DRAFT VERSION AUGUST 28, 2017
Preprint typeset using IMTEX style AASTeX6 v. 1.0

FULLY-KINETIC VERSUS REDUCED-KINETIC MODELLING OF COLLISIONLESS PLASMA TURBULENCE

DANIEL GROSELI'?, Sivio S. CERRI®, ALEJANDRO BANGON Navarro'?, CHRISTOPHER WILLMOTT?, DANIEL ToLD!,
Nuno F. LouREIRO*, FRANCESCO CALIFANO®, AND FRANK JENKO!?

IMax-Planck-Institut fir Plasmaphysik, Boltzmannstrafie 2, 85748 Garching, Germany
2Dla]:arl;rrns-m of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA

3Physic:5 Department “E. Fermi”, University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy
4Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

ABSTRACT

We report the results of a direct comparison between different kinetic models of collisionless plasma
turbulence in two spatial dimensions. The models considered include a first principles fully-kinetic (FK)
description, two widely used reduced models [gyrokinetic (GK) and hybrid-kinetic (HK) with fluid
electrons|, and a novel reduced gyrokinetic approach (KREHM). Two different ion beta (/3;) regimes
are considered: 0.1 and 0.5. For 3; = 0.5, good agreement between the GK and FK models is found at
scales ranging from the ion to the electron gyroradius, thus providing firm evidence for a kinetic Alfvén
cascade scenario. In the same range, the HK model produces shallower spectral slopes, presumably due
to the lack of electron Landau damping. For 8; = 0.1, a detailed analysis of spectral ratios reveals a
slight disagreement between the GK and FK descriptions at kinetic scales, even though kinetic Alfvén
fluctuations likely still play a significant role. The discrepancy can be traced back to scales above
the ion gyroradius, where the FK and HK results seem to suggest the presence of fast magnetosonic
and ion Bernstein modes in both plasma beta regimes, but with a more notable deviation from GK
in the low-beta case. The identified practical limits and strengths of reduced-kinetic approximations,
compared here against the fully-kinetic model on a case-by-case basis, may provide valuable insight

into the main kinetic effects at play in turbulent collisionless plasmas, such as the solar wind.
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1. INTRODUCTION

Turbulence is pervasive in astrophysical and space
plasma environments, posing formidable challenges for
the explanation of complex phenomena such as the turbu-
lent heating of the solar wind (Bruno & Carbone 2013),
magnetic field amplification by dynamo action (Kulsrud
& Zweibel 2008; Rincon et al. 2016; Kunz et al. 2016), and
turbulent magnetic reconnection (Matthaeus & Lamkin
1986; Lazarian & Vishniac 1999; Loureiro et al. 2009;
Matthaeus & Velli 2011; Lazarian et al. 2015; Cerri &
Califano 2017). The average mean free path of the ion-
ized particles in the majority of these naturally turbu-
lent systems typically greatly exceeds the characteristic
scales of turbulence, rendering the dynamics over a broad
range of scales essentially collisionless. Driven by in-
creasingly accurate in-situ observations, a considerable
amount of current research is focused on understanding
collisionless plasma turbulence at kinetic scales of the
solar wind (Marsch 2006; Bruno & Carbone 2013), where
the phenomenology of the inertial range (magnetohydro-
dynamic) turbulent cascade is no longer applicable due
to collisionless damping of electromagnetic fluctuations,

dispersive properties of the wave physics, and as a result
of kinetic-scale coherent structure formation (Kiyani et al.
2015). The research effort with emphasis on kinetic-scale
turbulence includes abundant observations (Leamon et al.
1998; Bale et al. 2005; Alexandrova et al. 2009; Sahraoui
et al. 2009; Kiyani et al. 2009; Osman et al. 2011; He et al.
2012; Salem et al. 2012; Chen et al. 2013; Lacombe et al.
2014; Chasapis et al. 2015; Perrone et al. 2016; Narita
et al. 2016), supported by analytical predictions (Galtier
& Bhattacharjee 2003; Howes et al. 2008a; Schekochihin
et al. 2009; Boldyrev et al. 2013; Passot & Sulem 2015),
and computational studies (Howes et al. 2008b; Saito
et al. 2008; Servidio et al. 2012; Verscharen et al. 2012;
Boldyrev & Perez 2012; Wu et al. 2013b; Karimabadi
et al. 2013; TenBarge & Howes 2013; Chang et al. 2014;
Vasquez et al. 2014; Valentini et al. 2014; Told et al. 2015;
Wan et al. 2015; Franci et al. 2015; Cerri et al. 2016;
Parashar & Matthaeus 2016).

