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Abstract

A recently developed Green function approach informed by ab initio calculations mod-

els vacancy-mediated transport of 61 solutes in a hexagonal close packed magnesium.

The 8- and 13-frequency diffusion models approximate vacancy jump rates near a

solute, leading to the inaccurate calculation of Onsager coefficients. We identify all

the symmetry-unique vacancy jumps in the Mg lattice and use the Green function ap-

proach to calculate the Onsager coefficients exactly in the limit of dilute solute concen-

tration. Density functional theory-computed solute-vacancy interactions and vacancy

jump rates inform the Green function approach and previous diffusion models. So-

lutes with positive size misfit diffuse faster compared to the self-diffusion of Mg due to

the relaxation of solute towards vacancy while solutes with negative size misfit diffuse

slower. Transition metal solutes show drag for attractive solute-vacancy binding as

well as for repulsive binding, due to faster reorientation rates of the vacancy around the

solute compared to dissociation rates. Solutes from the s-block, p-block and lanthanide

series with attractive solute-vacancy binding and slower reorientation rates compared

to the dissociation rates show drag due to vacancy motion around the solute through

alternate dissociation and association jumps. The prediction of activation energy of

diffusion from the 8-frequency model deviates by more than 50 meV for solutes with

significant correlations effect. Our GF approach prediction of solute diffusion coeffi-

cients agree well with the available experimental measurements.
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1. Introduction

Magnesium and its alloys have a lower density compared to iron or aluminum based

alloys, making them an attractive candidate in automotive and aerospace industry for

lightweighting with the aim of increasing fuel efficiency[1, 2, 3, 4]. The addition of

solutes is a primary strategy to develop advanced Mg alloys using Integrated com-

putational materials engineering ICME approach[5, 6, 7]. The ICME approach with

the knowledge of accurate kinetic and thermodynamic data of solute in Mg can al-

low the simulation of the microstructure. The common alloying solutes Al and Zn

are added in Mg for precipitation hardening[8, 9, 10, 11] and the lanthanides in dilute

quantity are added in Mg for randomization of the grain structure leading to improved

ductility[12, 13, 14]. Serrated flow during tensile loading is observed in Mg alloys and

it has been attributed to the presence of solute clouds around dislocations which are

formed through solute diffusion[15, 16]. Therefore, a database of solute transport in

Mg is crucial for designing new Mg alloys and to understand material behavior during

fabrication and processing.

The diffusion coefficients of only 20 solutes in the Mg matrix have been experi-

mentally measured over a limited temperature range due to the challenges associated

with measurement techniques[17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,

31, 32, 33]. Most of these measurements are done using radioactive or stable enriched

tracers with concentration or activity profiles obtained through residual activity, SIMS

analysis or serial sectioning methods. Diffusion coefficients are extracted from these

measurements through the concentration profile of the solute, assuming an equilibrium

concentration of vacancies, which can be difficult to achieve experimentally. Addi-

tionally, these experiments are tedious, costly and rely on the availability of a stable

isotope for the solute. Measurements for Be[25] and Ca[30] have been performed us-

ing solid-solid diffusion couples and recently developed liquid-solid diffusion couples,

respectively, which are non-tracer techniques. However, the solid-solid diffusion cou-
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ple method is limited to solutes with appreciable solubility in Mg. It is also difficult to

obtain low-temperature diffusion data from experiments especially for slow diffusers,

and extrapolating high-temperature measurements to low temperature may not be accu-

rate. The processing of Mg alloys involves a range of temperatures: from cold rolling

at room temperature[34] to extrusion at high temperatures[14], so a diffusion database

in a broad range of temperature is essential.

Diffusion modeling coupled with ab initio data is a promising strategy to obtain

solute transport coefficients over a broad temperature range, but previous studies[35,

36, 37, 38] use oversimplified diffusion models. For example, various density func-

tional theory (DFT)-based diffusion studies for the hexagonal closed pack (hcp) Mg

suffer from uncontrolled approximations in the 8-frequency diffusion model, leading to

an inaccurate description of solute transport. Zhou et al.[37] and Wu et al.[38] devel-

oped databases for solute diffusion coefficients using the 8-frequency model[39, 40, 41]

which reduces 15 different vacancy transition states into seven vacancy transition states

leading to approximate calculations of correlation factors which has a significant effect

on solute transport[42]. Moreover, these studies do not report the drag ratios for the

solute since the 8-frequency model does not compute them. In our previous work[42],

we showed that even the recently developed 13-frequency model[43] which considers

nine different vacancy transition states predicts erroneous drag ratios for Al, Zn, La,

Nd, Gd, and Y.

The Onsager coefficients Li j characterize the diffusion of solutes and point defects[44].

For a binary alloy, the fluxes Js of solutes s and Jv of vacancies v are linearly related to

the gradient of chemical potential ∇µ ,

Js = −Lss∇µs − Lsv∇µv,

Jv = −Lvs∇µs − Lvv∇µv.
(1)

The diagonal Onsager coefficients Lss and Lvv quantify the solute and vacancy transport

under their respective chemical potential gradients. The off-diagonal Onsager coeffi-

cients Lsv = Lvs quantify the flux coupling between solutes and vacancies: the transport

of solutes (vacancies) driven by a gradient in chemical potential of vacancies (solutes).

The solute diffusivity in the dilute limit of solute concentration Cs is proportional to
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Lss[44]

D = (kBT/Cs)Lss (2)

where kB is the Boltzmann constant and T is temperature. The drag ratio Lsv(Lss)−1

quantifies the drag of solutes by vacancies. A positive drag ratio means a flux of vacan-

cies drags solutes in the same direction while a negative drag ratio means the motion

of solutes opposite to the flux of vacancies; drag of solutes by vacancies can cause

nonequilibrium solute segregation at vacancy sinks.

