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Computational atomic-scale methods continue to provide new information about geometry, ener-
getics, and transition states for interstitial elements in crystalline lattices. This data can be used to
determine the diffusivity of interstitials by finding steady-state solutions to the master equation.
In addition, atomic-scale computations can provide not just the site energy, but also the stress
in the cell due to the introduction of the defect to compute the elastic dipole. We derive a gen-
eral expression for the fully anistropic diffusivity tensor from site and transition state energies,
and three derivatives of the diffusivity: the elastodiffusion tensor (derivative of diffusivity with
respect to strain), the activation barrier tensor (logarithmic derivative of diffusivity with respect
to inverse temperature) and activation volume tensor (logarithmic derivative of diffusivity with
respect to pressure). Computation of these quantities takes advantage of crystalline symmetry,
and we provide an open-source implementation of the algorithm. We provide analytic results
for octahedral-tetrahedral networks in face-centered cubic, body-centered cubic, and hexagonal
closed-packed lattices, and conclude with numerical results for C in Fe.

Keywords: Interstitial diffusion; activation barrier; elastodiffusion tensor; automated
computation

1. Introduction

Mass transport in solids is an integral part of material processing for materials from metals
to ceramics to semiconductors. At the atomic scale, atoms move via defects: either va-
cancies for atoms on the crystalline lattice, or via interstitial sites off of the lattice[1, 2].
For the case of interstitial defects, what had been often considered the “simplest” trans-
port to model can often conceal surprising complexity[3] when the interstitial network
involves more than a single symmetry unique site. Furthermore, real materials also have
non-homogeneous strain fields, and strain provides both a driving force[4] for diffusion
and modifies transport coefficients leading to a variety of complex behavior including:
anisotropic dopant diffusion in semiconductor thin films[5–7], internal stress fields near a
dislocation affecting transport and segregation of C solute atoms in Fe[8, 9] or vacancies
in HCP metals[10], and anisotropy of dumbbell interstitial diffusion under biaxial stress in
Cu and Pt[11]. The influence of strain on diffusivity has been previously investigated only
for cases where the interstitial random walk is purely uncorrelated[12, 13]; this excludes
even the simple case of octahedral-tetrahedral networks in hexagonal-closed packed mate-
rials. While advances in density functional theory using modern supercomputers combined
with transition-state finding methods[14, 15] can compute the energies for different con-
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figurations and transition rates at the atomic scale with near chemical accuracy[16, 17],
general approaches to (a) automate the generation of a transition network, and (b) compute
transport coefficients and related quantities using non-stochastic techniques are lacking.

The simplest transport coefficient to consider is the (generally anisotropic) diffusivity
tensor D, but we can also conceive of derivatives with respect to temperature and strain (or
stress). An interstitial solute executes a random walk over a connected network of sites,
where the transition rate between sites is given by a rate following an Arrhenius relation
from transition-state theory[18]. From the long-time behavior, the diffusivity tensor D can
be computed, where D relates a steady-state flux j to a concentration gradient −∇c. The
existence of different symmetry unrelated sites (and transitions) means that the total diffu-
sivity may not have a simple Arrhenius temperature dependence given by a single activa-
tion barrier. Instead, over a sufficiently small temperature range, if we were to approximate
the diffusivity tensor with an Arrhenius relation, D ≈ D0 exp(−βEact), then the negative
derivative of diffusivity with respect to inverse temperature β allows us to define

Eact := −D−1/2 dD
dβ

D−1/2, (1)

corresponding to an anisotropic (and possibly temperature dependent) “barrier” tensor.
The barrier should correspond to the activation energy for the rate-limiting transition in
diffusion. The fourth-rank elastodiffusion tensor[1, 13],

d :=
dD
dε

, (2)

is the derivative of diffusivity with respect to strain. As both diffusivity and strain are
symmetric tensors, dabcd = dbacd = dabdc; furthermore, d obeys crystalline symmetry.
Thus, it has a similar structure to elastic stiffnesses and compliances, with one excep-
tion: as it is not the second derivative of an energy, there is no general relationship be-
tween dabcd = dDab/dεcd and dcdab = dDcd/dεab, unless imposed by crystalline symmetry.
Finally, activation volume can be defined in a similar fashion to activation energy, as a
logarithmic derivative with respect to stress,

Vact
abcd := kBT D−1/2 dD

dσ
D−1/2 = kBT

3∑
i jkl=1

(
D−1/2

)
ai

dDi j

dεkl

(
D−1/2

)
jb

S klcd, (3)

and related back to the elastodiffusion tensor using the elastic compliances S i jkl. This
fourth-rank tensor contains the full aniostropy of diffusion response to stress. It can be
reduced to a scalar activation volume by a double contraction,

Vact :=
1
3

3∑
i j=1

Vact
ii j j (4)

where the second contraction considers hydrostatic pressure, and the first contraction aver-
ages in all spatial directions.

In what follows, we develop the theory for the diffusivity, elastodiffusivity, activation
barrier and volume tensors of an interstitial in terms of the site energies, transition state
energies, and elastic dipoles (derivative of energy with respect to strain) of those same

2



July 11, 2016 Philosophical Magazine paper

quantities. This includes the cases where the interstitial random walk includes correla-
tion. We apply the theory to three simple examples: octahedral-tetrahedral networks in
face-centered cubic, body-centered cubic, and hexagonal closed-packed lattices. We also
provide numerical values for carbon diffusion in iron, using data from[9]. Finally, the work
outlined here for the general case is implemented in open-source, publicly-available code
(c.f. Appendix C and [19]) that can be applied to other systems[20].

2. Methodology

2.1. Diffusivity

In the case of interstitial diffusivity in the dilute limit, an interstitial atom moves through a
network of sites in the crystal. Such a model allows simplification of the master equation:
the system state is full described by the location of the interstitial, x = R + u for R a lattice
vector and u a vector in the unit cell. Due to translational invariance, the equilibrium site
probability and set of transitions from a site are determined by the vector in the unit cell.
For a site i in the unit cell, it has an equilibrium site probability ρi that follows an Arrhenius
relationship,

ρi := Z−1ρ0
i exp (−βEi) (5)

for site energy Ei, entropic prefactor ρ0
i = exp(S i/kB) , and partition function Z =∑

i ρ
0
i exp (−βEi). The transition from site i to site j has a rate λi→ j,

λi→ j :=
λ0

i j

ρ0
i

exp
(
−β

[
Ets

i j − Ei

])
(6)

for transition state energy Ets
i j and entropic prefactor λ0

i j = exp(S ts
i j/kB), following [18]. In

this formulation, the transition state energy and entropic prefactors are equal for i→ j and
for j → i, while it is not necessary that λi→ j and λ j→i are equal. Finally, the probabili-
ties obey detailed balance, where ρiλi→ j = ρ jλ j→i for all i, j. Each transition results in a
displacement of the diffusing atom by

δxi→ j := x j − xi. (7)

