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A general solution for vacancy-mediated diffusion in the dilute-vacancy/dilute-solute limit

for arbitrary crystal structures is derived from the master equation. A general numerical

approach to the vacancy lattice Green function reduces to the sum of a few analytic func-

tions and numerical integration of a smooth function over the Brillouin zone for arbitrary

crystals. The Dyson equation solves for the Green function in the presence of a solute

with arbitrary but finite interaction range to compute the transport coefficients accurately,

efficiently and automatically, including cases with very large differences in solute-vacancy

exchange rates. The methodology takes advantage of the space group symmetry of a crys-

tal to reduce the complexity of the matrix inversion in the Dyson equation. An open-source

implementation of the algorithm is available, and numerical results are presented for the

convergence of the integration error of the bare vacancy Green function, and tracer corre-

lation factors for a variety of crystals including wurtzite (hexagonal diamond) and garnet.
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I. INTRODUCTION

Mass transport in crystals controls a variety of different phenomena in materials from formation

and growth of precipitates to aging to ionic conductivity to irradiation-induced degradation of ma-

terial properties.1 The increasing ability to computationally evaluate rates for atomic scale mecha-

nisms for diffusion using sophisticated first-principles methods2–4 has increased the need for accu-

rate and extensible theory that can use jump rates as inputs to produce transport coefficients with-

out the introduction of additional approximations. Generally, solute transport can be divided into

a few general mechanisms: interstitialcy-based, vacancy-mediated, or self-interstitial-mediated,

where the first two are the most common in materials of technological interest. Of these, intersti-

tial diffusion currently has a full mathematical framework for the evaluation of diffusivity in the

dilute solute limit for arbitrary crystal structures and interstitial sites, including derivatives of dif-

fusivity with respect to temperature (activation energy tensor) and strain (elastodiffusion tensor).5

However, the state of quantitative evaluation of transport coefficients for vacancy-mediated diffu-

sion in arbitrary crystal structures is not as well developed. Vacancy-mediated diffusion occurs

via a correlated random walk, which is the source of the complexity and crystal-structure depen-

dence, as has been recognized for decades.6,7 This has been followed with specific solutions for

particular structures, such as the five-frequency model for face-centered cubic (FCC) crystals,8,9

the four-frequency model for body-centered cubic (BCC) crystals,10,11 the eight-frequency model

in hexagonal close-packed (HCP) crystals,12,13 and most recently a thirteen-frequency model in

HCP.14 In all of these models, not only are interactions assumed to end beyond first-neighbor, they

also introduce additional constrains on the rates that do not arise from crystal symmetry.

Outside of these specific crystal structures with particular constraints on the form of rates,

the current approaches for treating vacancy-mediated diffusivity for arbitrary crystal structures is

either a stochastic approach like kinetic Monte Carlo15–19 or a master equation method like the

self-consistent mean-field method20,21 and kinetic mean-field approximation.22–24 Kinetic Monte

Carlo’s appeal lies mainly in being a mathematically “light-weight” approach that requires no ap-

proximations in the form of the rates: once enumerated, pathways are generated and as trajectories

become longer, the stochastic averages converge. This simplicity, however, can limit the practical

use: in cases where there are large differences in rates, very large numbers of steps may be needed

to accurately sample all states and transitions. For example, cases where the vacancy-solute ex-

change rate becomes very large or very small require more clever treatments.25–29 Furthermore,
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approaching the “dilute” limit requires larger cells and more trajectories to converge. Finally,

using finite differences to evaluate numerical derivatives is significantly more difficult, with se-

vere limitations on the ability to reduce the numerical and stochastic error.30 It remains a useful

methodology, especially for non-dilute diffusivities. An alternative is master equation approaches

which were developed for non-dilute concentrations but are formally exact in the dilute limit:

self-consistent mean field (SCMF) and kinetic mean-field approximation. The SCMF method has

been powerful for investigating the effects of correlation in the presence of non-uniform chemical

potential gradients.31 These methods start from a cluster variation approach, and develop analytic

expressions which can be evaluated numerically but are not fully automated for arbitrary crystal

structures and symmetries,4,32–36 nor are they operationally without approximation even for the

dilute limit. For example, in the SCMF, the range of correlations is cutoff at a finite distance,

which is an approximation. The error can be reduced by increasing the cutoff distance36 which

requires considering more and more so-called “kinetic interactions.” Furthermore, the introduc-

tion of the chemical potential gradient is taken to explicitly break crystal symmetry which makes

symmetry analysis less effective. Finally, a related approach is the path probability method for

irreversible thermodynamics37 which has also been applied to diffusion38, including to non-dilute

tracer concentrations;39 however, there are difficulties in producing exact tracer correlation factors

with the method.

While Green function methods were developed more than three decades ago for diffusion,40,41

the need to compute the lattice Green function accurately for each new crystal structure became

a serious roadblock. Hence, extending to new structures—or relaxing constraints on the form of

rates—requires a new start with each case to be considered. Watson42 recognized the complexity in

computing the lattice Green function at R = 0, much less for arbitrary sites in a crystal. To compute

diffusion, we require the Green function at a series of sites, which is significantly more difficult

to evaluate analytically, though a few cases have been solved, such as FCC43–45 and some other

lattices like HCP and tetrahedrally coordinated crystals using matrix methods.46,47 In this work,

we develop a generally applicable Green function based method for vacancy-mediated transport

in the dilute-vacancy/dilute-solute limit in arbitrary crystal structures and with arbitrary finite-

ranged solute-vacancy interactions; the methodology is implemented in a fully tested numeric

open-source software.

Our goal is to evaluate the Onsager transport coefficients in a dilute alloy of solute “s” in solvent

“A” for the case of vacancy-mediated diffusion. In particular, we are interested in the three tensor
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transport coefficients, L(vv), L(sv), and L(ss) where

Jv = −L(vv)∇µv − L(sv)∇µs

Js = −L(sv)∇µv − L(ss)∇µs
(1)

for vacancies “v” and solute “s.” The fluxes Jv and Js combine to produce the solvent flux

JA = −Jv − Js due to site conservation. Moreover, the chemical potentials µv and µs are de-

fined relative to the solvent chemical potential µA. For our purposes, we are interested in the

motion of vacancies and solute in response to their chemical potential gradients; the response of

solvent atoms, or the response of vacancies and solute to solvent chemical potential gradients, can

be derived from the other transport coefficients.7 We work from a master equation framework for

diffusivity7 and develop the Green function method41 to include the presence of a solute atom that

can only move in the presence of a vacancy. The full algorithm is implemented in the code On-

sager48; c.f. Appendix B. We conclude with numerical results for multiple systems, and discuss

future extensions of the method.

A. Master equation

To model this system, we work with a lattice gas model similar to Nastar20,21 and Vaks22–24

containing the three species of interest: solvent “A,” solute “s,” and vacancies “v.” If we have

a three dimensional crystal with unit cell vectors a1, a2, a3 and Nsites per unit cell at positions ui,

i = 1 . . .Nsites, then we can consider the set of all crystal sites, defined by vectors R = x + ui

for x a lattice vector (a linear combination of unit cell vectors with integer coefficients).49 The

choice of unit cell vectors and sites in the unit cell is such that every crystal site R is represented

by exactly one lattice vector x plus unit cell position u. We will work with Born-von Karman

boundary conditions in the thermodynamic limit—large number of sites and system volume V0—

to eliminate the introduction of any surfaces; the only defects present will be a vacancy and a

solute, which corresponds to the dilute limit (interactions between several vacancies and/or several

solutes are neglected); moreover, the crystalline sites need only to be those sites that can be visited

by a vacancy or a solute, and hence may represent a sublattice for some systems. A configuration

is a vector n where each element nαR determines the site occupancy by species α at site R; the

occupancies are either 0 or 1, and
∑
α nαR = 1 for all sites R. We will identify all configuration

dependent quantities with a hat. The system admits possible transitions from configuration n to n′
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defined by the transition rate matrix Ŵ(n→ n′). Furthermore, this rate matrix gives us the master

equation for the evolution of the system probability P̂(n, t) with time t as

dP̂(n, t)
dt

=
∑

n′
Ŵ(n′ → n)P̂(n′, t) − Ŵ(n→ n′)P̂(n, t) (2)

This expression is primarily useful for us to define steady-state and equilibrium in terms of balance

and detailed balance, respectively, where dP̂(n, t)/dt = 0. A probability distribution P̂(n) will be

in balance if it obeys ∑
n′

Ŵ(n′ → n)P̂(n′) =
∑

n′
Ŵ(n→ n′)P̂(n) (3)

for all configurations n. A probability distribution P̂0(n) will be in detailed balance if it obeys

Ŵ(n′ → n)P̂0(n′) = Ŵ(n→ n′)P̂0(n) (4)

for all configurations n and n′. Clearly, detailed balance is sufficient for balance, but not necessary.

In particular, we note that a system satisfying detailed balance will be in equilibrium (zero flux),

while a system satisfying balance will be in steady-state, and may admit non-zero fluxes. Our

approach to determining transport coefficients is to use near-equilibrium thermodynamics: we

will find steady-state solutions that are the equilibrium distribution plus a small perturbation in

response to a chemical potential gradient ∇µ along an arbitrary direction. We will then determine

the fluxes and solve directly for the transport coefficients in Eqn. 1.

We assume that our transition matrix corresponds to a physical system with a Hamiltonian

Ĥ(n) and equilibrium probability distribution P̂0(n); in particular, the equilibrium distribution for

chemical potentials µα at temperature kBT is

P̂0(n) = exp

 1
kBT

Φ0 +
∑
α

µα
∑

R

nαR − Ĥ(n)

 (5)

where Φ0 is a normalization constant—the grand potential—such that
∑

n P̂0(n) = 1. We will

assume that P̂0(n) obeys detailed balance (Eqn. 4), which relates Ŵ and Ĥ. Note also that Ĥ is

a lattice function, and as such will obey symmetry relations of the underlying lattice; i.e., it will

remain invariant with respect to all space-group operations applied to n. Those symmetries also

necessarily translate to Ŵ. Moreover, we will assume that all non-zero transition rates Ŵ(n→ n′)

conserve mass:
∑

R nαR =
∑

R n′αR for all species α. Hence, even though we work in the grand-

canonical ensemble, our particle numbers will remain conserved.
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B. Transport coefficients

In order to introduce a steady-state solution with chemical potential gradients, we will consider

a site-based chemical potential perturbation δµαR; these perturbations are such that for any two sites

R and R′,

δµαR − δµ
α
R′ = (R − R′) · ∇µα (6)

where ∇µα will be considered a homogeneous constant corresponding to an infinitesimally small

chemical potential gradient vector along an arbitrary direction. Note that we do not require an

explicit form for the perturbation δµ, as only differences of the form Eqn. 6 appear in our equations.

Next, we work with an ansatz steady-state solution

P̂ss(n) := P̂0(n) exp

 1
kBT

δΦ0 +
∑
α

∑
R

δµαRnαR −
∑
α

η̂α(n) · ∇µα
 (7)

where δΦ0 is a normalization constant, and η̂α(n) is a vector lattice function, with the same lattice

symmetries as Ĥ, albeit as a vector, so that rotations also rotate η̂ (while Ĥ is a scalar). The combi-

nation η̂α(n) · ∇µα acts as the effective Hamiltonian in the self-consistent mean-field notation.20,21

In order to solve for the steady-state, and determine the fluxes, we introduce the mass-transport

vector

δ̂xα(n→ n′) :=
∑

R

n′αR R −
∑

R

nαRR =
∑

R

(
n′αR − nαR

)
R (8)

which is the total transport of species α in the transition n→ n′. Given mass-conservation, and as

we work in the laboratory frame, for any non-zero Ŵ(n→ n′), we have
∑
α δ̂x

α
(n→ n′) = 0. The

additional symmetries are that δ̂xα(n→ n′) = −δ̂xα(n′ → n), which requires that δ̂xα(n→ n) = 0.

Finally, δ̂xα is a lattice function and as such obeys symmetry operations of the lattice. Then, the

flux of species α can be expressed in a system with total volume V0; for convenience, we multiply

through by the volume and temperature kBT to get

V0kBTJα =
∑
n,n′
δ̂xα(n→ n′)Ŵ(n→ n′)

(
kBT P̂ss(n)

)
. (9)

If the equilibrium probability P̂0(n) is used instead, detailed balance and antisymmetry of δ̂xα is

sufficient to make Jα = 0 for all species α. In the limit of small gradients ∇µα, we can expand our

steady-state solution kBT P̂ss,

kBT P̂ss(n) = P̂0(n)

kBT + δΦ0 +
∑
β

∑
R

δµ
β
RnβR −

∑
β

η̂β(n) · ∇µβ
 + O

(
|∇µ|2

)
(10)
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which substitutes into Eqn. 9 to get, to first order in ∇µα,

V0kBTJα =
∑
n,n′
δ̂xα(n→ n′)Ŵ(n→ n′)P̂0(n)

kBT + δΦ0 +
∑
β

∑
R

δµ
β
RnβR −

∑
β

η̂β(n) · ∇µβ


=
1
2

∑
n,n′

(
δ̂xα(n→ n′)Ŵ(n→ n′)P̂0(n)

kBT + δΦ0 +
∑
β

∑
R

δµ
β
RnβR


+ δ̂xα(n′ → n)Ŵ(n′ → n)P̂0(n′)

kBT + δΦ0 +
∑
β

∑
R

δµ
β
Rn′βR

 )
−

∑
n,n′

Ŵ(n→ n′)P̂0(n)δ̂xα(n→ n′)
∑
β

η̂β(n) · ∇µβ

(11)

where the second expression comes from symmetrizing the double summation. This expression

can be simplified in a few quick steps. First, we note by detailed balance and antisymmetry of

δ̂x that δ̂xα(n′ → n)Ŵ(n′ → n)P̂0(n′) = −δ̂xα(n → n′)Ŵ(n → n′)P̂0(n). Next, we note that∑
R δµ

β
R(nβR − n′βR ) = −δ̂xβ(n→ n′) · ∇µβ. Then,

V0kBTJα = −
∑
β

[
1
2

∑
n,n′

P̂0(n)Ŵ(n→ n′)δ̂xα(n→ n′)δ̂xβ(n→ n′)

+
∑
n,n′

Ŵ(n→ n′)P̂0(n)δ̂xα(n→ n′)η̂β(n)
]
· ∇µβ

(12)

and thus our transport coefficients are

L(αβ) =
1

kBTV0

∑
n,n′

P̂0(n)Ŵ(n→ n′)
[
1
2
δ̂xα(n→ n′) ⊗ δ̂xβ(n→ n′) + δ̂xα(n→ n′) ⊗ η̂β(n)

]
,

(13)

where ⊗ is the outer (or dyad) product of two vectors. The first term is the “bare” (uncorrelated)

mobility, and the second term contains correlations.7

Two brief notes about the second term in the right hand side of Eqn. 13. First, only differences

in η̂ are important. This can be shown by symmetrizing with respect to n and n′, in a similar

fashion to the first term of Eqn. 13. This gives∑
n,n′

P̂0(n)Ŵ(n→ n′)δ̂xα(n→ n′)⊗ η̂β(n) =
1
2

∑
n,n′

P̂0(n)Ŵ(n→ n′)δ̂xα(n→ n′)⊗ (η̂β(n)− η̂β(n′)).