This work uses the Green function (GF) approach—an exact theory of diffusion—

to study vacancy-mediated transport of 61 solutes in a Mg matrix with thermodynamic

data computed from DFT. In the Green function method, all possible trajectories for a

vacancy are sampled; this is akin to performing the ideal kinetic Monte Carlo (KMC)

calculation that exactly samples all possible configurations, and runs all trajectories to

infinite length. Mathematically, this requires the pseudoinverse of the infinite transi-

tion rate matrix, which is the Green function; in the infinitely dilute limit where there

is only one vacancy and one solute in the system, this calculation is mathematically

and computationally tractable[45]. Previous computational approaches such as the 8-

frequency[39, 40, 41] and 13-frequency models[43] make the same assumption about

the dilute limit, but then impose additional approximations on the form of the rate

matrix; our computational approach, as implemented[46], requires no additional as-

sumptions about the form of the rate matrix. We have done KMC calculation for Sn

and Zn in Mg and the drag ratios agree well with our GF approach. This is available

in Fig. 6 of reference [45]. It should be kept in mind that KMC is an approximation

of the exact GF approach; when KMC is done with a sufficiently large cell for suffi-

ciently long trajectories with a sufficiently large number of samples, it agrees with the

GF results for the dilute limit.

Section 2 lays out the methodology to compute inputs—binding energies, migra-

tion barriers, attempt frequencies, vacancy formation energy and entropy—for diffu-

sion models and also the details of the DFT parameters used to compute these inputs.

Section 3 discusses the diffusion coefficients and drag ratios of the solutes computed

using the GF approach and the 8- and 13-frequency models. We demonstrate that all
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the symmetry-unique vacancy jumps must be included in a diffusion model to predict

accurate diffusion coefficients of solutes with significant correlation effects. We show

that the drag ratios of all the solutes are sensitive to vacancy jumps near the solute and

explain the drag mechanism through the ring network topologies which facilitate va-

cancy motion around the solute. All of the computational data is available as a publicly

available database[47].

2. Methodology

Calculating Onsager coefficients for vacancy-mediated solute transport requires the

energies of various solute-vacancy configurations and the transition rates between the

configurations. A solute and vacancy interact to form a complex and the binding energy

quantifies this interaction. The binding energy equals the energy difference of the sys-

tem containing the solute-vacancy complex and the system where the distance between

solute and vacancy approaches infinity. We calculate binding energy Ebind
α between a

solute and vacancy for the complex α using the supercell method,

Ebind
α = E

[
(N − 2)Mg + svα

]
− E

[
(N − 1)Mg + s

]
− E

[
(N − 1)Mg + v

]
+ E

[
(N)Mg

]
(3)

where E
[
(N − 2)Mg + svα

]
is the energy of a supercell containing N − 2 Mg atoms, one

solute atom, and one vacancy in configuration α. Similarly, E
[
(N − 1)Mg + s

]
is the

energy of a supercell where a Mg atom is substituted with a solute atom, E
[
(N−1)Mg+

v
]

is the energy of a supercell with a vacancy and N−1 Mg atoms, and E
[
(N)Mg

]
is the

energy of a supercell with N Mg atoms. A positive or a negative value of binding energy

denotes repulsive or attractive interaction between a solute and a vacancy, respectively.

From transition state theory, the rate ωα-β for a vacancy to jump from configuration α

to β through the transition state α-β is

ωα-β = ν∗α-β · exp(−Emig
α-β /kBT ), (4)

where ν∗α-β and Emig
α-β are the attempt frequency and migration barrier for vacancy tran-

sitions, respectively. We compute the migration barrier using

Emig
α-β = E

[
(N − 2)Mg + svα-β

]
− E

[
(N − 2)Mg + svα

]
(5)
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where E
[
(N−2)Mg+svα-β

]
is the energy of a supercell containing N−2 Mg atoms, one

solute and one vacancy at the transition state α-β. Vineyard’s harmonic transition-state

theory[48] under the moving atom approximation[38] computes the attempt frequency

ν∗α-β as the product of three vibrational frequencies να,p associated with the moving

atom at the initial state α divided by the product of two real vibrational frequencies

να-β,q associated with the moving atom at the transition state

ν∗α-β =

∏3
p=1 να,p∏2

q=1 να-β,q
. (6)

The concentration of vacancies depends on the vacancy formation energy and en-

tropy in the solute-free system, as well as solute-vacancy interaction. The vacancy

concentration in the bulk system is

Cv = exp
(
−

Eform
v − TS form

v

kBT

)
. (7)

We compute the vacancy formation energy Eform
v and the vacancy formation entropy

S form
v using the supercell method as follows[49]:

Eform
v = E

[
(N − 1)Mg + v

]
−

N − 1
N

E
[
(N)Mg

]
, (8)

and

S form
v = −kB

3N−6∑
p=1

ln(νp) −
N − 2
N − 1

3N−3∑
p=1

ln(ν0
p)

 , (9)

where νp and ν0
p are the vibrational frequencies of the Mg atoms with and without a

vacancy in the Mg supercell, respectively. We approximate S form
v by taking into account

the vibrational modes of 13 atoms in bulk geometry and the vibrational modes of 12

Mg atoms in defected geometry. The 13 Mg atoms in bulk geometry are chosen such

that one particular Mg atom had other 12 atoms to be its first nearest-neighbor. In the

vacancy geometry, that one particular Mg atom is removed, leaving 95 atoms in the

supercell. The vibrational modes of the 12 first nearest-neighbor atoms to vacancy is

computed in this defected geometry. The vacancy concentration Cv,α near the solute in

the configuration α is

Cv,α = Cvexp
(
−Ebind

α

kBT

)
exp

(
S bind
α

kB

)
(10)
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where Ebind
α and S bind

α are the solute-vacancy binding energy and binding entropy in

α configuration. The entropy S bind
α quantifies the change in atomic vibrations due to

the formation of solute-vacancy complex α compared to when solute and vacancy are

infinitely far apart. For computational efficiency, we assume S bind
α to be zero in this

work.

The size of the solute or the stress field created due to substitutional defect is an

important physical descriptor to study solute transport trends across the periodic table.

The introduction of a substitutional solute introduces stress leading to distortion of the

Mg lattice. We estimate the distortion of the Mg lattice through the solute strain misfit

tensor εi j, which is the derivative of solute-induced strain ei j with respect to the solute

concentration Cs, as[50]

εi j =
dei j

dCs

∣∣∣∣∣∣
Cs=0
≈ N

∑
kl

S i jklσkl. (11)

The expression on the right is the approximate strain misfit tensor computed in a super-

cell with N lattice sites (corresponding to concentration Cs = 1/N), S i jkl is the elastic

compliance tensor of pure Mg, and σkl is the stress induced by the solute in the super-

cell with relaxed atoms but fixed lattice vectors. For dilute solute concentrations, σkl is

inversely proportional to N so that the strain misfit tensor is independent of the super-

cell size. The strain misfit tensor is diagonal and anisotropic for substitutional solutes

in an hcp crystal: equal values in the basal plane (along x and y directions) but distinct

along the c-axis (z direction). The size misfit—trace of strain misfit tensor—quantifies

the change in the volume of Mg supercell due to the solute.