With these definitions of site probabilities and rates, we can write down an expression for
the diffusivity[2]. There are two contributions to the diffusivity: an uncorrelated diffusivity
and a correlation correction due to the unbalanced hops from individual sites. We define
two rate matrices, Λi j,

Λi j :=

λi→ j : i , j
−

∑
j λi→ j : i = j

(8)

which is the transition matrix for the master equation, and its symmetric counterpart

ωi j := ρ1/2
i Λi jρ

−1/2
j . (9)

These matrices are negative-definite, and—due to detailed balance—both have a null-space
related to the site probabilities ρi. We define the scaled velocity vector (corresponding to
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the bias of jumps at a site as in [8, 9]),

bi := ρ1/2
i

∑
j

λi→ jδxi→ j (10)

which is non-zero when there are unbalanced hops from a site i; together with the bias-
correction vector γi which solves ∑

j

ωi jγ j = bi. (11)

This is most easily done with the pseudoinverse of ω, g, so that γi =
∑

j gi jb j. Finally, the
diffusivity is

D =
1
2

∑
i j

δxi→ j ⊗ δxi→ jλi→ jρi +
∑

i

bi ⊗ γi (12)

where ⊗ is the outer (or dyad) product of two vectors.1 Because ω is a symmetric matrix,
so is g, and hence D is a symmetric second-rank tensor.

While the expressions leading up to Eqn. 12 are general for non-interacting atoms hop-
ping between sites, crystal symmetry can reduce the complexity of the expressions to be
evaluated. We use the Seitz notation[21] for a symmetry operation {R, t}, where for a point
x, {R, t}x := Rx + t. Then, the inverse {R, t}−1 = {R−1,−R−1t}. The full set of operations
make up the space group, and at any site i there will be the subgroup of operations that
leave that site fixed, its point group. If every site i has a position xi, then each group oper-
ation can be expressed as a matrix

{R, t}i j := δ(xi − {R, t}x j) (13)

where δ is the Kronecker delta. This matrix then applies the group operation {R, t} to a site
scalar fi as

∑
j{R, t}i j f j. A related matrix can be defined corresponding to vector at each

site (such as bi and γi), where with the orthonormal basis vectors {ea}, then the matrix

{R, t}ia, jb := {R, t}i j(ea · R · eb) (14)

transforms any site vector fi as
∑

a ea
∑

jb{R, t}ia, jb(fi · eb). All of our site scalars (ρi), site
vectors (bi and γi), and site-to-site matrices (Λi j, ωi j, and gi j) share the crystal symmetry,

1The construction a ⊗ b is a second rank tensor such that (a ⊗ b) · v = (b · v)a for any vector v.
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and so the following symmetry relations are true for any space group operation {R, t},

ρi =
∑

j

{R, t}i jρ j,

bi =
∑

a

ea

∑
jb

{R, t}ia, jb(b j · eb),

γi =
∑

a

ea

∑
jb

{R, t}ia, jb(γ j · eb),

Λi j =
∑

kl

{R, t}ikΛkl{R, t}l j,

ωi j =
∑

kl

{R, t}ikωkl{R, t}l j,

gi j =
∑

kl

{R, t}ikgkl{R, t}l j.

(15)

The implication of these symmetries is that ρi, bi, and γi can be written as linear combina-
tions of vectors left unchanged by all {R, t} matrices, and that our matrices Λ, ω, and g can
be entirely expanded in that same basis.

The basis functions for site scalars and site vectors come from the Wyckoff positions cor-
responding to sites in the network. Each Wyckoff position represents a full set of symmetry-
related sites; any site scalar that obeys crystal symmetry will have the same value for each
site corresponding to the same Wyckoff position. Hence, if we have a Wyckoff position
that has NW sites in the unit cell, its basis vector components will be N−1/2

W for each site
corresponding to that Wyckoff position, and 0 otherwise; there will be one basis func-
tion for each unique Wyckoff site regardless of how many sites that may represent in the
unit cell. The Wyckoff positions also serve to construct a basis for site vectors combined
with the point group operations for that site. Considering the point group operations that
are available in a crystal, there are ten types: identity, a 2-, 3-, 4-, or 6-fold axis, mirror
through a plane, or a 2-, 3-, 4-, or 6-fold axis combined with a mirror through that same
plane. Note that a 2-fold axis combined with a mirror operation is inversion. As we are
interested in vectors that remain unchanged by all of the point group operations for a site,
we can easily generate the basis corresponding to each operation. For identity, we have any
3-dimensional basis; for a mirror operation, a 2-dimensional basis that spans the mirror
plane; for a 2-, 3-, 4-, or 6-fold axis, a 1-dimensional basis corresponding to the axis; and
for a 2-, 3-, 4-, or 6-fold axis combined with a mirror, there are no vectors left unchanged.
We construct the vector space left unchanged by each operation, and intersect to generate
the final vector space for a single site. The spanning vectors for that site can then be rotated
to the other sites corresponding to the same Wyckoff position, and normalized in a similar
way to the site scalar basis.

The crystal symmetry divides diffusion networks into three types based on the crystal
symmetry: networks without correlation, networks with correlation and inversion, and net-
works with correlation but without inversion. As it is possible for the site vector basis to
be an empty set (e.g., if each Wyckoff position point group possesses a 2-, 3-, 4-, or 6-fold
axis combined with a mirror operation), this excludes correlation explicitly by symmetry.
Next, there may be a non-empty site vector basis while the crystal has inversion. In this
case, the transition matrices Λ or ω expressed in the site vector basis are not singular. This
is because the null-space vector of Λ—which corresponds to ρi—has zero projection into
any basis vector. Finally, in the most general case, the transition matrices remain singular,
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and so the construction of g requires the pseudoinverse of ω.

2.2. Activation barrier

We define the activation energy tensor from the first derivative of the diffusivity with re-
spect to inverse temperature, and evaluate with perturbation theory. In this case, we intro-
duce a small change in inverse temperature, −δβ, to ρi and λi→ j, then evaluate the first order
change in D. Then, the first order change in ρi, δρi, is given by

ρi + δρi =
ρieδβ Ei∑
j ρ jeδβ E j

= ρi + ρi (Ei − 〈E〉) δβ + O(δβ2)
(16)

where the average energy 〈E〉 =
∑

i ρiEi. Next, the first order change in λi→ j, δλi→ j, is
given by

λi→ j + δλi→ j = λi→ je
δβ

(
Ets

i j−Ei

)
= λi→ j + λi→ j

(
Ets

i j − Ei

)
δβ + O(δβ2).

(17)

From these, we can compute the related terms: δbi and δω. First,

bi + δbi = (ρi + δρi)1/2
∑

j

(λi→ j + δλi→ j)δxi→ j

= bi + ρ1/2
i

∑
j

λi→ j

[
Ets

i j −
1
2

(Ei + 〈E〉)
]
δxi→ jδβ + O(δβ2).

