric, and so is the solution in y,

v erf(%(x - (D) ~X))1/2pmax)

V YPmax
_ erf ( ) =—— (61)
)Py 2 ) (e prie (01 x)
by noting that
1/2
y= [Z a7\ (e X>2) = (x-@)"x) " ©2

where X is the vector connecting any two vacancy sites, and that d d>d; = det D'. The inverse

Fourier transform value at x = 0 is

V max
p—, (63)
4 7T3d1d2d3
which is finite, and the leading term in large x is
%4 -1/2
— —(detD*x- (D" %)) (64)
4r - -
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which is the solution to —V - (D"Vg) = §(x). To estimate the error, we integrate instead from a
sphere in p-space inscribed in the Brillouin zone out to infinity; this is given by a radius py =

Pmax V= IN Epreshold & D2 /ag for lattice constant ay. The largest error occurs for x = 0, where

14 * d3p exp(—p2 /prznax) 14 Pmax \/7_T
1/2 3 2 = 12 5— erfc(po/ Pmax)
(didyd3)'* ), (2m)- p (d1drd5) 4n (65)
v do
~ AxD threshold»

which, as g°(0) ~ V/(Day) ~ d)(‘)l, shows that the truncation error is approximately g°(0)&preshod-

C. Inverse transform of first-order poles and discontinuities

The remaining analytic terms are inverse Fourier transformed by grouping homogeneous poly-
nomials with common orbital angular momenta ¢. The first-order poles and discontinuities can
each be written as a sum of up to fourth order polynomials in the normalized components p/p.
Moreover, as shown in Appendix A, a homogeneous polynomial expansion of order L can be ex-
panded into a series of homogeneous polynomial expansions of order from £ = 0 to £ = L such that
each expansion only contains contributions from spherical harmonics of a single orbital angular
momentum. The inverse Fourier transform of the separable contribution p" exp(—p?*/p2..)Y /(D)

for power n = —1, 0 and spherical harmonic Y7" is

d3q —iq-(x+u,—x" —up) n 2,.2 (TN
14 A€ ¢ p exp(—p /pmaX)Y[ (p)
B

7z 2m)}
) (dldztzg)m éjr];p" eXP(=P”/ P )" P" Y] (B) eXP(=P"/ Prnr) (66)
= MY @)
where
Ju)i= W(_’Y fo ) %P”"ff(w) eXp(=P/ Pa)
(67)

_ v F(“?”) (ypmax)3+n+€1F1(3+l’l+f§ 5,_(ypmax)2)

— T+
Vdydyds Y 2‘”F(% + f) 2 2 2

for spherical Bessel function j, and confluent hypergeometric function {F; (c.f. 9.210 in Grad-
shteyn and Ryzhik’’). As the inverse Fourier transform transforms Y 7'(P) into Y}'(¥), the homoge-

neous polynomial expansions in p of order ¢ corresponding to a single orbital angular momentum
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transforms to the same homogeneous polynomial expansion in §, where the radial contribution

p"exp(-p?/p2..) transforms to f,.(y). For small y,

_l' fv F 3+l max 3+n
fuu) =y — () (” ) + 00, (68)
wdidyd; 27T(3 + )\ 2
and for large y,
3+n+l
ey DV T(EE)
Jue(y) = y O o(y~°™). (69)

wdidyd; 27T(52)
Note also that f_,y(y) is a special case, captured in the Section II B. The relationship between x

and y is given by Eqn. 62 and the components by Eqn. 53.

D. Inverse transform of semicontinuum piece

The final contribution to the inverse Fourier transform of g% is g(:f , which requires numerical
integration on a regularly spaced grid in the Brillouin zone. This function is smooth (after sub-
tracting off the poles and discontinuity) and periodic, so it converges quickly with the number of
grid points.>® We use a regular, gamma-centered N; X N, X N3 mesh (each N; is even) in terms of
the reciprocal lattice vectors by, b,, b; as

q= %bl + ”Nizbz + x—zb} (70)
Note that alternative meshes, like Monkhorst-Pack>® are possible as well. We initially generate the
mesh of q using m; = —(N;/2) + 1...(N;/2), but then we translate q so that they remain entirely
within the Brillouin zone. Our Brillouin zone is defined by a set of reciprocal lattice vectors
Ggz := {G} where q is in the Brillouin zone if and only if q - G < G?/2 for all G € Ggy. So,
once we generate our initial set of q, we check that each lies inside the Brillouin zone; if we find
a G € Gz such that q - G > G?/2, we replace it with q — G. At this stage, all of our q are equally
weighted, and so we approximate our integral V fBz d*q/(2n)’ as the average value over our .

Next, we take advantage of space group symmetry (c.f. Section III B) to reduce the number of
unique q we need to consider, and replace our average with a weighted average. We group our
q points in stars; that is, a set of points that are all related to one another by rotation operations
R. As the group is closed, we can select a single q representative from each star, and compute
gff for that q; the weight wq in the average will be the number of g-points in that star divided

by the total number of g-points. Furthermore, we can rotate back to the original site indices a, b
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from our eigenvectors s§ and S§ When a group operation {R, t} is applied to the initial position
X + u, and final position x” + u,, it transforms the vector 6x = X’ + u, — X + u, to R 6x but also
changes the corresponding site indices to @’ = {R, t}(a) and b’ = {R, t}(b), which are of the same
Wyckoft position as a and b. To perform the inverse Fourier transform, the contribution to the

inverse Fourier transform for a star q is given by

1 Q- X a
Z wq Z AR G ROQIRG) () (71)
q

N, group R

where there are Ny, group operations R. As we can apply R either to §x or q, it is computationally
more efficient to apply to éx. Note that the use of a regular grid to inverse Fourier transform
requires that we include sufficient density to avoid aliasing errors; that is, for the largest dx, the
smallest non-zero value of q - 6x must be smaller than 7. As the number of g-points increases, the

error scales no slower than N;* + N;* + N;* (c.f., Ref. 56).

E. Algorithm summary

We summarize the computational steps in the calculation of the vacancy Green function for
an arbitrary crystal, given a network of jumps between crystalline sites with known occupation

probabilities P* and the corresponding rates W°:

1. Construct the symmetric rate matrix &° for the vacancy (Eqn. 32);
2. Find the eigenvalues r* and eigenvectors s* (Eqn. 36);

3. Rotate w to identify diffusive-relaxive block matrices; construct Taylor expansions of corre-

sponding blocks (Eqn. 42, Eqn. 44, Eqn. 47, Eqn. 49);

4. Find D" from expansion of D(q) (Eqn. 51), and diagonalize to find the coordinate transfor-

mation from the eigenvalues d; and eigenvectors e; (Eqn. 53), and pn.x (Eqn. 59);

5. Transform all Taylor expansions to p, and compute Taylor expansions of blocks of g(p) up to
p° (Eqn. 57); separate the Taylor expansions by powers of p" and homogeneous polynomials

of constant orbital angular momentum ¢ (Appendix A);

6. For each block, and for each q grid point (Section II D), find the semicontinuum g by
subtracting the Taylor expansions multiplied by exp(—p?/p?..) from the inverse of w(q),

and then rotate back to g?°(q);
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7. Rotate the block Taylor expansion back to the original site basis.

This completes all preparatory work necessary to efficiently compute the Green function for a
series of different initial and final vacancy positions by expressing the Fourier transform as a
series of analytic terms plus a smooth function represented on a finite grid. For initial vacancy

position X + u, and final vacancy position X’ + u,, we

1. Compute 6x = X’ +u, —X+u,, and find the y; components (Eqn. 53), y magnitude (Eqn. 62),

and normalized components ; = y;/y;

2. Inverse Fourier transform all Taylor expansion pieces (Eqn. 61, Eqn. 66, and Eqn. 67);

3. Add the semicontinuum discrete inverse Fourier transform contribution (Eqn. 71).

This approach is optimal when the Green function is needed for a large number of x,i,-Xi, pairs
for a given set of rates (at a single temperature). For each new set of rates, the first seven steps

must be repeated.