We perform DFT calculations using the Vienna ab-initio simulation package vasp

4.6.36[51] which is based on the plane-wave basis sets. The projector-augmented wave

pseudopotentials[52] generated by Kresse[53] describe the nuclei and the core elec-

trons of solutes and Mg atoms. We treat electron exchange and correlation using the

PBE[54] generalized gradient approximation. We carry out DFT calculations for 61

solutes in the hcp Mg matrix. The lanthanide solutes are treated with frozen 4 f core

electrons because we find that the inclusion of 4 f electron in valence configurations

for Ce changes the activation energy for diffusion by only 25 meV. The frozen 4 f core

treatment was shown to reproduce the experimentally observed binary convex hull in
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Al-lanthanide systems[55] and also was used in previous DFT studies on Mg[56, 36].

We perform spin-polarized calculations for V, Cr, Mn, Fe and Co whose substitutional

solute magnetic moments are 2.63µB, 3.67µB, 3.70µB,−2.62µB, and 1.01µB, respec-

tively. We use a 5 × 5 × 3 Mg supercell of 150 atoms with a 5 × 5 × 6 gamma centred

Monkhorst-Pack k-point mesh for the larger size solutes (lanthanides and Ca), while

the remaining 47 solutes require only a 4 × 4 × 3 Mg supercell of 96 atoms with a

6 × 6 × 6 k-point mesh. We use Methfessel-Paxton smearing[57] with an energy width

of 0.25 eV to integrate the density of states. We use a plane wave energy cutoff of 500

eV which is sufficient to give an energy convergence of less than 1 meV/atom. All

the atoms are relaxed using a conjugate gradient method until the force on each atom

is less than 5 meV/Å. The climbing-image nudged elastic band (CNEB)[58] method

with one intermediate image determines the transition state configurations and ener-

gies. We compute vacancy jump rates using harmonic transition rate theory[48] with

attempt frequencies calculated using the hopping atom approximation[59, 60, 38, 42].

Our supplemental database[47] contains the DFT input files along with the type of

pseudopotential used for Mg and the 61 solutes.

We carry out systematic DFT calculations for 61 elements across the s, p, d blocks

except for the solutes undergoing unusual relaxations or favoring interstitial configura-

tions. The over-sized solutes Rb, Cs, and Ba relax significantly towards the vacancy,

leading to a configuration where the solute is in the middle and surrounded by two

half-vacancies. This phenomena was also observed for Y in bcc Fe[61, 62] and Boc-

quet et al. studied the Y transport by treating the solute and the two half-vacancies as

one diffusing unit[63]. We believe a similar treatment in hcp Mg crystal can be ben-

eficial for predicting accurate transport coefficients for Rb, Cs, and Ba. Unlike other

61 substitutional solutes occupying lattice position, Se atom occupies off-lattice posi-

tion in the relaxed Mg supercell which would require further symmetry analysis for

its accurate solute transport coefficients. We find that the DFT computed formation

energies for P and S, as an octahedral interstitial defect is 71 and 210 meV lower than

as a substitutional defect. Therefore, we believe that the transport of P and S should be

interstitial-mediated and can be modeled similarly as in our previous study of intersti-

tial B, C, N, and O in Mg[60].
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We compare our DFT computed data to previous first-principles studies[64, 56,

36, 37, 38] and experimental measurements[65, 66], and find them in good agreement,

where data is available. The computed lattice parameters of hcp Mg are a = 3.189 Å

and c/a = 1.627, and the elastic compliance components in Voigt notation with units

of TPa−1 are S 11 = 20.8, S 12 = −7.12, S 13 = −4.70, S 33 = 18.86, S 44 = 55.55,

and S 66 = 55.87, which agree well with experiments[65, 66]. The computed vacancy

formation energy and vacancy formation entropy in Mg are 0.815 eV and 1.22 kB,

respectively and the basal and pyramidal vacancy migration barriers are 0.397 eV and

0.416 eV. Our solute-vacancy binding energies for the 61 solutes show good agreement

within 25 meV with previous DFT studies[64, 56, 36]. Prior DFT studies[36, 37, 38]

based on the 8-frequency model computed eight migration barriers, which agree within

50 meV with the corresponding barriers from our calculation. Our binding energies

and migration barriers for 61 solutes in the Mg matrix are listed in the supplemental

database[47].

3. Results and discussions

We find that the interactions between a solute and a vacancy are significantly stronger

at the nearest-neighbor complexes 1p and 1b compared to the farther ones. The 1p and

1b complex corresponds to solute and vacancy being at first nearest-neighbor lying in

the adjacent basal plane and in the same basal plane, respectively. The other seven

complexes—2p, 3c, 4p, 4b, 4b, 5p and 6b— are one vacancy jump away from the 1p

and 1b complexes such that the vacancy position ranges from second nearest-neighbor

up to sixth nearest-neighbor with respect to the solute. The geometries of these nine

different solute-vacancy complexes are shown in the inset of Figure 1 and a geome-

try showing multiplicities of these complexes is presented in Figure 1 of our previous

work[42]. The solute-vacancy binding energies for the seven farther complexes are

below 50 meV and we treat these complexes as unbound by setting their binding ener-

gies to zero in our diffusion model. We find attractive interactions of up to 400 meV

between a solute and a vacancy in the 1p and 1b complexes for solutes from s-block,

p-block, from groups IX to XII of d-block and the first-half of lanthanides including
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Yb. We find repulsive interactions of up to 350 meV in 1p and 1b complexes for solutes

from groups III to VIII of d-block and the second-half of lanthanides up to Tm.