(18)

Next for δωii we have

δωii = −
∑

j

δλi→ j

= −
∑

j

λi→ j

(
Ets

i j − Ei

)
δβ + O(δβ2)

(19)

and for δωi j (i , j) we have

δωi j = (ρi + δρi)1/2(λi→ j + δλi→ j)(ρ j + δρ j)−1/2

= ωi j

[
Ets

i j −
1
2

(
Ei + E j

)]
δβ + O(δβ2).

(20)

Finally, the first-order change in the pseudoinverse g, δg is given by (c.f. Appendix A)

g + δg = (ω + δω)−1

= g − g δω g + O(δβ2).
(21)
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With all of these terms, we can compute the first-order correction to the diffusivity, which
gives the derivative of D with respect to −β by substituting into Eqn. 12,

−
dD
dβ

=
1
2

∑
i j

δxi→ j ⊗ δxi→ j

[
Ets

i j − 〈E〉
]
λi→ jρi

+
∑

i

(
δbi

δβ
⊗ γi + γi ⊗

δbi

δβ

)
−

∑
i j

γi ⊗
δωi j

δβ
γ j

(22)

where the first term is the uncorrelated contribution and the remaining terms come from
correlation. It should be noted that all of the perturbed site scalar, site vector, and matrices
have the same symmetry as their unperturbed versions. A similarly structured solution will
follow for the evaluation of the elastodiffusion tensor.

2.3. Elastodiffusion tensor

To evaluate the elastodiffusion tensor, we introduce a perturbation through strain which
changes site and transition state energies, as defined by the elastic dipole tensor. The elastic
dipole tensor Pi for a site i is

Pi := −
dEi

dε
. (23)

The elastic dipole can be conveniently evaluated in a supercell calculation from the stress
in the cell: an interstitial is added to an initially undefected, unstressed supercell containing
N atoms (with equilibrium volume V0 per atom), resulting in a stress σ, then to first order
in N−1,

P ≈ NV0σ, (24)

which is straightforward to evaluate with density-functional theory methods; e.g., see [22–
25]. Similarly, the energy of a transition state can also change with strain, as dictated by
the elastic dipole tensor for the transition state Pts

i j for the transition state between i and j,

Pts
i j := −

dEts
i j

dε
. (25)

This, too, can be approximated by the stress at the transition state in a supercell calculation
as in Eqn. 24; e.g., see [9, 24]. The definitions of elastic dipoles allow the introduction of
a small strain perturbation δε to produce site energies changes δEi and transition energies
δEts

i j as

δEi = −Pi : δε
δEts

i j = −Pts
i j : δε

(26)

which is correct to first order in strain.2

2The double contraction sums over both indices of the two second-rank tensors: A : B =
∑

ab AabBba.
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We define the elastodiffusion tensor from the first derivative of the diffusivity with re-
spect to strain, and evaluate with perturbation theory. Strain produces changes in site en-
ergies and transition state energies as laid out above, but also modifies all vectors in the
network. The purely geometric contribution is evaluated by expanding the diffusivity tensor
out in components as D =

∑
ab Dabea⊗eb for an orthonormal basis {ea}; then a (symmetric)

strain perturbs the basis vectors by δea =
∑

c δεacec, so that

δD(geom) :=
∑
ab

ea ⊗ eb

∑
c

Dacδεcb + Dbcδεca

 (27)

which produces a (symmetrized) contribution to the elastodiffusion tensor

d(geom)
abcd :=

1
2

(δadDbc + δacDbd + δbcDad + δbdDac) . (28)

To get the uncorrelated and correlated changes that we add to this, we get the first order
correction to ρi, δρi as

ρi + δρi =
ρie−βδEi∑
j ρ je−βδE j

= ρi + ρi β
(
Pi − 〈P〉

)
: δε + O(δε2)

(29)

where the average elastic dipole 〈P〉 =
∑

i ρiPi. Next, the first order change in λi→ j, δλi→ j,
is given by

λi→ j + δλi→ j = λi→ je
−β

(
δEts

i j−δEi

)
= λi→ j + λi→ j β

(
Pts

i j − Pi

)
: δε + O(δε2).

(30)

From these, we can compute the related terms: δbi—ignoring contributions of the strain to
the hop vectors—and δω. First,

bi + δbi = (ρi + δρi)1/2
∑

j

(λi→ j + δλi→ j)δxi→ j

= bi + ρ1/2
i

∑
j

δxi→ jλi→ j β

[
Pts

i j −
1
2

(
Pi + 〈P〉

)]
: δε + O(δε2).

(31)

Next for δωii we have

δωii = −
∑

j

δλi→ j

= −
∑

j

λi→ j β
(
Pts

i j − Pi

)
: δε + O(δε2)

(32)

and for δωi j (i , j) we have

δωi j = (ρi + δρi)1/2(λi→ j + δλi→ j)(ρ j + δρ j)−1/2

= ωi j β

[
Pts

i j −
1
2

(
Pi + P j

)]
: δε + O(δε2).

(33)
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The expression for the first-order change in the pseudoinverse is the same as Eqn. 21;
hence, we can combine all of the contributions into Eqn. 12 (similar to Eqn. 22) plus
Eqn. 28 to get

dabcd =
1
2

(δadDbc + δacDbd + δbcDad + δbdDac)

+
1
2

∑
i j

δxi→ j,aδxi→ j,b β
(
Pts

i j,cd − 〈P〉cd

)
λi→ jρi

+
∑

i

(
δbi,a

δεcd
γi,b + γi,a

δbi,b

δεcd

)
−

∑
i j

γi,a
δωi j

δεcd
γ j,b

(34)

where the first term is the geometric contribution, the second term is the uncorrelated con-
tribution, and the remaining terms come from correlation.

Introducing a finite strain into the lattice can reduce the symmetry of the lattice, and cou-
ples with the anisotropy of the elastic dipole tensors. The dipole tensors can be expanded
in a site tensor basis, similar to the site vector basis, using the point group for a single
representative site of each Wyckoff position. We can also make a similar expansion for the
transition states, by working with the “double point group”: the set of symmetry operations
that leave both the initial and final positions unchanged. Despite the breaking of symmetry,
we can see from Eqn. 34, that if a site i has an empty vector basis (so that both bi and γi
are zero by symmetry), the correlation contributions to the elastodiffusion tensor are also
zero. This means that the introduction of strain does not require the computation of δbi or
δωi j for any sites where bi and ωi j was not already computed. However, it is possible that
particular values of δε can produce δbi with components that would be zero by symmetry
for bi; the symmetry of δbi/δε jk is that of a third-rank tensor at site i.

3. Results

We can apply these results to three classic systems: octahedral-tetrahedral networks in face-
centered cubic (FCC), body-centered cubic (BCC), and hexagonal closed-packed (HCP)
structures. In the case of FCC and BCC, the network has zero site vectors basis (no cor-
relation contribution), while the HCP network has a site vector basis oriented along the
c-axis. In the case of BCC, tetrahedrals can be transition states, or states on their own.
These three cases move from one, to two, to three different transition state energies. Fi-
nally, we conclude with a short set of numerical results for carbon in iron, using the EAM
data generated by [9].

