
The fully kinetic Biermann battery and associated generation of pressure anisotropy

K. M. Schoeffler,1 N. F. Loureiro,2 and L. O. Silva1

1GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico,
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The dynamical evolution of a fully kinetic, collisionless system with imposed background density
and temperature gradients is investigated analytically. The temperature gradient leads to the gen-
eration of temperature anisotropy, with the temperature along the gradient becoming larger than
that in the direction perpendicular to it. This causes the system to become unstable to pressure
anisotropy driven instabilities, dominantly to electron Weibel. When both density and temperature
gradients are present and non-parallel to each other, we obtain a Biermann-like linear in time mag-
netic field growth. Accompanying particle in cell numerical simulations are shown to confirm our
analytical results.

Introduction. Both the seed field required for the gen-
eration of astrophysical magnetic fields [1, 2] and intense
magnetic fields generated in laser-solid interaction lab-
oratory experiments [3–6] have been attributed to the
Biermann battery [7]. The Biermann battery mechanism
generates magnetic fields due to non-parallel temperature
and density gradients. Until now, the understanding of
this mechanism has been restricted to fluid models where
an extra non-ideal term is added to Ohm’s law. In weakly
or non-magnetized plasmas, the validity of fluid models
rests on collisions being sufficiently frequent compared
to the dynamic timescales of the problem, such that the
pressure tensor remains in scalar form [8]. These condi-
tions are often not present in astrophysical environments
and are questionable in some laser-plasma environments,
and thus a fully kinetic model is necessary.

Recently, the Biermann battery has been investigated
with fully self-consistent kinetic 3D simulations [9, 10],
but a clear theoretical model for how the fully kinetic
Biermann battery actually works in collisionless plasmas
has not been fully presented. Such a model is presented
here explaining not only the kinetic Biermann battery,
but also, more generally, the dynamical evolution of col-
lisionless unmagnetized plasmas subject to background
density and temperature gradients. In addition to ex-
tending the validity of the Biermann battery to many
weakly collisional scenarios, we reveal the purely kinetic
result that a temperature gradient alone leads to the gen-
eration of anisotropies in temperature (pressure tensor).
Ref. [11] further generalizes this model showing both the
generation of magnetic fields by the Biermann battery,
and the development of temperature anisotropies for ar-
bitrary temperature and density gradients. However, in
this Letter we fully frame and justify the assumptions
that underlie the model’s validity and show how the ana-
lytic expression for the time evolution of the momentum
distrubution can be applied to address pertinent physical
questions. Particularly, unique to this paper, we present
discussion of the onset of kinetic instabilities, driven by
the temperature anisotropy, such as the Weibel insta-

bility [12], seen in [9, 10], or instabilities that inhibit the
heat flux [13, 14] on time scales short compared to the
collision time. This is relevant for a wide variety of
settings including astrophysical shocks and laser exper-
iments with small collision rates, and addresses the low
heat flux of cooling flows in galaxy clusters, which cannot
be explained by collisional fluid models [15].
Model. We solve the time evolution of the velocity

distribution function and electromagnetic fields accord-
ing to the coupled Vlasov and Maxwell’s equations, as-
suming that only the electrons play a role and the ions
are static, only acting as a neutralizing background. For
our calculation, we normalize the velocity v to vT0 ≡√
Te/me, time t to ω−1

pe , and x to λD, where ωpe is the
plasma frequency for density n = n0, and λD ≡ vT0/ωpe

is the Debye length. In addition E and B are normalized
to E0 ≡ mevT0ωpe/e and B0 ≡ mecωpe/e respectively.

We will assume that a background Maxwellian distri-
bution function, fM , is instantaneously perturbed such
that

n = n0 (1 + εx) , vT = vT0

√
1 + δy, (1)
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1
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∂n

∂x
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T

∂T

∂y
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This perturbation is not an equilibrium solution; it
will be taken as a given initial state. The Biermann
battery is simply the time evolution of the initial non-
equilibrium state, not an instability (note that in fluid
models it grows linearly, not exponentially, with time; we
will find here that this remains true in the kinetic case).
The initial non-equilibrium state, which can be generated
by violent interactions with lasers or shocks, is itself the
source of free energy which generates the magnetic field.
The finite spot-size of laser interactions, or the finite ex-
tent of shock fronts will rapidly give rise to a temperature
gradient perpendicular to the density gradient, which is
necessary for the Biermann battery. Furthermore, we will
explain in the conclusion how our solution can be applied
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to an anisotropic temperature distribution, which is ex-
pected in such experimental setups. However, one should
note that in this simplified model of our initial state, we
ignore for example magnetic fields induced by the initial
laser interaction, and heat flux or temperatures that are
initially evolving with time.