Table 1 lists the 15 symmetry-unique vacancy transition states in hcp Mg and the

choices of transition states that we make to accommodate the approximations of rates

in the 8-frequency[39, 40, 41] and 13-frequency models[43]. The solute modifies va-

cancy jumps in its vicinity and we account for all the symmetry-unique jumps from the

strongly interacting 1p and 1b solute-vacancy complexes. Figure 2 from our previous

work[42] shows a total of 24 vacancy jumps out of 1p and 1b complexes correspond-

ing to 15 symmetry-unique transition states. There are two solute-vacancy exchange

jumps: 1b-sol and 1p-sol, where a solute exchanges position with a vacancy; six re-

orientation jumps: 1b-1b , 1b-1b , 1b-1p, 1p-1b, and 1p-1p, where a vacancy moves

around the solute and remains in the 1p or 1b complex; nine dissociation jumps: 1b-4b,

1b-4b, 1b-6b, 1b-2p, 1b-4p, 1p-2p, 1p-4p, 1p-3c, and 1p-5p, where a vacancy jumps

away from the interaction range of solute; and the reverse of a dissociation jump is a as-

sociation jump. The vacancy jumps between the farther out solute-vacancy complexes

are equivalent to vacancy jumps in bulk Mg. The widely used 8-frequency model and

recently developed 13-frequency model which compute solute diffusivity in the hcp

lattice do not differentiate between the 1b-1b and 1b-1b jumps, but instead arbitrarily

choose one of the rates for both jumps. The symmetry inequivalence between these

two jumps is identified by the different Mg atoms environment neighboring their tran-

sition states. These models further equate the nine distinct dissociation jumps to two

jumps in the 8-frequency model and to four jumps in the 13-frequency model. For the

8-frequency model, we equate the five dissociation jumps out of 1b to 1b-6b and the

four dissociation jumps out of 1p to 1p-5p, since these chosen jumps lead to the largest

vacancy-solute distance after the complex dissociates. For the 13-frequency model, we

choose a basal and a pyramidal type of dissociation jump out of both the 1b and 1p

complexes i.e. 1b-6b, 1b-4p, 1p-4p, and 1p-5p.

We classify the 61 solutes into three categories based on the migration barriers for

vacancy reorientation and vacancy dissociation jumps. This categorization helps to

understand the need to compute all vacancy jumps for accurate computation of drag

ratios which will be discussed later in this paper. The solutes Li, Be, Al, Si, Ga, Ge,
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Table 1: The list of all symmetry-unique transition states used in the GF approach com-

pared with the jumps used in the 13- and 8-frequency models for vacancy-mediated

solute transport in hcp Mg. Our GF approach treats all the 15 symmetry-unique transi-

tion states for jumps out of 1b and 1p solute-vacancy complexes, while the 13- and 8-

frequency models reduce them to nine and seven transition states, respectively. Neither

the 13- nor the 8-frequency models differentiate between the 1b-1b and 1b-1b jumps.

Instead, these models choose one of these rates arbitrarily for both jumps. The 13-

frequency model approximates the dissociation jump rates into four types consisting of

basal and pyramidal vacancy jumps out of both 1b and 1p complexes. We compute the

results for the 13-frequency model using 1b-6b and 1b-4p as the basal and pyramidal

types of dissociation jumps out of the 1b complex, and 1p-4p and 1p-5p as the disso-

ciation jumps out of the 1p complex. The 8-frequency model further approximates the

dissociation jump rates into two types—one for dissociation out of the 1b complex and

the other for dissociation out of the 1p complex. In this work we choose 1b-6b and

1p-5p to be the dissociation rates for the 8-frequency model since these jumps lead to

the largest vacancy-solute distance after the complex dissociates. Note that the vacancy

jump 1b-1p is the reverse jump of 1p-1b and both have a common transition state.

All symmetry 13-frequency model 8-frequency model

1b-sol 1b-sol 1b-sol

1p-sol 1p-sol 1p-sol

1b-1b
1b-1b or 1b-1b 1b-1b or 1b-1b

1b-1b

1b-1p 1b-1p 1b-1p

1p-1b 1p-1b 1p-1b

1p-1p 1p-1p 1p-1p

1b-4b

1b-6b

1b-6b

1b-4b

1b-6b

1b-2p
1b-4p

1b-4p

1p-2p
1p-4p

1p-5p
1p-4p

1p-3c
1p-5p

1p-5p
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As, V, and 21 solutes from group VI to XII of d-block have lower migration barriers

for vacancy reorientation compared to vacancy dissociation, while Na, K, Ca, Sc, Sr, Y,

In, Sn, Sb, Te, Tl, Pb, Bi, and 14 solutes from lanthanide series have higher migration

barriers for vacancy reorientation compared to vacancy dissociation. The solutes Ti,

Zr, Nb, Hf, and Ta have similar migration barriers for reorientation and dissociation.

Comparison of migration barriers between this work and prior DFT studies utilizing

8-frequency model show that Huber et al.[36] chose 1b-1b while Zhou et al.[37] and

Wu et al.[38] chose 1b-1b out of the 1b-1b and 1b-1b jumps. Also, Huber et al.[36],

Zhou et al.[37] and Wu et al.[38] chose 1b-6b, 1b-4p and 1b-4b, respectively as the

dissociation jump out of the 1b complex and all three chose 1p-4p as the dissociation

jump out of the 1p complex.

Figure 1 shows that most solutes which relax towards the vacancy have lower

solute-vacancy exchange barriers compared to vacancy migration barriers in bulk Mg

and vice-versa. The lanthanides, Y, Na, K, Ca, Sr, Sb, Te, Tl, Pb, and Bi expand the

Mg lattice due to their large size (see Figure 2) and move towards the vacant space

to accommodate the large strain. Due to the solute relaxation towards the vacancy in

the 1p and 1b complexes, the solute gets closer to the transition state of the solute-

vacancy exchange jump which leads to lower migration barriers for 1b-sol and 1p-sol.

The solute relaxations are significant for the large s-block solutes Rb, Cs and Ba which

relax to the transition state with half-vacancies on either side leading to no barrier for

the solute-vacancy exchange jump. Unlike other solutes studied here, Rb, Cs, and Ba

should diffuse as an unit having a solute and two half-vacancies and we omit their

vacancy-mediated transport from this work. The rest of the p-block solutes and all

the d-block solutes move away from the vacancy during the relaxation of 1p and 1b

complexes which increases the solute distance from transition state leading to higher

migration barriers for 1b-sol and 1p-sol jumps.