III. DILUTE-VACANCY/DILUTE-SOLUTE TRANSPORT

Given our vacancy Green function without a solute, we construct the Green function solution
for our system with a solute using Eqn. 35, and to evaluate transport using Eqn. 30. This requires
a few considerations: (1) translational invariance for the solute; (2) crystalline symmetry and the
expansion of our lattice functions; (3) systems where vacancy states have non-zero bias before
the introduction of the solute; and (4) avoiding catastrophic roundoff error in systems with rates
differing by more than ten orders of magnitude. We conclude with expressions for the Onsager

coeflicients in the dilute-vacancy/dilute-solute limit.

A. Translational invariance of the Green function solution

We need to consider all states X,iX,i, that have a non-zero bias vector. Due to translational in-

variance, the bias vector is independent of x,. This simplifies our problem, as we are not interested
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in g itself, but rather ), b“(g)gﬂfbﬁ(g’). We note that b®(x;isX,iy) is independent of xg, so

a . . A VAR
§ § b (Xslsxvlv) ® gxsisxviv,x’si’sti’vbﬁ(xslsxvlv

Xsis Xgig Xyly Xyl
= b*(0isx,i,) ® | N Y Zoixivxixir |PPOIXE).  (72)
- IsXyly gﬂzsxvtv,xsl;x(,z(, X\l ).
Xs

s P
Is, iy Xyly,Xyly

The most straightforward way to evaluate the quantity in parenthesis is to note that, as gy i x,i, xix,,
depends only on x,—x, this is equal to the q; = 0 term of its Fourier transform (which is diagonal).
Then, if we return to Eqn. 35, we note that both  and §~' have the same translational symmetry

with respect to X, — X, so that

-1
n _ /a0 -1 Al 2
E Boixivxixii, = | Bxoivxii) Ot T Doixiv oy, T Woixyiy xix,, | (73)
’ ’
Xs Xs

That is: we can replace @ in Eqn. 35 with the sum over all solute positions, and work entirely with
the positions of the vacancy x,i,, X, i, and solute indices i, i;. Then our matrix inverse is strictly
in the space of the kinetic shells (see below). The first two terms in the right-hand side of Eqn. 73
zero if ig # i; only &” produces translation between sites for the solute when Ngjes > 1.

The reduction due to translational invariance dictates a finite set of states to consider for any

vacancy-mediated diffusion problem, following Nastar et al.*?%-21:34-36;

the thermodynamic and ki-
netic “shells.” Restricting to x; = 0, there are a finite set of states where 0ix, i, has a different (free)
energy than an isolated solute at i; and vacancy at i,; these can be thought of as “shells” of va-
cancy states surrounding a solute with a non-zero interaction, called the thermodynamic shell. The
change in energy can also change the rates for states that can transition to and from those states;
we define the kinetic shell as any state 0igx,i, for which 6@y;x,i, xixz, # O for some xix/i,.>
This finite set of states dictates the minimum subspace necessary to compute 2, for these are also
the states with changes to b. For simplicity, we will identify the size of the subspace by how the
minimum number of transitions necessary for the vacancy in any of the states to transition onto the
solute site**3%: a Inn “first neighbor” thermodynamic shell will require a (1nn)? kinetic shell—
first neightbors of first neighbors—which might include more than the second nearest neighbors.
For example, in FCC, the (1nn)? kinetic shell includes up to the fourth nearest neighbor of the

solute.
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B. Symmetry and state functions

The space group symmetry of the crystal allows for significant reduction in the complexity of
the diffusion problem. Below, we explicitly develop the linear basis to represent our configuration-
dependent quantities for the dilute limit, and construct fully symmetrized basis functions. This
requires an expansion of the notion of a star (a set of vectors related by point group operations)
to that of a “crystal star” which correspond with symmetry-equivalent solute-vacancy complexes
under space group operations. We then consider vectors for a given vector quantities ascribed
to our configurations, which motivates the development of a “vector star” to develop the basis
functions for the bias and symmetrized correction vectors.

We use the Seitz notation®® for a symmetry operation {R, t}, where for a point x, {R, t}x := Rx+t.
Then, the inverse {R,t}"! = {R™',—R~'t}. We can apply a symmetry operation to a state XisX,i,
by defining {R, t}(X,isX,i,) 1= X(i;X|i;, where {R, t}(x, + w;) = X{ + uy and {R, t}(x, + X, + u;)) =
X, + X;, + uy. This is well-defined as each symmetry operation maps a position in the crystal to
another position in the crystal, and each position in the crystal has a unique representation. The
full set of operations make up the space group; for our purposes here, we will be interested in a
subset of group operations that map x; = 0 to x; = 0; after lattice translations are added, this subset
generates the entire space group. We are interested in operations on our state space—the full set
of states 0isx,i, with a non-zero d&o—and specifically scalars and vectors at each state. A trivial
extension to tensor state functions is possible, but not described here.’

A state scalar function fyx,;, 1S a function that has a scalar value for each state X iXyi,; we
will primarily consider translationally invariant state scalar functions where fy;x.i, = foix.i, for all
XsisXyiy. The application of {R, t} to fy;x,:;, produces a new lattice function {R, t}f := g such that
Sxixiis = SR ti(xisxyiy) TOT All XigXyiy; O, @xixiic = fiRt)1(xicxiy)- Moreover, if f is translationally
invariant then so is {R, t} f. This definition is such that, for example, the state scalar delta function,
o(x%%x%1%) where

MR NN
X200 ixiin 1= (74)
1 xigXyiy = x0i0x%0

0 XXyl # X%

V’O

gives {R, t}6(xszngzv) = 0({R, t}(Xsl x%i)), as one would expect. A state vector function £, is

svhy sIsXyly

a function that has a vector value for each state X,isX,i,; we will primarily consider translationally
invariant state vector functions where fy ; x i, = foix.i, for all X isx,7,. Then, the application of {R, t}

to fy i.x,i, produces a new state vector function {R, t}f := g such that fy ; x ;, = R(g(r tx.ix.i,)) for all
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XslsXyly; OF, 8x ix iy = R! (fir 11 (x.ix.ir))- Extending this to a tensor state function is straightforward,
but not necessary for what follows. Note that, written this way, each {R, t} now also acts as a linear
operator on our (vector) space of scalar and vector lattice functions.

Restricted to the space of translationally invariant scalar state functions and vector state func-
tions, we define scalar products to develop our symmetric basis functions. The scalar product of
two translationally invariant scalar state functions f and g is defined as

f-8:= Z Joixyi, 80ixyi s (75)
isXyiy
or the sum of the product of the function values. The scalar product for two translationally invariant
vector state functions f and g is defined as
Fog:= > foi - B (76)
isXiy
or the sum of the dot product of the vector function values. This scalar product allows for con-

struction of orthonormal bases for our scalar and lattice vector functions. One example of such

basis functions are the set of translationally invariant delta functions, 6(0ix%%) where
0 :ixXyi, #i°x%°
0500 sXyly
OOLX, )ity 1= , (77)
05070
I iXyiy = (X0,

for all %, x?, i%. For vector lattice functions, the basis would be e5(0i°x%:?) for different orthonormal

S V V
3-vectors e.
Next, we consider a (real) symmetric linear operator A that is closed over translationally invari-

ant state functions. We can represent A with a matrix Ag;x,i, 0ix,i, Where

SVV

A()t Xyiy 00,1, = 6(01 lev) (A6(0l/ . /)) (78)

If A is a symmetric operator, then f-(Ag) = g-(Af) for any two translationally invariant state func-
tions f and g. Since A is a real, symmetric linear operator, it has real eigenvalues and eigenvectors
that fully span the vector space. Our symmetry operators {R, t} are unitary operators, and so have
complex eigenvalues and eigenvectors that fully span the vector space; the eigenvalues are all roots
of unity. If we have an operator A that also commutes with a symmetry operator {R, t}—that is,
A{R,t} = {R,t}A—then eigenvectors of A are also eigenvectors of {R, t}. In particular, if we take
all of the eigenvectors of {R, t} that all have the same eigenvalue, then A will remain closed on that

set; thus, we can construct block-diagonal matrix versions of A.
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Using the space group operations, we can define crystal stars and vector stars from our space
group, and construct fully symmetrized translationally invariant scalar and vector state basis func-
tions. We define a crystal star as a generalization of a star for a point group; here, a crystal star is