3.1. Face-centered cubic

In a face-centered cubic lattice, the common interstitial sites are octahedral sites that can
diffuse to tetrahedral sites, and vice versa. The face-centered cubic space group is Fm3̄m,
where the solvent atoms occupy 4a Wyckoff positions, with octahedrals at 4b and tetra-
hedrals at 8c.[26] There is one octahedral site for every “solvent” atom, forming an inter-
penetrating FCC lattice. Each octahedral is connected to eight tetrahedral sites via a

4 〈111〉
jumps. There are two tetrahedral sites for every lattice atom, forming an interpenetrating
simple cubic lattice. Each tetrahedral is connected to four octahedral sites; the jump vectors
are a subset of a

4 〈111〉 vectors with tetrahedral symmetry (either {[111], [11̄1̄], [1̄11̄], [1̄1̄1]}
or {[1̄1̄1̄], [1̄11], [11̄1], [111̄]}). By symmetry, there is a single transition state energy, Ets

ot,

9
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so that we have two rates

λo→t ∝ exp
[
−β

(
Ets

ot − Eo

)]
λt→o ∝ exp

[
−β

(
Ets

ot − Et

)] (35)

and we have the probabilities

ρo =
λt→o

2λo→t + λt→o
, ρt =

λo→t

2λo→t + λt→o
, (36)

such that ρo + 2ρt = 1. The site vector basis for all of our sites are empty, so that we have
no correlation terms to consider. From this, we have the isotropic diffusivity from Eqn. 12,

D =

{
8

1
2

a2

16
λo→tρo + 4 · 2

1
2

a2

16
λt→oρt

}
1

=
a2

2
λo→tρo1 =

a2

2
λt→oρt1,

(37)

and the isotropic activation energy from Eqn. 1 and Eqn. 22,

Eact = D−1
{

8
1
2

a2

16

[
Ets

ot − 〈E〉
]
λo→tρo + 4 · 2

1
2

a2

16

[
Ets

ot − 〈E〉
]
λt→oρt

}
1

=
[
Ets

ot − 〈E〉
]

1.
(38)

We can also determine the elastodiffusion tensor and (isotropic) activation volume for
an interstitial in FCC. To determine the elastodiffusion tensor, we note that the octahedral
and tetrahedral elastic dipoles are fully isotropic by cubic and tetrahedral symmetry, re-
spectively. The elastic dipole corresponding to the transition state has a three-fold rotation
axis given by the 〈111〉 vector connecting the two sites, so that the dipole has a component
parallel Pts

ot,‖ to the rotation axis v = 1
√

3
〈111〉 and a component perpendicular Pts

ot,⊥,

Pts
ot(v) = Pts

ot,‖v ⊗ v + Pts
ot,⊥(1 − v ⊗ v) = Pts

ot,⊥1 + (Pts
ot,‖ − Pts

ot,⊥)v ⊗ v (39)

which, in component form, is

Pts
ot([s1, s2, s3])ab = Pts

ot,⊥δab +
(
Pts

ot,‖ − Pts
ot,⊥

) sasb

3
(40)

where sa = ±1 is the sign of the corresponding component of v. Similarly, (δx ⊗ δx)ab =

sasba4/16. We can then evaluate the elastodiffusion tensor, using the Voigt notation for
fourth-rank tensors, and Eqn. 34,

d11 = d22 = d33 = a2
{

1 +
β

2

(
2
3

Pts
ot,⊥ +

1
3

Pts
ot,‖ − 〈P〉

)}
λo→tρo

d12 = d13 = d23 = d21 = d31 = d32

= a2
{
β

2

(
2
3

Pts
ot,⊥ +

1
3

Pts
ot,‖ − 〈P〉

)}
λo→tρo

d44 = d55 = d66 = a2
{

1
2

+
β

2

(
1
3

Pts
ot,‖ −

1
3

Pts
ot,⊥

)}
λo→tρo

(41)
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and all other terms are zero, and where 〈P〉 = Poρo + Pt2ρt. Due to symmetry, both Po and
Pt are isotropic (scalars). Then, the activation volume tensor from Eqn. 3 is

Vact
11 = 2kBTS 11 +

1
3

(
1
3

Tr Pts
ot − 〈P〉

)
B−1

Vact
12 = 2kBTS 12 +

1
3

(
1
3

Tr Pts
ot − 〈P〉

)
B−1

Vact
44 =

1
2

kBTS 44 +
1
6

(Pts
ot,‖ − Pts

ot,⊥)S 44

(42)

for bulk modulus B−1 = 3(S 11 +2S 12), and where Tr Pts
ot = 2Pts

ot,⊥+ Pts
ot,‖. The terms propor-

tional to kBT all represent geometric contributions, while the remaining terms correspond
to the sensitivity of the transition states and interstitial sites to stress.

3.2. Body-centered cubic

In a body-centered cubic crystal, the common interstitial site is an octahedral site, with
the possibility of tetrahedral sites either as metastable or transition sites. Here, to com-
pare with the face-centered cubic and hexagonal closed-packed case, we will take both
octahedral and tetrahedral sites to be stable, and so there will be diffusion from octahedral
to tetrahedral sites and between tetrahedral sites. The body-centered cubic space group is
Im3̄m, where the solvent atoms occupy 2a Wyckoff positions, with octahedrals at 6b and
tetrahedrals at 12d.[26] Unlike our other cases, there are three octahedral sites and six
tetrahedral sites for every “solvent” atom; moreover, the octahedral sites do not have cu-
bic point group symmetry, but rather tetragonal symmetry. If we consider a representative
octahedral at [00 1

2 ], it connects to four tetrahedrals in the (001) plane, with jump vectors
± a

4 [100] and ± a
4 [010] and a transition state energy Ets

ot. The elastic dipole associated with
this octahedral has two components,

Po = Po,⊥(x ⊗ x + y ⊗ y) + Po,pz ⊗ z,

corresponding to the in-plane Po,p and perpendicular Po,⊥ components. The transition state
along [100] has an elastic dipole with three components,

Pts
ot = Pts

ot,‖x ⊗ x + Pts
ot,⊥y ⊗ y + Pts

ot,pz ⊗ z,

corresponding to the along-hop Pts
ot,‖ as well as perpendicular and in-plane components.