The parameters ε and δ are taken to be very small
and comparable to each other; they will be used as our
asymptotic expansion coefficients. Assuming x ∼ ε0, the
initial distribution function to second order in ε and δ is:

f0 = fM + εxfM − 1

2
δy

(
3− v2

)
fM

+
1

8
δ2y2

(
15− 10v2 + v4

)
fM − 1

2
εδxy

(
3− v2

)
fM .

(3)

We evolve the Vlasov-Maxwell equations initialized with
this distribution function, and either no initial electric or
magnetic fields, or equilibrium fields that act to balance
the force due to the pressure gradient.

The evolution of the electron distribution function sub-
ject to these density and temperature gradients is given
by the Vlasov equation, coupled with Faraday’s and Am-
pere’s laws:

∂f

∂t
+ v ·∇f − (E+ v ×B) ·∇vf = 0, (4)

∂B

∂t
= −∇×E, (5)

∂E

∂t
=

∫
d3vvf +

c2

v2T0

∇×B. (6)

We will seek solutions to these equations in powers of
ε and δ. We will assume t ∼ x ∼ c2/v2T0

∼ ε0 ∼ δ0.
Although the solution is only valid when x ∼ ε0, at an
arbitrary position x, the calculation remains valid in a
new coordinate system x′, where the assumptions are
satisfied using ε′ calculated with the local v′T0

and n′
0
.

There are three other small parameters besides ε and δ;
namely cs/vT0, v

2

T0
/c2, and ν/ωpe, where cs is the sound

speed, and ν is the collision frequency. Each of these
parameters are assumed to be much smaller than one,
but aside from ν/ωpe, can in principle (and must in the
case of v2T0

/c2 [16]) remain of order ε0. We implicitly
assume small values for these parameters by assuming
static ions, using the non-relativistic Vlasov equation/
Maxwellian distribution, and ignoring collisions.

First we highlight some important aspects of the form
of the solution. The first order (∼ ε1) solution including
all terms proportional to cs/vT0 and v2T0

/c2, of E, and
f is uniform in space, and f is an odd function of v. A
proof of this is provided in the supplementary materi-
als. Given a uniform E, from Eq. (5) no magnetic field

is generated, and an odd f with respect to v only leads
to uniform bulk flows and temperature fluxes. It is thus
necessary that we perform our calculation with second
order terms (∼ ε2) to see the Biermann battery, and the
formation of a temperature anisotropy. The second or-
der solution is different in form, and except for terms of
f which are even in v, there are no terms that are uni-
form in space. It should be emphasized that this means
that modifications coming from cs/vT0 and v2T0

/c2 can
be separately neglected for both first order and second
order solutions. Note that second order modifications
to the first order solution are then neglected (the entire
solution is not accurate to ε2).

Solutions can be found from an initial condition by
taking an expansion for small t, restricted to second order
in ε. Fortunately, the sum over all orders of t converges to
a solution valid for arbitrary t ∼ ε0, and thus only small
compared to the electron transit time LT /vT0 = δ−1.

Density gradient. We first consider the case with only
a density gradient (δ = 0). If we assume the initial con-
dition of f = f0 and no initial electric or magnetic fields,
we obtain the following analytic solution:

f = f0 + f̃n (t) , (7)

E = − (
ε− ε2x

)
[1− cos (ωpe,xt)] x̂, (8)

where ωpe,x ≡ 1 + εx/2 is the normalized plasma fre-

quency based on the x dependent density, n, and f̃n is
an oscillatory term described in the supplementary ma-
terials. It is evident that the electric field of this solution
oscillates about

E = − (
ε− ε2x

)
x̂. (9)

The space dependent frequency, ωpe,x, gives rise to in-
creasingly shorter scale x variations of the electric field.
These variations along x lead to phase mixing in space
and then Landau damping. Our model does not show
this damping because the damping is exponentially sup-
pressed until kλD � 1 which occurs at t ∼ ε−1 where
the assumptions break down. Eventually Landau damp-
ing eliminates the oscillations, and thus the electric field
should naturally settle to Eq. (9). If we take Eq. (9) as
the initial condition for the electric field, we arrive at an
equilibrium solution to Eqs. (4–6) where E and f do not
change with time.

