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Abstract—We consider the problem of comparing two complex
multivariate random signal realizations of unequal lengths, to
ascertain whether they have identical power spectral densities.
A binary hypothesis testing approach is formulated and a gen-
eralized likelihood ratio test (GLRT) is derived. An asymptotic
analytical solution for calculating the test threshold is provided.
The results are illustrated via computer simulations. Past work
on this problem is limited to either complex or real signals of
equal lengths, or to real-valued scalar signals of unequal lengths.
The proposed test has applications in diverse areas including user
authentication in wireless networks with multiantenna receivers.

I. INTRODUCTION

This paper is concerned with comparison of two realizations
(sample functions) of some random signals (time series) to
assess if they are realizations of the same random signal. The
realizations are not necessarily of the same length (unequal
sample sizes). A motivation for such problems is application to
two areas: (i) user authentication for wireless network security
enhancement at the physical layer [1], [2], and (ii) spectrum
sensing (looking for presence/absence of primary users (PUs)
in spectral bands) in cognitive radio (CR) networks (based
on the two-window approach of [3]). Recent general articles
on comparison of random signals include [4], [5], [6], and
references therein, where a variety of applications have been
mentioned: earthquake-explosion discrimination [7], financial
portfolio management, clustering of environmental data [6],
analysis of photometry data [4], and development of climate
reference stations [5].
In [8] we have investigated comparison of complex-valued

random signals of equal lengths using their power spectral
densities (PSD). In this paper we extend the theory of [8] to
random signals of unequal lengths (sample sizes). In [9] real-
valued scalar signals of unequal lengths have been considered.
Notation: |A| and etr(A) denote the determinant and the

exponential of the trace of the square matrix A, respectively;
i.e. etr(A) = exp(tr(A)). Bij denotes the ijth element of
the matrix B and I is the identity matrix. The superscripts
∗ and H denote the complex conjugate and the Hermitian
(conjugate transpose) operations, respectively. The notation
y = O(g(x)) means that there exists some finite real number
b > 0 such that limx→∞ |y/g(x)| ≤ b. Given a column
vector x, diag{x} denotes a square matrix with elements of
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x along its main diagonal and zeros everywhere else. δ(τ)
denotes the Kronecker delta, i.e. δ(τ) = 1 if τ = 0, = 0
otherwise. Given two random vectors x and y, we define
cov(x,y) := E{xyH} − E{x}E{yH}.

II. SYSTEM MODEL

We consider two zero-mean (proper) complex multivariate
(dimension p) stationary random signals {x(t)} and {y(t)}
with p × p PSD matrices Sx(f) and Sy(f), respectively. We
observe {x(t)} for t = 0, 1, · · · , Nx − 1 and {y(t)} for t =
0, 1, · · · , Ny − 1. We employ multivariate spectral analysis
to test if the two sets of observation are realizations of two
random signals with identical PSDs. We will assume that both
x(t) and y(t) are stationary with all bounded moments so that
some asymptotic results from [10] regarding PSD estimators
can be invoked; the time series need not be Gaussian. See
also [8]. We will use WC (p,K,S(f)) to denote the complex
Wishart distribution of dimension p, degrees of freedom K,
and mean KS(f).
We will use the Daniell method (unweighted smoothing in

frequency-domain) for PSD estimation. Consider a set of M
normalized frequencies f̃k, in increasing order with k, over
[0, 1], k = 1, 2, · · · ,M . Define

f
(xk)
l =

[
f̃kNx

]
+ l, f

(yk)
l =

[
f̃kNy

]
+ l, (1)

dx(f
(xk)
l ) =

Nx−1∑
t=0

x(t) exp
(
−j2πf

(xk)
l t

)
, (2)

dy(f
(xk)
l ) =

Ny−1∑
t=0

y(t) exp
(
−j2πf

(yk)
l t

)
, (3)

where [x] denotes rounding of x to an integer. The Daniell es-
timators of the PSDs of x(t) and y(t) at normalized frequency
f̃k, denoted by Xk and Yk, respectively, are given by

Xk =
1

Kx

mtx∑
l=−mtx

N−1dx(f
(xk)
l )dH

x (f
(xk)
l ), (4)