Figure 2 shows that small solutes have negative strain misfits and high solute-

vacancy exchange barriers which lead to slower diffusion than the self-diffusion of

Mg. The activation energy Q and the diffusion prefactor D0 are obtained through an

Arrhenius fit D = D0exp(−Q/kBT ), where the diffusion coefficients D at different tem-

peratures T are computed by treating all the symmetry-unique vacancy jumps using the
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Figure 1: (color online) Solute-vacancy exchange barriers in the basal 1b-sol and pyra-

midal 1p-sol directions, along with the relaxations (∆di = di − d0
i ) between solute and

vacancy in the 1b (left) and 1p (right) complex. The relaxation is the difference be-

tween the solute-vacancy distance in the relaxed (d1b or d1p) and unrelaxed complex

geometry (d0
1b or d0

1p). The vacancy position in the relaxed complex is determined by

averaging the positions of its 12 nearest-neighbor atoms. The vertical dashed lines at

∆d1b = −0.03 Å and at ∆d1p = −0.04 Å correspond to the relaxation of the vacancy and

its neighboring Mg atoms in the basal and pyramidal configurations in bulk Mg. Basal

and pyramidal vacancy migration barriers in bulk Mg are shown as unfilled triangles

with a dashed horizontal line passing through each of them. All lanthanides, Y, Na,

K, Ca, Sr, Sb, Te, Tl, Pb, and Bi relax towards the vacancy (i.e. left of the vertical

dashed lines) leading to lower solute-vacancy exchange barriers compared to vacancy

migration barriers in bulk Mg.
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GF approach. The misfit tensor is calculated from Eqn. 11 and measures the distortion

due to solute in the Mg lattice along the x(= y) and z directions. The transition metal so-

lutes with negative size misfit compress the Mg lattice leading to large solute-vacancy

exchange barriers which directly correlates with high activation energies of diffusion.

In the d-block, the solutes from the 5d series have the most negative size misfit while

those in the 3d series have the least negative size misfit. This trend of size misfit is

consistent with the trend 5d > 4d > 3d for activation energies of d-block solutes in

the basal plane and along the c-axis direction. We observe a peak in activation energy

for transition metals with d-band filling and a dip for the 3d series due to the magnetic

nature of V, Cr, Mn, Fe, and Co. This trend in the activation energy for diffusion of

transition metals is in agreement with previous diffusion studies in Mg[37, 38] and sim-

ilar trends have also been observed for these solutes in Ni[67], Fe[68], Al, Cu, Ni, Pd

and Pt[38]. All the solutes except Re and Os diffuse faster in the basal plane compared

to the c-axis direction and Co is the most anisotropic diffuser having a difference of

233 meV in activation energy.

In Figure 2, the larger solutes with positive strain misfit components diffuse faster

than the self-diffusion of Mg and have smaller solute-vacancy exchange barriers com-

pared to vacancy migration barriers in bulk Mg. Significant correlation effects arise for

the diffusion of all the lanthanides, Y, Na, K, Ca, Sr, In, Sb, Te, Tl, Pb, and Bi due to

fast solute-vacancy exchange jumps. The correlation arises due to the likelihood that

when a solute exchanges with a vacancy, it can next take the reverse jump, resulting

into a net displacement of zero for the solute. The correlation factor—a measure of

correlations—is small for faster solute-vacancy exchanges and depends on the migra-

tion barriers of vacancy exchanges with the host atoms. The long range diffusion of

these solutes having positive strain misfit is not limited by the solute-vacancy exchange

barrier as in the case of d-block solutes, but on the ability of the vacancy to move around

the solute by exchanging with host atoms after a solute-vacancy exchange jump. The

vacancy can move around the solute through ring networks which are made up of va-

cancy exchanges with Mg atoms and we discuss them in Figures 5 and 6. Therefore,

vacancy exchanges with Mg atoms (reorientation, dissociation and association) around

the solute determine correlations which control the diffusion of larger solutes.
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Figure 2: (color online) Activation energy Q for the solute diffusion (top row) in the

basal and along the c-axis directions, solute-vacancy exchange barrier (second row) in

the basal 1b-sol and pyramidal 1p-sol directions, solute-vacancy binding energy (third

row) in the 1b and 1p configuration, and the strain misfit component (bottom row) in

the xx and zz directions for 61 solutes in Mg. The self-diffusion activation energies,

vacancy migration barriers and the strain misfits in bulk Mg are shown as purple col-

ored unfilled triangles with dashed horizontal lines passing through each of them. The

non-spin polarized results for V, Cr, Mn, Fe and Co are shown in red colored unfilled

diamonds while the filled diamonds shows the results from spin-polarized treatment of

these five solutes. All lanthanides, Y, Na, K, Ca, Sr, In, Sb, Te, Tl, Pb, and Bi have

positive strain misfits and have lower solute-vacancy exchange barriers than vacancy

migration barriers in bulk Mg, which leads to correlation effects that contribute to the

lower activation energy. The deviation in properties for Eu and Yb in lanthanide series

is due to their half-filled and fully-filled f band, respectively. The d-block solutes show

negative misfits and have higher solute-vacancy exchange barriers than vacancy migra-

tion barriers in bulk Mg, which leads to higher activation energies of solute diffusion

than the activation energy of Mg self-diffusion.
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Figure 3 shows that the correlation treatment of the 8-frequency model overesti-

mates or underestimates the activation energy of diffusion by more than 50 meV for

the solutes with significant correlation effects, compared to the GF approach. The 8-

frequency model approximates the dissociation and association barriers as outlined in

Table 1 and also assumes a constant value of 0.736 for the vacancy escape factor F.