Temperature gradient. We now consider a second
case, with a temperature gradient only (ε = 0, δ �= 0).
If we again start with the initial conditions f = f0, and
no initial electric or magnetic fields, to second order in δ,
the solution to Eqs. (4–6) is the following:

f = f∇T + f̃T (t) , (10)

E = −δ [1− cos (t)] ŷ, (11)
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where

f∇T ≡ f0 +
1

2
δtvy

(
5− v2

)
fM

− 1

4
δ2tyvy

(
25− 12v2 + v4

)
fM

+ δ2t2
[
1

8
v2y

(
39− 14v2 + v4

)− 1

4

(
5− v2

)]
fM , (12)

and f̃T is an oscillatory term described in the supplemen-
tary materials. Once again the solution oscillates around
a particular value for the electric field:

E = −δŷ. (13)

It is natural to start from Eq. (13) as an initial condi-
tion. This yields a simpler solution where the electric
field is constant with time, but the distribution function
continues to evolve with time as f = f∇T .

Two important terms in Eq. (12) grow with t and even-
tually break the assumptions of the ordering. The second
term on the RHS of Eq. (12) is associated with the heat
flux, and matches the collisional solution shown in [13]
once t reaches the collision time. However the assump-
tions will have already broken when t ∼ δ−1. The fourth
term on the RHS of Eq. (12), which grows as t2 is as-
sociated with a temperature anisotropy, where the colli-
sionless temperatures in each direction (corresponding to
diagonal components of the pressure tensor) differ. This
term breaks the assumptions earlier; when t ∼ δ−1/2.
However, the simulations will show that the predictions
remain valid beyond this limit.

We define the pressure tensor (normalized tomen0v
2

T0
)

as:

nTij ≡
∫

d3vvivjf , (14)

from which we find Tyy = v2T +3/2δ2t2 and Txx = Tzz =
v2T + 1/2δ2t2, resulting in the following anisotropy:

A ≡ Tyy

Txx
− 1 = δ2t2. (15)

The temperature gradient thus naturally leads to a tem-
perature anisotropy. Hot particles with more momentum
directed against the gradient arrive faster than other an-
gles. This anisotropy will give rise to kinetic instabilities
such as the Weibel instability [12] seen in [9] or instabil-
ities that inhibit the heat flux [13, 14].

Eq. (15) is consistent with the anisotropy and the sub-
sequent development of the Weibel instability obtained
in the PIC simulations reported in [9] — see Fig. 1. The
onset time of the Weibel instability τW is roughly esti-
mated from the magnetic energy spectra when the Weibel
field begins to grow exponentially. Fig. 1(a) shows the
spectra for the case where LT /de = 400 (δ−1 = 2000),
with the onset of Weibel indicated by a dashed line. Al-
though the Biermann field is energetically dominant for

�

τ
ω

FIG. 1. (a) Magnetic energy spectra of Bz (with respect to
|k| =

√
k2
x + k2

y) vs. time from the simulation with system
size LT /de = 400 (LT /λD = 2000) reported in Ref. [9]. The
time when the Weibel instability begins to grow exponentially
is identified with a dashed line. This estimate of the onset
time τW is plotted vs. system size (b) along with the pre-
dicted curve where Eq. (16) is satisfied indicating where the
Weibel growth rate exceeds that of the anisotropy predicted
in Eq. (15).

smaller system sizes, the higher k Weibel instability is
present (i.e. an onset time can be measured) for all sim-
ulations. The onset time, τW , should occur when the
Weibel growth rate, which is a function of anisotropy,
and thus of time, exceeds the predicted rate of anisotropy
growth from Eq. (15):

γW (A(δt)) > 1/A∂A/∂t = 2/t. (16)

Fig. 1(b) shows that this prediction matches the esti-
mated onset over a range of system sizes remarkably
well, where γW (A) is the growth rate of the Weibel in-
stability, given by [12], which we solve numerically. γW
is calculated at the location of fastest growth (x/LT =
0.9125, y/LT = 0), which is independent of system size
using the local values; vT = 0.036c, n = 0.12n0, and
the anisotropy calculated from Eq. (15) using LT,local =
0.0625LT and vT . Note that this anisotropy is slightly
increased by a factor of 5/4 to take into account second
order variations in temperature [17]; this is addressed
in [11].