Considering next a representative tetrahedral at [0 1
4

1
2 ], it connects to two octahedrals and

four tetrahedrals, with jump vectors
{

a
4 [011̄], a

4 [011], a
4 [1̄10], a

4 [11̄0]
}

and a transition state
energy Ets

tt . The elastic dipole associated with this tetrahedral has two components,

Pt = Pt,⊥(x ⊗ x + z ⊗ z) + Pt,ay ⊗ y,

corresponding to the four-fold rotation/mirror axis Pt,a and perpendicular Pt,⊥ components.
The transition state along [011̄] has an elastic dipole with three components,

Pts
tt = Pts

tt,‖
1
2

(y − z) ⊗ (y − z) + Pts
tt,⊥

1
2

(y + z) ⊗ (y + z) + Pts
tt,px ⊗ x,

11
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corresponding to the along-hop as well as perpendicular and in-plane components. In order
for the site probabilities to match what was found in FCC, Eqn. 36, we need to account for
the increased multiplicity of octahedral and tetrahedral sites. We choose to keep the same
normalization ρo + 2ρt = 1, and include a factor of 1/3 for each octahedral and tetrahedral
site probability so that similarities to the face-centered cubic case can be most easily drawn.

Both the octahedral and tetrahedral sites have empty site vector bases, and so we do not
need to consider correlation effects in the computation of the diffusivity or its derivatives.
From this, we have the isotropic diffusivity of Eqn. 12,

D =
a2

12
{ρoλo→t + 2ρtλt→t} 1, (43)

and the isotropic activation energy from Eqn. 1 and Eqn. 22,

Eact = D−1
{

a2

12

[
Ets

ot − 〈E〉
]
ρoλo→t +

a2

6

[
Ets

tt − 〈E〉
]
ρtλt→t

}
1

=

[
Ets

ot − 〈E〉
]
ρoλo→t +

[
Ets

tt − 〈E〉
]
2ρtλt→t

ρoλo→t + 2ρtλt→t
1.

(44)

The activation energy changes from Ets
ot−〈E〉when the octahedral to tetrahedral rate ρoλo→t

is the fastest to Ets
tt −〈E〉when the tetrahedral to tetrahedral rate ρtλt→t is the fastest. Finally,

the elastodiffusion tensor has the cubic symmetry of the lattice, and using the Voigt notation
for fourth-rank tensors with Eqn. 34,

d11 = d22 = d33 =
a2

12

{
2 (ρoλo→t + 2ρtλt→t) +

β

2

(
2Pts

ot,‖ − 2〈P〉
)
ρoλo→t + β

(
Pts

tt,‖ + Pts
tt,⊥ − 2〈P〉

)
ρtλt→t

}
d12 = d13 = d23 = d21 = d31 = d32

=
a2

12

{
β

2

(
Pts

ot,⊥ + Pts
ot,p − 2〈P〉

)
ρoλo→t + β

(
1
2

Pts
tt,‖ +

1
2

Pts
tt,⊥ + Pts

tt,p − 2〈P〉
)
ρtλt→t

}
d44 = d55 = d66 =

a2

12

{
(ρoλo→t + 2ρtλt→t) + β

(
1
2

Pts
tt,‖ −

1
2

Pts
tt,⊥

)
ρtλt→t

}
(45)

and all other terms are zero, and where

〈P〉 =
1
3

{
Tr Poρo + Tr Pt2ρt

}
1

=

{(
2
3

Po,⊥ +
1
3

Po,p

)
ρo +

(
2
3

Pt,⊥ +
1
3

Pt,a

)
2ρt

}
1.

(46)

Due to symmetry, 〈P〉 is isotropic even though Po and Pt are not. Then, the activation

12
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volume tensor from Eqn. 3 is

Vact
11 = 2kBTS 11 +

1
3

{
Pts

ot,‖S 11 +
(
Pts

ot,⊥ + Pts
ot,p

)
S 12 − 〈P〉B−1

} ρoλo→t

ρoλo→t + 2ρtλt→t

+

{
1
2

(
Pts

tt,‖ + Pts
tt,⊥

)
(S 11 + S 12) + Pts

tt,pS 12 −
1
3
〈P〉B−1

}
2ρtλt→t

ρoλo→t + 2ρtλt→t

Vact
12 = 2kBTS 12

+

{(
Pts

ot,‖ + Pts
ot,⊥ + Pts

ot,p

)
S 11 +

(
Pts

ot,‖ +
1
2

(Pts
ot,⊥ + Pts

ot,p)
)

S 12 −
1
3
〈P〉B−1

}
ρoλo→t

ρoλo→t + 2ρtλt→t

+

{(
Pts

tt,‖ + Pts
tt,⊥ + Pts

tt,p

)
S 11 +

(
3
4

Pts
tt,‖ +

3
4

Pts
tt,⊥ +

1
2

Pts
tt,p

)
S 12 −

1
3
〈P〉B−1

}
2ρtλt→t

ρoλo→t + 2ρtλt→t

Vact
44 =

1
2

kBTS 44 +
1
8

(
Pts

tt,‖ − Pts
tt,⊥

) 2ρtλt→t

ρoλo→t + 2ρtλt→t
S 44

(47)

for bulk modulus B−1 = 3(S 11 +2S 12). The terms proportional to kBT all represent geomet-
ric contributions, while the remaining terms correspond to the sensitivity of the transition
states and interstitial sites to stress. There is more anisotropy in the activation volume for
BCC compared with FCC, due to the lowered symmetry in the transition states.

3.3. Hexagonal closed-packed

In a hexagonal closed-packed crystal, there are a variety of interstitial sites available
[3, 20, 27–29], but to compare with the our cubic cases, we will consider an octahedral-
tetrahedral network. The hexagonal closed-packed space group is P63mmc, where the sol-
vent atoms occupy 2c Wyckoff positions, with octahedrals at 2a and tetrahedrals at 4 f .[26]
Similar to FCC, there is one octahedral and two tetrahedral sites for every “solvent” atom,
but the connectivity is different. The octahedral sites form an interpenetrated simple hexag-
onal lattice, where each octahedral connects to two octahedrals directly above and be-
low (± c

2 [0001] jumps) and six tetrahedrals (either {± a
3 [11̄0 3c

8a ],± a
3 [011̄ 3c

8a ],± a
3 [1̄01 3c

8a ]} or
{± a

3 [1̄10 3c
8a ],± a

3 [01̄1 3c
8a ],± a

3 [101̄ 3c
8a ]}).3 The tetrahedrals are each connected to one other

tetrahedral (either c
8 [0001] or c

8 [0001̄]) and three tetrahedrals (opposing the octahedral
jumps, and with the c-axis contribution negating the tetrahedral jump contribution). This
introduces three transition state energies, Ets

ot, Ets
tt , and Ets

oo with corresponding rates among
octahedrals and tetrahedrals. The site probabilities match what was found in FCC, Eqn. 36.
From this, we can generate the anisotropic diffusivity tensor (take x and y to be orthonor-
mal basis vectors in the basal plane and z along the c-axis),

D =
c2

4
z ⊗ zρoλo→o + 2

(
3
2

a2x ⊗ x +
3
2

a2y ⊗ y
)
ρoλo→t + 3 · 2

(
c2

64
z ⊗ z

)
ρoλo→t +

c2

16
z ⊗ zρtλt→t + bt ⊗ γt

(48)

once we solve for the velocity and bias-correction vectors. The octahedral sites possess
a threefold axis (pointing along z) and a mirror plane perpendicular to that axis, so there

3The tetrahedral sites are not required to sit at a c/8 distance away from the basal plane—only that their positions be
symmetric under a mirror through the basal plane. Hence, the general case would introduce the Wyckoff parameter z to
character this position in the 4 f site. However, in the case of diffusion, only the long-range contribution matters, so that
change in jump vectors due to z exactly cancels out, and we use z = 1/8 for simplicity.