The F measures the return probability of vacancy after the dissociation and depends on

vacancy jump rates for association and in the bulk. These approximation results into an

erroneous computation of the correlation factor. The 8-frequency model overestimates

the activation energies by greater than 50 meV for the first-half of the lanthanide series,

Yb, and Sr because the chosen dissociation jumps 1b-6b and 1p-5p have the largest mi-

gration barriers among the nine possible escapes which slows vacancy motion around

the solute leading to lower correlation factors. Similarly, the underestimation of the ac-

tivation energy for Te, Tl, Bi, Na, and Li is due to the 1b-6b and 1p-5p jumps having the

lowest migration barriers among the nine different escapes. The deviation in activation

energy compared to the 13-frequency model are small (the highest is 40 meV for Pr)

as the model accounts for two additional dissociation jumps along with dependence of

F on vacancy rates compared to the 8-frequency model. The activation energies from

the GF approach, the 13- and 8-frequency models are identical for d-block solutes

since these solutes have large barriers for solute-vacancy exchange jumps and thus no

correlation effects.

The treatment of all symmetry-unique vacancy jumps using the GF approach im-

proves the agreement with the experimental measurements of solute diffusion coeffi-

cients, as shown in Figure 4. In our previous work[42], we showed that the GF ap-

proach improves agreement between computed activation energy of diffusion and the

experimental results[19, 30, 69, 70] for La, Ce, Ca, Nd, Y and Gd, which have sig-

nificant correlation effects due to fast solute-vacancy exchange jumps. The other 14

solutes—Sb, Li, In, Zn, Cd, Sn, Ga, Be, Al, Cu, Ag, Mn, Ni, and Fe—for which exper-

imental measurements[17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]

are available have negligible correlation effects and all three diffusion models predict

similar (within 10 meV) activation energies of diffusion. We predict diffusion coeffi-

cients to within one order of magnitude agreement to the experimental measurements
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Figure 3: (color online) Differences in activation energy between the 8-frequency

model and the GF approach for basal and c-axis diffusion for 61 solutes in Mg. The hor-

izontal dashed lines correspond to no difference in activation energy. The 8-frequency

model approximates correlations, which leads to differences in activation energies that

are greater than 50 meV for La, Ce, Pr, Nd, Pm, Sm, Gd, Sr and Te. The activation

energy differences are less than 5 meV for transition metals where correlation effects

are negligible.

for 15 solutes while we underestimate the diffusion coefficients for Cu, Ag, Mn, Ni

and Fe within two orders of magnitude which may suggest a mechanism other than

vacancy-mediated diffusion for these five solutes. The aforementioned disagreement

between our predicted and experimental diffusion coefficients could also be due to the

neglect of solute-vacancy binding entropy and the restriction of attempt frequency cal-

culations to the hopping-atom vibration modes. Garnier et al. [71] and Wu et al. [38]

has shown that including more phonon modes than the hopping atom modes reduce

the attempt frequency by a factor of 2–3 in Ni, Al and Cu matrix. Similar reduction

can be expected for Mg matrix which may get partially canceled by including binding

entropy (if S bind
α > 0 ) in the diffusion coefficients. We find excellent agreement for

the anisotropy in activation energies—the difference in activation energy between the

basal and the c-axis directions—with single crystal experiments[17, 70, 21, 72, 73],

with deviations below 50 meV for Sb, Y, In, Gd, Zn, Cd, Sn, Mg and Al.

The vacancies drag solute via successive solute-vacancy exchange jump followed

by vacancy reorientation around the solute that allows vacancy for the next exchange
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Figure 4: (color online) Solute diffusivities and Mg self-diffusion coefficients computed

using the GF approach compared with available experimental data. We show Arrhenius

plots for La[19], Ce[19], Ca[30], Nd[69], Sb[17], Li[18], In[19, 17], Gd[70], Y[70, 23],

Zn[19, 20, 21, 22, 23], Cd[17], Sn[17, 23], Ga[24], Mg[72, 73, 74], Be[25], Al[26, 27,

28, 29, 22, 30], Cu[31], Ag[19, 17], Mn[32], Ni[33], and Fe[33], and arrange them

in decreasing order of computed diffusivity in the basal plane. Solid and dashed lines

represent solute and Mg self-diffusion coefficients computed using the GF approach

while experimental data are shown with symbols. The solid and dotted lines in Mn and

Fe subplot corresponds to diffusivities from spin and non-spin polarized treatment of

solute, respectively. Black and red denote diffusion in the basal (b) plane and along

the c-axis (c) while the pink symbols correspond to the average diffusivity obtained

from polycrystalline measurements. We also annotate the activation energy Q of solute

diffusion obtained by Arrhenius fit in the temperature range of 300-923 K for the GF

data. The self-diffusion coefficients of Mg and the solute diffusion coefficients of 15

solutes—La, Ce, Ca, Nd, Sb, Li, Y, In, Gd, Zn, Cd, Sn. Ga, Be, and Al—agree with

experiments within one order of magnitude, whereas for the slower diffusing solutes

Cu, Ag, Mn, Ni, and Fe, the agreement is within two orders of magnitude.
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with solute. Vacancy motion around the solute is facilitated through the ring networks

which are the combination of vacancy exchanges with host atoms. We categorize ring

networks as inner and outer as shown in Figures 5 and 6, respectively. The inner

ring networks are formed from the reorientation jumps within 1p and 1b complexes

and combinations of two different transition state gives three independent rings which

are 1b-1b and 1b-1b , 1b-1b and 1p-1b, and 1p-1b and 1p-1p. Note the asymmetric

nature of 1b-1b and 1b-1b jumps as there is no ring type topology formed by 1b-1b

and 1p-1b jumps, which significantly affects the drag ratios of the solutes. Figure 6

illustrates the three outer ring networks formed by alternating vacancy dissociation

jumps out of a 1p or 1b complex and vacancy association jumps (other than the reverse

of initial dissociation). In these outer ring networks, the solute-vacancy complex 1p

or 1b dissociates into either of these non-binding configurations given by 2p, 3c, 4p,

4b, and 4b, and associates back to a different 1p or 1b complex. The approximations

made for dissociation and association jumps in the 8- and 13-frequency models lead to

significantly different contributions to drag ratios from each outer ring network.

0
0
0
1

Figure 5: (color online) Inner ring networks formed by the reorientation jumps between

1b and 1p solute-vacancy complexes in an hcp crystal. The 1b-1b jump is the cyan

bond while 1b-1b is the dark-blue bond connecting two 1b complexes. Three closed

ring networks are formed by the combination of 1b-1b, 1b-1b, 1p-1b, 1b-1p and 1p-1p

jumps. The left ring network (1b-1b and 1b-1b) contributes to drag in the basal plane

while the middle network (1b-1b, 1p-1b and 1b-1p) and the right network (1p-1p, 1p-

1b and 1p-1p) contribute to drag in both the basal and along the c-axis directions. This

figure is reproduced from our previous work[42].