13! 3!

a set of all states cs := {X.isX,i,} such that for any two Xi X,iy, X[i;X} I}, € cs, there exists a space

group operation {R, t} such that {R, t}x i;X,i, = X(i{X,i,, and for XiX,iy € cs, {R, t}XiXiy € ¢S
for all space group operations {R,t}. That is: cs is a minimal closed set of states for the space
group. We will identify a unique set of stars as the origin-state stars where 0i0i; are members;
these correspond to states where the solute and vacancy are superimposed and which are excluded

in @ but included in &°. For each crystal star cs, we define a lattice function ¢s where

Ts = — Z S(XisXyiy) (79)

S XslsXyiyECS

and N; is the cardinality of the subset of {0i;x,i, € cs}—the number of representative states in cs.
This scalar state function is such that {R, t}cs = c¢s for all {R, t}, and has translational invariance.
We define a vector star derived from a crystal star cs: a vector star vs is a set of tuples, vs :=
{(XsisXyiy, V)} such that {x;isx,i, for (XsisXyiy, V) € vs} = cs, for any two (XsisXyiy, V), (X.i:X/ i, V') €

’
sYsThviv?

i’x/i’,v"), and for

’
STStvVIVe

vs, there exists a space group operation {R, t} such that ({R, t}xi;X,iy, RV) = (X
(XsisXyiy, V) € vs, ({R, t}xsisXyiy, RV) € vs for all space group operations {R,t}. That is: vsis a
minimal closed set of states with vectors for the space group. Note that this requires all of the
v vectors have the same magnitude. For each vector star vs, we define a normalized vector state

function vs where

1
VS = NS|V| Z Vé(xsisxviv) (80)

(XyisXy iy V)EVS
This vector state function is such that {R, t}vs = vs for all {R, t}, and has translational invariance.
Each non-origin state star cs has at least one, and as many as three, unique vector stars as-
sociated with it. We construct the vector stars to be orthonormal: if vs and vs” are based on the
same star c¢s, then for (X,i;X,iy,V) € vs and (X,isXyiy, V) € vs', v-V = 0if vs # vs’; otherwise
v-v' = 1 /N, where N; is the number of representative states of the star cs, so that the corresponding
vector lattice functions are orthonormal. For each star cs, there is the parallel vector star where
for each (x4isXyiy, V) € vs, v o< (X, + u;, — u; ), as this trivially satisfies the definition of a vector
star. However, there may be one or two possible perpendicular vectors stars; these are such that
for each (XisXyiy,V) € vs, v- (Xy +u;, —u;) = 0. To be vector stars, we require that for each

{R, t} such that {R, t}(x.isXiy) = X[isX,iy, the corresponding v obeys Rv = v; there may be one
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or two unique solutions in addition to the parallel star. As an example, in a simple cubic system,
the star generated by a vacancy at (100) only has the parallel vector star, while the star generated
by a vacancy at (210) has both the parallel vector star and one perpendicular vector star, and the
state generated by a vacancy at (321) has the parallel vector star and two perpendicular vector
stars. In the special case of origin-state stars, some crystals have no corresponding vector star,
as it is excluded by symmetry. This corresponds to an empty site vector basis® which occurs for
any site whose point group includes inversion or a 3-, 4-, or 6-fold axis combined with a mirror.
The exclusion of origin-state vector stars produces no bias for the vacancy without a solute, and
provides for significant simplification below; c.f. Section III C.

Finally, the symmetric linear operators we consider—transition rate matrices and Green
functions—are invariant under all space group operations: {R,t}JA = A{R,t} = A. Our state
bias vectors can be expanded in vector stars, and the Green function and transition rate matrices
can be expressed entirely in components of those vector stars: G, = vs, - (G vs;,) for two vector
stars vs, and vs,. Thus, symmetry can significantly reduce the computational complexity: in the
case of a face-centered cubic lattice with 1nn “first neighbor” thermodynamic shell and a (1nn)?
kinetic shell, the subspace is represented by four stars that generate five vector stars, producing

5 X 5 symmetric matrices.

C. Vacancy diffusion with bias in all states

For a crystal where symmetry does not preclude origin state vector stars, there will be transla-
tionally invariant bias in the solute and the vacancy that needs to be handled differently. For the va-
cancy, it can have non-zero bias even fully separated from the solute; while Eqn. 35 could be com-
puted locally for the changes in bias vector, the non-zero bias for vacancy states that are outside
the kinetic shell require a specific separation so that only “local” changes need to be calculated.
For the solute, the projection of the bias vector into the vacancy null space }, ; boix,i, (P?V’V)” 2
can be non-zero; this requires a corresponding correction vector for the solute based on the solute
transition matrix &> that compensates the “bare” solute transport contributions to L and L®Y.

A non-zero vacancy bias can be separated into a translationally invariant bias (absent the solute)

\'% i
0igxyiy

plus localized changes due to the solute. We write the bias vector for the vacancy as b

bO,v

0igxyiy

0,v
0igxyiy

+ 6b!. . :in this case, b

0igxyiy°

is the bare vacancy bias vector, Eqn. 52, computed using the

terms in W° (Eqn. 31) with P?V’V, and 6by, ., is the remaining (local) terms from &' and @*. Thus,
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b° has translational invariance and is non-local. Note that 5b¥ includes terms that remove the bias
at the origin states when they are disconnected from the full jump network. Similarly, we write
the Green function as § = 2° + §2. Then, the second term in Eqn. 30 for the vacancy-vacancy
contribution is
b’ ® &b" = (™ + 6b") ® (8° + 98)(b*Y + 6b")
=b™ ® 2" b" + 6b' ® g 5b"
(81)

+(ob* ®2°b™ +b™ ® 2°6b") + (6b* ® 63 ™ + b* ® 53 6b")

+b* ®5gb™,
where the first term contributes to the diffusion of the vacancy without any solute, the second term
is fully localized and represents the correlation in the absence of any non-solute vacancy bias,
and the remaining terms are corrections to be evaluated. We wish to continue working in our
kinetic state space (the kinetic shell), and so require a few simplifications. First, 8°b%" = 9%V, the
symmetrized correction vector for the vacancy. Next, while the change in the Green function 62 is

not local, it can be rewritten using the Dyson equation as
58 = (-0t + 60> § 600", (82)

For convenience, we define

0w 1= 6w — 0 § O (83)
so that 6§ = —2° Sw 2% and Sw is non-zero only for states in our kinetic shell. Then

b'®2b' =b™ ®y"" + b’ ®26b" + (5b* @ y*" + y*' @ 6b") &
_ (6b"§0 ® %yo,v + ,yO,vSZ) ® go 6bV) _ ,y0,v ® gz)yo,v,

only contains terms that are fully periodic (b%Y, ¥*") or fully localized (5b", Sw). The first term is
the only one including b%Y, and it contributes to the vacancy diffusivity without solute; all of the
remaining terms are leading order c;.

The non-zero solute bias requires a different treatment as it represents a different subspace of
the state space: the solute diffusion network. Without the solute, the transition matrix @° has a
null space corresponding to the square root of the vacancy probability, (P?V’V)” 2 for any x,i;. When

there are origin state vector stars, the projection of the solute bias vector into that vacancy null

space is nonzero. We construct the total solute bias vector

Iy

b} := Z by (PP, (85)

Xyly

29



and the solute transition matrix

W= ) (P Pag o (PY)? (86)

isi 0isxy iy XX,
Xylv XX 1y
which only includes the transitions that move the solute atom. Note that as this is the null space
projection, the vacancy probability appears to the half power twice. The solute transition matrix
can be mapped into a single species diffusion problem,’ and we define the solute total symmetrized
correction vector 7* := (@*)*b* for the pseudoinverse (@?)*. We will add to L*®® a term correspond-
ing to b*®¥*, and an opposite correction —b*®%* to L*Y). Finally, we construct the projected solute

bias vector

S e TS _ A2 0,vy1/2 =5
boixiv := Poix,i, Z W xiy i, P 7, )Yy 87)

XSEXly

which now has zero projection into the vacancy null space.