It is surprising that the agreement is so good since
these simulations are in highly nonlinear regimes; the
assumption that τW � δ−1 is only satisfied for suffi-
ciently large LT /de. For the largest LT /de = 400 case
(τWωpe,local ≈ 0.8δ−1

local), nonlinear effects were clearly
present. The thermal velocity, which we assume to be
constant with time except for the small modification
∼ δ2t2, grew as vT ∼ t. The measured anisotropy grew
at close to A ∼ t4, which is still consistent with A = δ2t2,
given that δ is now a function of time. We expect the
onset time to continue to follow this trend for even larger
LT , where our assumption τWωpe,local � δ−1

local is valid.
Biermann battery. Both of these simplified cases os-

cillate about the equilibrium electric fields, Eq. (9) and
Eq. (13), and Landau damping eventually eliminates
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FIG. 2. Evolution of the averaged Bz due to the perpendicular
density and temperature gradients (green), and anisotropic
temperatures Txx (blue) and Tyy (red), vs. time along with
the predicted curves at y = 0 from Eq. (19) and Eq. (14)
(black dashed lines).

these oscillations. Note that these equilibrium fields be-
gin to balance the associated pressure gradients at a
timescale of the electron plasma frequency ∼ ε0; much
smaller than the time scale of the Biermann battery (on
the order of the electron transit time LT /vT0 ∼ ε−1). To
simplify the solution and avoid the oscillations, we start
with a similar electric field for the initial conditions for
the complete case (ε �= 0, δ �= 0):

E = − (
ε− ε2x+ εδy

)
x̂− δŷ. (17)

With this assumption, and starting with f0, the solution
to Eqs. (4–6) is:

f = f∇T +
1

2
εδtxvy

(
5− v2

)
fM +

1

2
εδt2vxvyfM , (18)

with the magnetic field:

B = −εδtẑ, (19)

where the electric field does not change with time.
We thus see a fully kinetic Biermann battery: the mag-

netic field grows linearly in time, and is proportional to
both the density and temperature gradients, as in the
fluid case.

Numerical comparison. Our analytic model has been
tested via particle-in-cell (PIC) simulations using the
OSIRIS framework [18, 19]. The simulations are done
setting ε = δ = 0.001, and a normalized thermal veloc-
ity vT0/c = 0.05, which is small such that relativistic
effects do not play a role, but large compared to ε. A
more detailed explanation of the simulation parameters
and setup is outlined in the supplementary materials

To test these solutions we look at both simulations
with δ = 0 or ε = 0, and with both gradients. Good
agreement between the predicted and simulated electric
fields for single gradients is shown in the supplementary
materials. In Fig. 2 the average magnetic field from the
simulation with both gradients grows linearly in time,

confirming the prediction in Eq. (19). The growth of the
temperatures in the x and y directions shown in Fig. 2
matches quite well with the predictions from Eq. (14).
Note that our solution is rigorously only valid for t �
δ−1/2 = 50, but this breaking would occur at many more
ω−1

pe for realistically small values of δ that are not feasible
to simulate. The plotted simulation fields are calculated
by averaging the results between −49 < x < 49, and
−49 < y < 49.
Conclusions. In this Letter, we have presented ana-

lytical solutions of the Vlasov-Maxwell system of equa-
tions for collisionless systems with background density
and temperature gradients. The kinetic equivalent of
the Biermann battery — a linear in time magnetic field
growth — has been obtained for the first time. An-
other noteworthy result is the generation of temperature
anisotropy in all cases where a background temperature
gradient is present. This implies that pressure anisotropy
driven instabilities, such as electron Weibel, should be
expected in such systems. These may have a profound
impact on their evolution, from effectively determining
the magnetic field growth, to constraining the heat flux.