(14)

Secondly, we identify the velocity vector,

ŵxα(n) :=
∑

n′
Ŵ(n→ n′)δ̂xα(n→ n′) (15)
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which is a non-zero vector when the jumps in one direction occur with a different rate for the

opposite direction. Then, the transport coefficients are

L(αβ) =
1

kBTV0

∑
n

P̂0(n)

∑n′

[
1
2

Ŵ(n→ n′)δ̂xα(n→ n′) ⊗ δ̂xβ(n→ n′)
]

+ ŵxα(n) ⊗ η̂β(n)

 .
(16)

C. Balance equation

Finally, we solve for the deviation from the equilibrium probability distribution, η̂, using bal-

ance. If we take Eqn. 3, to linear order in ∇µβ, we have

∑
n′

Ŵ(n′ → n)P̂0(n′)

kBT + δΦ0 +
∑
β

∑
R

δµ
β
Rn′βR −

∑
β

η̂β(n′) · ∇µβ
 =

∑
n′

Ŵ(n→ n′)P̂0(n)

kBT + δΦ0 +
∑
β

∑
R

δµ
β
RnβR −

∑
β

η̂β(n) · ∇µβ
 .

(17)

We apply detailed balance, Ŵ(n′ → n)P̂0(n′) = Ŵ(n → n′)P̂0(n) to the left-hand side of Eqn. 17

to cancel out the first two terms of each side, and rearrange the remaining terms,∑
β

∑
n′

P̂0(n)Ŵ(n→ n′)δ̂xβ(n→ n′)·∇µβ =
∑
β

∑
n′

P̂0(n)Ŵ(n→ n′)
[
η̂β(n′) − η̂β(n)

]
·∇µβ. (18)

This must hold for any arbitrary direction of ∇µβ. We define a matrix representation of Ŵ, where

Ŵnn′ =


Ŵ(n→ n′) : n′ , n

−
∑

n′ Ŵ(n→ n′) : n′ = n
(19)

and, divide out P̂0(n) from Eqn. 18 to produce∑
β

ŵxβ(n) · ∇µβ =
∑
β

∑
n′

Ŵnn′ η̂
β(n′) · ∇µβ

ŵxβ(n) =
∑

n′
Ŵnn′ η̂

β(n′).
(20)

Thus, the diffusion problem involves solving Eqn. 20 for η̂ to evaluate Eqn. 16.

There are a few approaches to solve Eqn. 20. The equation as written does not rely on assump-

tions about the dilute limit, and is valid for interstitial diffusion;5 we will consider, going forward,

the case of vacancy-mediated diffusion in the dilute limit. One approach is the self-consistent
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mean-field method (SCMF).20,21 The SCMF approach solves Eqn. 20 by (a) selecting a particular

direction for diffusion, (b) multiplying by P̂0(n) and summing over n to convert the equation into

thermodynamic averages, (c) writing out η̂(n) in terms of pair interactions that are invariant along

the diffusion direction, and (d) are cutoff after a fixed distance (setting η̂(n) = 0 for vacancy-solute

distance greater than a cutoff). This is an approximate solution for the effective Hamiltonian,

which becomes more accurate as the cutoff distance is increased. Note that truncating η̂(n) is

different than truncating the interaction energy between a solute and a vacancy: even for the case

of a radioisotopic tracer where the interaction energy is exactly zero, truncating the correlation

effects at a finite distance introduces error, as the Green function has infinite range. The second

approach—laid out here—is a Green-function approach, which is fairly straightforward for the

dilute-vacancy/solute limit for vacancy-mediated diffusion, and is exact. The Green function ap-

proach to the problem seeks to solve Eqn. 20 by constructing the exact pseudo-inverse of Ŵnn′ for

the dilute-vacancy/dilute-solute limit; we treat a single vacancy and single solute in the total vol-

ume V0, while we take the thermodynamic limit of V0 → ∞. We do this by (a) breaking Ŵnn′ into

three contributions—the bare vacancy, vacancy near a solute, and vacancy-solute exchange—and

(b) taking advantage of translational invariance for our lattice functions. Moreover, we will also

take advantage of space-group symmetry operations to maximally reduce the rank of the linear

problem to be solved. Note that this is similar in approach to Koiwa and Ishioka;41 we automate

the computation of the Green function for the vacancy and the vacancy-solute complex for an

arbitrary crystal, where we can take advantage of automated crystal symmetry analysis.48

D. Matrix symmetrization

Before we reduce to the dilute-vacancy/dilute-solute limit, we rewrite Eqn. 20 in terms of the

pseudo-inverse of a symmetric matrix. Define the components of the matrix ω̂nn′ ,

ω̂nn′ := P̂1/2
0 (n)Ŵnn′ P̂

−1/2
0 (n′) (21)

which is symmetric by detailed balance,

ω̂nn′ = P̂1/2
0 (n)Ŵnn′ P̂

−1/2
0 (n′) = P̂−1/2

0 (n)P̂0(n)Ŵnn′ P̂
−1/2
0 (n′)

= P̂−1/2
0 (n)Ŵn′nP̂0(n′)P̂−1/2

0 (n′) = P̂−1/2
0 (n)Ŵn′nP̂1/2

0 (n′) = ω̂n′n.
(22)
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This form of the matrix can be related to the linear-interpolated migration barrier (LIMB)

approximation;50,51 from Eqn. 5,

P̂1/2
0 (n)P̂−1/2

0 (n′) = exp
 Ĥ(n′) − Ĥ(n)

2kBT

 (23)

as we only consider transitions that conserve particle number. If we have a transition state energy

Êtrans(n − n′) = Êtrans(n′ − n) between n and n′ so that Ŵ(n → n′) ∝ exp(−(Êtrans(n − n′) −

Ĥ(n))/(kBT )), then for n , n′,

ω̂nn′ ∝ exp
− Êtrans(n − n′) − (Ĥ(n′) + Ĥ(n))/2

kBT

 (24)

which is constant for allowed jumps in the LIMB approximation.

Next we define, the bias vector, in terms of the velocity vector

b̂α(n) := P̂1/2
0 (n)ŵxα(n) (25)

and the symmetrized correction vector,

γ̂α(n) := P̂1/2
0 (n)η̂α(n). (26)

which then, by Eqn. 20, gives

P̂−1/2
0 (n)b̂α(n) =

∑
n′

Wnn′ P̂
−1/2
0 (n′)γ̂α(n′)

b̂α(n) =
∑

n′
P̂1/2

0 (n)Wnn′ P̂
−1/2
0 (n′)γ̂α(n′)

=
∑

n′
ω̂nn′γ̂

α(n′).

(27)

Let the pseudo-inverse of ω̂ be ĝ, the Green function. Then,

γ̂α(n) =
∑

n′
ĝnn′b̂α(n′) (28)

and ∑
n

P̂0(n)ŵxα(n) ⊗ η̂β(n) =
∑

n

P̂0(n)P̂−1/2
0 (n)b̂α(n) ⊗ P̂−1/2

0 (n)γ̂β(n)

=
∑
n,n′

b̂α(n) ⊗ ĝnn′b̂β(n′).
(29)

This shows that L(αβ) = L(βα) as ĝnn′ = ĝn′n. It also means that we only need to find ĝnn′ for those

configurations where b̂α(n) , 0. Thus, our transport coefficients are

L(αβ) =
1

kBTV0

∑
n,n′

1
2

P̂1/2
0 (n)ω̂nn′ P̂

1/2
0 (n′)δ̂xα(n→ n′) ⊗ δ̂xβ(n→ n′) + b̂α(n) ⊗ ĝnn′b̂β(n′). (30)
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E. Dilute-vacancy/dilute-solute limit

For the dilute-vacancy/dilute-solute limit, our state n simplifies to the position of the solute and

the vacancy. With only a single solute and a single vacancy, the solute concentration cs = 1/V0

and the vacancy concentration cv = 1/V0. We will take advantage of translational invariance;

moreover, we will specify the position of the vacancy relative to the unit cell of the solute: xs + uis

will be the position of the solute in the lattice, and xv + xs + uiv the position of the vacancy—thus,

the state of our system is captured by xsisxviv. We assume that the vacancy and solute have a finite

interaction range, so that for large enough xv, the site probability P̂0(xsisxviv) ∝ exp(−Es-v
isiv

(x)/kBT )

is independent of xv, and instead is given by the product of solute and vacancy probabilities. We

construct the transition rate matrix by adding three contributions: vacancy without solute, vacancy

near solute, and vacancy-solute exchange. We use the historical nomenclature, and identify these

rates with superscripts “0,” “1,” and “2.”

First, we consider the migration of the vacancy without solute. For this case, we track the solute

state only in anticipation of later contributions; otherwise, the solute is ignored. The vacancy can

occupy the same state as the solute (which will be corrected with a subsequent contribution), and

so we ensure translational invariance for the transition rate matrix. A vacancy at the site xviv

transitions to another size x′vi′v with rate w0,ivi′v
xv−x′v

, so

Ŵ0
xsisxviv,x′si′sx′vi′v

:= δ(xs − x′s)δisi′s

{
w0,ivi′v

xv−x′v
− δ(xv − x′v)δivi′v

∑
xi

w0,ivi
x

}
(31)

where δ is the Kronecker delta function, and the second term gives the correct value for Ŵnn.

Because this contribution to the transition matrix ignores any solute-vacancy interaction,

ω̂0
xsisxviv,x′si′sx′vi′v

= Ŵ0
xsisxviv,x′si′sx′vi′v

(P0,v
iv
/P0,v

i′v
)1/2 (32)

where P0,v
i is the probability for a vacancy to occupy the unit cell site i. In the special case of

a Bravais lattice, the ratio of probabilities is 1. The transition matrix Ŵ0 (and ω̂0) has the space

group symmetry of the lattice; the corresponding Green function for the vacancy without a solute

is derived in Section II.

Next, we consider the contribution from solute-vacancy exchange. For a solute at xs + uis and

a vacancy at xs + xv + uiv , exchange will place the solute at (xs + xv) + uiv , and the vacancy at

(xs + xv)− xv + uis . In the dilute limit, there is only one solute and one vacancy, and so if exchange

is possible for a state, there is only one endpoint state where the solute changes to a new position
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with a non-zero rate. As a shorthand, define xsisxviv := (xs + xv)iv − xvis, the final state in solute-

vacancy exchange. Then, we identify the set of all states {xsisxviv} where Ŵxsisxviv,xsisxviv , 0 as the

exchange space. Note that if xsisxviv is in the exchange space, so is xsisxviv; and xsisxviv = xsisxviv.

Then, we define

ω̂2
xsisxviv,x′si′sx′vi′v

:=


P̂1/2

0 (xsisxviv)Ŵxsisxviv,xsisxviv P̂−1/2
0 (xsisxviv) : x′si′sx′vi′v = xsisxviv ∈ exchange space

−Ŵxsisxviv,xsisxviv : x′si′sx′vi′v = xsisxviv ∈ exchange space

0 : otherwise
(33)

as the symmetrized transition rate matrix for solute exchange. Note that we do not explicitly

require that the solute-vacancy exchange occur with the same jump vectors as the vacancy jumps,

but only that the same crystalline lattice is used for solute and vacancy migration. The diagonal

components of ω̂2 correct the escape rate for complexes that are in the exchange space.

The final contribution corresponds to the vacancy jumping around the solute and contains all the

remaining changes in rates of the vacancy where the solute does not change position. This includes

the changes in site probability (solute-vacancy interaction), “site exclusion,” where solutes and

vacancies cannot occupy the same site, and the subsequent escape rate changes for a complex. We

define

ω̂1
xsisxviv,x′si′sx′vi′v

:= δ(xs − x′s)δisi′s

{
(1 − δ(xv)δisiv)(1 − δ(x

′
v)δi′si′v)P̂

1/2
0 (xsisxviv)Ŵxsisxviv,xsisx′vi′v P̂−1/2

0 (xsisx′vi′v)

− ω̂0
xsisxviv,xsisx′vi′v

− δ(xv − x′v)δivi′v

∑
xi

Ŵxsisxviv,xsisxi

}
(34)

which will be zero as xv gets far away from the solute. The solute position remains unchanged,

and we first consider the changes in rates when the vacancy does not jump into or originate from

the solute site. The next term is the replacement of the simple vacancy rates: removing the jump

where the vacancy would occupy the position of the solute, and the change in the escape rate (for

x′si′sx′vi′v = xsisxviv). The final summation corrects the escape rate for a complex corresponding

to the changed rates but excluding solute-vacancy exchange already included in ω̂2. This also

includes so-called “association” (vacancy coming into the interaction range) and “dissociation”

(vacancy leaving the interaction range) jumps that correspond to the formation/dissolution of the

vacancy-solute complex.

Thus, we have ω̂ = ω̂0 + ω̂1 + ω̂2. This breakdown partly follows the labeling of the five-
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frequency model, though both “3” (dissociation) and “4” (association) jumps are subsumed as part

of ω̂1, and produce non-zero bias vectors for sites at the edge of association for a solute-vacancy

complex. We assume vacancy-solute interactions to be zero outside some finite range, which

makes both ω̂1 and ω̂2 local.

F. Green function solution

The separation of jumps allows for the solution of the Green function first for ω̂0, which will

be ĝ0, followed by the corrections due to δω̂ := ω̂1 + ω̂2. This is particularly useful as δω̂ is strictly

zero beyond a finite range; hence, the full Green function can be found exactly using

ĝ = ((ĝ0)−1 + δω̂)−1 = (1 + ĝ0δω̂)−1ĝ0, (35)

which can be done for any subspace of states where δω̂ = 0 for all states not in the subspace. This

Dyson equation solution is exact for any value of δω̂; it does not rely on δω̂ being “small” in any

sense, only that the full ω̂ = ω̂0 + δω̂ is not a pathological transition matrix. We briefly outline the

approach that takes advantage of translational invariance: First, we solve for ĝ0 by transforming

ω̂0 to reciprocal space; the inverse is written as the sum of a pole, a discontinuity, and a smooth

periodic function, which are transformed back to real space analytically for the first two terms, and

numerically for the last. Next, we consider the subspace of states with non-zero bias vectors, and

express our bias and correction vectors in a fully symmetrized representation, called vector-stars;

the Green function, and the changes in rates δω̂ can be written as matrices in this representation.