Yk =
1

Ky

mty∑
l=−mty

N−1dy(f
(yk)
l )dH

y (f
(yk)
l ), (5)



where Kx = 2mtx + 1 and Ky = 2mty + 1 are smoothing
window sizes. We ensure that f̃k, mtx, mty and M are such
that {

f
(xk)
l , l = −mtx, · · · ,mtx

}
∩{

f
(x(k+1))
l , l = −mtx, · · · ,mtx

}
= ∅, k = 1, 2, · · · ,M, (6)

f
(x1)
l −mtx ≥ 0, f

(xM)
l +mtx < Nx, (7)

{
f
(yk)
l , l = −mty, · · · ,mty

}
∩{

f
(y(k+1))
l , l = −mty, · · · ,mty

}
= ∅, k = 1, 2, · · · ,M, (8)

f
(y1)
l −mty ≥ 0, f

(yM)
l +mty < Ny. (9)

This ensures that none of the smoothing windows overlap,
and all frequencies stay within the normalized range [0, 1).
For given Nx, Ny and pre-selected mtx and mty , one way to
satisfy the above requirements is to first pick

Δ = max

(
2mtx + 1

Nx
,
2mty + 1

Ny

)
,

and then set f̃k = (Δ+0.01) : Δ : (1− (Δ/2)) (in MATLAB
notation of picking reals from (Δ+0.01) and (1− (Δ/2)) in
steps of Δ).
As shown in [8] exploiting [10], as Nx, Ny → ∞, Xk and

Yk approach complex Wishart matrix distributions

Xk ∼ WC

(
p,Kx,K

−1
x Sx(f̃k)

)
, (10)

Yk ∼ WC

(
p,Ky,K

−1
y Sy(f̃k)

)
(11)

and the two are assumed to be independent. Since the
smoothing windows used in (4) do not overlap, X k and Yk

are (asymptotically) independent over the M frequencies f̃k,
k = 1, 2, · · · ,M .
If X ∼ WC (p,K,S(f)), then by [10, Sec. 4.2], E{X} =

KS(f), cov {Xjk,Xlm} = KSjl(f)S
∗

km(f) and the proba-
bility density function (pdf) of X is given by

fX(X) =
1

Γp(K)

1

|S(f)|K
|X|K−p etr{−S−1(f)X} (12)

where, as is common practice, we do not distinguish between
the random matrix (vector) and the values taken by it, the
pdf (12) is defined for positive-definite Hermitian X and is
otherwise zero, and

Γp(K) := πp(p−1)/2

p∏
j=1

Γ(K − j + 1) (13)

where Γ(n) denotes the (complete) Gamma function Γ(z) :=∫∞

0
tz−1e−t dt.

III. PSD-BASED GLRT
The binary hypothesis testing problem now is

H0 : Sy(f̃k) = Sx(f̃k) = S(f̃k) ∀f̃k
H1 : Hc

0 = complement of H0
(14)

given the “data” Xk and Yk, where the unknown parameters
are Sy(f̃k) and Sy(f̃k), k = 1, 2, · · · ,M . We follow the
GLRT approach.
Under H0, the joint pdf ofXk andYk for k = 1, 2, · · · ,M ,

is given by

f(Xk,Yk, k ∈ [1,M ]|H0,S(f̃k)) =

M∏
k=1

KKx
x K

Ky
y

Γp(Kx)Γp(Ky)

|Xk|
Kx−p|Yk|

Ky−p

|S(f̃k)|Kx+Ky

× etr{−S−1(f̃k)(KxXk +KyYk)}. (15)

The above joint pdf is maximized w.r.t. the Hermitian matrix
S(fk) for Ŝ(fk) = αxXk + αyYk, leading to the optimized
joint pdf

f(Xk,Yk, k ∈ [1,M ]|H0, Ŝ(f̃k)) =

M∏
k=1

KKx
x K

Ky
y

Γp(Kx)Γp(Ky)

|Xk|
Kx−p|Yk|

Ky−p

|αxXk + αyYk|Kx+Ky

× exp{−p(Kx +Ky)}. (16)

where
αx =

Kx

Kx +Ky
, αy =

Ky

Kx +Ky
. (17)