13
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is no vector basis at those sites; the tetrahedral sites also possess the same threefold axis,
but no mirror plane, and so a vector can point along z at the tetrahedral sites. A mirror
operation through the basal plane maps one tetrahedral sites to the other connected by
a tetrahedral-to-tetrahedral jump; thus, the single site vector basis alternates ±z for each
successive (basal) plane of tetrahedrals. In this basis, the symmetrized rate matrix only has
a single entry based on the escape rate from a tetrahedral and the tetrahedral-to-tetrahedral
jump,

ω =
(

1
√

2
− 1
√

2

)
·

(
−λt→t − 3λt→o λt→t

λt→t −λt→t − 3λt→o

)
·

 1
√

2
− 1
√

2


= −(2λt→t + 3λt→o)

(49)

and the velocity vector at a tetrahedral is ±
(
3λt→o

c
8 − λt→t

c
4

)
ρ1/2

t z. After projecting into
the site vector basis, and solving for the bias-correction vector, we have

bt ⊗ γt = −
c2

32
(3λt→o − 2λt→t)2

3λt→o + 2λt→t
ρtz ⊗ z (50)

and thus the diffusivity from Eqn. 48 is

D = 3a2(x ⊗ x + y ⊗ y)ρoλo→t +
c2

4
z ⊗ zρoλo→o +

c2

4
z ⊗ zρt

3λt→oλt→t

3λt→o + 2λt→t
(51)

Computing the activation energy tensor is complicated due to the correlation terms. The
uncorrelated contribution to inverse temperature derivative is

−
dD
dβ

=
c2

4
z ⊗ zρoλo→o

(
Ets

oo − 〈E〉
)

+ 2
(
3
2

a2x ⊗ x +
3
2

a2y ⊗ y
)
ρoλo→t

(
Ets

ot − 〈E〉
)

+ 3 · 2
(

c2

64
z ⊗ z

)
ρoλo→t

(
Ets

ot − 〈E〉
)

+
c2

16
z ⊗ zρtλt→t

(
Ets

tt − 〈E〉
) (52)

The change in the velocity vector for the tetrahedral site is

δbt = ±

(
3c
8
λt→o

[
Ets

ot −
1
2

(Et + 〈E〉)
]
−

c
4
λt→t

[
Ets

tt −
1
2

(Et + 〈E〉)
])
ρ1/2

t z (53)

and for the symmetric rate matrix

δω = −
(
2λt→t

[
Ets

tt − Et

]
+ 3λt→o

[
Ets

ot − Et

])
. (54)

After we combine all of the terms into Eqn. 22, we have an activation energy tensor

Eact =
(
Ets

ot − 〈E〉
)

(x ⊗ x + y ⊗ y)+(
ρoλo→o + ρt

3λt→oλt→t

3λt→o + 2λt→t

)−1 [ {
Ets

oo − 〈E〉
}
ρoλo→o

+

{
3λt→o

3λt→o + 2λt→t

(
Ets

tt − 〈E〉
)

+
2λt→t

3λt→o + 2λt→t

(
Ets

to − 〈E〉
)}
ρt

3λt→oλt→t

3λt→o + 2λt→t

]
(z ⊗ z).

(55)

14
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For basal plane diffusivity, the activation barrier is (Ets
ot − 〈E〉), as expected. For diffusion

along the c-axis, the expression in Eqn. 55 simplifies in several key limits. If ρoλo→o is the
fastest, then Eact ≈ (Ets

oo − 〈E〉); diffusion is dominated by direct octahedral-to-octahedral
jumps. If it is not, then the octahedral-tetrahedral network dominates; if λt→t is rate-limiting
(slower than λt→o), Eact ≈ (Ets

ot − 〈E〉), otherwise Eact ≈ (Ets
tt − 〈E〉). These important limits

are all captured in a single expression for the activation barrier, and can be computed
automatically.

The elastic dipole terms break into basal and c-axis components, with a tetragonal com-
ponent for the octahedral-tetrahedral jump. The elastic dipole associated with this octahe-
dral has two components, due to hexagonal symmetry,

Po = Po,b(x ⊗ x + y ⊗ y) + Po,cz ⊗ z,

corresponding to the basal Po,b and c-axis Po,c components. The octahedral-to-octahedral
transition along the c-axis behaves similarly,

Pts
oo = Pts

oo,b(x ⊗ x + y ⊗ y) + Pts
oo,cz ⊗ z.

The elastic dipole associated with the tetrahedral has two components,

Pt = Pt,b(x ⊗ x + y ⊗ y) + Pt,cz ⊗ z,

corresponding to the basal Pt,b and c-axis Pt,c components. The tetrahedral-to-tetrahedral
transition along the c-axis also has hexagonal symmetry,

Pts
tt = Pts

tt,b(x ⊗ x + y ⊗ y) + Pts
tt,cz ⊗ z.

Finally, the octahedral-to-tetrahedral transition state does not locally have hexagonal sym-
metry. If we consider one jump along a

3 [11̄0 3c
8a ], oriented so that it lies in the yz plane, then

we can write the three components of the elastic dipole,

Pts
ot = Pts

ot,b(x ⊗ x + y ⊗ y) + Pts
ot,t(−x ⊗ x + y ⊗ y) + Pts

ot,cz ⊗ z,

corresponding to a basal, tetragonal, and c-axis contributions. Alternatively, we could write
contributions as Pts

ot,‖ = (Pts
ot,b + Pts

ot,t)y ⊗ y along the hop and Pts
ot,⊥ = (Pts

ot,b − Pts
ot,t)x ⊗

x perpendicular to the hop. We find that, after applying the 3-fold rotation axis that the
tetragonal component only appears in our bare term.