Although this Letter does not consider anisotropies
generated by an initial velocity shear [20–22] (as opposed
to a temperature gradient), in certain cases this effect
may compete with our predicted anisotropy.

Formally the initial non-equilibrium state is taken to
be generated such that the time scale for the change in
temperature and density is fast compared to the electron
plasma frequency. On the other hand, the time scale
for the generation of these gradients, which happens for
example in laser or shock interactions, is often similar
or longer than the period of plasma oscillations. How-
ever, the interaction with the more slowly generated gra-
dients would only lead to plasma oscillations comparable
to those which we have shown are excited by our initial
conditions. In effect, we model the time scale that is
slow compared to the gradient generation, but fast com-
pared to the electron transit time LT /vT0. Although
as seen above in simulations, even when the gradients
grow on the same order as LT /vT0 (δ ∝ t) the evo-
lution of anisotropy continues to follow Eq. (15), with

A ∼ δ (t)
2
t2.

It should be noted that for simplicity, there are a few
limitations to the generality of this work. The pressure
and density gradients are assumed to be perpendicular,
and the gradients are entirely linear, not including second
order variation. The more general case is found in [11].

However, this solution remains quite general. An
anisotropic Maxwellian distribution (vTi0 �= vTj0, where
vTi0 is the thermal velocity in the i direction) can be
modeled by the same equations; this better approxi-
mates the initial conditions generated by laser-plasma
interactions. In the anisotropic case, x, v, and E are
normalized using the vTi0 in the corresponding direc-
tion, and Eq. (19) has an additional factor of vTx0/vTy0.



5

This means that the Biermann field is caused solely by
the thermal spread directed along the density gradient
(vTx0). Furthermore, the anisotropy starting from an
initially anisotropic bi-Maxwellian system with A = A0

evolves as A = A0 + δ2t2 (1 +A0) (1−A0/2). This ex-
pression implies that the anisotropy is limited to grow
larger for A0 < 2. The anisotropy A, however, may sur-
pass this limit because A0 is assumed to be initially based
on a bi-Maxwellian and constant in space and time.

Moreover, the kinetic result of anisotropy generation is
relevant even for magnetized cases, as long as the temper-
ature gradient is parallel to the magnetic field. Our solu-
tion for the case with ε = 0 is valid for a uniform parallel
magnetic field of arbitrary magnitude. For significantly
large fields, instabilities driven by the anisotropy in a
magnetized plasma, such as the firehose instability [23],
would dominate over the Weibel instability.

Anisotropy driven instabilities can help explain weak
heat fluxes in cooling flows. Another kinetic instabil-
ity that can lead to suppression in heat flux is driven
solely by the heat flux [24] with a growth rate γHF ≈
0.1ΩceεHF , where Ωce is the electron cyclotron time and
εHF is the coefficient proportional to the heat flux taken
from [24]. The second term on the RHS in Eq. (12) cor-
responds to εHF =

√
2δt. We can estimate the onset

time τHF ≈ 2.7(δΩce)
−1/2 of this instability by compar-

ing the predicted heat flux growth 1/εHF∂εHF /∂t = 1/t,
to γHF .

Comparing the onset time of the heat flux instability
to the Weibel τW ≈ 1.6(δ3vT /c)

−1/4 (in the limit A � 1,
where γW (A) = (8/27π)1/2A3/2vT /c [25]), reveals the
Weibel instability will appear first as long as βe, the ratio
of the electron plasma pressure to the magnetic pressure,
is sufficiently large; βe � LT /de. The Biermann battery
alone often grows slow enough that βe remains larger be-
fore the Weibel onsets; as long as δ � 4((vT /c)Ln/LT )

4,
using τW in Eq. (19) to find βe. Either of these instabili-
ties is likely to cause the heat flux to saturate long before
reaching the collision time.

The purely kinetic temperature anisotropy generation
from temperature gradients is thus relevant for a wide
variety of settings; from astrophysical shocks and laser
experiments with small collision rates where the Bier-
mann battery can also exist, to flux tubes [26, 27] with
temperature gradients found in the solar corona or at the
Earth’s magnetopause.
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