D. Modifications to accommodate large exchange rates

The rates in a vacancy-mediated diffusion problem can differ by many orders of magnitude,
which can contribute to round-off error when calculating diffusivity numerically. The predomi-
nant type of round-off error in vacancy mediated diffusion is caused by large exchange rates (&?)
compared with all other rates; this causes the correlation to increase so that the correlated con-
tribution to the diffusivity is almost exactly equal (and opposite) to the uncorrelated diffusivity
contribution. This leads to catastrophic round-off error; moreover, as our rates are Arrhenius, as
long as the activation barrier for vacancy-solute exchange is lower than the other activation barri-
ers in the system, large differences in rates will always occur at some finite temperature. Hence, a

modified version of the diffusivity is required.

We work in the exchange space (the subspace of states involved in solute-vacancy exchange)
to separate the &? contribution to diffusivity from the rest of the state space. The exchange space
are the only states that have a non-zero contribution from our “fast” exchange rates &>. Then, we
can apply the Dyson equation in two stages, where g' = ((8°)™' + ®")'and g = ((&")™' + &),

and the second Dyson equation will be computed in the exchange space. Then, if (8'®?) > 1,
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rewriting the Green function as

p= (@) +a) = (a1 @'an])
=@+ {1+ @) - 1)@y (88)

- (® 2)— [c?) (ngld)z]‘l

produces a first term that is the inverse of &? and the second term is, to leading order, O((2") ™' (@2)_2).
Hence, when the matrix (§' &%) is large, this expansion can capture many more significant figures
in two separate matrices. The calculation in Eqn. 88 must be performed in the complement of the
null space of @ in the exchange space; see below. While Eqn. 88 is exact, it only shows particular
utility for large &* values evaluated with floating-point arithmetic.

The difference between the uncorrelated and correlated diffusivity can be directly calculated
without significant round-off error for large &>. The exchange space contains all of the states

X.I.XyI, With non-zero bias for the solute, b’

xioi,- Moreover, as there is only a single vacancy

and a single solute, there is only one transition that contributes to the bias for any state XgisXyiy,
and Eqn. 33 shows that & has a block diagonal structure consisting of 2 x 2 blocks of X,i;X,i,
and x,isx,i,. Then, we can consider each pair of states, X,i;X,i, and X i;X,i, individually; call one

state S := X,i;X,i, and the other § := X(iX,i,. Then, let pg := Po(XisXyiy), ps = Po(XgisXyly),

V= pl/Z(Xglnglv)Wxsl xivximi P I/Z(Xslsxvlv) and 6X := 0X (XisXyiy — XsisXyiy). In this shortened
notation,
‘ —v(ps /[ps)''? %
by _b;stxt _6XVPI/2 b§ ::b;ixi :—6XVpl/2 a)Z: o
stsaviy V _V(ps /pg) /

(89)

and the contribution to L®¥ from both states is

77 (6% @8 (0sp5) v+ (s, bs) ®(w")" (b bs)' (s bs)®(&7 + %' (b, bs)'). (90)
B

The first two terms add to zero, so that the second term in Eqn. 88 contributes to the diffusivity, giv-
ing an overall contribution O((8') ™' (&*)°) for large w?. To see this, we evaluate the pseudoinverse

of the 2 X 2 matrix w?,

_ 1 (psp)' | ps (psps)'/?

2N+ — 91
) (s +05) {(psps)' > —ps on
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and so

)12 . \1/2 1/2
- Ps  (psps) SXVpL
(bs, bs)(@")"(bs, bs)" = v I(IOS'O—S)2(6xv10§/2 —6XV,0§/2) ’ e ‘i
(os +ps) (osps)'> —ps —6XVpS/
VX ® 6X
- (ps + p5)? [_(PSPS)I/Zpé - 2(PSPS)3/2 - (,DSPS‘)I/Z,D%]
= —(psps)'*véx ® Ox,

(92)

which exactly cancels the bare term in Eqn. 90. This is expected, as a pair of states that only
transition between themselves (as they would if & = &? only) does not contribute to transport and
L™ is exactly zero. Eqn. 90 also shows that while in the limit of &* — oo, L® ~ (&?%)°, in the

limit &* — 0, L™ ~ (&?)".

E. Algorithm summary

We summarize the computational steps in the calculation of of the transport coefficients for an
arbitrary crystal in the dilute-vacancy/dilute-solute limit. Our inputs are the same as Section II E,
with the addition of rates for the vacancy near the some W', exchange with the solute W2, and
solute-vacancy interaction energies (probabilities) Ele(X) (PO(Xsisxviv)); c.f, Section IE. We as-
sume that the introduction of the solute does not cause any vacancy states to become unstable, or
introduce new vacancy states or transitions in the jump network; the extensions of this work to

consider those cases is possible (c.f., Section V), but beyond the scope of this work.

1. For a given thermodynamic shell, define the kinetic shell (c.f., Section III A), and construct
a set of crystal stars corresponding to the thermodynamic shell where E77(x) # 0, and both
crystal stars and vector stars for the kinetic shell; index the vector state functions by i as vs;.

Construct the outer product of vector state functions vs; and vs;,

VVij = VS;®VS; = Z Z VOV 6(Xy — X510z (93)
(0isxyiy,v)EVs; (0igxy iy, v/ )EVS;

and when crystal symmetry does not preclude origin state vector stars, construct the projec-

tion matrix Y’ between vector state function vs; and an origin state vector function vsy,

Tii= Y D vV (94)

(0isxyiy,v)evs; (08,05,,v )evsy
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2. Compute the probabilities P?V’V, P?S’S, and Py(0isx,i,) = P?V’VP?S’S exp(—E;; (x)/kgT), with nor-
malization 3; P = 3, P = Nyjes-

3. Construct the bare transport contributions

2,5 1/2
d>* Z (o w, —w) ® (% +wy, —w) o PO PP 0ix i)
Oz\x\,lV
d2,sv = _d2,ss
d"WVW = = 3 Z Z(x +u; —X, - W) ® (X, +uy — X, —u;,)

0isxyiy x,1,

1/2 51/2 0,v p0,vy1/2 p0,s
[( 01 Xy ly,0is X5 7, +o Oz;x\,tV 06X, 7 V)P (Ol XVZV)P (Ol X ) szngtV (IS & (,(P P ) P ]
d2,vv — d2,ss
95)

where the last two terms contribute to the first order change in L™ with ¢,. These tensors

0

can be written as linear combinations of the symmetry unique «’, w', and w? values with

square roots of appropriate probabilities.

4. Construct the bias vectors in the vector state function basis. Separate into the vacancy bias

(1) and exchange bias vectors (2),

1._ X ’ o e Al SU2 ey o7 o1
b; = Z Z Ve g Xy - W) [(‘Uol‘sxviv,ol xi, ¥ Do oioxi) Do (X1,

(0isxyiy,V)evs; X,i),

(Dgtsxvtv ai (P(TIVPO 5)1/2] (96)

0isxy iy

bf = Z vexy+u, —u) o> P1/2(01 Xyly)

(0igxyiy,V)EVS;

0isXyiy,0isXy iy

so that b® is given by b? and the localized change in bias vector for the vacancy 6b" is b} —b?;
this is superimposed onto the bare vacancy bias vector b%" (c.f., Section III C). These vectors
can be written as linear combinations of the symmetry unique ", w', and w? values with

square roots of appropriate probabilities.

5. Evaluate the vacancy Green function ggl._x the vacancy diffusivity without a solute

sXviy, 06Xy
D' (where LY = ¢,D"/kgT), and the periodic symmetrized correction vector y;", which
is projected into origin state vector functions vs;,

ni= ), VA 97)

ly
(0i,0iy,v)eVsy
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6. Construct the vector state function basis matrices

0 ._ N\ A0
gij T Z Z (V v )ngiv,xéi(z

(0igxyiy,v)EVs; (0isXy iy, V' )EVS;

. AN
Wi = E E (v-v )wOisxviv,Oisx(,i’v (98)
(0isxyiy,v)Evs; (DisXy iy, V' )EVS;

2 N A2
w;. = V-V)W —_
Y Z Z ( ) 0isxyiy,0isXyiy

(0isXyiv,VIEVSi (0isxyiy,v’)EVS j

from which the matrix g;; is constructed in Step 8. These matrices can be written as linear

combinations of the symmetry unique g°, w' and w? values.