Hexagonal symmetry reduces the elastodiffusion tensor to seven independent compo-
nents, of which two have contributions from correlation. The contributions from correla-
tion come from the tetrahedral site. The change in the velocity vector for the tetrahedral
site is

δbt = ±

(
3c
8
λt→o

[
Pts

ot,b −
1
2

(Pt,b + 〈P〉b)
]
−

c
4
λt→t

[
Pts

tt,b −
1
2

(Pt,b + 〈P〉b)
])
ρ1/2

t (z⊗x⊗x+z⊗y⊗y)

±

(
3c
8
λt→o

[
Pts

ot,c −
1
2

(Pt,c + 〈P〉c)
]
−

c
4
λt→t

[
Pts

tt,c −
1
2

(Pt,c + 〈P〉c)
])
ρ1/2

t z ⊗ z ⊗ z (56)
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and for the symmetric rate matrix

δω = −
(
2λt→t

[
Pts

tt,b − Pt,b

]
+ 3λt→o

[
Pts

tt,b − Pt,b

])
(x ⊗ x + y ⊗ y)

−
(
2λt→t

[
Pts

tt,c − Pt,c

]
+ 3λt→o

[
Pts

tt,c − Pt,c

])
z ⊗ z, (57)

where 〈P〉 = Poρo+Pt2ρt, as in our FCC lattice. Symmetry gives us 6 unique elastodiffusion
components, as basal-plane isotropy requires 2d66 = d11−d22. Moreover, only the d31 = d32
and d33 components have contributions from correlations; only d11 = d22, d33, d44 = d55
and d66 have contributions from the geometric terms; and d44 = d55 only has contributions
from geometry. Using the Voigt notation for fourth-rank tensors with Eqn. 34,

d11 = d22 = a2
{

6 + β

(
Pts

ot,b +
1
2

Pts
ot,t − 〈P〉b

)}
ρoλo→t

d33 =
c2

4

{ [
2 + β

(
Pts

oo,c − 〈P〉c
)]
ρoλo→o

+

[
2 +

3λt→o

3λt→o + 2λt→t

(
Pts

tt,c − 〈P〉c
)

+
2λt→t

3λt→o + 2λt→t

(
Pts

to,c − 〈P〉c
)]
ρt

3λt→oλt→t

3λt→o + 2λt→t

}
d12 = d21 = a2

{
β

(
Pts

ot,b −
1
2

Pts
ot,t − 〈P〉b

)}
ρoλo→t

d13 = d23 = a2
{
β
(
Pts

ot,c − 〈P〉c
)}
ρoλo→t

d31 = d32 =
c2

4

{
β
(
Pts

oo,b − 〈P〉b
)
ρoλo→o

+

[
3λt→o

3λt→o + 2λt→t

(
Pts

tt,b − 〈P〉b
)

+
2λt→t

3λt→o + 2λt→t

(
Pts

to,b − 〈P〉b
)]
ρt

3λt→oλt→t

3λt→o + 2λt→t

}
d44 = d55 =

3a2

2
ρoλo→t +

c2

8
ρoλo→o +

c2

8
ρt

3λt→oλt→t

3λt→o + 2λt→t

d66 =
d11 − d12

2
= a2

{
3 +

β

2
Pts

ot,t

}
ρoλo→t

(58)

and all other terms are zero. The activation volume tensor can be derived as before; the
scalar activation volume from Eqn. 4 is

Vact =
kBT
9B

{ (
D−1

b d11 + D−1
b d12 + D−1

c d31

) 2S 11 + 2S 12 + 2S 13

2S 11 + 2S 12 + 4S 13 + S 33

+
(
2D−1

b d13 + D−1
c d33

) 2S 13 + S 33

2S 11 + 2S 12 + 4S 13 + S 33

}
,

(59)

where the bulk modulus B−1 = 2S 11 + 2S 12 + 4S 13 + S 33.

3.4. Carbon in iron

Carbon in body-centered cubic iron sits on octahedral sites, and transitions through tetra-
hedral transition states. Veiga et al.[9] used an EAM potential to compute the octahe-
dral and tetrahedral energies and elastic dipoles. The lattice constant for this potential
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is a0 = 2.8553 Å, and the elastic constants are C11 = 243 GPa, C12 = 145 GPa, and
C44 = 116 GPa. The tetrahedral transition state is 0.816 eV above the octahedral site, and
the attempt frequency is taken as 10 THz[9]. The dipole tensors can be separated into par-
allel and perpendicular components; the parallel direction points towards the closest Fe
atoms for the C, while the perpendicular components lie in the interstitial plane. For the
octahedral, the parallel component is 8.03 eV, and the perpendicular components are both
3.40 eV; for the tetrahedral transition state, the parallel component is 4.87 eV, and the
perpendicular are both 6.66 eV.
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Figure 1. Diffusivity and elastodiffusivity of C in BCC Fe between 300K and 1200K. The carbon diffusivity is Arrhenius,
with D(T ) = 1.359 × 10−3 exp(−0.816/kBT ) cm2/s. The derivative d11 = dDxx/dεxx changes sign: negative below ≈ 425K,
and positive above. The derivative d44 = dDxy/dεxy = D, as it only has a contribution from the geometric change with strain.
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Figure 2. Activation volume of C in BCC Fe. The total activation volume from Eqn. 4 is the sensitivity to the isotropic
diffusivity to hydrostatic pressure; at 300K it is 0.0307ΩFe = 0.357 Å

3
. The components from Eqn. 3 have cubic symmetry,

and so the representative terms at 300K are V11 = Vxxxx = −0.1175ΩFe = −1.368 Å
3
, V12 = Vxxyy = 0.1048ΩFe = 1.220 Å

3
,

and V44 = 2Vxyxy = 0.0122ΩFe = 0.142 Å
3
. The only contribution to Vxyxy is geometric.

Fig. 1 shows the Arrhenius behavior of the diffusivity, while Fig. 2 reveals unusual be-
havior in the activation volume from 300K to 1200K. The diffusivity follows a simple
Arrhenius relationship. The elastodiffusion tensor has three unique components: d11 =

dDxx/dεxx, d12 = dDxx/dεyy, d44 = dDxy/dεxy. The d44 term only contains geometric
contributions, while d11 changes sign as the (positive) geometric contribution dominates at
high temperatures and the (negative) activation contribution dominates at low temperatures.
The d12 term is an order of magnitude larger than the other elastodiffusivity coefficients,
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and also leads to the unusual activation volume behavior where V11 is negative, V12 is pos-
itive, and Vtotal = V11 + 2V12 is positive. This means that for a compressive uniaxial stress
along 〈100〉, the diffusivity for carbon increases along 〈100〉, while the perpendicular dif-
fusivities decrease. The unusual behavior is caused by the Poisson effect combined with
the large d12 value and small d11 value. This still occurs while a hydrostatic compressive
stress decreases the diffusivity.