We also note that, due to translational invariance in the solute position for the bias vector, we

only need to consider ω̂2 in reciprocal space at qs = 0 (i.e., summed over all combinations of

xs − x′s). Finally, we can write Eqn. 35 as a finite-dimensional matrix inversion problem, which

can be solved numerically and used in Eqn. 30 to construct the transport coefficients. The use

of a symmetrized representation—stars, and introducing vector-stars—also dictates the minimum

information required for the computation of site probabilities (energies) and rates (energy barriers),

providing for an automated computation of transport coefficients that is also efficient.

II. VACANCY GREEN FUNCTION

We solve for the Green function ĝ0, the pseudoinverse of ω̂0. We note first that ω̂0 is diagonal

and invariant in xsis, x′si′s, so we will simplify by writing everything in terms of xviv, x′vi′v only, and
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we will drop the unnecessary “v” subscript throughout this section; we will also use α and β to

index eigenvalues rather than specify chemical species. Next, ω̂0 only depends on the difference

of vacancy unit cells x − x′, so it will be block-diagonal in reciprocal space. The approach that

follows is similar that Yasi and Trinkle52 for the lattice Green function; however, the treatment of

the pole is different in this formulation, leading to a simpler solution without the need for truncated

spherical harmonic expansions. The first step is a change of basis to reciprocal space and with

the eigenvectors of ω̂0 at q = 0; for a crystal with Nsites per unit cell, identify the non-positive

eigenvalues rα, α = 0 . . .Nsites − 1 and normalized real eigenvectors sαa such that∑
x′,b

∑
x

ω̂0
xa,x′b

 sαb = rαsαa (36)

for all α and a. As ω̂0 is singular and negative-definite, there is one zero eigenvalue which we

identify as α = 0; all other rα < 0 for α > 0. The corresponding eigenvector is s0
a =

√
P0,v

a , the

square root of the probability for a vacancy to occupy the unit cell site a. Note that the eigenvalues

rα and vectors sα depend on the rates, and hence the temperature kBT . We construct basis vectors

φαq,xa := sαa exp(iq · (x + ua))/
√

N for a periodic system with N unit cells (Born-von Karman

boundary conditions), so that

ω̂αβ(q,q′) :=
1
N

∑
xa,x′b

eiq·(x+ua)sαaω̂
0
xa,x′bsβbe−iq′·(x′+ub)

= δ(q − q′)
∑
x,ab

sαa ω̂
0
0a,xbsβbeiq·(ua−(x+ub))

(37)

is the Fourier transform of ω̂0; as it is only nonzero for q = q′, we will use the shorthand

ω̂αβ(q,q′) = δ(q − q′)ωαβ(q). Note that the vector (x + ub) − ua corresponds to δ̂x0a,xb for the

vacancy jump. Then, our inverse Fourier transform is given by

ω̂0
xa,x′b =

1
N

∑
qα,q′β

e−iq·(x+ua)sαaω̂
αβ(q,q′)sβbeiq′·(x′+ub)

= V
∫

BZ

d3q
(2π)3 e−iq·(x+ua−x′−ub)sαaω

αβ(q)sβb,

(38)

where V = V0/N is the volume per unit cell in the lattice and we replace the sum with an integral

in the thermodynamic limit. We take advantage of similar definitions for the Fourier transform of

ĝ0
xa,x′b to get gαβ(q), and find that for all q, g(q) = (ω(q))+ the pseudoinverse of ω(q). For all q , 0

in the Brillouin zone, ω(q) is non-singular and so the pseudoinverse is the inverse; at q = 0, ω(q)

is diagonal with one zero entry corresponding to r0 = 0. Thus,

ĝ0
xa,x′b = V

∫
BZ

d3q
(2π)3 e−iq·(x+ua−x′−ub)

∑
αβ

sαa (ω(q))−1
αβsβb, (39)
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and we need only to evaluate the integral in Eqn. 39 to find the Green function.

A. Block inversion and Taylor expansion

To integrate Eqn. 39, we first block ω(q) in the {sα} basis, and Taylor expand the blocks in

series from q at the origin. The α = 0 eigenvector corresponds to the equilibrium distribution,

which we call a diffusive mode; the α > 0 eigenvectors correspond to distributions that decay with

time (as rα < 0), which we call relaxive modes.53 Note that relaxive modes are only possible for

Nsites > 1. We write our block matrix,

ωαβ(q) =

 DD(q) DR(q)

RD(q) RR(q)

 (40)

where DD(q) is a real 1×1 matrix corresponding to α = β = 0, DR(q) = RD†(q) is a 1× (Nsites−1)

matrix corresponding to α = 0 and β > 0, and RR(q) is a Hermitian (Nsites − 1)× (Nsites − 1) matrix

corresponding to α > 0 and β > 0. For small magnitude q, the leading order of DD is q2, of DR

and RD is iq, and of RR is q0. For DD(q), we have

DD(q) :=
∑
x,ab

(
P0,v

a P0,v
b

)1/2
ω̂0

0a,xbeiq·(ua−(x+ub)) (41)

which can be simplified by noting that, from Eqn. 32,
(
P0,v

a P0,v
b

)1/2
ω̂0

0a,xb = Ŵ0
0a,xbP0,v

a , which is the

rate for the vacancy to transition from 0a to xb times the probability to be at unit cell site a. The

combination x + ub − ua is the displacement vector for that same transition, δ̂x0a,xb. Then, we can

Taylor expand exp(−iq · δ̂x0a,xb) up to fourth order in q to get

DD(q) =
∑
x,ab

Ŵ0
0a,xbP0,v

a

{
1 − iq · δ̂x0a,xb −

1
2

(q · δ̂x0a,xb)2 −
i
6

(q · δ̂x0a,xb)3 +
1

24
(q · δ̂x0a,xb)4 + O(q5)

}
= −q ·

[
1
2

∑
x,ab

δ̂x0a,xb ⊗ δ̂x0a,xbŴ0
0a,xbP0,v

a

]
· q +

1
24

∑
x,ab

(q · δ̂x0a,xb)4Ŵ0
0a,xbP0,v

a + O(q6)

(42)

where the q0 term is zero as
∑

x,b Ŵ0
0a,xb = 0 for all a, and all terms containing odd powers of δ̂x0a,xb

sum to zero because of detailed balance and antisymmetry of δ̂x for the reverse jumps. The first

term in braces is the same as the first term in Eqn. 16 (after multiplying by a factor of kBT/cv), or

the “bare” (uncorrelated) contribution to the vacancy diffusion. For RD(q), we have

RDα0(q) :=
∑
x,ab

sαa
(
P0,v

b

)1/2
ω̂0

0a,xbeiq·(ua−(x+ub)) (43)
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which can be simplified by noting that, from Eqn. 32,
(
P0,v

b

)1/2
ω̂0

0a,xb = Ŵ0
0a,xb

(
P0,v

a

)1/2
. Then, we

can Taylor expand exp(−iq · δ̂x0a,xb) up to third order in q to get

RDα0(q) =
∑
x,ab

sαaŴ0
0a,xb

(
P0,v

a

)1/2
{
1 − iq · δ̂x0a,xb −

1
2

(q · δ̂x0a,xb)2 −
i
6

(q · δ̂x0a,xb)3 + O(q4)
}

= −iq ·
[∑

a

sαa
∑
x,b

δ̂x0a,xbŴ0
0a,xb

(
P0,v

a

)1/2
]

−
∑
x,ab

sαa

[
1
2

(q · δ̂x0a,xb)2 +
i
6

(q · δ̂x0a,xb)3
]
Ŵ0

0a,xb

(
P0,v

a

)1/2
+ O(q4)

(44)

where the q0 term is zero as
∑

x,b Ŵ0
0a,xb = 0 for all a. The first term in brackets is the bias

vector (c.f. Eqn. 15) for the vacancy at sites a, rotated into the relaxive basis sα. Similarly,

DR0α(q) = (RDα0(q))∗. Finally, for RR(q), we have

RRαβ(q) :=
∑
x,ab

sαa sβbω̂
0
0a,xbeiq·(ua−(x+ub)) (45)

which does not admit any obvious simplification. Then, we can Taylor expand exp(−iq · δ̂x0a,xb)

up to second order in q to get

RRαβ(q) =
∑
x,ab

sαa sβbω̂
0
0a,xb

{
1 − iq · δ̂x0a,xb −

1
2

(q · δ̂x0a,xb)2 + O(q3)
}

= rαδαβ −
∑
x,ab

sαa sβb
[
iq · δ̂x0a,xb +

1
2

(q · δ̂x0a,xb)2
]
ω̂0

0a,xb + O(q3)
(46)

where the q0 term is diagonal, as sα are the eigenvectors of
∑

x ω̂
0
0a,xb in Eqn. 36. As RR(q) is

diagonal for q = 0, we can also Taylor expand RR(q)−1 up to second order in q to get

(RR(q)−1)αβ = (rα)−1δαβ +
∑
x,ab

(rα)−1sαa sβb(rβ)−1
[
iq · δ̂x0a,xb +

1
2

(q · δ̂x0a,xb)2
]
ω̂0

0a,xb

−
∑
cc′

∑
x,a

(rα)−1sαa
[
q · δ̂x0a,xc

]
ω̂0

0a,xc

(∑
γ>0

sγc(rγ)−1sγc′
)∑

x,b

sβb(rβ)−1[q · δ̂x0c′,xb
]
ω̂0

0c′,xb + O(q3)

(47)

As an intermediate step to the block inversion of ωαβ(q), we scale reciprocal and real space

vectors based on the eigenvalues of the vacancy diffusivity. We construct the 1 × 1 matrix

D(q) := DD(q) − DR(q) (RR(q)−1) RD(q) (48)

which is the Schur complement of RR(q), and using Eqn. 42, Eqn. 44, and Eqn. 47, we can Taylor
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expand

D(q) = −q ·
[
1
2

∑
x,ab

δ̂x0a,xb ⊗ δ̂x0a,xbŴ0
0a,xbP0,v

a +
∑
aa′

(∑
x,b

δ̂x0a,xbŴ0
0a,xb

(
P0,v

a

)1/2
)

(∑
α>0

sαa (rα)−1sαa′
)(∑

x,b

δ̂x0a′,xbŴ0
0a′,xb

(
P0,v

a′

)1/2
)]
· q + O(q4).

(49)

The terms cubic in q must vanish, as they are purely imaginary, and D(q) is real by virtue of being

a Hermitian matrix. The q4 term can be expressed as a fourth-order homogeneous polynomial in

the components of q. Then, as rα are the nonzero eigenvalues of
∑

x ω̂
0
0a,xb for α > 0, the matrix∑

α>0 sαa (rα)−1sαa′ is the pseudoinverse. The two vectors dotted into that matrix are the bias vectors,

as identified earlier, and so by Eqn. 30, we can write

D(q) = −q · Dv · q + O(q4) (50)

where5

Dv :=
kBT
cv

L(vv) =
1
2

∑
x,ab

δ̂x0a,xb ⊗ δ̂x0a,xbŴ0
0a,xbP0,v

a +
∑
aa′

bv
a ⊗

(∑
α>0

sαa (rα)−1sαa′
)

bv
a′ (51)

for the bare vacancy bias vector

bv
a :=

∑
x,b

δ̂x0a,xbŴ0
0a,xb

(
P0,v

a

)1/2
. (52)

Note that the second-rank tensor Dv is symmetric and positive-definite; therefore, it has three real,

positive eigenvalues di with corresponding orthonormal eigenvectors ei. Note that if Dv is isotropic

(e.g., a cubic system), d1 = d2 = d3. We define the following coordinate transforms to “scaled”

reciprocal and real space coordinates,

pi := d1/2
i (ei · q), yi := d−1/2

i (ei · x) (53)

and then

q =
∑

i

d−1/2
i piei, x =

∑
i

d1/2
i yiei (54)

so that −q · Dv · q = −|p|2 and exp(−iq · x) = exp(−ip · y). In this scaled coordinate system,

D(p) = −p2 +
∑

n1+n2+n3=4

D(4)
[n1n2n3] p

n1
1 pn2

2 pn3
3 + O(p6), (55)
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where we have explicitly introduced the components of the fourth order expansion, D(4)
[n1n2n3], and

the expansions in Eqn. 42, Eqn. 44, and Eqn. 47 retain the same form in p. Finally, we Taylor

expand D(p)−1 up to order p0,

D(p)−1 = −
1
p2 −

∑
n1+n2+n3=4

D(4)
[n1n2n3]

pn1
1 pn2

2 pn3
3

p4 + O(p2), (56)

Because all of the Taylor expansions involve products of (q · δ̂x), all terms of order qn (or pn) are

strictly homogeneous polynomials of order n in components of q (or p). Note that the eigenvalues

di and vectors ei depend on the diffusivity, and hence the temperature kBT .

We can block invertω(q) in the {sα} basis with scaled coordinates p, and analytically treat terms

that behave as p−2, p−1, and p0 at the origin. The block inverse of Eqn. 40 is most easily written in

terms of the inverses of D(p) (Eqn. 56) and RR(p) (Eqn. 47),

gαβ(p) =

 D(p)−1 −(D(p)−1) DR(p) (RR(p)−1)

−(RR(p)−1) RD(p) (D(p)−1) RR(p)−1 + (RR(p)−1) RD(p) (D(p)−1) DR(p) (RR(p)−1)


(57)

This form is chosen as the two matrix inverses—D(p)−1 and RR(p)−1—admit straightforward Tay-

lor series expansions by virtue of their isotropic (in p) leading order terms: p2 for D(p) and

rαδαβ for RR(p). The leading order of the diffusive-diffusive block is −p−2; the leading order

of the relaxive-diffusive (and diffusive-relaxive) blocks is ∼ ip/p2 ∼ p−1; the leading order of

the relaxive-relaxive block is ∼ pp/p2 ∼ p0, which can appear as a discontinuity at the origin (ap-

proaching the origin from different directions will give different values52). In the subsequent series

expansions, all terms up to p0 can be written as homogenous polynomials of order four or lower

divided by a power of p. We follow a semicontinuum approach52,54,55 and expand each block as

a sum of terms of order p−2, ip−1, and p0 multiplied by a Gaussian, and a finite, smooth, periodic

function; for example,

g00(p) = −
exp(−p2/p2

max)
p2 − exp(−p2/p2

max)
∑

n1+n2+n3=4

D(4)
[n1n2n3]

pn1
1 pn2

2 pn3
3

p4 + g00
sc (q), (58)

for a width pmax (described below) and where the (smooth) semicontinuum piece g00
sc (q) is the

difference between the first two terms and D(p)−1. The first term is a second-order pole in p, while

the second term is a discontinuity at p = 0; it has different values in the limit as p→ 0 depending

on the direction for approaching the origin. Note also that as p → 0, g00
sc (p = 0) = −1/p2

max. The

first two terms needs to be inverse Fourier transformed analytically, while the last term can be
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evaluated numerically on a finite grid of q in the Brillouin zone.55,56 We will evaluate the analytic

inverse Fourier transforms by expanding the integral in Eqn. 39 to all space. This requires that

exp(−p2/p2
max) be sufficiently small at the Brillouin zone edge; hence, the width pmax is chosen so

that

pmax ≤

(
inf{q · Dv · q : q ∈ BZ boundary}

− ln εthreshold

)1/2

(59)

for a threshold εthreshold; then exp(−p2/p2
max) ≤ εthreshold everywhere on the boundary of the Bril-

louin zone. Note that smaller values of pmax require more grid points for the inverse Fourier trans-

form of g00
sc (q). Note also that large anisotropy in Dv may necessitate an associated anisotropy in

the grid of q; see Section II D.