Under H1, the joint pdf ofXk andYk for k = 1, 2, · · · ,M ,
is given by

f(Xk,Yk, k ∈ [1,M ]|H1,Sx(f̃k),Sy(f̃k)) =

M∏
k=1

KKx
x K

Ky
y

Γp(Kx)Γp(Ky)

|Xk|Kx−p|Yk|Ky−p

|Sx(f̃k)|Kx |Sy(f̃k)|Ky

×etr{−KxS
−1
x (f̃k)Xk −KyS

−1
y (Ck)Yk}. (18)

The above joint pdf is maximized w.r.t. the Hermitian matrices
Sx(f̃k) and Sy(f̃k) for Sx(f̃k) = Xk and Sy(f̃k) = Yk,
leading to the optimized joint pdf

f(Xk,Yk, k ∈ [1,M ]|H1, Ŝx(f̃k), Ŝy(f̃k)) =

M∏
k=1

KKx
x K

Ky
y

Γp(Kx)Γp(Ky)

|Xk|
Kx−p|Yk|

Ky−p

|Xk|Kx |Yk|Ky

× exp{−p(Kx +Ky)}. (19)

Using (16) and (19) one gets the GLRT

L :=
f(Xk,Yk, k ∈ [1,M ]|H1, Ŝx(f̃k), Ŝy(f̃k))

f(Xk,Yk, k ∈ [1,M ]|H0, Ŝ(f̃k))

=
M∏
k=1

|αxXk + αyYk|Kx+Ky

|Xk|Kx |Yk|Ky

H1

�
H0

τ , (20)



where the threshold τ is picked to achieve a given probability
of false alarm Pfa = P{L ≥ τ |H0}. This requires pdf of L
under H0. To this end we can establish Theorem 1.
First some notation and definitions. Let Br(h) denote the

Bernoulli polynomial of degree r and order unity. Define

ν = Mp2, (21)

ρ = 1−
2p2 − 1

6p

[
K−1

x +K−1
y − (Kx +Ky)

−1
]
, (22)

ωr =
(−1)r+1M

r(r + 1)

p∑
l=1

[Br+1((1− ρ)Kx + 1− l)

(ρKx)r

+
Br+1((1− ρ)Ky + 1− l)

(ρKy)r

−
Br+1((1− ρ)(Kx +Ky) + 1− l)

(ρ(Kx +Ky))r

]
(23)

and

ln(L) =
M∑
k=1

(
(Kx +Ky) ln |αxXk + αyYk|

−Kx ln |Xk| −Ky ln |Yk|
)
. (24)

Our main result is stated below and proved in the Appendix.
Theorem 1 : The GLRT for the binary hypothesis testing
problem (14) is given by

2ρ ln(L)
H1

�
H0

τ (25)

where ρ and ln(L) are given by (21) and (24), respectively.
The threshold τ is picked to achieve a pre-specified prob-
ability of false alarm Pfa = P{2ρ ln(L) > τ |H0} =
1 − P{2ρ ln(L) ≤ τ |H0}. With χ2

n denoting a random
variable with central chi-square distribution with n degrees
of freedom (as well as the distribution itself),

P{2ρ ln(L) ≤ z |H0} = P{χ2
ν ≤ z}+ ω2

[
P{χ2

ν+4 ≤ z}

−P{χ2
ν ≤ z}

]
+ ω3

[
P{χ2

ν+6 ≤ z} − P{χ2
ν ≤ z}

]
+
{
ω4

[
P{χ2

ν+8 ≤ z} − P{χ2
ν ≤ z}

]
+

1

2
ω2
2

[
P{χ2

ν+8 ≤ z}

−2P{χ2
ν+4 ≤ z}+ P{χ2

ν ≤ z}
] }

+O(M/(min(Kx,Ky))
5).

(26)

IV. SIMULATION EXAMPLES

We generate stationary x(t) and y(t) ∈ C
p, p = 3, as

x(t) = n(t), y(t) = n(t) under H0, and x(t) = n(t), y(t) =
s(t) +n(t) under H1, where {n(t)} is spatially uncorrelated,
colored, proper complex Gaussian noise, and {s(t)} is the
signal sequence. Noise sequences {n(t)} under H0 and H1

are independent of each other, but identically distributed. The
noise sequence {n(t)} is generated as

n(t) = nc(t) + nw(t) , (27)
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Fig. 1. Actual Pfa vs design Pfa based on 10,000 runs, p = 3

where nw(t) ∼ Nc(0, σ
2
wI) is i.i.d., and nc(t) is gen-

erated as follows. The various components of nc(t) are
i.i.d., and each component is generated by filtering an i.i.d.
scalar sequence, distributed as Nc(0, σ