7. Evaluate the total solute bias vector BZ (Eqn. 85), solute-solute transition matrix @?,

Islg

(Eqn. 86), symmetrized correction vector y;. Add b* ® #* to d*>* and add —b* ® ¥* to
d**. Construct 6b} from Eqn. 87.

8. Construct g' = (1 + g%w") g% g = (1 + g'w?)'g!, and sw (Eqn. 83) in the vector state
function basis. If g'w? contains “large” entries (above 10® for a double floating-point repre-

sentation), then

(a) find the eigenvectors of w? in the exchange space and the pseudoinverse w?*;
(b) rotate g into the subspace; replace g with —(w? + w?g'w?)~! in the non-null subspace;
(c) rotate back to exchange space;

(d) set the bare transport contributions to

d** =0
&= ) DIV, Wi B

1 ijk (99)
d" =0

&V =Y (bl =261V, W B

i jk
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9. The transport coefficients are, to linear order in ¢ and ¢,

(s8) — & 2,88 2 2
£ NsiteskBT[d + Zk biﬂingkbk]
L

! (MR R

- B NsiteskBT ijk
LV = SCDY g S P S (B = BYVV, gbh - BY) (100)
o kBT_ NsiteskBT l il

ijk
+ Z y/(c)’lekﬂz](Zb; -2 Z 3s(':)ji"’lggmbrlz - Z SZ)jmek"yg:v)

ijk k!

- Z ’)/](c),vTikﬂii/ Ti/k/ bg;V:|

i’ kk’

where Nj;s appears due to the normalization of P?V’V and PZ’S (c.f., Step 2).

The algorithm, with symmetry analysis, is available in an open source implementation, described
in Appendix B. Note that only crystals with low symmetry have origin state vector stars; otherwise,

0,v .0V js s
T, bl.v Vi, , b* and ¥* are zero.

IV. NUMERICAL RESULTS

To demonstrate the efficacy and accuracy of the algorithm, we consider several cases of interest.
First, we demonstrate the scaling of the error of the evaluation of bare vacancy Green function for
FCC and HCP lattices. We then show the effect of roundoff error in the large ®° limit, and that
our corrections successfully circumvent catastrophic error. Next, we compute tracer coefficients
for a series of crystal structures, compare with known values where available, and show new
results for a few crystals. As a more detailed example, we consider the case of a garnet structure,
which was recently studied with a related method, and produce the first accurate tracer correlation
coeflicients for that structure. Finally, we compare with prior simulations of solute drag of silicon
in FCC nickel computed using the self-consistent mean-field method,**%!%? and solute drag of tin
and zinc in HCP magnesium® computed using kinetic Monte Carlo. The source code for all of

the results are available as Jupyter notebooks online;* c.f. Appendix B.
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A. Vacancy Green function error scaling without solute

We consider progressively denser k-point meshes to integrate the Brillouin zone for a face-
centered cubic (FCC) lattice. The transition rate is w® = 1/12 and we start from a 6 X 6 X 6 mesh
in progression (4n + 2)* up to 34 x 34 x 34 with &preshoig = 1078 in Eqn. 59. The values of the
Green function and differences appears in Table I, with the convergence of integration errors in
Fig. 1. The largest distance to appear in the correlation factor for a first-neighbor thermodynamic
interaction is R = 4a; = Zan + 2aolA(, and so we compare the convergence of g°(0), g°(R), and the
difference g°(0) — g°(R) (as differences in Green function values are important for errors in corre-
lation factors). To separate the integration error from the gyesnoia €rror, we fit the large N, limit
of the Green function value, then subtract the limiting value. The default value in our algorithm of
Nyt = 183 provides an error in the Green function difference of ~ 1078. Roundoff error becomes
an issue as Ny increases, as the error is limited by ~ IO‘IGNSymm_kpt. Empirically, we observe an
error scaling of ~ Nk_pst/ 3_faster than the minimum convergence rate of Nk_;t/ 3 from Ref. 56—in the

Green function values, and an even faster convergence for the difference of Green function values.

TABLE I. Green function convergence with k-point density for FCC. The k-point meshes can be reduced by
cubic symmetry to a smaller set of unique points (Nsymm-kpt), the number of which is listed parenthetically
next to Nipe. The computational effort scales with the number of symmetry unique points (c.f., Eqn. 71)
while the error is controlled by Nyp (c.f., Fig. 1). The pyax value is chosen so that egpyreshold = 1078 in

Eqn. 59, and R = 4a; = 2an + 2aoﬁ.

k-point mesh Nipt (Nsymm-kpt) 2°0) £ R) 820 - °®)
6X6X%6 216 (16) —1.344901 582401 —-0.119888361621 —1.225013220779
10x 10 x 10 1000 (48) —1.344 674 624975 —0.084 566077531 —1.260 108 547 444
14x 14 x 14 2744 (106) —1.344 663 672542 —0.084 541308263 —1.260 122364278
18 x 18 x 18 5832 (200) —1.344661 890661 —0.084 539383601 —1.260 122 507 060
22 x22x22 10648 (337) —1.344 661442418 —0.084 538941204 -1.260122501213
26 x26x26 17576 (528) —1.344 661295591 —0.084 538798573 —1.260 122497018
30x30x30 27000 (778) —1.344 661238 153 —0.084 538742761 —1.260 122495392
34 x34x34 39304 (1095) —1.344 661212587 —0.084 538717850 —1.260 122494 737
38 x 38 x38 54872 (1488) —1.344 661 200054 —0.084 538705591 —1.260 122 494 464
42x42x42 74088 (1971) —1.344 661 193423 —0.084 538699082 —1.260 122494 341
46 x 46 x 46 97336 (2547) —1.344661 189691 —0.084 538695410 —1.260 122494281
50 x50 x50 125000 (3222) —1.344 661 187483 —0.084 538693232 —1.260 122494 251

We also consider progressively denser k-point meshes to integrate the Brillouin zone for a

hexagonal close-packed (HCP) lattice. The basal and pyramidal transition rates are «° = 1/12,
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k-point grid
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FIG. 1. Scaling of error in FCC Green function. The absolute error is due to the integration of the semicon-

tinuum contribution g‘slc'6 over the Brillouin zone, c.f., Section II D. A minimum number of k-point divisions

is required to avoid aliasing errors for larger R; as Ny increases, the error is controlled by the integration

error of a smooth, periodic function, which scales>® no slower than Nl;i/ 3, empirically, we find a scaling of
-5/3
Nkpt .

and we start from a 6 X 6 x4 mesh in progression up to 60 x 60X 32 with &gresnoia = 1078 in Eqn. 59.
The values of the Green function and differences appears in Table II, with the convergence of
integration errors in Fig. 2. The largest distances to appear in the correlation factor for a first-
neighbor thermodynamic interaction are R; = 4a; + 4a, = 4a0f and R, = 2a; + 2a, + 2a3 =
Za()f + 2c0ﬁ, and so we compare the convergence of g°(0), g°(R,), g°(R,), and the differences
2%(0) — g°(R)) and g°(0) — g°(R,) (as differences in Green function values are important for errors
in correlation factors in the basal plane and along the c-axis). To separate the integration error from
the Emreshola €rror, we fit the large Ny, limit of the Green function value, then subtract the limiting
value. The default value in our algorithm of 20 X 20 X 12 provides an error in the Green function
difference of ~ 10~’. Roundoff error becomes an issue as Ny increases, as the error is limited by
~ 10‘16Nsymm_kpt. Empirically, we observe an error scaling of ~ Nk_pst/ 3__faster than the minimum
convergence rate of Nk_;t/ 3 from Ref. 56—in the Green function values, and a similar convergence

for the difference of Green function values with an order-of-magnitude smaller prefactor.