B. Inverse transform of second-order pole

When we inverse fourier transform the p−2 pole, we recover the large x diffusive behavior where

the Green function is inversely proportional to x. First,

− V
∫

BZ

d3q
(2π)3 e−iq·(x+ua−x′−ub) exp(−p2/p2

max)
p2 = −

V
(d1d2d3)1/2

∫
d3 p

(2π)3

e−ip·y exp(−p2/p2
max)

p2 , (60)

where we have taken the limits of integration from the Brillouin zone out to all space; see below

for an estimate of the error induced. The function to inverse Fourier transform is spherically

symmetric, and so is the solution in y,

−
V

4π(d1d2d3)1/2y
erf

(ypmax

2

)
= −

V
4π

erf
(

1
2

(
x · (Dv)−1 · x)

)1/2
pmax

)
(
det Dv(x · (Dv)−1 · x)

)1/2 (61)

by noting that

y =

∑
i

d−1
i (ei · x)2

1/2

=
(
x · (Dv)−1 · x

)1/2
(62)

where x is the vector connecting any two vacancy sites, and that d1d2d3 = det Dv. The inverse

Fourier transform value at x = 0 is
V pmax

4
√
π3d1d2d3

, (63)

which is finite, and the leading term in large x is

−
V
4π

(
det Dv(x · (Dv)−1 · x)

)−1/2
, (64)
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which is the solution to −∇ · (Dv∇g) = δ(x). To estimate the error, we integrate instead from a

sphere in p-space inscribed in the Brillouin zone out to infinity; this is given by a radius p0 =

pmax
√
− ln εthreshold ≈ πD1/2/a0 for lattice constant a0. The largest error occurs for x = 0, where

V
(d1d2d3)1/2

∫ ∞

p0

d3 p
(2π)3

exp(−p2/p2
max)

p2 =
V

(d1d2d3)1/2

pmax
√
π

4π2 erfc(p0/pmax)

≈
V/a0

4πD
εthreshold,

(65)

which, as g0(0) ∼ V/(Da0) ∼ ω̂−1
0 , shows that the truncation error is approximately g0(0)εthreshold.

C. Inverse transform of first-order poles and discontinuities

The remaining analytic terms are inverse Fourier transformed by grouping homogeneous poly-

nomials with common orbital angular momenta `. The first-order poles and discontinuities can

each be written as a sum of up to fourth order polynomials in the normalized components p/p.

Moreover, as shown in Appendix A, a homogeneous polynomial expansion of order L can be ex-

panded into a series of homogeneous polynomial expansions of order from ` = 0 to ` = L such that

each expansion only contains contributions from spherical harmonics of a single orbital angular

momentum. The inverse Fourier transform of the separable contribution pn exp(−p2/p2
max)Ym

` (p̂)

for power n = −1, 0 and spherical harmonic Ym
` is

V
∫

BZ

d3q
(2π)3 e−iq·(x+ua−x′−ub) pn exp(−p2/p2

max)Ym
` (p̂)

=
V

(d1d2d3)1/2

∫
d3 p

(2π)3 pn exp(−p2/p2
max)e−ip·y pnYm

` (p̂) exp(−p2/p2
max)

= fn`(y)Ym
` (ŷ)

(66)

where

fn`(y) :=
V

(d1d2d3)1/2 (−i)`
∫ ∞

0

dp
2π2 p2+n j`(py) exp(−p2/p2

max)

=
(−i)`V√
π3d1d2d3

1
y3+n ·

Γ
(

3+n+`
2

)
2−nΓ

(
3
2 + `

) (ypmax

2

)3+n+`

1F1

(3 + n + `

2
,

3
2

+ `;−
(ypmax

2

)2)
,

(67)

for spherical Bessel function j` and confluent hypergeometric function 1F1 (c.f. 9.210 in Grad-

shteyn and Ryzhik57). As the inverse Fourier transform transforms Ym
` (p̂) into Ym

` (ŷ), the homoge-

neous polynomial expansions in p̂ of order ` corresponding to a single orbital angular momentum
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transforms to the same homogeneous polynomial expansion in ŷ, where the radial contribution

pn exp(−p2/p2
max) transforms to fn`(y). For small y,

fn`(y) = y`
(−i)`V√
π3d1d2d3

Γ
(

3+n+`
2

)
2−nΓ

(
3
2 + `

) ( pmax

2

)3+n
+ O

(
y2+`), (68)

and for large y,

fn`(y) = y−(3+n) (−i)`V√
π3d1d2d3

Γ
(

3+n+`
2

)
2−nΓ

(
`−n

2

) + O
(
y−(5+n)). (69)

Note also that f−2 0(y) is a special case, captured in the Section II B. The relationship between x

and y is given by Eqn. 62 and the components by Eqn. 53.

D. Inverse transform of semicontinuum piece

The final contribution to the inverse Fourier transform of gαβ is gαβsc , which requires numerical

integration on a regularly spaced grid in the Brillouin zone. This function is smooth (after sub-

tracting off the poles and discontinuity) and periodic, so it converges quickly with the number of

grid points.56 We use a regular, gamma-centered N1 × N2 × N3 mesh (each Ni is even) in terms of

the reciprocal lattice vectors b1,b2,b3 as

q =
m1

N1
b1 +

m2

N2
b2 +

m3

N3
b3. (70)

Note that alternative meshes, like Monkhorst-Pack58 are possible as well. We initially generate the

mesh of q using mi = −(Ni/2) + 1 . . . (Ni/2), but then we translate q so that they remain entirely

within the Brillouin zone. Our Brillouin zone is defined by a set of reciprocal lattice vectors

GBZ := {G} where q is in the Brillouin zone if and only if q · G ≤ G2/2 for all G ∈ GBZ. So,

once we generate our initial set of q, we check that each lies inside the Brillouin zone; if we find

a G ∈ GBZ such that q ·G > G2/2, we replace it with q −G. At this stage, all of our q are equally

weighted, and so we approximate our integral V
∫

BZ
d3q/(2π)3 as the average value over our q.

Next, we take advantage of space group symmetry (c.f. Section III B) to reduce the number of

unique q we need to consider, and replace our average with a weighted average. We group our

q points in stars; that is, a set of points that are all related to one another by rotation operations

R. As the group is closed, we can select a single q representative from each star, and compute

gαβsc for that q; the weight wq in the average will be the number of q-points in that star divided

by the total number of q-points. Furthermore, we can rotate back to the original site indices a, b
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from our eigenvectors sαa and sβb. When a group operation {R, t} is applied to the initial position

x + ua and final position x′ + ub, it transforms the vector δx = x′ + ub − x + ua to R δx but also

changes the corresponding site indices to a′ = {R, t}(a) and b′ = {R, t}(b), which are of the same

Wyckoff position as a and b. To perform the inverse Fourier transform, the contribution to the

inverse Fourier transform for a star q is given by∑
q

wq
1

Ngroup

∑
R

eiq·(R δx)g{R,t}(a),{R,t}(b)
sc (q) (71)

where there are Ngroup group operations R. As we can apply R either to δx or q, it is computationally

more efficient to apply to δx. Note that the use of a regular grid to inverse Fourier transform

requires that we include sufficient density to avoid aliasing errors; that is, for the largest δx, the

smallest non-zero value of q · δx must be smaller than π. As the number of q-points increases, the

error scales no slower than N−4
1 + N−4

2 + N−4
3 (c.f., Ref. 56).

E. Algorithm summary

We summarize the computational steps in the calculation of the vacancy Green function for

an arbitrary crystal, given a network of jumps between crystalline sites with known occupation

probabilities P0,v and the corresponding rates Ŵ0:

1. Construct the symmetric rate matrix ω̂0 for the vacancy (Eqn. 32);

2. Find the eigenvalues rα and eigenvectors sα (Eqn. 36);

3. Rotate ω to identify diffusive-relaxive block matrices; construct Taylor expansions of corre-

sponding blocks (Eqn. 42, Eqn. 44, Eqn. 47, Eqn. 49);

4. Find Dv from expansion of D(q) (Eqn. 51), and diagonalize to find the coordinate transfor-

mation from the eigenvalues di and eigenvectors ei (Eqn. 53), and pmax (Eqn. 59);

5. Transform all Taylor expansions to p, and compute Taylor expansions of blocks of g(p) up to

p0 (Eqn. 57); separate the Taylor expansions by powers of pn and homogeneous polynomials

of constant orbital angular momentum ` (Appendix A);

6. For each block, and for each q grid point (Section II D), find the semicontinuum gαβsc by

subtracting the Taylor expansions multiplied by exp(−p2/p2
max) from the inverse of ω(q),

and then rotate back to gab
sc (q);
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7. Rotate the block Taylor expansion back to the original site basis.

This completes all preparatory work necessary to efficiently compute the Green function for a

series of different initial and final vacancy positions by expressing the Fourier transform as a

series of analytic terms plus a smooth function represented on a finite grid. For initial vacancy

position x + ua and final vacancy position x′ + ub, we

1. Compute δx = x′+ub−x+ua, and find the yi components (Eqn. 53), y magnitude (Eqn. 62),

and normalized components ŷi = yi/y;

2. Inverse Fourier transform all Taylor expansion pieces (Eqn. 61, Eqn. 66, and Eqn. 67);

3. Add the semicontinuum discrete inverse Fourier transform contribution (Eqn. 71).

This approach is optimal when the Green function is needed for a large number of xviv-x′vi′v pairs

for a given set of rates (at a single temperature). For each new set of rates, the first seven steps

must be repeated.

III. DILUTE-VACANCY/DILUTE-SOLUTE TRANSPORT

Given our vacancy Green function without a solute, we construct the Green function solution

for our system with a solute using Eqn. 35, and to evaluate transport using Eqn. 30. This requires

a few considerations: (1) translational invariance for the solute; (2) crystalline symmetry and the

expansion of our lattice functions; (3) systems where vacancy states have non-zero bias before

the introduction of the solute; and (4) avoiding catastrophic roundoff error in systems with rates

differing by more than ten orders of magnitude. We conclude with expressions for the Onsager

coefficients in the dilute-vacancy/dilute-solute limit.

A. Translational invariance of the Green function solution

We need to consider all states xsisxviv that have a non-zero bias vector. Due to translational in-

variance, the bias vector is independent of xs. This simplifies our problem, as we are not interested
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in ĝ itself, but rather
∑

n,n′ bα(n)ĝnn′bβ(n′). We note that bα(xsisxviv) is independent of xs, so

∑
xsis,x′si′s

∑
xviv,x′vi′v

bα(xsisxviv) ⊗ ĝxsisxviv,x′si′sx′vi′vb
β(x′si

′
sx
′
vi′v)

=
∑
is,i′s

∑
xviv,x′vi′v

bα(0isxviv) ⊗

N
∑

xs

ĝ0isxviv,xsi′sx′vi′v

 bβ(0i′sx
′
vi′v). (72)

The most straightforward way to evaluate the quantity in parenthesis is to note that, as ĝxsisxviv,x′si′sx′vi′v

depends only on xs−x′s, this is equal to the qs = 0 term of its Fourier transform (which is diagonal).

Then, if we return to Eqn. 35, we note that both ĝ and ĝ−1 have the same translational symmetry

with respect to xs − x′s, so that

∑
x′s

ĝ0isxviv,x′si′sx′vi′v =

(ĝ0
xviv,x′vi′v

)−1δisi′s + ω̂1
0isxviv,0i′sx′vi′v

+
∑

x′s

ω̂2
0isxviv,x′si′sx′vi′v


−1

. (73)

That is: we can replace ω̂2 in Eqn. 35 with the sum over all solute positions, and work entirely with

the positions of the vacancy xviv, x′vi′v and solute indices is, i′s. Then our matrix inverse is strictly

in the space of the kinetic shells (see below). The first two terms in the right-hand side of Eqn. 73

zero if is , i′s; only ω̂2 produces translation between sites for the solute when Nsites > 1.

The reduction due to translational invariance dictates a finite set of states to consider for any

vacancy-mediated diffusion problem, following Nastar et al.4,20,21,34–36: the thermodynamic and ki-

netic “shells.” Restricting to xs = 0, there are a finite set of states where 0isxviv has a different (free)

energy than an isolated solute at is and vacancy at iv; these can be thought of as “shells” of va-

cancy states surrounding a solute with a non-zero interaction, called the thermodynamic shell. The

change in energy can also change the rates for states that can transition to and from those states;

we define the kinetic shell as any state 0isxviv for which δω̂0isxviv,x′si′sx′vi′v , 0 for some x′si′sx′vi′v.59

This finite set of states dictates the minimum subspace necessary to compute ĝ, for these are also

the states with changes to b̂. For simplicity, we will identify the size of the subspace by how the

minimum number of transitions necessary for the vacancy in any of the states to transition onto the

solute site4,34–36: a 1nn “first neighbor” thermodynamic shell will require a (1nn)2 kinetic shell—

first neightbors of first neighbors—which might include more than the second nearest neighbors.

For example, in FCC, the (1nn)2 kinetic shell includes up to the fourth nearest neighbor of the

solute.
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B. Symmetry and state functions

The space group symmetry of the crystal allows for significant reduction in the complexity of

the diffusion problem. Below, we explicitly develop the linear basis to represent our configuration-

dependent quantities for the dilute limit, and construct fully symmetrized basis functions. This

requires an expansion of the notion of a star (a set of vectors related by point group operations)

to that of a “crystal star” which correspond with symmetry-equivalent solute-vacancy complexes

under space group operations. We then consider vectors for a given vector quantities ascribed

to our configurations, which motivates the development of a “vector star” to develop the basis

functions for the bias and symmetrized correction vectors.

We use the Seitz notation60 for a symmetry operation {R, t}, where for a point x, {R, t}x := R x+t.