The 8- and 13-frequency models fail to capture the correct behavior of vacancy re-

orientation through the inner ring network, which leads to over or under prediction of

20



Figure 6: (color online) Outer ring network formed by dissociation and association

vacancy jumps in a hcp crystal. Similar to Fig. 5, these ring networks facilitate va-

cancy motion around the solute which leads to positive drag. The ring network on the

left (1b-4b and 1b-4b) contributes to basal drag; while the middle (1p-2p and 1b-2p)

and the right (1b-4p, 1p-4p and 1p-3c) networks contribute to drag in the basal and

along the c-axis directions. The dissociation jumps 1p-5p and 1b-6b are not part of the

ring networks due to the absence of an alternate association jump from the 5p and 6b

configurations other than the reverse jump.

basal drag ratios for 29 solutes as shown in Figure 7. The inner ring network is respon-

sible for the drag ratios of Li, Be, Al, Si, Ga, Ge, As, V, and 21 solutes from group VI

to XII of the d-block since all the reorientation rates are faster than all the dissociation-

association rates. In our previous work[42], we showed that the basal drag ratios of Al

and Zn are larger or smaller when equating 1b-1b and 1b-1b jump rates to the faster

1b-1b rate or the slower 1b-1b rate—neither of which agrees with the exact GF result

and we observe similar behavior for 27 more solutes in this work. The reorientation

rates for these 29 solutes are in the order ω1b-1b > ω1b-1p > ω1p-1p > ω1b-1b. Since

ω1b-1b and ω1b-1p are the fastest rates, the middle ring network in Figure 5 dominates

for reorienting the vacancy around the solute. Equating ω1b-1b to the slower ω1b-1b rate

reduces the contribution from the middle ring network leading to under prediction of

drag ratios. On the other hand, when equating ω1b-1b to the faster ω1b-1b rate, the con-

tribution from the middle ring network stays the same while the contribution from the

left ring network increases which leads to over prediction of drag ratios compared to

the GF results. The drag ratio along the c-axis is unchanged, since 1b-1b and 1b-1b are

basal type jumps.
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Figure 7: (color online) Solutes with basal drag ratios that are over or under predicted

by the 8- and 13-frequency models due to the equal rate approximation for 1b-1b and

1b-1b jumps. The difference in migration barriers between 1b-1b and 1b-1b jumps

for these 29 solutes is denoted as ∆E which varies from 0.1 to 0.4 eV. Solid lines

correspond to the results of GF approach which treats the two rates correctly and dotted

and dashed lines correspond to the 8- and 13-frequency models respectively. We obtain

upper and lower bounds of gray region by equating both rates to 1b-1b and 1b-1b

respectively in the 8- and 13-frequency models. We arrange the solutes in order of

decreasing basal crossover temperatures—the temperature at which the drag becomes

zero—from left to right and top to bottom.
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The transition metal solutes V, Cr, Mn, Fe, Mo, Tc, Ru, W, Re, and Os have positive

drag ratios (see Fig. 7) due to faster vacancy reorientation rates compared to dissocia-

tion rates, despite having repulsive interactions with a vacancy in 1p and 1b complexes.

It has been established that for a positive drag ratio, a vacancy must spend time in the

vicinity of the solute[75, 76]. For these ten solutes with repulsive binding as well as

high solute-vacancy exchange barrier, once a vacancy forms a 1p or 1b complex, it has

a higher probability of moving around the solute than dissociation; thus, the complex

diffuses despite the repulsive interaction. Similar observations have been made in bcc

lattices[75, 68] which further proves that attractive solute-vacancy interactions are not

a necessary condition for solute drag and drag can happen due to the kinetic effects of

vacancies.

The 8- and 13-frequency models also fail to capture the correct behavior of vacancy

motion around the solute through outer ring networks, leading to erroneous drag ratios

in the basal and along the c-axis directions for 27 solutes compared to the GF approach,

as shown in Figure 8. The dissociation-association rates are faster than the reorientation

rates for these 27 solutes. The solutes—K, Ca, Sr, In, Sn, Sb, Te, Tl, Pb, Bi, La, Ce,

Pr, Nd, Pm, Sm, Eu, and Yb—have attractive interactions with a vacancy, leading to

positive drag ratios via the outer ring networks shown in Fig. 6. On the other hand,

there is no drag for Na, Sc, Y, Gd, Tb, Dy, Ho, Er, and Tm above 300 K due to their

repulsive interactions with a vacancy. The repulsive binding leads to higher association

migration barriers compared to vacancy jump barriers in bulk which makes the outer

ring networks ineffective for these solutes. The 8- and 13-frequency models overpredict

the drag ratios for K, Te, Sb, Bi, Sn, Tl, Pb, and In compared to the GF approach due to

the assignment of lower migration barriers to all the dissociation jumps in these models,

which leads to increased contribution from the outer ring networks. The 8-frequency

model significantly underpredicts the drag ratios for Sr, Ca, Na, Sc, Y and lanthanides

compared to the GF approach due to the assignment of higher migration barriers to all

the dissociation jumps which leads to decreased contribution from outer ring networks.

The 13-frequency model better estimates the drag ratio over the 8-frequency model but

both models predicts incorrect anisotropy in drag for lanthanides compared to the GF

approach.
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Figure 8: (color online) Solutes with drag ratios that are incorrectly predicted by the 8-

and 13-frequency models due to the approximations made for dissociation and associa-

tion jumps. The 8- and 13- frequency models approximate the nine distinct dissociation

jumps into two and four distinct jumps respectively. The 8-frequency model underpre-

dicts the drag ratio by more than a magnitude of two at temperatures below 600 K for

lanthanides. The 13-frequency model improves over the 8-frequency model but devi-

ates for lanthanides, and predicts incorrect anisotropy compared to the GF approach.