The analytic values for the Green functions are available as Watson integrals, which allows us

to compare the error induced from a non-zero value of &preshod- In the case of g°(0) for both FCC

37



TABLE II. Green function convergence with k-point density for HCP. The k-point meshes can be reduced
by hexagonal symmetry to a smaller set of unique points (Nsymm-kpt), the number of which is listed paren-
thetically next to Ny, The computational effort scales with the number of symmetry unique points (c.f.,
Eqn. 71) while the error is controlled by Ny (c.f., Fig. 2). The pmax value is chosen so that &gyeshold = 108

in Eqn. 59, and R, = 4a; + 4a, = 4aoi and Ry = 2a; + 2a, + 2a3 = 2aoi + 2cok.

k-point mesh Nt (Nsymm-kpt) £°(0) g"R)) 8" (Ro) g0 -¢"R) 0 - " R)
6xX6x4 144 (21) —1.367909 503 563 —0.192892722514 —0.131552967 388 —1.175016781049 —1.236356 536 175
10X 10x6 600 (56) —1.345034 474341 —-0.087913619020 —0.089 866 654 871 —1.257 120855321 —-1.255167 819470
16X 16 x 8 2048 (150) —1.344 668 575390 —0.084 546 609595 —0.088212957 806 —1.260 121965795 —1.256455617 584
20x20x 12 4800 (308) —1.344 662392 185 —0.084 539941251 —0.088 166498 574 —1.260 122450934 —1.256495893611
26 x26x 14 9464 (560) —1.344 661 615456 —0.084 539088 966 —0.088 165768 509 —1.260 122526490 —1.256 495 846 946
30x30x 16 14400 (819) —1.344 661401027 —0.084 538892419 —0.088 165529 659 —1.260 122508 608 —1.256495 871 368
36 x36x20 25920 (1397) -1.344 661260 564 —0.084 538 764009 —0.088 165374312 —-1.260 122496 555 —1.256 495 886252
40 x40 x22 35200 (1848) —1.344 661230214 —0.084 538734661 —0.088 165342770 —1.260 122495553 —1.256495 887 444
46 x46 x24 50784 (2600) —1.344 661210808 —0.084 538715598 —0.088 165322977 —1.260122495211 —1.256495 887 832
50x50x28 70000 (3510) —1.344 661197 817 —-0.084 538703416 —0.088 165309 065 —1.260 122494400 —1.256495 888 752
56 x56x30 94080 (4640) —1.344 661 192649 —0.084 538698279 —0.088 165303 871 —1.260 122494370 —1.256495 888778
60 x 60 x 32 115200 (5627) —1.344 661 189980 —0.084 538 695678 —0.088 165301 128 —1.260 122494302 —1.256495 888 852

and HCP lattices, the value*>*° is the same:

. or (1)’
g0 = —o7 ~ ~1.344661 183165 144 ---

which provides an error, when using Ny, ~ 10° from Table I and Table II of ~ 5 x 10~ for

Emreshola = 1078 Just as g°(0) is equal for FCC and HCP, g°(R) for FCC and g°(R,) for HCP are

4344 o

also equal; the closed form for g°(R) can be evaluated from recursion relations
g’ (R) ~ —0.084 538 688 992 554 - - -
which provides similar errors as in g°(0). However, the difference with g°(0) — g°(R) is

¢°(0) — g°(R) ~ —1.260 122494 172590 - - -

which provides an error from Table I and Table IT of ~ 1 x 107! and ~ 3 x 107!, respectively, for

Emreshola = 1078; this is expected to be the level of the controlling error in correlation factors.

B. Large v’ treatment for FCC five-frequency model

Section III D describes the modifications necessary to compute the transport coeflicients when

&* becomes large, to avoid catastrophic roundoff error; Fig. 3 shows numerical values of the round-
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FIG. 2. Scaling of error in HCP Green function. The absolute error is due to the integration of the semicon-
tinuum contribution g‘slc'6 over the Brillouin zone, c.f., Section II D. A minimum number of k-point divisions
is required to avoid aliasing errors for larger R; as Ny increases, the error is controlled by the integration

error of a smooth, periodic function, which scales>® no slower than Nl;i/ 3, empirically, we find a scaling of

-5/3
Nkpt .

off error depending on which treatment of the transport coefficients is used. Our implementation
uses the algorithm of Section III D when g'&? has values greater than 108; this is the “automatic”
algorithm of Fig. 3; alternatively, we can choose to never use the “large” @ algorithm, or use it
for any value of &?. To test the accuracy when changing the algorithm, we consider an FCC five-
frequency case where w' = w® = w* = w° = 1, and we systematically vary w? from 1077 to 10'7.
The correlation factor f = —L® /L") is constant and equal to the tracer value ~ 0.781 451 419 for
any nonzero value of w?, and our “automatic” treatment shows negligible deviation (< 1071%) in
f over the full range. However, not using the large @& treatment shows deviation at the 10~* level
when w? = 10'3, and the errors increase until at w?> ~ 10'® they are so large that L®" is reported
as numerically 0. Similar “mirrored” behavior is shown when using the “large” @&* algorithm as

w? = 10713 and as it decreases below 107'°.

39



10) e 0o eeo e e 10

0.8 2 . 0.8
e 3 ¢
c
O 06 06
— .
9 .
[0
= .
S 04 —— automatic 0.4
o
. «  nolarge w?
02 « only large w? 02
0.0 . 0.0
7. L
10" 10" 10" 10™ 10™ 10" 10™ 10" 10" 10"
w? w?

FIG. 3. Tracer correlation factor f = —L®% /L®Y) for FCC with different treatment of L*® and L®Y for w?.
When the ratio f is numerically meaningless (L) is numerically zero, or any quantity is reported as Inf of

NaN), f is plotted as having the value 1.

C. Tracer correlation factors for various crystal structures

Table III summarizes tracer correlation factors for nine different crystal structures. The nine
crystals cover networks with connectivity ranging from 4 (diamond, wurtzite), 6 (simple cubic), 8
(body-centered cubic, NbO), to 12 (face-centered cubic, hexagonal close-packed), and two mixed
networks (hexagonal omega, HCP octahedral-tetrahedral®). The correlation factors are computed
assuming all jumps have the same rate, and all vacancies positions have equal probability; then,
the @ rates are also equal, and the correlation factors are temperature independent. The &gyeshold =
1078 and the k-point meshes are chosen so that integration errors are < 107%; hence, all correlation
factors are reported to 8 digits. The cubic structures have isotropic transport coeflicients, and hence
isotropic correlation factors. The hexagonal crystal structures use the “ideal” ¢/a ratios, which then
produces isotropic L") transport coefficients for HCP and wurtzite structures, while the hexagonal
omega and HCP octahedral-tetrahedral networks have anisotropic L") transport. Despite HCP
having isotropic L®", the solute-solute L*¥ for the tracer is anisotropic at ~ 2.5 x 10™*. The
similarity of the wurtzite structure to the diamond structure produces the same 1/2 correlation

coeflicient. The case of garnet is discussed in more detail in Section IV D.