Then, the inverse {R, t}−1 = {R−1,−R−1t}. We can apply a symmetry operation to a state xsisxviv

by defining {R, t}(xsisxviv) := x′si′sx′vi′v where {R, t}(xs + uis) = x′s + ui′s and {R, t}(xs + xv + uiv) =

x′s + x′v + ui′v . This is well-defined as each symmetry operation maps a position in the crystal to

another position in the crystal, and each position in the crystal has a unique representation. The

full set of operations make up the space group; for our purposes here, we will be interested in a

subset of group operations that map xs = 0 to x′s = 0; after lattice translations are added, this subset

generates the entire space group. We are interested in operations on our state space—the full set

of states 0isxviv with a non-zero δω̂—and specifically scalars and vectors at each state. A trivial

extension to tensor state functions is possible, but not described here.5

A state scalar function fxsisxviv is a function that has a scalar value for each state xsisxviv; we

will primarily consider translationally invariant state scalar functions where fxsisxviv = f0isxviv for all

xsisxviv. The application of {R, t} to fxsisxviv produces a new lattice function {R, t} f := g such that

fxsisxviv = g{R,t}(xsisxviv) for all xsisxviv; or, gxsisxviv = f{R,t}−1(xsisxviv). Moreover, if f is translationally

invariant then so is {R, t} f . This definition is such that, for example, the state scalar delta function,

δ(x0
s i0

s x0
vi0

v) where

δ(x0
s i0

s x0
vi0

v)xsisxviv :=


0 : xsisxviv , x0

s i0
s x0

vi0
v

1 : xsisxviv = x0
s i0

s x0
vi0

v

(74)

gives {R, t}δ(x0
s i0

s x0
vi0

v) = δ({R, t}(x0
s i0

s x0
vi0

v)), as one would expect. A state vector function fxsisxviv is

a function that has a vector value for each state xsisxviv; we will primarily consider translationally

invariant state vector functions where fxsisxviv = f0isxviv for all xsisxviv. Then, the application of {R, t}

to fxsisxviv produces a new state vector function {R, t}f := g such that fxsisxviv = R(g{R,t}(xsisxviv)) for all
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xsisxviv; or, gxsisxviv = R−1(f{R,t}−1(xsisxviv)). Extending this to a tensor state function is straightforward,

but not necessary for what follows. Note that, written this way, each {R, t} now also acts as a linear

operator on our (vector) space of scalar and vector lattice functions.

Restricted to the space of translationally invariant scalar state functions and vector state func-

tions, we define scalar products to develop our symmetric basis functions. The scalar product of

two translationally invariant scalar state functions f and g is defined as

f · g :=
∑
isxviv

f0isxvivg0isxviv , (75)

or the sum of the product of the function values. The scalar product for two translationally invariant

vector state functions f and g is defined as

f · g :=
∑
isxviv

f0isxviv · g0isxviv , (76)

or the sum of the dot product of the vector function values. This scalar product allows for con-

struction of orthonormal bases for our scalar and lattice vector functions. One example of such

basis functions are the set of translationally invariant delta functions, δ̄(0i0
s x0

vi0
v) where

δ̄(0i0
s x0

vi0
v)xsisxviv :=


0 : isxviv , i0

s x0
vi0

v

1 : isxviv = i0
s x0

vi0
v

, (77)

for all i0
s , x0

v, i
0
v. For vector lattice functions, the basis would be eδ̄(0i0

s x0
vi0

v) for different orthonormal

3-vectors e.

Next, we consider a (real) symmetric linear operator A that is closed over translationally invari-

ant state functions. We can represent A with a matrix A0isxviv,0i′sx′vi′v where

A0isxviv,0i′sx′vi′v := δ̄(0isxviv) · (Aδ̄(0i′sx
′
vi′v)). (78)

If A is a symmetric operator, then f ·(Ag) = g ·(A f ) for any two translationally invariant state func-

tions f and g. Since A is a real, symmetric linear operator, it has real eigenvalues and eigenvectors

that fully span the vector space. Our symmetry operators {R, t} are unitary operators, and so have

complex eigenvalues and eigenvectors that fully span the vector space; the eigenvalues are all roots

of unity. If we have an operator A that also commutes with a symmetry operator {R, t}—that is,

A{R, t} = {R, t}A—then eigenvectors of A are also eigenvectors of {R, t}. In particular, if we take

all of the eigenvectors of {R, t} that all have the same eigenvalue, then A will remain closed on that

set; thus, we can construct block-diagonal matrix versions of A.
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Using the space group operations, we can define crystal stars and vector stars from our space

group, and construct fully symmetrized translationally invariant scalar and vector state basis func-

tions. We define a crystal star as a generalization of a star for a point group; here, a crystal star is

a set of all states cs := {xsisxviv} such that for any two xsisxviv, x′si′sx′vi′v ∈ cs, there exists a space

group operation {R, t} such that {R, t}xsisxviv = x′si′sx′vi′v, and for xsisxviv ∈ cs, {R, t}xsisxviv ∈ cs

for all space group operations {R, t}. That is: cs is a minimal closed set of states for the space

group. We will identify a unique set of stars as the origin-state stars where 0is0is are members;

these correspond to states where the solute and vacancy are superimposed and which are excluded

in ω̂ but included in ω̂0. For each crystal star cs, we define a lattice function cs where

cs :=
1
Ns

∑
xsisxviv∈cs

δ(xsisxviv) (79)

and Ns is the cardinality of the subset of {0isxviv ∈ cs}—the number of representative states in cs.

This scalar state function is such that {R, t}cs = cs for all {R, t}, and has translational invariance.

We define a vector star derived from a crystal star cs: a vector star vs is a set of tuples, vs :=

{(xsisxviv, v)} such that {xsisxviv for (xsisxviv, v) ∈ vs} = cs, for any two (xsisxviv, v), (x′si′sx′vi′v, v′) ∈

vs, there exists a space group operation {R, t} such that ({R, t}xsisxviv,R v) = (x′si′sx′vi′v, v′), and for

(xsisxviv, v) ∈ vs, ({R, t}xsisxviv,R v) ∈ vs for all space group operations {R, t}. That is: vs is a

minimal closed set of states with vectors for the space group. Note that this requires all of the

v vectors have the same magnitude. For each vector star vs, we define a normalized vector state

function vs where

vs :=
1

Ns|v|

∑
(xsisxviv,v)∈vs

vδ(xsisxviv) (80)

This vector state function is such that {R, t}vs = vs for all {R, t}, and has translational invariance.

Each non-origin state star cs has at least one, and as many as three, unique vector stars as-

sociated with it. We construct the vector stars to be orthonormal: if vs and vs′ are based on the

same star cs, then for (xsisxviv, v) ∈ vs and (xsisxviv, v′) ∈ vs′, v · v′ = 0 if vs , vs′; otherwise

v·v′ = 1/Ns where Ns is the number of representative states of the star cs, so that the corresponding

vector lattice functions are orthonormal. For each star cs, there is the parallel vector star where

for each (xsisxviv, v) ∈ vs, v ∝ (xv + uiv − uis), as this trivially satisfies the definition of a vector

star. However, there may be one or two possible perpendicular vectors stars; these are such that

for each (xsisxviv, v) ∈ vs, v · (xv + uiv − uis) = 0. To be vector stars, we require that for each

{R, t} such that {R, t}(xsisxviv) = x′sisxviv, the corresponding v obeys R v = v; there may be one
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or two unique solutions in addition to the parallel star. As an example, in a simple cubic system,

the star generated by a vacancy at 〈100〉 only has the parallel vector star, while the star generated

by a vacancy at 〈210〉 has both the parallel vector star and one perpendicular vector star, and the

state generated by a vacancy at 〈321〉 has the parallel vector star and two perpendicular vector

stars. In the special case of origin-state stars, some crystals have no corresponding vector star,

as it is excluded by symmetry. This corresponds to an empty site vector basis5 which occurs for

any site whose point group includes inversion or a 3-, 4-, or 6-fold axis combined with a mirror.

The exclusion of origin-state vector stars produces no bias for the vacancy without a solute, and

provides for significant simplification below; c.f. Section III C.

Finally, the symmetric linear operators we consider—transition rate matrices and Green

functions—are invariant under all space group operations: {R, t}A = A{R, t} = A. Our state

bias vectors can be expanded in vector stars, and the Green function and transition rate matrices

can be expressed entirely in components of those vector stars: Gab = vsa · (G vsb) for two vector

stars vsa and vsb. Thus, symmetry can significantly reduce the computational complexity: in the

case of a face-centered cubic lattice with 1nn “first neighbor” thermodynamic shell and a (1nn)2

kinetic shell, the subspace is represented by four stars that generate five vector stars, producing

5 × 5 symmetric matrices.

C. Vacancy diffusion with bias in all states

For a crystal where symmetry does not preclude origin state vector stars, there will be transla-

tionally invariant bias in the solute and the vacancy that needs to be handled differently. For the va-

cancy, it can have non-zero bias even fully separated from the solute; while Eqn. 35 could be com-

puted locally for the changes in bias vector, the non-zero bias for vacancy states that are outside

the kinetic shell require a specific separation so that only “local” changes need to be calculated.

For the solute, the projection of the bias vector into the vacancy null space
∑

xviv b0isxviv(P
0,v
iv

)1/2

can be non-zero; this requires a corresponding correction vector for the solute based on the solute

transition matrix ω̂2 that compensates the “bare” solute transport contributions to L(ss) and L(sv).

A non-zero vacancy bias can be separated into a translationally invariant bias (absent the solute)

plus localized changes due to the solute. We write the bias vector for the vacancy as bv
0isxviv

=

b0,v
0isxviv

+ δbv
0isxviv

; in this case, b0,v
0isxviv

is the bare vacancy bias vector, Eqn. 52, computed using the

terms in Ŵ0 (Eqn. 31) with P0,v
iv

, and δbv
0isxviv

is the remaining (local) terms from ω̂1 and ω̂2. Thus,
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b0 has translational invariance and is non-local. Note that δbv includes terms that remove the bias

at the origin states when they are disconnected from the full jump network. Similarly, we write

the Green function as ĝ = ĝ0 + δĝ. Then, the second term in Eqn. 30 for the vacancy-vacancy

contribution is

bv ⊗ ĝ bv = (b0,v + δbv) ⊗ (ĝ0 + δĝ)(b0,v + δbv)

= b0,v ⊗ ĝ0 b0,v + δbv ⊗ ĝ δbv

+
(
δbv ⊗ ĝ0 b0,v + b0,v ⊗ ĝ0 δbv

)
+

(
δbv ⊗ δĝ b0,v + b0,v ⊗ δĝ δbv

)
+ b0,v ⊗ δĝ b0,v,

(81)

where the first term contributes to the diffusion of the vacancy without any solute, the second term

is fully localized and represents the correlation in the absence of any non-solute vacancy bias,

and the remaining terms are corrections to be evaluated. We wish to continue working in our

kinetic state space (the kinetic shell), and so require a few simplifications. First, ĝ0 b0,v = γ0,v, the

symmetrized correction vector for the vacancy. Next, while the change in the Green function δĝ is

not local, it can be rewritten using the Dyson equation as

δĝ = ĝ0
(
−δω̂ + δω̂ ĝ δω̂

)
ĝ0. (82)

For convenience, we define

δ̃ω := δω̂ − δω̂ ĝ δω̂ (83)

so that δĝ = −ĝ0 δ̃ω ĝ0 and δ̃ω is non-zero only for states in our kinetic shell. Then

bv ⊗ ĝ bv = b0,v ⊗ γ0,v + δbv ⊗ ĝ δbv +
(
δbv ⊗ γ0,v + γ0,v ⊗ δbv

)
−

(
δbvĝ0 ⊗ δ̃ωγ0,v + γ0,vδ̃ω ⊗ ĝ0 δbv

)
− γ0,v ⊗ δ̃ωγ0,v,

(84)

only contains terms that are fully periodic (b0,v, γ0,v) or fully localized (δbv, δ̃ω). The first term is

the only one including b0,v, and it contributes to the vacancy diffusivity without solute; all of the

remaining terms are leading order cs.

The non-zero solute bias requires a different treatment as it represents a different subspace of

the state space: the solute diffusion network. Without the solute, the transition matrix ω̂0 has a

null space corresponding to the square root of the vacancy probability, (P0,v
iv

)1/2 for any xsis. When

there are origin state vector stars, the projection of the solute bias vector into that vacancy null

space is nonzero. We construct the total solute bias vector

b̄s
is :=

∑
xviv

bs
0isxviv(P

0,v
iv

)1/2, (85)
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and the solute transition matrix

ω̄2
isi′s

:=
∑

xviv,x′si′sx′vi′v

(P0,v
iv

)1/2ω̂2
0isxviv,x′si′sx′vi′v

(P0,v
i′v

)1/2 (86)

which only includes the transitions that move the solute atom. Note that as this is the null space

projection, the vacancy probability appears to the half power twice. The solute transition matrix

can be mapped into a single species diffusion problem,5 and we define the solute total symmetrized

correction vector γ̄s := (ω̄2)+b̄s for the pseudoinverse (ω̄2)+. We will add to L(ss) a term correspond-

ing to b̄s⊗γ̄s, and an opposite correction −b̄s⊗γ̄s to L(sv). Finally, we construct the projected solute

bias vector

δbs
0isxviv := bs

0isxviv −
∑

x′si′sx′vi′v

ω̂2
0isxviv,x′si′sx′vi′v

(P0,v
i′v

)1/2γ̄s
i′s

(87)

which now has zero projection into the vacancy null space.

D. Modifications to accommodate large exchange rates

The rates in a vacancy-mediated diffusion problem can differ by many orders of magnitude,

which can contribute to round-off error when calculating diffusivity numerically. The predomi-

nant type of round-off error in vacancy mediated diffusion is caused by large exchange rates (ω̂2)

compared with all other rates; this causes the correlation to increase so that the correlated con-

tribution to the diffusivity is almost exactly equal (and opposite) to the uncorrelated diffusivity

contribution. This leads to catastrophic round-off error; moreover, as our rates are Arrhenius, as

long as the activation barrier for vacancy-solute exchange is lower than the other activation barri-

ers in the system, large differences in rates will always occur at some finite temperature. Hence, a

modified version of the diffusivity is required.

We work in the exchange space (the subspace of states involved in solute-vacancy exchange)

to separate the ω̂2 contribution to diffusivity from the rest of the state space. The exchange space

are the only states that have a non-zero contribution from our “fast” exchange rates ω̂2. Then, we

can apply the Dyson equation in two stages, where ĝ1 = ((ĝ0)−1 + ω̂1)−1 and ĝ = ((ĝ1)−1 + ω̂2)−1,

and the second Dyson equation will be computed in the exchange space. Then, if (ĝ1ω̂2) � 1,
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rewriting the Green function as

ĝ =
((

ĝ1)−1
+ ω̂2

)−1
=

(
ω̂2

[
1 +

(
ĝ1 ω̂2)−1

])−1

=
(
ω̂2)−1

+
{[

1 +
(
ĝ1 ω̂2)−1

]−1
− 1

}(
ω̂2)−1

=
(
ω̂2)−1

−
[
ω̂2 + ω̂2ĝ1ω̂2

]−1

(88)

produces a first term that is the inverse of ω̂2 and the second term is, to leading order, O
((

ĝ1)−1(
ω̂2)−2).