Similar to Fig. 7, the gray region highlights the approximation of equating the 1b-1b

and 1b-1b rates.
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Figure 9 shows no drag for Ta, Nb, Ti, Hf, and Zr above 300 K due to their signif-

icant repulsive binding in 1p and 1b complexes. These solutes have similar migration

barriers for dissociation and reorientation. None of the ring networks contribute to drag

for these five solutes. However, under the approximations of the 8- and 13-frequency

models all the reorientation rates become faster than the dissociation rates, which leads

to positive drag ratio for Ta, Nb and Ti due to the contributions from inner ring net-

works. The drag ratios remain negative for Hf and Zr because under the approximations

of the 8- and 13-frequency models, reorientation rates are only marginally faster than

the dissociation rates, which is not sufficient for vacancy motion around the solute.
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Figure 9: (color online) Solutes where both approximations of equating 1b-1b and

1b-1b jumps, and reducing the number of dissociation-association jumps affects the

drag ratios in a complicated manner. For these five solutes, all Mg-vacancy jumps

which include dissociation, association and reorientation have a combined effect on

drag behavior. Similar to Figs. 7 and 8, solid, dotted and dashed lines correspond

to the GF, 13-frequency and 8-frequency frameworks, respectively with black and red

denoting drag in the basal and along the c-axis directions. The gray region highlights

the approximation of equating the 1b-1b and 1b-1b rates.

4. Conclusion

The high-throughput DFT calculations inform the Green function approach to model

vacancy-mediated transport of 61 solutes in a hcp Mg matrix. The GF approach treats

all the symmetry-unique vacancy jumps and calculates the solute diffusion coefficients

and drag ratios exactly in the limit of dilute solute concentration. Our work highlights

the importance of crystal symmetry and demonstrates the limitations of prior diffusion

models—8- and 13-frequency models—in building the solute transport database.
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Overall, smaller solutes diffuse slower, while larger solutes diffuse faster compared

to the self-diffusion of Mg. The higher solute-vacancy exchange barriers due to so-

lute relaxations away from a vacancy in 1p and 1b complex is responsible for the slow

diffusion of smaller solutes. The larger solutes relax towards a vacancy causing lower

solute-vacancy exchange barriers which lead to significant correlation effects. The cor-

relations effects of faster moving solutes are determined from the reorientation and

dissociation rates and the rate approximations in the 8-frequency model lead to under-

prediction of correlations causing activation energy deviations of more than 50 meV for

the first-half of the lanthanides. Our computed diffusion coefficients are in good agree-

ment with the experimental measurements, hence providing accurate transport data

from room temperature upto Mg melting point as well as data for solutes for which

there are no experimental measurements of diffusivity and drag.

We predict positive drag ratios for 39 solutes above 500 K and explain their mech-

anism through vacancy motion around the solute through inner or outer ring networks.

For non-equilibrium vacancy concentrations, these 39 solutes can be dragged by vacan-

cies leading to solute segregation to sinks such as grain boundaries, dislocations etc.

Our work further confirms that drag is possible for solutes having repulsive binding

with vacancy due to faster reorientation rates compared to the dissociation rates.

Our accurately-computed solute transport database should improve the predictions

of higher length-scale models assisting the design of new Mg alloys. The solutes which

diffuse faster than Mg, have negligible solubility in Mg and the tendency to get dragged

by vacancies may serve as ideal alloying additions for texture refinement by impeding

grain growth. The solutes K, Ca, Sr, La, Ce, Pr, Nd, Hg, Bi, Sb, Te, and As fulfill

the above criteria and may segregate to grain boundaries under equilibrium or non-

equilibrium vacancy concentrations. Similarly, the database can provide insights to

new solute additions for the design of age-hardening alloys.
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[67] A. Janotti, M. Krčmar, C. L. Fu, R. C. Reed, Solute diffusion in metals: Larger

atoms can move faster, Phys. Rev. Lett. 92 (2004) 085901.

[68] L. Messina, M. Nastar, N. Sandberg, P. Olsson, Systematic electronic-structure

investigation of substitutional impurity diffusion and flux coupling in bcc iron,

Phys. Rev. B 93 (2016) 184302.

[69] M. Paliwal, S. K. Das, J. Kim, I.-H. Jung, Diffusion of Nd in hcp Mg and inter-

diffusion coefficients in MgNd system, Scripta Materialia 108 (2015) 11 – 14.

[70] S. K. Das, Y.-B. Kang, T. Ha, I.-H. Jung, Thermodynamic modeling and diffu-

sion kinetic experiments of binary MgGd and MgY systems, Acta Materialia 71

(2014) 164 – 175.

[71] T. Garnier, V. R. Manga, D. R. Trinkle, M. Nastar, P. Bellon, Stress-induced

anisotropic diffusion in alloys: Complex Si solute flow near a dislocation core in

Ni, Phys. Rev. B 88 (2013) 134108.

33



[72] P. G. Shewmon, Self-diffusion in magnesium single crystals, JOM 8 (1956)

918–922.

[73] J. Combronde, G. Brebec, Anisotropie d’autodiffusion du magnesium, Acta

Metallurgica 19 (1971) 1393 – 1399.

[74] N. S. Kulkarni, R. J. Bruce Warmack, B. Radhakrishnan, J. L. Hunter, Y. Sohn,

K. R. Coffey, G. E. Murch, I. V. Belova, Overview of SIMS-Based Experimen-

tal Studies of Tracer Diffusion in Solids and Application to Mg Self-Diffusion,

Journal of Phase Equilibria and Diffusion 35 (2014) 762–778.

[75] T. Garnier, M. Nastar, P. Bellon, D. R. Trinkle, Solute drag by vacancies in body-

centered cubic alloys, Phys. Rev. B 88 (2013) 134201.

[76] T. Garnier, D. R. Trinkle, M. Nastar, P. Bellon, Quantitative modeling of solute

drag by vacancies in face-centered-cubic alloys, Phys. Rev. B 89 (2014) 144202.

[77] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazle-

wood, S. Lathrop, D. Lifka, G. Peterson, R. Roskies, J. Scott, N. Wilkins-Diehr,

Xsede: Accelerating scientific discovery, Computing in Science Engineering 16

(2014) 62–74.

[78] Jmol: An open-source Java viewer for chemical structures in 3D, 2017. URL:

http://www.jmol.org/.

34

http://www.jmol.org/

	Introduction
	Methodology
	Results and discussions
	Conclusion