Fig. 4 shows the variation in tracer correlation factor with the two unique jump rates for a
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TABLE III. Tracer correlation factor f = —L®9/L®Y) for multiple crystal structures. Each crystal is iden-
tified by the common crystal name, and its space group with occupied Wyckoff positions.®* For the cases
of wurtzite, hexagonal close-packed and HCP octahedral-tetrahedral we use the ideal c/a = +/8/3, and
for hexagonal omega, we use the ideal ¢/a = +/3/8. For NbO and garnet, we only consider jumps on a
single subnetwork. All sites whose common distance is less than the cutoff distance are connected with a
jump, which contributes to the connectivity. Some structures have more than one unique type of jump, and
the connectivity is listed as a sum. All of the jumps are taken to have the same rate. The cubic crystals
show isotropic tracer correlation factors, while the hexagonal crystals other than wurtzite show anisotropic

correlation. Where available, we report reference calculations of the tracer correlation factor.

crystal space group Wyckoff cutoff connectivity frx fez reference values
simple cubic Pm3m la ap 6 0.653 108 84 0.653 108 84 0.653 109*!
body-centered cubic Im3m 2a 0.9ap 8 0.727 194 14 0.727194 14 0.727 1944165
face-centered cubic Fm3m 4a 0.75ag 12 0.78145142 0.78145142 0.781451 424165
diamond Fd3m 8a 0.45ag 4 0.50000000 0.500 000 00 1/24665
wurtzite P63/mmce 4f (z = 1/16) 0.62ag 1+3 0.500 00000 0.500 00000

hexagonal close-packed P63/mmc 2c ap 6+6 0.781204 88 0.78145142 0.781204 89, 0.781 451 4246
NbO Pm3m 3c (Nb) + 3d (O) 0.8ag 8((3c) 0.68891612 0.68891612 0.688 916%
hexagonal omega P6/mmm 1la + 2d 0.66ap 2+12,2+3 0.78122649 0.78157339

HCP octahedral-tetrahedral ~ P63/mmc 2a + 4f (z = 5/8) 0.71ag 6, 143 0.63052307 0.65230273

garnet (AsM’2(M”X4)3) Ia3d 24c + 16a + 24d + 96h 0.3lag 4 (24c)  0.37497267 0.37497267 0.2491%7

wurtzite crystal network. The wurtzite (hexagonal diamond) network is tetrahedrally coordinated,
where each site has one jump along c-axis (jump frequency w,), and three jumps that move primar-
ily in basal directions in a honeycomb network. This network requires c-axis and “basal” jumps
to move in the z direction, and “basal” jumps to move in the xy plane. As w. — 0, the wurtzite
crystal looks like a series of nearly disconnected honeycomb lattices in parallel xy planes; hence,
the basal correlation factor f,, — 1/3,% and f,, — 1 as the c-axis jumps become uncorrelated. In
the wurtzite structure, the c-axis jumps do not form one-dimensional chains, but rather connect
pairs of 4f sites; hence, as w. — oo, the basal correlation approaches ~ 0.6699, and the c-axis
correlation approaches ~ 0.57. This is different than the the limit of correlation factor for an HCP
lattice with zero basal jump rate®® (0.644545 and 0.653109); mapping the two sites of a wurtzite
lattice onto a single HCP site allows a vacancy and solute to occupy the same HCP “site,” which

1s forbidden in the true HCP case.
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FIG. 4. Wurtzite structure tracer correlation factor dependence on w. and wepasa. The wurtzite (hexagonal
diamond) structure is tetrahedrally coordinated, with one jump along the c-axis connecting pairs of 4f sites,

and three honeycomb directed jumps primarily in the basal plane.

D. Green function and tracer correlation factors for garnet

A recent calculation by Carlson and Wilson computed the tracer correlation factors for diffusion
on the dodecahedral sites in the garnet structure, using Monte Carlo integration of the lattice
Green function.®’ The garnet crystal structure appears in many minerals in the earth, and hence
predicting diffusion in this structure is important for modeling mass transport in geology. The
garnet structure includes pyrope, Mgz Al,Si;O;, which is a cubic structure with space group Ia3d.
The dodecahedral sites are occupied by Mg atoms on the 24c Wyckoff site,** while Al occupies
16a, Si occupies 24d, and O occupies 96h (0.03284, 0.05014, 0.65330), from Gibbs and Smith.%
The dodecahedral sites have coordination number 4 with other dodecahedral sites with a cutoff
of 0.31ap; however, the connectivity is such that there are two fully separated, symmetry related

networks that each connect half of the Mg sites.

Table IV shows the vacancy Green function entries needed for the first thermodynamic shell,
including the agreement and disagreement with the stochastic estimates.®’ The stochastic calcu-
lation uses a Monte Carlo scheme to compute the lattice Green function values, and the authors’
estimated statistical error is 10~*, which is consistent with the comparison to our computed values.

There are two additional discrepancies which are likely due to errors in the analysis of symmetry
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of the sites: two cases show a difference of a factor of two, while two others conflate two differ-
ence vectors that seem superficially equivalent by (cubic) symmetry but actually involve different
pathways. This symmetry breaking happens as the fully connected network does not maintain
cubic symmetry but rather the pair of jump networks have cubic symmetry. In addition to these
errors, the reported correlation factor (0.2491) differs from our computed value of 0.37497267.
This difference could be due to the differences in Green function values used, or an errant factor

of 3/2 in the calculation of L®" used as the denominator in the correlation factor.

TABLE IV. Green function values for the garnet structure. We use the notation of Carlson and Wilson,%’
where (Imn) corresponds to the vector 6x = %ao(l i+ mj + nﬁ). The stochastic error in Carlson and Wilson’s
calculation is ~ 10™#; however, there are two other types of error present. In two cases—(420) and (640)—
the stochastic estimate differs by a factor of 2; and in two more cases—(444) and (800)—the stochastic
estimate conflated symmetry inequivalent vectors into a single vector, as shown by the reduced error com-

pared with the “average” value. Both of these errors are likely due to symmetry analysis errors.

(Imn) G(R) (this work) G(R) (Ref. 67) error
(000) 2308081141615 2.30796022 1.2092 x 107
211) 1.308081 132926 1.30807261 8.5229 x 10~®
(332) 0.806767 995595 0.80669536 7.2636 x 1073
(420) 0.809394 258097 0.40469085 4.0470 x 10~!
(444) 0.457297218361 0.50242046 4.5123 x 1072
(444) 0.547 635344309 0.50242046 4.5215 x 1072
%(4_144) + %(1421) 0.502466281335 0.50242046 4.5821 x 1073
(532) 0.561961239416 0.56195744 3.7994 x 1076
(611) 0.560766700022 0.56071092 5.5780 x 1073
(640) 0449091350780 0.22460654 2.2448 x 1071
(653) 0.420386782427 0.42028488 1.0190x 107
(655) 0.401425331863 0.40137897 4.6362 x 107
(721) 0444350262895 0.44437878 2.8517 x 1073
(800) 0.403 566247455 0.41938675 1.5821 x 1072
(008) 0.427361034009 0.41938675 7.9743x 1073

%(800) + %(008) 0.419429438491 0.41938675 4.2688 x 1073

E. Solute drag of Si in Ni: comparison with SCMF

To compare with another computational approaches to diffusion, we consider the example of
silicon substitutional solutes in nickel, whose drag coeflicients were previously calculated using

the self-consistent mean-field method.** In this case, density-functional theory calculations com-
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puted the silicon-vacancy interaction out to the third neighbor: an attraction of 0.1 eV at first
neighbor, and a repulsion of 0.045 eV at third neighbor. Using the climbing-image nudged-elastic
band method,”® density-functional theory calculations also determined transition state energies for
different transitions around the solute. The computational data, including derivatives with respect
to strain, can be found in Ref. 61 and 62. The SCMF calculations used a “3nn+3nn” approach,
where the effective Hamiltonian is cutoff at the third-neighbors of the third-neighbors of a vacancy.
This truncation of the Green function is an approximation, which produces some error in the trans-
port coefficients. Fig. 5 shows a comparison to the drag coefficients (L®"/L®, also known as the
“vacancy wind”) using the same density-functional theory data. The errors in the drag ratio are
due to the cutoff of the Green function in the SCMF method, where the error decreases at higher

temperatures as the correlation becomes smaller.
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FIG. 5. Solute drag ratio of Si in FCC Ni, computed using the Green function method and the self-consistent
mean-field method. Identical DFT data from Ref. 61 and 62 is used in both transport coefficient calculations,
but the finite range of the Green function in the SCMF method introduces a small underestimation of the

correlation. The magnitude of error becomes larger at lower temperatures.