Hence, when the matrix
(
ĝ1 ω̂2) is large, this expansion can capture many more significant figures

in two separate matrices. The calculation in Eqn. 88 must be performed in the complement of the

null space of ω̂2 in the exchange space; see below. While Eqn. 88 is exact, it only shows particular

utility for large ω̂2 values evaluated with floating-point arithmetic.

The difference between the uncorrelated and correlated diffusivity can be directly calculated

without significant round-off error for large ω̂2. The exchange space contains all of the states

xsisxviv with non-zero bias for the solute, bs
xsisxviv

. Moreover, as there is only a single vacancy

and a single solute, there is only one transition that contributes to the bias for any state xsisxviv,

and Eqn. 33 shows that ω̂2 has a block diagonal structure consisting of 2 × 2 blocks of xsisxviv

and xsisxviv. Then, we can consider each pair of states, xsisxviv and xsisxviv individually; call one

state S := xsisxviv and the other S̄ := xsisxviv. Then, let ρS := P̂0(xsisxviv), ρS̄ := P̂0(xsisxviv),

ν := P̂1/2
0 (xsisxviv)Ŵxsisxviv,xsisxviv P̂−1/2

0 (xsisxviv), and δx := δ̂xs
(xsisxviv → xsisxviv). In this shortened

notation,

bS := bs
xsisxviv = δx νρ1/2

S̄
, bS̄ := bs

xsisxviv
= −δx νρ1/2

S , ω2 =

−ν(ρS̄ /ρS )1/2 ν

ν −ν(ρS /ρS̄ )1/2


(89)

and the contribution to L(ss) from both states is

1
kBTV0

{
δx⊗δx(ρSρS̄ )1/2ν+

(
bS ,bS̄

)
⊗ (ω2)+(bS ,bS̄

)T
−
(
bS ,bS̄

)
⊗
(
ω̂2 + ω̂2ĝ1ω̂2)−1(bS ,bS̄

)T}
. (90)

The first two terms add to zero, so that the second term in Eqn. 88 contributes to the diffusivity, giv-

ing an overall contribution O
((

ĝ1)−1(
ω̂2)0) for large ω2. To see this, we evaluate the pseudoinverse

of the 2 × 2 matrix ω2,

(ω2)+ = ν−1 (ρSρS̄ )1/2

(ρS + ρS̄ )2

 −ρS̄ (ρSρS̄ )1/2

(ρSρS̄ )1/2 −ρS

 (91)
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and so

(
bS ,bS̄

)
(ω2)+(bS ,bS̄

)T
= ν−1 (ρSρS̄ )1/2

(ρS + ρS̄ )2

(
δxνρ1/2

S̄
−δxνρ1/2

S

)  −ρS̄ (ρSρS̄ )1/2

(ρSρS̄ )1/2 −ρS


 δxνρ1/2

S̄

−δxνρ1/2
S


=

νδx ⊗ δx
(ρS + ρS̄ )2

[
−(ρSρS̄ )1/2ρ2

S̄ − 2(ρSρS̄ )3/2 − (ρSρS̄ )1/2ρ2
S

]
= −(ρSρS̄ )1/2νδx ⊗ δx,

(92)

which exactly cancels the bare term in Eqn. 90. This is expected, as a pair of states that only

transition between themselves (as they would if ω̂ = ω̂2 only) does not contribute to transport and

L(ss) is exactly zero. Eqn. 90 also shows that while in the limit of ω̂2 → ∞, L(ss) ∼
(
ω̂2)0, in the

limit ω̂2 → 0, L(ss) ∼
(
ω̂2)1.

E. Algorithm summary

We summarize the computational steps in the calculation of of the transport coefficients for an

arbitrary crystal in the dilute-vacancy/dilute-solute limit. Our inputs are the same as Section II E,

with the addition of rates for the vacancy near the some Ŵ1, exchange with the solute Ŵ2, and

solute-vacancy interaction energies (probabilities) Es-v
isiv

(x) (P̂0(xsisxviv)); c.f, Section I E. We as-

sume that the introduction of the solute does not cause any vacancy states to become unstable, or

introduce new vacancy states or transitions in the jump network; the extensions of this work to

consider those cases is possible (c.f., Section V), but beyond the scope of this work.

1. For a given thermodynamic shell, define the kinetic shell (c.f., Section III A), and construct

a set of crystal stars corresponding to the thermodynamic shell where Es-v
isiv

(x) , 0, and both

crystal stars and vector stars for the kinetic shell; index the vector state functions by i as vsi.

Construct the outer product of vector state functions vsi and vs j,

VV i j := vsi ⊗ vs j =
∑

(0isxviv,v)∈vsi

∑
(0i′sx′vi′v,v′)∈vs j

v ⊗ v′δ(xv − x′v)δisi′sδivi′v . (93)

and when crystal symmetry does not preclude origin state vector stars, construct the projec-

tion matrix Υ between vector state function vsi and an origin state vector function vsk,

Υik :=
∑

(0isxviv,v)∈vsi

∑
(0i′v0i′v,v′)∈vsk

v · v′δivi′v . (94)
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2. Compute the probabilities P0,v
iv

, P0,s
is

, and P̂0(0isxviv) = P0,v
iv

P0,s
is

exp(−Es-v
isiv

(x)/kBT ), with nor-

malization
∑

i P0,v
i =

∑
i P0,s

i = Nsites.

3. Construct the bare transport contributions

d2,ss :=
1
2

∑
0isxviv

(xv + uiv − uis) ⊗ (xv + uiv − uis) ω̂
2
0isxviv,0isxviv

P̂1/2
0 (0isxviv)P̂1/2

0 (0isxviv)

d2,sv := −d2,ss

d1,vv :=
1
2

∑
0isxviv

∑
x′vi′v

(x′v + ui′v − xv − uiv) ⊗ (x′v + ui′v − xv − uiv)

·
[(
ω̂1

0isxviv,0isx′vi′v
+ ω̂0

0isxviv,0isx′vi′v

)
P̂1/2

0 (0isxviv)P̂1/2
0 (0isx′vi′v) − ω̂0

0isxviv,0isx′vi′v

(
P0,v

iv
P0,v

i′v

)1/2P0,s
is

]
d2,vv := d2,ss

(95)

where the last two terms contribute to the first order change in L(vv) with cs. These tensors

can be written as linear combinations of the symmetry unique ω0, ω1, and ω2 values with

square roots of appropriate probabilities.

4. Construct the bias vectors in the vector state function basis. Separate into the vacancy bias

(1) and exchange bias vectors (2),

b1
i :=

∑
(0isxviv,v)∈vsi

∑
x′vi′v

v · (x′v + ui′v − xv − uiv)
[(
ω̂1

0isxviv,0isx′vi′v
+ ω̂0

0isxviv,0isx′vi′v

)
P̂1/2

0 (0isx′vi′v)

− ω̂0
0isxviv,0isx′vi′v

(
P0,v

i′v
P0,s

is

)1/2
]

b2
i :=

∑
(0isxviv,v)∈vsi

v · (xv + uiv − uis) ω̂
2
0isxviv,0isxviv

P̂1/2
0 (0isxviv)

(96)

so that bs is given by b2
i and the localized change in bias vector for the vacancy δbv is b1

i −b2
i ;

this is superimposed onto the bare vacancy bias vector b0,v (c.f., Section III C). These vectors

can be written as linear combinations of the symmetry unique ω0, ω1, and ω2 values with

square roots of appropriate probabilities.

5. Evaluate the vacancy Green function g0
0isxviv,0isx′vi′v

, the vacancy diffusivity without a solute

Dv (where L(0,vv) = cvDv/kBT ), and the periodic symmetrized correction vector γ0,v
iv

, which

is projected into origin state vector functions vsk,

γ0,v
k :=

∑
(0iv0iv,v)∈vsk

v · γ0,v
iv
. (97)
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6. Construct the vector state function basis matrices

g0
i j :=

∑
(0isxviv,v)∈vsi

∑
(0isx′vi′v,v′)∈vs j

(v · v′)ĝ0
xviv,x′vi′v

ω1
i j :=

∑
(0isxviv,v)∈vsi

∑
(0isx′vi′v,v′)∈vs j

(v · v′)ω̂1
0isxviv,0isx′vi′v

ω2
i j :=

∑
(0isxviv,v)∈vsi

∑
(0isxviv,v′)∈vs j

(v · v′)ω̂2
0isxviv,0isxviv

(98)

from which the matrix gi j is constructed in Step 8. These matrices can be written as linear

combinations of the symmetry unique g0, ω1 and ω2 values.

7. Evaluate the total solute bias vector b̄s
is

(Eqn. 85), solute-solute transition matrix ω̄2
isi′s

(Eqn. 86), symmetrized correction vector γ̄s
is
. Add b̄s ⊗ γ̄s to d2,ss and add −b̄s ⊗ γ̄s to

d2,sv. Construct δbs
i from Eqn. 87.

8. Construct g1 = (1 + g0ω1)−1g0, g = (1 + g1ω2)−1g1, and δ̃ω (Eqn. 83) in the vector state

function basis. If g1ω2 contains “large” entries (above 108 for a double floating-point repre-

sentation), then

(a) find the eigenvectors of ω2 in the exchange space and the pseudoinverse ω2+;

(b) rotate g into the subspace; replace g with −(ω2 + ω2g1ω2)−1 in the non-null subspace;

(c) rotate back to exchange space;

(d) set the bare transport contributions to

d2,ss := 0

d2,sv :=
∑
i jk

b1
i VV i jω

2+
jk b2

k

d1,vv := 0

d2,vv :=
∑
i jk

(b1
i − 2b2

i )VV i jω
2+
jk b2

k

(99)

34



9. The transport coefficients are, to linear order in cs and cv,

L(ss) =
cvcs

NsiteskBT

[
d2,ss +

∑
i jk

b2
i VV i jg jkb2

k

]
L(sv) =

cvcs

NsiteskBT

[
d2,sv +

∑
i jk

(b1
i − b2

i )VV i jg jkb2
k

]
L(vv) =

cv

kBT
Dv +

cvcs

NsiteskBT

[
d1,vv + d2,vv +

∑
i jk

(b1
i − b2

i )VV i jg jk(b1
k − b2

k)

+
∑
i jk

γ0,v
k ΥikVV i j

(
2b1

j − 2
∑
mn

δ̃ω jmg0
mnb1

n −
∑
mk′

δ̃ω jmΥmk′γ
0,v
k′

)
−

∑
ii′kk′

γ0,v
k ΥikVV ii′Υi′k′b0,v

k′

]

(100)

where Nsites appears due to the normalization of P0,v
iv

and P0,s
is

(c.f., Step 2).

The algorithm, with symmetry analysis, is available in an open source implementation, described

in Appendix B. Note that only crystals with low symmetry have origin state vector stars; otherwise,

Υ, b0,v
iv

, γ0,v
iv

, b̄s and γ̄s are zero.

IV. NUMERICAL RESULTS

To demonstrate the efficacy and accuracy of the algorithm, we consider several cases of interest.

First, we demonstrate the scaling of the error of the evaluation of bare vacancy Green function for

FCC and HCP lattices. We then show the effect of roundoff error in the large ω̂2 limit, and that

our corrections successfully circumvent catastrophic error. Next, we compute tracer coefficients

for a series of crystal structures, compare with known values where available, and show new

results for a few crystals. As a more detailed example, we consider the case of a garnet structure,

which was recently studied with a related method, and produce the first accurate tracer correlation

coefficients for that structure. Finally, we compare with prior simulations of solute drag of silicon

in FCC nickel computed using the self-consistent mean-field method,34,61,62 and solute drag of tin

and zinc in HCP magnesium63 computed using kinetic Monte Carlo. The source code for all of

the results are available as Jupyter notebooks online;48 c.f. Appendix B.

35



A. Vacancy Green function error scaling without solute

We consider progressively denser k-point meshes to integrate the Brillouin zone for a face-

centered cubic (FCC) lattice. The transition rate is ω0 = 1/12 and we start from a 6 × 6 × 6 mesh

in progression (4n + 2)3 up to 34 × 34 × 34 with εthreshold = 10−8 in Eqn. 59. The values of the

Green function and differences appears in Table I, with the convergence of integration errors in

Fig. 1. The largest distance to appear in the correlation factor for a first-neighbor thermodynamic

interaction is R = 4a1 = 2a0ĵ + 2a0k̂, and so we compare the convergence of g0(0), g0(R), and the

difference g0(0) − g0(R) (as differences in Green function values are important for errors in corre-

lation factors). To separate the integration error from the εthreshold error, we fit the large Nkpt limit

of the Green function value, then subtract the limiting value. The default value in our algorithm of

Nkpt = 183 provides an error in the Green function difference of ∼ 10−8. Roundoff error becomes

an issue as Nkpt increases, as the error is limited by ∼ 10−16Nsymm-kpt. Empirically, we observe an

error scaling of ∼ N−5/3
kpt —faster than the minimum convergence rate of N−4/3

kpt from Ref. 56—in the

Green function values, and an even faster convergence for the difference of Green function values.

TABLE I. Green function convergence with k-point density for FCC. The k-point meshes can be reduced by

cubic symmetry to a smaller set of unique points (Nsymm-kpt), the number of which is listed parenthetically

next to Nkpt. The computational effort scales with the number of symmetry unique points (c.f., Eqn. 71)

while the error is controlled by Nkpt (c.f., Fig. 1). The pmax value is chosen so that εthreshold = 10−8 in

Eqn. 59, and R = 4a1 = 2a0ĵ + 2a0k̂.

k-point mesh Nkpt (Nsymm-kpt) g0(0) g0(R) g0(0) − g0(R)

6 × 6 × 6 216 (16) –1.344 901 582 401 –0.119 888 361 621 –1.225 013 220 779

10 × 10 × 10 1000 (48) –1.344 674 624 975 –0.084 566 077 531 –1.260 108 547 444

14 × 14 × 14 2744 (106) –1.344 663 672 542 –0.084 541 308 263 –1.260 122 364 278

18 × 18 × 18 5832 (200) –1.344 661 890 661 –0.084 539 383 601 –1.260 122 507 060

22 × 22 × 22 10 648 (337) –1.344 661 442 418 –0.084 538 941 204 –1.260 122 501 213

26 × 26 × 26 17 576 (528) –1.344 661 295 591 –0.084 538 798 573 –1.260 122 497 018

30 × 30 × 30 27 000 (778) –1.344 661 238 153 –0.084 538 742 761 –1.260 122 495 392

34 × 34 × 34 39 304 (1095) –1.344 661 212 587 –0.084 538 717 850 –1.260 122 494 737

38 × 38 × 38 54 872 (1488) –1.344 661 200 054 –0.084 538 705 591 –1.260 122 494 464

42 × 42 × 42 74 088 (1971) –1.344 661 193 423 –0.084 538 699 082 –1.260 122 494 341

46 × 46 × 46 97 336 (2547) –1.344 661 189 691 –0.084 538 695 410 –1.260 122 494 281

50 × 50 × 50 125 000 (3222) –1.344 661 187 483 –0.084 538 693 232 –1.260 122 494 251

We also consider progressively denser k-point meshes to integrate the Brillouin zone for a

hexagonal close-packed (HCP) lattice. The basal and pyramidal transition rates are ω0 = 1/12,
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FIG. 1. Scaling of error in FCC Green function. The absolute error is due to the integration of the semicon-

tinuum contribution gαβsc over the Brillouin zone, c.f., Section II D. A minimum number of k-point divisions

is required to avoid aliasing errors for larger R; as Nkpt increases, the error is controlled by the integration

error of a smooth, periodic function, which scales56 no slower than N−4/3
kpt ; empirically, we find a scaling of

N−5/3
kpt .

and we start from a 6×6×4 mesh in progression up to 60×60×32 with εthreshold = 10−8 in Eqn. 59.