4. Conclusions

The general expression for the elastodiffusion tensor, activation energy and volume tensors
build on previous work that assumed interstitial migration without correlation. As shown
here, correlation contributions must be included even in cases of interstitial diffusion where
dictated by the diffusion network. The application of this method extends beyond intersti-
tial solutes in a crystal, but can also be used for more complex cases such as self-interstitials
(which may possess multiple intermediate states) or diffusion through boundaries. There is
an open-source numerical implementation of the diffusion, elastodiffusion, and activation
barrier tensors, described in Appendix C[19]. The perturbation analysis laid out here can
also be applied to error propagation, by calculating the derivative of diffusivity with respect
to site and transition energies. It should be possible, though more complicated, to derive
similar expressions for the elastodiffusion tensor for more complex diffusion mechanisms,
such as vacancy-mediated solute diffusion.
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Appendix A. Pseudoinverse perturbation

The expression in Eqn. 21, which is similarly used to express the first-order change in
pseudoinverse ofωwith respect to strain, comes from the perturbation of the pseudoinverse
and lacks terms that would correspond to the perturbative change in the null space. In this
case, the simplified expression is due to the symmetry of the matrix ω, the perturbative
changes δω, and the symmetry of the vector dot-products with b. If a general matrix A has
pseudoinverse A+, then we can expand the pseudoinverse B+ = (A + E)+ up to first order
in the perturbation E as

B+ = A+−A+(AA+)E(A+A)A++(A†A)+(A+A)E†(1−AA+)−(1−A+A)E†(AA+)(AA†)++O(‖E‖2)
(A1)

from Eqn. (3.24) of [30]. For our case of interest, A = ω and A+ = g are both real symmetric
matrices; moreover, we want to compute v · B+ · v for an arbitrary vector v,

v · B+ · v = v · A+ · v − v · (A+EA+) · v

+ v ·
{
(A2)+(A+A)E(1 − AA+) −

[
(A2)+(A+A)E(1 − AA+)

]T
}
· v + O(‖v · E}2)

= v · A+ · v − v · (A+EA+) · v + O(‖v · E}2)
(A2)

which, for our problem, reduces to first order in δω

b · δg · b = −b · g δω g · b = −γ · δω · γ. (A3)

Appendix B. Vector and tensor bases at sites

To construct the vector and tensor bases, we first must determine the eigenvectors of each
group operation. There are only ten types of operations available in a crystal: identity, a 2-,
3-, 4-, or 6-fold axis, mirror through a plane, or a 2-, 3-, 4-, or 6-fold axis combined with
a mirror through that same plane. These can be identified from the determinant—which is
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−1 if the operation contains a mirror operation or 1 if it does not—and the trace,

det Tr operation det Tr operation
1 3 identity −1 1 mirror
1 2 6-fold axis −1 0 6-fold axis + mirror
1 1 4-fold axis −1 −1 4-fold axis + mirror
1 0 3-fold axis −1 −2 3-fold axis + mirror
1 −1 2-fold axis −1 −3 inversion

(B1)

The eigenvalues and eigenvectors for these cases are all straightforward. The trivial cases
are identity—triply-degenerate eigenvalues of 1, for the three eigenvectors e1, e2, e3—
inversion—triply-degenerate eigenvalues of −1, for the three eigenvectors e1, e2, e3—and
mirror—one eigenvalue of −1 with eigenvector v corresponding to the mirror plane normal
and double-generate eigenvalues of 1 for the two orthonormal vectors v′ and v′′ that are
orthogonal to v. For the remaining cases, the rotational axis v is always an eigenvector with
an eigenvalue +1 if there is not a mirror operation, or −1 if there is a mirror operation. The
remaining eigenvalues are two nth roots of unity e±i2π/n for the n-fold rotation axis. If v′
and v′′ are two orthonormal vectors that are also orthogonal to the rotational axis v, then
the eigenvectors are (v′ ± iv′′)/

√
2 for the positive and negative roots of unity.

We construct vector and tensor bases that are compatible with a set of point group opera-
tions from the eigenvectors of the group operations. The bases are such that they remained
unchanged under application of every group operation. For each group operation, d-rank
tensors can be constructed from different dyad products of eigenvectors of the group oper-
ation. In particular, the product of the eigenvalues of the eigenvectors needs to be 1. Hence,
for a vector basis (a 1-rank tensor), we have: (a) identity produces a 3-dimensional basis
of {e1, e2, e3}, (b) mirror produces a 2-dimensional basis of {v′, v′′}, two orthonormal vec-
tors in the mirror plane, (c) n-fold rotational axes without mirror produces a 1-dimensional
basis of {v}, the rotational axis vector, and (d) all other cases produce a 0-dimensional null
basis, ∅. Each group operation produces its own basis, and these vector bases are then in-
tersected to produce the final basis, using some simple rules: if p- and q-dimensional bases
are intersected, the resulting dimension of the final basis is not greater than min{p, q}. Then,
the remaining non-trivial cases are: two 2-dimensional, a 2- and 1-dimensional, and two
1-dimensional intersections. In the first case, if v and v′ are the vectors made by the cross-
product of the two vectors in each basis, then the resulting intersection will be either (a)
the same 2-dimensional basis if v is parallel to v′, or (b) a 1-dimensional basis consisting
of v × v′, otherwise. In the second case, if v1 is the basis for the 1-dimensional basis, and
v2 is the cross-product of the two vectors in the 2-dimensional basis, then the resulting
intersection will be either (a) 1-dimensional basis consisting of v1 if v1 is perpendicular
to v2, or (b) the 0-dimensional empty basis ∅, otherwise. Finally, if v and v′ are the two
1-dimensional bases, the resulting intersection will either be (a) v if v is parallel to v′, or
(b) the 0-dimensional empty basis ∅, otherwise.

The construction of the second-rank tensor bases is more complicated, but reduces to
three distinct cases. We are specifically interested in symmetric second-rank tensors, so the
largest the bases can be is 6-dimensional. For identity and inversion, the full 6-dimensional
basis is invariant: {e1⊗e1, e2⊗e2, e3⊗e3, (e1⊗e2 +e2⊗e1)/

√
2, (e1⊗e3 +e3⊗e1)/

√
2, (e2⊗

e3 +e3⊗e2)/
√

2}. For a mirror operation or a 2-fold rotation, if v is the mirror plane normal
/ rotational axis, and v′ and v′′ are the remaining orthonormal vectors, the 4-dimensional
basis is invariant: {v⊗v, v′⊗v′, v′′⊗v′′, (v′⊗v′′+v′′⊗v′)/

√
2}. Finally, for the n-fold rota-

tions (with or without a mirror), if v is the rotational axis, and v′ and v′′ are the remaining
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orthonormal vectors, the 2-dimensional basis is invariant: {v ⊗ v, (v′ ⊗ v′ + v′′ ⊗ v′′)/
√

2}.
To intersect any two bases, the simplest approach is to find the null-space of the combined
column spaces constructed from the bases using singular-value decomposition[31].

Appendix C. Implementation

A full numerical implementation of the algorithms in Python described are available on
github[19] under the MIT License. This includes algorithms to analyze a given crystal
(lattice and atomic basis), find generators for the space group operations, determine all
point group operations for each site, identify Wyckoff positions, generate vector and ten-
sor bases, construct a jump network in the crystal, and identify unique jumps. Once the
energies, prefactors, and elastic dipoles are determined for the unique sites and jumps, the
numerical implementation can compute the diffusivity, elastodiffusion, and activation bar-
rier tensors for a given temperature. The implementation includes numeric examples of
the analytic results from this paper, with input files for FCC, BCC, and HCP interstitial
diffusion.
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