F. Solute drag of Sn and Zn in Mg: comparison with KMC

For a comparison with a stochastic approaches to diffusion, we consider the examples of tin and

zinc substitutional solutes in magnesium. In this case, the first-principles data are available in the
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supporting material of Ref. 63, where other Green function results are reported for substitutional
solutes in HCP magnesium. Here, we compare with kinetic Monte Carlo simulations of the drag
coeflicient using the same first-principles data. Solute-vacancy interaction energies were computed
for nine different neighbors—which correspond to positions that are two jumps from the position
of a solute—and all possible transitions of a vacancy from the first neighbor positions, using
density-functional theory and the climbing-image nudged-elastic band method.” The two cases
considered here, Sn and Zn, required careful treatment of the cell sizes, number of jumps, and
number of trajectories in order to reduce the stochastic error and to converge the off-diagonal
transport coefficients in the most efficient way possible. In particular, L®" is very slow to converge.
Table V contains the simulation choices which vary with temperature, as correlation becomes
less important. For all simulations, 12 x 10° trajectories were averaged to compute transport
coeflicients and stochastic errors. Fig. 6 shows the comparison of drag coefficients in basal and
c-axis orientations computed with kinetic Monte Carlo. Good agreement is found over the full

temperature range, where the error compared with the KMC is similar to the error predicted from

the standard deviation.

TABLE V. Kinetic Monte Carlo parameters for Sn and Zn diffusion in Mg. At lower temperatures, correla-
tion is more important, so larger cells with more Monte Carlo steps were used to converge the simulations.
At lower temperature, the primary effect of increasing the simulation cell size is to increase the number of

steps per trajectory. In all cases, 12 x 10° trajectories were used to average the transport coefficients and

estimate the stochastic error in Fig. 6.

Sn Zn

T [K] supercell size number of steps supercell size number of steps

300 42x42x40 1-42-42-40=70560 22x22x20 5-22-22-20 =48400
400 30x30x28 1-30-30-28=25200 20x20x18 5-20-20-18 = 36000
500 28x28x26 1-28-28-26=20384 14x14x12 5-14-14-12=11760
600 24x24x22 1-24-24-22=12672 14x14x12 5-14-14-12=11760
700 24x24x22 1-24-24-22=12672 12x12x10 5-12-12-10=7200
800 24x24x22 1-24-24-22=12672 10x10x8 5-10-10-8 =4000
900 24x24x22 1-24-24-22=12672 10x10x8 5-10-10-8 =4000
923  24x24x22 1-24-24-22=12672 10x10x8 5-10-10-8 =4000
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FIG. 6. Solute drag ratio of Sn and Zn in HCP Mg, computed using the Green function method and kinetic
Monte Carlo. The same density-functional theory data®® is used for solute-vacancy interaction energy and
transition state energies. The deviation between the KMC results and the Green function approach is similar

in magnitude to the stochastic error in the KMC results from 12 x 10° trajectories.

V. DISCUSSION

The automated numerical approach with controllable errors for arbitrary crystals and arbitrarily
large thermodynamic interaction range provides a significant improvement in our ability to com-
pute mass transport coefficients for the dilute-vacancy/dilute-solute limit. It has previously been
difficult to make quantitative predictions without approximation from accurate density-functional
theory data outside of specific cases, but this new approach enables new predictions. There are also
several extensions possible from this approach. First, similar to Ref. 5, we could use a perturbation
theory approach to evaluate derivatives of the transport coefficients, such as elastodiffusivity, ac-
tivation energy, and volume directly. Combining that methodology with the current approach
would be challenging in the arbitrary crystal symmetry case. In the interim, finite-difference
approaches* can be used in a straightforward manner with the current implementation. Second,
there are crystals—most notably, titanium’' with an anomalous vacancy migration jump—where
the vacancy diffuses through additional metastable sites in the lattice; these sites are unoccupied
unless a vacancy is diffusing. The calculation of the vacancy Green function can be performed
identically, but the definition of the &' and &? matrices can become more complex. Third, to

consider ordered structures where more than one sublattice is involved in diffusion—including the
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creation of new defects such as antisites—will require a more complex state space to be defined
for a finite number of antisites to treat diffusion in intermetallics such as B2 and L1,. In a related
but different problem, more complex diffusion mechanisms where a solute can both diffuse via
a vacancy-solute complex mechanism and as an interstitial introduces new transitions that would
need to be considered. Finally, to move beyond the dilute solute (or dilute vacancy) limit, we
can rely on other Green-function based solutions such as mean-field approximations, the coher-
ent potential approximation, or diagrammatic series. Just as our new method makes quantitative
predictions possible for dilute-vacancy/dilute-solute transport coefficients, new developments will

expand where quantitative predictions are possible in the future.
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Appendix A: Homogeneous polynomials with constant orbital angular momentum

The Taylor expansions that describe analytic terms in the bare vacancy Green function ap-

pear as homogeneous polynomials of components p; up to fourth order; these can be grouped
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into polynomials of constant orbital angular momentum. While what follows is general, we
are interested in the case where our homogeneous polynomials have maximum order Ly.x = 4.
Then there are 1 + 3+ 5+ 7+ 9 = 25 = (Lyax + 1)? distinct Y7'(p) spherical harmonics and
1+34+6+10+15=35= (Lpa + 1)* + (Lyax + D(Linax)(Lmax — 1)/6 homogeneous polynomials
from order 0 to 4. The homogeneous polynomials are a spanning set on the space generated by the
spherical harmonics; the homogeneous polynomials of order ¢ are a basis for the space generated
by the spherical harmonics with orbital angular momentum ¢, € — 2, £ — 4, .... We define the

25 X 35 matrix,

[minans] =~

T 27
Em = f (=1)"Y, ™0, ¢)(sin O cos ¢)" (sin O sin ¢)"*(cos )" d¢ sin O db (A1)
0 Jo

ANl AN AN3

which is the expansion of p|' p,? p3* in spherical harmonics:

Lmax €

P = Z Z Elm  Y'(0,9). (A2)
(=0 m=-¢

N1 ANy AN3

Similarly, we can write the spherical harmonics in terms of the polynomials p'' p5* p3

Y;'(0,¢) = Z cim ,(sin @ cos ¢)" (sin 6 sin ¢)™(cos 6)"™ (A3)

[n1non3
ny+ny+n3<t

for the 25 x 35 coefficient matrix C"

(- 1he coefficient matrix is most easily constructed using

recurrence relations for the spherical harmonics.’” These matrices C and E are such that

Z C[m Ef,m, = 6%’ 5mm’ (A4)

[n1n2n3] ™ [n1nan3]
ny+ny+n3<Lmax

while the matrix

LmaX Z
— tm tm
P[n1n2n3],[n'ln’2ng] - Z C[n1n2n3]E[n’ln’2n’3] (A5)
=0 m=-¢

defines a projection from a vector of polynomials into an equivalent (“reduced”) representation

consistent with the spherical harmonic basis. The projection P is an idempotent matrix, and

NS PN AT AT AT
Z f[n1nzn3]P1lp22P; = Z Z P[mnzn3],[n/1n’2n§]f[n/1n’2ng] 17111722p3z (A6)

ny+np+n3<Lpax ny+np+n3<Lpax n’l +n’2 +ng§Lmax

for any polynomial coefficients fj,, ,,»,; and unit vector p. Similarly, we define
¢

P! 1 = Ol Bl (A7)

[ninan3],[n)n,n} [ninan3] ™ [n|ninf]
m=—{
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as the projection which only retains polynomials with orbital angular momentum ¢. Thus, we can
reduce and group a polynomial

D B DR (A8)

ny+n2+n3<Lmax

as

Lmax

4 AN AN) AN3
Z Z Z P st Sty | Py P2 P (A9)

=0\ ni+n+n3<l [ 0] +n)+nf<Lmax

where each polynomial expansion in curly braces has a single orbital angular momentum ¢.

Appendix B: Implementation

A full numerical implementation of the algorithms in Python described are available on github*®
under the MIT License. This includes algorithms to analyze a given crystal (lattice and atomic ba-
sis), find generators for the space group operations, determine all point group operations for each
site, identify Wyckoff positions, generate crystal star sets and vector star bases, construct a jump
network for vacancies in the crystal, and identify unique jumps. Once the energies and prefactors
are determined for the unique vacancy and solute sites, complexes, and jumps, the numerical im-
plementation can compute the Onsager coefficients for a given temperature. In addition, Jupyter
notebooks to compute the numerical results in this paper are available on github. The implemen-
tation includes a full test suite of the modules and functions that were used during implementation

development.
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