The values of the Green function and differences appears in Table II, with the convergence of

integration errors in Fig. 2. The largest distances to appear in the correlation factor for a first-

neighbor thermodynamic interaction are R1 = 4a1 + 4a2 = 4a0î and R2 = 2a1 + 2a2 + 2a3 =

2a0î + 2c0k̂, and so we compare the convergence of g0(0), g0(R1), g0(R2), and the differences

g0(0) − g0(R1) and g0(0) − g0(R2) (as differences in Green function values are important for errors

in correlation factors in the basal plane and along the c-axis). To separate the integration error from

the εthreshold error, we fit the large Nkpt limit of the Green function value, then subtract the limiting

value. The default value in our algorithm of 20 × 20 × 12 provides an error in the Green function

difference of ∼ 10−7. Roundoff error becomes an issue as Nkpt increases, as the error is limited by

∼ 10−16Nsymm-kpt. Empirically, we observe an error scaling of ∼ N−5/3
kpt —faster than the minimum

convergence rate of N−4/3
kpt from Ref. 56—in the Green function values, and a similar convergence

for the difference of Green function values with an order-of-magnitude smaller prefactor.

The analytic values for the Green functions are available as Watson integrals, which allows us

to compare the error induced from a non-zero value of εthreshold. In the case of g0(0) for both FCC
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TABLE II. Green function convergence with k-point density for HCP. The k-point meshes can be reduced

by hexagonal symmetry to a smaller set of unique points (Nsymm-kpt), the number of which is listed paren-

thetically next to Nkpt. The computational effort scales with the number of symmetry unique points (c.f.,

Eqn. 71) while the error is controlled by Nkpt (c.f., Fig. 2). The pmax value is chosen so that εthreshold = 10−8

in Eqn. 59, and R1 = 4a1 + 4a2 = 4a0 î and R2 = 2a1 + 2a2 + 2a3 = 2a0 î + 2c0k̂.

k-point mesh Nkpt (Nsymm-kpt) g0(0) g0(R1) g0(R2) g0(0) − g0(R1) g0(0) − g0(R2)

6 × 6 × 4 144 (21) –1.367 909 503 563 –0.192 892 722 514 –0.131 552 967 388 –1.175 016 781 049 –1.236 356 536 175

10 × 10 × 6 600 (56) –1.345 034 474 341 –0.087 913 619 020 –0.089 866 654 871 –1.257 120 855 321 –1.255 167 819 470

16 × 16 × 8 2048 (150) –1.344 668 575 390 –0.084 546 609 595 –0.088 212 957 806 –1.260 121 965 795 –1.256 455 617 584

20 × 20 × 12 4800 (308) –1.344 662 392 185 –0.084 539 941 251 –0.088 166 498 574 –1.260 122 450 934 –1.256 495 893 611

26 × 26 × 14 9464 (560) –1.344 661 615 456 –0.084 539 088 966 –0.088 165 768 509 –1.260 122 526 490 –1.256 495 846 946

30 × 30 × 16 14 400 (819) –1.344 661 401 027 –0.084 538 892 419 –0.088 165 529 659 –1.260 122 508 608 –1.256 495 871 368

36 × 36 × 20 25 920 (1397) –1.344 661 260 564 –0.084 538 764 009 –0.088 165 374 312 –1.260 122 496 555 –1.256 495 886 252

40 × 40 × 22 35 200 (1848) –1.344 661 230 214 –0.084 538 734 661 –0.088 165 342 770 –1.260 122 495 553 –1.256 495 887 444

46 × 46 × 24 50 784 (2600) –1.344 661 210 808 –0.084 538 715 598 –0.088 165 322 977 –1.260 122 495 211 –1.256 495 887 832

50 × 50 × 28 70 000 (3510) –1.344 661 197 817 –0.084 538 703 416 –0.088 165 309 065 –1.260 122 494 400 –1.256 495 888 752

56 × 56 × 30 94 080 (4640) –1.344 661 192 649 –0.084 538 698 279 –0.088 165 303 871 –1.260 122 494 370 –1.256 495 888 778

60 × 60 × 32 115 200 (5627) –1.344 661 189 980 –0.084 538 695 678 –0.088 165 301 128 –1.260 122 494 302 –1.256 495 888 852

and HCP lattices, the value42,46 is the same:

g0(0) = −
9Γ

(
1
3

)6

214/3π4 ≈ −1.344 661 183 165 144 · · ·

which provides an error, when using Nkpt ∼ 105 from Table I and Table II of ≈ 5 × 10−9 for

εthreshold = 10−8. Just as g0(0) is equal for FCC and HCP, g0(R) for FCC and g0(R1) for HCP are

also equal; the closed form for g0(R) can be evaluated from recursion relations43,44 as

g0(R) ≈ −0.084 538 688 992 554 · · ·

which provides similar errors as in g0(0). However, the difference with g0(0) − g0(R) is

g0(0) − g0(R) ≈ −1.260 122 494 172 590 · · ·

which provides an error from Table I and Table II of ≈ 1 × 10−10 and ≈ 3 × 10−10, respectively, for

εthreshold = 10−8; this is expected to be the level of the controlling error in correlation factors.

B. Large ω2 treatment for FCC five-frequency model

Section III D describes the modifications necessary to compute the transport coefficients when

ω̂2 becomes large, to avoid catastrophic roundoff error; Fig. 3 shows numerical values of the round-
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FIG. 2. Scaling of error in HCP Green function. The absolute error is due to the integration of the semicon-

tinuum contribution gαβsc over the Brillouin zone, c.f., Section II D. A minimum number of k-point divisions

is required to avoid aliasing errors for larger R; as Nkpt increases, the error is controlled by the integration

error of a smooth, periodic function, which scales56 no slower than N−4/3
kpt ; empirically, we find a scaling of

N−5/3
kpt .

off error depending on which treatment of the transport coefficients is used. Our implementation

uses the algorithm of Section III D when ĝ1ω̂2 has values greater than 108; this is the “automatic”

algorithm of Fig. 3; alternatively, we can choose to never use the “large” ω̂2 algorithm, or use it

for any value of ω̂2. To test the accuracy when changing the algorithm, we consider an FCC five-

frequency case where ω1 = ω3 = ω4 = ω0 = 1, and we systematically vary ω2 from 10−17 to 1017.

The correlation factor f = −L(ss)/L(sv) is constant and equal to the tracer value ≈ 0.781 451 419 for

any nonzero value of ω2, and our “automatic” treatment shows negligible deviation (< 10−15) in

f over the full range. However, not using the large ω̂2 treatment shows deviation at the 10−4 level

when ω2 = 1013, and the errors increase until at ω2 ≈ 1016 they are so large that L(sv) is reported

as numerically 0. Similar “mirrored” behavior is shown when using the “large” ω̂2 algorithm as

ω2 = 10−13 and as it decreases below 10−16.

39



10-17 10-16 10-15 10-14 10-13

ω2

0.0

0.2

0.4

0.6

0.8

1.0

co
rr

el
at

io
n

1013 1014 1015 1016 1017

ω2

0.0

0.2

0.4

0.6

0.8

1.0

automatic
no large ω2

only large ω2

FIG. 3. Tracer correlation factor f = −L(ss)/L(sv) for FCC with different treatment of L(ss) and L(sv) for ω2.

When the ratio f is numerically meaningless (L(sv) is numerically zero, or any quantity is reported as Inf of

NaN), f is plotted as having the value 1.

C. Tracer correlation factors for various crystal structures

Table III summarizes tracer correlation factors for nine different crystal structures. The nine

crystals cover networks with connectivity ranging from 4 (diamond, wurtzite), 6 (simple cubic), 8

(body-centered cubic, NbO), to 12 (face-centered cubic, hexagonal close-packed), and two mixed

networks (hexagonal omega, HCP octahedral-tetrahedral5). The correlation factors are computed

assuming all jumps have the same rate, and all vacancies positions have equal probability; then,

the ω̂2 rates are also equal, and the correlation factors are temperature independent. The εthreshold =

10−8 and the k-point meshes are chosen so that integration errors are < 10−8; hence, all correlation

factors are reported to 8 digits. The cubic structures have isotropic transport coefficients, and hence

isotropic correlation factors. The hexagonal crystal structures use the “ideal” c/a ratios, which then

produces isotropic L(vv) transport coefficients for HCP and wurtzite structures, while the hexagonal

omega and HCP octahedral-tetrahedral networks have anisotropic L(vv) transport. Despite HCP

having isotropic L(sv), the solute-solute L(ss) for the tracer is anisotropic at ≈ 2.5 × 10−4. The

similarity of the wurtzite structure to the diamond structure produces the same 1/2 correlation

coefficient. The case of garnet is discussed in more detail in Section IV D.

Fig. 4 shows the variation in tracer correlation factor with the two unique jump rates for a
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TABLE III. Tracer correlation factor f = −L(ss)/L(sv) for multiple crystal structures. Each crystal is iden-

tified by the common crystal name, and its space group with occupied Wyckoff positions.64 For the cases

of wurtzite, hexagonal close-packed and HCP octahedral-tetrahedral we use the ideal c/a =
√

8/3, and

for hexagonal omega, we use the ideal c/a =
√

3/8. For NbO and garnet, we only consider jumps on a

single subnetwork. All sites whose common distance is less than the cutoff distance are connected with a

jump, which contributes to the connectivity. Some structures have more than one unique type of jump, and

the connectivity is listed as a sum. All of the jumps are taken to have the same rate. The cubic crystals

show isotropic tracer correlation factors, while the hexagonal crystals other than wurtzite show anisotropic

correlation. Where available, we report reference calculations of the tracer correlation factor.

crystal space group Wyckoff cutoff connectivity fxx fzz reference values

simple cubic Pm3̄m 1a a0 6 0.653 108 84 0.653 108 84 0.653 10941

body-centered cubic Im3̄m 2a 0.9a0 8 0.727 194 14 0.727 194 14 0.727 19441,65

face-centered cubic Fm3̄m 4a 0.75a0 12 0.781 451 42 0.781 451 42 0.781 451 4241,65

diamond Fd3̄m 8a 0.45a0 4 0.500 000 00 0.500 000 00 1/246,65

wurtzite P63/mmc 4f (z = 1/16) 0.62a0 1+3 0.500 000 00 0.500 000 00

hexagonal close-packed P63/mmc 2c a0 6+6 0.781 204 88 0.781 451 42 0.781 204 89, 0.781 451 4246

NbO Pm3̄m 3c (Nb) + 3d (O) 0.8a0 8 (3c) 0.688 916 12 0.688 916 12 0.688 91666

hexagonal omega P6/mmm 1a + 2d 0.66a0 2+12, 2+3 0.781 226 49 0.781 573 39

HCP octahedral-tetrahedral P63/mmc 2a + 4f (z = 5/8) 0.71a0 6, 1+3 0.630 523 07 0.652 302 73

garnet (A3M’2(M”X4)3) Ia3̄d 24c + 16a + 24d + 96h 0.31a0 4 (24c) 0.374 972 67 0.374 972 67 0.249167

wurtzite crystal network. The wurtzite (hexagonal diamond) network is tetrahedrally coordinated,

where each site has one jump along c-axis (jump frequency ωc), and three jumps that move primar-

ily in basal directions in a honeycomb network. This network requires c-axis and “basal” jumps

to move in the z direction, and “basal” jumps to move in the xy plane. As ωc → 0, the wurtzite

crystal looks like a series of nearly disconnected honeycomb lattices in parallel xy planes; hence,

the basal correlation factor fxx → 1/3,6 and fzz → 1 as the c-axis jumps become uncorrelated. In

the wurtzite structure, the c-axis jumps do not form one-dimensional chains, but rather connect

pairs of 4f sites; hence, as ωc → ∞, the basal correlation approaches ≈ 0.6699, and the c-axis

correlation approaches ≈ 0.57. This is different than the the limit of correlation factor for an HCP

lattice with zero basal jump rate68 (0.644545 and 0.653109); mapping the two sites of a wurtzite

lattice onto a single HCP site allows a vacancy and solute to occupy the same HCP “site,” which

is forbidden in the true HCP case.
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FIG. 4. Wurtzite structure tracer correlation factor dependence on ωc and ωbasal. The wurtzite (hexagonal

diamond) structure is tetrahedrally coordinated, with one jump along the c-axis connecting pairs of 4f sites,

and three honeycomb directed jumps primarily in the basal plane.

D. Green function and tracer correlation factors for garnet

A recent calculation by Carlson and Wilson computed the tracer correlation factors for diffusion

on the dodecahedral sites in the garnet structure, using Monte Carlo integration of the lattice

Green function.67 The garnet crystal structure appears in many minerals in the earth, and hence

predicting diffusion in this structure is important for modeling mass transport in geology. The

garnet structure includes pyrope, Mg3Al2Si3O12 which is a cubic structure with space group Ia3̄d.

The dodecahedral sites are occupied by Mg atoms on the 24c Wyckoff site,64 while Al occupies

16a, Si occupies 24d, and O occupies 96h (0.03284, 0.05014, 0.65330), from Gibbs and Smith.69

The dodecahedral sites have coordination number 4 with other dodecahedral sites with a cutoff

of 0.31a0; however, the connectivity is such that there are two fully separated, symmetry related

networks that each connect half of the Mg sites.

Table IV shows the vacancy Green function entries needed for the first thermodynamic shell,

including the agreement and disagreement with the stochastic estimates.67 The stochastic calcu-

lation uses a Monte Carlo scheme to compute the lattice Green function values, and the authors’

estimated statistical error is 10−4, which is consistent with the comparison to our computed values.

There are two additional discrepancies which are likely due to errors in the analysis of symmetry
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of the sites: two cases show a difference of a factor of two, while two others conflate two differ-

ence vectors that seem superficially equivalent by (cubic) symmetry but actually involve different

pathways. This symmetry breaking happens as the fully connected network does not maintain

cubic symmetry but rather the pair of jump networks have cubic symmetry. In addition to these

errors, the reported correlation factor (0.2491) differs from our computed value of 0.37497267.