2
c ), through a lin-

ear filter with impulse response {0.2762, 0.9206, 0.2762},
where

√
(0.2762)2 + (0.9206)2 + (0.2762)2 = 1. Therefore,

E{‖nc(t)‖2} = pσ2
c , leading to E{‖n(t)‖2} = p(σ2

c + σ2
w) =

pσ2
n. We pick σ2

w = 0.2σ2
n for a given value of σ2

n. The signal
{s(t)} is a filtered digital communications signal generated by
passing an information sequence through a frequency-selective
Rayleigh fading channel as follows:

s(t) =

4∑
l=0

h(l)d(t− l) (28)

where d(t) is a scalar i.i.d. QPSK sequence, filtered through
a random time-invariant, frequency-selective Rayleigh fading
p × 1 vector channel h(l) with 5 taps, equal power delay
profile, mutually independent components, which are identi-
cally distributed zero-mean proper complex Gaussian random
variables. For different ls, h (l)s are mutually independent and
identically distributed as h(l) ∼ Nc(0, σ

2
hI). The signal s(t)

was scaled to achieve a given SNR E{‖s(t)‖2}/E{‖n(t)‖2}.
We picked Nx=256 or 128 with Kx=9 or 7, respectively,

and Ny=128 with Ky = 7, and M = 17.

A. Threshold Calculation
First we investigate the efficacy of Theorem 1 in computing

the GLRT threshold for a given Pfa. In Fig. 1, we compare
actual Pfa and design Pfa based on 10,000 runs for Nx=256
and Ny=128, where Theorem 1 was used to calculate the test



threshold. It is seen that Theorem 1 is effective in calculating
the test threshold.

B. Detection Performance
In Fig. 2, we show the ROC curves under two different

sample sizes: equal and unequal. Given unequal sample sizes,
one can reduce the larger sample size to smaller sample size
by discarding “extra” data, and then apply the results of [8].
This is shown in Fig. 2. But we can also apply the proposed
detector with unequal sample sizes where we do not discard
any data. It is seen from Fig. 2 that we obtain an improved
performance (higher probability of detection for a given false
alarm rate).
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Fig. 2. ROC curves based on 10,000 runs, p = 3

APPENDIX

The proof of Theorem 1 relies on the following result which
is based on [11, Sec. 8.5.1], [12, Sec. 8.2.4] (see [13, Lemma
9] for details, also [8, Lemma 2]).
Lemma 1 : Consider a random variable W (0 ≤ W ≤ 1) with
hth moment

E{Wh} = C

(∏b
j=1 y

yj

j∏a
k=1 x

xk

k

)h ∏a
k=1 Γ(xk(1 + h) + ξk)∏b
j=1 Γ(yj(1 + h) + ηj)

(29)

where a and b are integers, C is a constant such that E{W 0} =
1 and

∑a
k=1 xk =

∑b
j=1 yj . Define

ν =− 2
[ a∑
k=1

ξk −
b∑

j=1

ηj −
1

2
(a− b)

]
, (30)

ρ =1−
1

ν

[ a∑
k=1

x−1
k

(
ξ2k − ξk +

1

6

)

−
b∑

j=1

y−1
j

(
η2j − ηj +

1

6

)]
, (31)

βk = (1− ρ)xk, εj = (1− ρ)yj , (32)

and

ωr =
(−1)r+1

r(r + 1)

{ a∑
k=1

Br+1(βk + ξk)

(ρxk)r

−
b∑

j=1

Br+1(εj + ηj)

(ρyj)r

}
. (33)

Then

P{−2ρ ln(W ) ≤ z}

= P{χ2
ν ≤ z}+ ω2

[
P{χ2

ν+4 ≤ z} − P{χ2
ν ≤ z}

]
+ ω3

[
P{χ2

ν+6 ≤ z} − P{χ2
ν ≤ z}

]
+
{
ω4

[
P{χ2

ν+8 ≤ z} − P{χ2
ν ≤ z}

]
+

1

2
ω2
2

×
[
P{χ2

ν+8 ≤ z} − 2P{χ2
ν+4 ≤ z}+ P{χ2

ν ≤ z}
] }

+

a∑
k=1

O(x−5
k ) +

b∑
j=1

O(y−5
j ). (34)

In order to apply Lemma 1 to our problem, we establish
Lemma 2.
Lemma 2 : Under H0, for any Re(h) ≥ 0,

E{L−h} =
1

(αKx
x α

Ky
y )Mph

×

[
Γp(Kx(1 + h))Γp(Ky(1 + h))

Γp(Kx)Γp(Ky)

]M

×

[
p∏

�=1

Γ(Kx +Ky − �+ 1)

Γ((Kx +Ky)(1 + h)− �+ 1)

]M

.