This difference could be due to the differences in Green function values used, or an errant factor

of 3/2 in the calculation of L(sv) used as the denominator in the correlation factor.

TABLE IV. Green function values for the garnet structure. We use the notation of Carlson and Wilson,67

where (lmn) corresponds to the vector δx = 1
8 a0(l î + mĵ + nk̂). The stochastic error in Carlson and Wilson’s

calculation is ≈ 10−4; however, there are two other types of error present. In two cases—(420) and (640)—

the stochastic estimate differs by a factor of 2; and in two more cases—(444) and (800)—the stochastic

estimate conflated symmetry inequivalent vectors into a single vector, as shown by the reduced error com-

pared with the “average” value. Both of these errors are likely due to symmetry analysis errors.

(lmn) G(R) (this work) G(R) (Ref. 67) error

(000) 2.308 081 141 615 2.307 960 22 1.2092 × 10−4

(211) 1.308 081 132 926 1.308 072 61 8.5229 × 10−6

(332) 0.806 767 995 595 0.806 695 36 7.2636 × 10−5

(420) 0.809 394 258 097 0.404 690 85 4.0470 × 10−1

(4̄44) 0.457 297 218 361 0.502 420 46 4.5123 × 10−2

(4̄44̄) 0.547 635 344 309 0.502 420 46 4.5215 × 10−2

1
2 (4̄44) + 1

2 (4̄44̄) 0.502 466 281 335 0.502 420 46 4.5821 × 10−5

(532) 0.561 961 239 416 0.561 957 44 3.7994 × 10−6

(611) 0.560 766 700 022 0.560 710 92 5.5780 × 10−5

(640) 0.449 091 350 780 0.224 606 54 2.2448 × 10−1

(653) 0.420 386 782 427 0.420 284 88 1.0190 × 10−4

(655) 0.401 425 331 863 0.401 378 97 4.6362 × 10−5

(721) 0.444 350 262 895 0.444 378 78 2.8517 × 10−5

(800) 0.403 566 247 455 0.419 386 75 1.5821 × 10−2

(008̄) 0.427 361 034 009 0.419 386 75 7.9743 × 10−3

1
3 (800) + 2

3 (008̄) 0.419 429 438 491 0.419 386 75 4.2688 × 10−5

E. Solute drag of Si in Ni: comparison with SCMF

To compare with another computational approaches to diffusion, we consider the example of

silicon substitutional solutes in nickel, whose drag coefficients were previously calculated using

the self-consistent mean-field method.34 In this case, density-functional theory calculations com-
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puted the silicon-vacancy interaction out to the third neighbor: an attraction of 0.1 eV at first

neighbor, and a repulsion of 0.045 eV at third neighbor. Using the climbing-image nudged-elastic

band method,70 density-functional theory calculations also determined transition state energies for

different transitions around the solute. The computational data, including derivatives with respect

to strain, can be found in Ref. 61 and 62. The SCMF calculations used a “3nn+3nn” approach,

where the effective Hamiltonian is cutoff at the third-neighbors of the third-neighbors of a vacancy.

This truncation of the Green function is an approximation, which produces some error in the trans-

port coefficients. Fig. 5 shows a comparison to the drag coefficients (L(sv)/L(ss), also known as the

“vacancy wind”) using the same density-functional theory data. The errors in the drag ratio are

due to the cutoff of the Green function in the SCMF method, where the error decreases at higher

temperatures as the correlation becomes smaller.
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FIG. 5. Solute drag ratio of Si in FCC Ni, computed using the Green function method and the self-consistent

mean-field method. Identical DFT data from Ref. 61 and 62 is used in both transport coefficient calculations,

but the finite range of the Green function in the SCMF method introduces a small underestimation of the

correlation. The magnitude of error becomes larger at lower temperatures.

F. Solute drag of Sn and Zn in Mg: comparison with KMC

For a comparison with a stochastic approaches to diffusion, we consider the examples of tin and

zinc substitutional solutes in magnesium. In this case, the first-principles data are available in the
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supporting material of Ref. 63, where other Green function results are reported for substitutional

solutes in HCP magnesium. Here, we compare with kinetic Monte Carlo simulations of the drag

coefficient using the same first-principles data. Solute-vacancy interaction energies were computed

for nine different neighbors—which correspond to positions that are two jumps from the position

of a solute—and all possible transitions of a vacancy from the first neighbor positions, using

density-functional theory and the climbing-image nudged-elastic band method.70 The two cases

considered here, Sn and Zn, required careful treatment of the cell sizes, number of jumps, and

number of trajectories in order to reduce the stochastic error and to converge the off-diagonal

transport coefficients in the most efficient way possible. In particular, L(sv) is very slow to converge.

Table V contains the simulation choices which vary with temperature, as correlation becomes

less important. For all simulations, 12 × 106 trajectories were averaged to compute transport

coefficients and stochastic errors. Fig. 6 shows the comparison of drag coefficients in basal and

c-axis orientations computed with kinetic Monte Carlo. Good agreement is found over the full

temperature range, where the error compared with the KMC is similar to the error predicted from

the standard deviation.

TABLE V. Kinetic Monte Carlo parameters for Sn and Zn diffusion in Mg. At lower temperatures, correla-

tion is more important, so larger cells with more Monte Carlo steps were used to converge the simulations.

At lower temperature, the primary effect of increasing the simulation cell size is to increase the number of

steps per trajectory. In all cases, 12 × 106 trajectories were used to average the transport coefficients and

estimate the stochastic error in Fig. 6.

Sn Zn

T [K] supercell size number of steps supercell size number of steps

300 42 × 42 × 40 1 · 42 · 42 · 40 = 70560 22 × 22 × 20 5 · 22 · 22 · 20 = 48400

400 30 × 30 × 28 1 · 30 · 30 · 28 = 25200 20 × 20 × 18 5 · 20 · 20 · 18 = 36000

500 28 × 28 × 26 1 · 28 · 28 · 26 = 20384 14 × 14 × 12 5 · 14 · 14 · 12 = 11760

600 24 × 24 × 22 1 · 24 · 24 · 22 = 12672 14 × 14 × 12 5 · 14 · 14 · 12 = 11760

700 24 × 24 × 22 1 · 24 · 24 · 22 = 12672 12 × 12 × 10 5 · 12 · 12 · 10 = 7200

800 24 × 24 × 22 1 · 24 · 24 · 22 = 12672 10 × 10 × 8 5 · 10 · 10 · 8 = 4000

900 24 × 24 × 22 1 · 24 · 24 · 22 = 12672 10 × 10 × 8 5 · 10 · 10 · 8 = 4000

923 24 × 24 × 22 1 · 24 · 24 · 22 = 12672 10 × 10 × 8 5 · 10 · 10 · 8 = 4000
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FIG. 6. Solute drag ratio of Sn and Zn in HCP Mg, computed using the Green function method and kinetic

Monte Carlo. The same density-functional theory data63 is used for solute-vacancy interaction energy and

transition state energies. The deviation between the KMC results and the Green function approach is similar

in magnitude to the stochastic error in the KMC results from 12 × 106 trajectories.

V. DISCUSSION

The automated numerical approach with controllable errors for arbitrary crystals and arbitrarily

large thermodynamic interaction range provides a significant improvement in our ability to com-

pute mass transport coefficients for the dilute-vacancy/dilute-solute limit. It has previously been

difficult to make quantitative predictions without approximation from accurate density-functional

theory data outside of specific cases, but this new approach enables new predictions. There are also

several extensions possible from this approach. First, similar to Ref. 5, we could use a perturbation

theory approach to evaluate derivatives of the transport coefficients, such as elastodiffusivity, ac-

tivation energy, and volume directly. Combining that methodology with the current approach

would be challenging in the arbitrary crystal symmetry case. In the interim, finite-difference

approaches4 can be used in a straightforward manner with the current implementation. Second,

there are crystals—most notably, titanium71 with an anomalous vacancy migration jump—where

the vacancy diffuses through additional metastable sites in the lattice; these sites are unoccupied

unless a vacancy is diffusing. The calculation of the vacancy Green function can be performed

identically, but the definition of the ω̂1 and ω̂2 matrices can become more complex. Third, to

consider ordered structures where more than one sublattice is involved in diffusion—including the
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creation of new defects such as antisites—will require a more complex state space to be defined

for a finite number of antisites to treat diffusion in intermetallics such as B2 and L12. In a related

but different problem, more complex diffusion mechanisms where a solute can both diffuse via

a vacancy-solute complex mechanism and as an interstitial introduces new transitions that would

need to be considered. Finally, to move beyond the dilute solute (or dilute vacancy) limit, we

can rely on other Green-function based solutions such as mean-field approximations, the coher-

ent potential approximation, or diagrammatic series. Just as our new method makes quantitative

predictions possible for dilute-vacancy/dilute-solute transport coefficients, new developments will

expand where quantitative predictions are possible in the future.
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Appendix A: Homogeneous polynomials with constant orbital angular momentum

The Taylor expansions that describe analytic terms in the bare vacancy Green function ap-

pear as homogeneous polynomials of components p̂i up to fourth order; these can be grouped
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into polynomials of constant orbital angular momentum. While what follows is general, we

are interested in the case where our homogeneous polynomials have maximum order Lmax = 4.

Then there are 1 + 3 + 5 + 7 + 9 = 25 = (Lmax + 1)2 distinct Ym
` (p̂) spherical harmonics and

1 + 3 + 6 + 10 + 15 = 35 = (Lmax + 1)2 + (Lmax + 1)(Lmax)(Lmax − 1)/6 homogeneous polynomials

from order 0 to 4. The homogeneous polynomials are a spanning set on the space generated by the

spherical harmonics; the homogeneous polynomials of order ` are a basis for the space generated

by the spherical harmonics with orbital angular momentum `, ` − 2, ` − 4, . . . . We define the

25 × 35 matrix,

E`m
[n1n2n3] :=

∫ π

0

∫ 2π

0
(−1)mY−m

` (θ, φ)(sin θ cos φ)n1(sin θ sin φ)n2(cos θ)n3 dφ sin θ dθ (A1)

which is the expansion of p̂n1
1 p̂n2

2 p̂n3
3 in spherical harmonics:

p̂n1
1 p̂n2

2 p̂n3
3 =

Lmax∑
`=0

∑̀
m=−`

E`m
[n1n2n3]Y

m
` (θ, φ). (A2)

Similarly, we can write the spherical harmonics in terms of the polynomials p̂n1
1 p̂n2

2 p̂n3
3

Ym
` (θ, φ) =

∑
n1+n2+n3≤`

C`m
[n1n2n3](sin θ cos φ)n1(sin θ sin φ)n2(cos θ)n3 (A3)

for the 25 × 35 coefficient matrix C`m
[n1n2n3]. The coefficient matrix is most easily constructed using

recurrence relations for the spherical harmonics.57 These matrices C and E are such that∑
n1+n2+n3≤Lmax

C`m
[n1n2n3]E

`′m′
[n1n2n3] = δ``′δmm′ (A4)

while the matrix

P[n1n2n3],[n′1n′2n′3] :=
Lmax∑
`=0

∑̀
m=−`

C`m
[n1n2n3]E

`m
[n′1n′2n′3] (A5)

defines a projection from a vector of polynomials into an equivalent (“reduced”) representation

consistent with the spherical harmonic basis. The projection P is an idempotent matrix, and

∑
n1+n2+n3≤Lmax

f[n1n2n3] p̂
n1
1 p̂n2

2 p̂n3
3 =

∑
n1+n2+n3≤Lmax

 ∑
n′1+n′2+n′3≤Lmax

P[n1n2n3],[n′1n′2n′3] f[n′1n′2n′3]

 p̂n1
1 p̂n2

2 p̂n3
3 (A6)

for any polynomial coefficients f[n1n2n3] and unit vector p̂. Similarly, we define

P`
[n1n2n3],[n′1n′2n′3] :=

∑̀
m=−`

C`m
[n1n2n3]E

`m
[n′1n′2n′3] (A7)
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as the projection which only retains polynomials with orbital angular momentum `. Thus, we can

reduce and group a polynomial ∑
n1+n2+n3≤Lmax

f[n1n2n3] p̂
n1
1 p̂n2

2 p̂n3
3 (A8)

as
Lmax∑
`=0

 ∑
n1+n2+n3≤`

 ∑
n′1+n′2+n′3≤Lmax

P`
[n1n2n3],[n′1n′2n′3] fn′1n′2n′3

 p̂n1
1 p̂n2

2 p̂n3
3

 (A9)

where each polynomial expansion in curly braces has a single orbital angular momentum `.

Appendix B: Implementation

A full numerical implementation of the algorithms in Python described are available on github48

under the MIT License. This includes algorithms to analyze a given crystal (lattice and atomic ba-

sis), find generators for the space group operations, determine all point group operations for each

site, identify Wyckoff positions, generate crystal star sets and vector star bases, construct a jump

network for vacancies in the crystal, and identify unique jumps. Once the energies and prefactors

are determined for the unique vacancy and solute sites, complexes, and jumps, the numerical im-

plementation can compute the Onsager coefficients for a given temperature. In addition, Jupyter

notebooks to compute the numerical results in this paper are available on github. The implemen-

tation includes a full test suite of the modules and functions that were used during implementation

development.
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2A. Janotti, M. Krčmar, C. L. Fu, and R. C. Reed, “Solute diffusion in metals: Larger atoms can

move faster,” Phys. Rev. Lett. 92, 085901 (2004).
3M. Mantina, Y. Wang, L. Q. Chen, Z. K. Liu, and C. Wolverton, “First principles impurity

diffusion coefficients,” Acta mater. 57, 4102–4108 (2009).
4T. Garnier, Z. Li, M. Nastar, P. Bellon, and D. R. Trinkle, “Calculation of strain effects on

vacancy-mediated diffusion of impurities in FCC structures: General approach and application

to Ni1−xSi,” Phys. Rev. B 90, 184301 (2014).

49

http://dx.doi.org/10.1002/0471749311
http://dx.doi.org/10.1103/PhysRevLett.92.085901
http://dx.doi.org/ 10.1103/PhysRevB.90.184301


5D. R. Trinkle, “Diffusivity and derivatives for interstitial solutes: Activation energy, volume, and

elastodiffusion tensors,” Philos. Mag. 96, 2714–2735 (2016).
6J. R. Manning, Diffusion Kinetics for Atoms in Crystals (Princeton: van Nostrand, 1968).
7A. R. Allnatt and A. B. Lidiard, “Atomic transport in solids,” (Cambridge University Press,

Cambridge, 1993) Chap. 5, pp. 202–203.
8A. D. Leclaire and A. B. Lidiard, “LIII. correlation effects in diffusion in crystals,” Philos. Mag.

1, 518–527 (1956).
9J.-L. Bocquet, “Expression cinétique des coefficients phénoménologiques de diffusion LAA, LAB,
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