(35)

Proof: Define

Lk =
|αxXk + αyYk|

Kx+Ky

|Xk|Kx |Yk|Ky
, with L =

M∏
k=1

Lk. (36)

Define
X̌k := KxS

−1/2
x (f̃k)XkS

−1/2
x (f̃k), (37)

Y̌k := KyS
−1/2
y (f̃k)YkS

−1/2
y (f̃k). (38)

Then

Lk =
(αKx

x α
Ky
y )p |X̌k + Y̌k|

Kx+Ky

|X̌k|Kx |Y̌k|Ky

, (39)

and under H0,

X̌k ∼ WC (p,Kx, I) , Y̌k ∼ WC (p,Ky, I) . (40)



Using (39) and (40), we have

E{1/Lh
k |H0} = (αKx

x αKy
y )−ph

×

∫ ∫
|X̌k|

Kxh+Kx−p |Y̌k|
Kyh+Ky−p

|X̌k + Ỹk|(Kx+Ky)h

×
1

Γp(Kx)Γp(Ky)
etr{−X̌k − Y̌k} dX̌k dY̌k

= (αKx
x αKy

y )−phΓp(Kx(1 + h))Γp(Ky(1 + h))

Γp(Kx)Γp(Ky)

× E{|X′

k +Y′

k|
−h(Kx+Ky)}, (41)

where X′

k and Ỹ′

k are mutually independent with distributions
given by

X′

k ∼ WC (p,Kx(1 + h), I) , (42)

Y′

k ∼ WC (p,Ky(1 + h), I) . (43)

Since X′

k + Ỹ′

k ∼ WC (p, (Kx +Ky)(1 + h), I), by [14],
we have

E{|X′

k + Ỹ′

k|
−h(Kx+Ky)}

=

p∏
�=1

Γ(Kx +Ky − �+ 1)

Γ((Kx +Ky)(1 + h)− �+ 1)
. (44)

and therefore, from (36), (41), (44), and independence of Lk

over the M frequencies f̃k, k = 1, 2, · · · ,M , we have (35).
�
Now we apply Lemma 1 to Lemma 2 to prove Theorem

1. In order to exploit Lemma 1, we need to establish that
0 ≤ L−1 ≤ 1. Since Xk and Yk are both positive-definite,
L−1
k ≥ 0 follows immediately. By complex equivalent of [15,

Sec. 17.9, Eqn. (17.115)], noting that αy = 1− αx, |αxXk +
αyYk)| ≥ |Xk|

αx · |Yk|
αy , hence, |αxXk+αyYk)|

Kx+Ky ≥
|Xk|

αx(Kx+Ky) · |Yk|
αy(Kx+Ky) = |Xk|

Kx |Yk|
Ky , which

implies L−1 ≤ 1.
Proof of Theorem 1 : Comparing (29) with (35), it can be

shown that we have the correspondence

a = 2Mp, b = Mp, (45)

xk =

{
Kx, k = 1, 2, · · · ,Mp
Ky, k = Mp+ 1,Mp+ 2, · · · , 2Mp

, (46)

ξk = 1− kmod(p) for k = 1, 2, · · · , a, (47)

yj = Kx +Ky for j = 1, 2, · · · , b, (48)

ηj = 1− jmod(p) for j = 1, 2, · · · , b. (49)

Using (32) and (48), we have

βk =

{
(1− ρ)Kx, k = 1, 2, · · · ,Mp
(1− ρ)Ky, k = Mp+ 1,Mp+ 2, · · · , 2Mp

,

(50)
εj = (1− ρ)(Kx +Ky) ∀j. (51)

Using the above values ((45)-(51)), in (30), (31), (33) and (34),
we obtain (21)-(23) and (26), thereby establishing Theorem 1.
�
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