Out of numerical convenience and based on physical
considerations, the simulations of collisionless plasma
turbulence are often performed using various types of
simplifications of the first principles fully-kinetic plasma



description. Among the most prominent reduced-kinetic
models for astrophysical and space plasma turbulence
are the so-called hybrid-kinetic (HK) model with fluid
electrons (Winske et al. 2003; Verscharen et al. 2012;
Parashar et al. 2009; Vasquez et al. 2014; Servidio et al.
2015; Franci et al. 2015; Kunz et al. 2016) and the gyroki-
netic (GK) model (Howes et al. 2008a,b; Schekochihin
et al. 2009; TenBarge & Howes 2013; Told et al. 2015; Li
et al. 2016). Even though these models are frequently
employed, no general consensus concerning the valid-
ity of reduced-kinetic treatments presently exists within
the community, with distinct views on the subject be-
ing favoured by different authors (Howes et al. 2008a;
Matthaeus et al. 2008; Schekochihin et al. 2009; Servidio
et al. 2015). Fully-kinetic (FK) simulations, on the other
hand, are currently constrained by computational require-
ments that limit the prevalence of such studies, the accessi-
ble range of plasma parameters, and the ability to extract
relevant information from the vast amounts of simulation
data (Saito et al. 2008; Wu et al. 2013b; Karimabadi et al.
2013; Chang et al. 2014; Haynes et al. 2014; Wan et al.
2015; Parashar & Matthaeus 2016). In order to spend
computational resources wisely and focus fully-kinetic
simulations on cases where they are most needed, it is
therefore crucial to establish a firm understanding of the
practical limits of reduced-kinetic models. Furthermore,
the question concerning the validity of reduced-kinetic
approximations is not only important from the compu-
tational perspective, but is also of major interest for the
development of analytical predictions based on a set of
simplifying but well-validated assumptions, and for the
interpretation of increasingly accurate in-situ satellite
measurements. Last but not least, a thorough under-
standing of the range of parameters and scales where
reduced models correctly reproduce the fully-kinetic re-
sults is instrumental in identifying the essential physical
processes that govern turbulence in those regimes.

In this work, we try to shed light on some of the above-
mentioned issues by performing a systematic, first-of-a-
kind comparison of the FK, HK, and GK modelling
approaches for the particular case of collisionless, kinetic-
scale plasma turbulence. Furthermore, we also compare
the results against a novel reduced gyrokinetic model, cor-
responding to the low plasma beta limit of GK. Studies
of similar type have been relatively rare so far (Birn et al.
2001; Henri et al. 2013; TenBarge et al. 2014; Munoz et al.
2015; Told et al. 2016b; Camporeale & Burgess 2017; Cerri
et al. 2017; Pezzi et al. 2017a,b). Considering these cir-
cumstances, we choose here to investigate different plasma
regimes in order to give a reasonably comprehensive view
of the effects of adopting reduced-kinetic approximations
for studying kinetic-scale, collisionless plasma turbulence.
On the other hand, the simulation parameters that we
select per force result from a compromise between the

desire for maximal relevance of results in relation to solar
wind turbulence and computational accessibility of the
problem. To this end, we adopt a two-dimensional and
widely-used setup of decaying plasma turbulence (Orszag
& Tang 1979) and carefully tailor the simulation parame-
ters to reach—as much as possible—the plasma conditions
relevant for the solar wind. The particular type of initial
condition was chosen here for its simplicity and popular-
ity, allowing for a relatively straightforward reproduction
of our simulations and/or comparison of the results with
previous works (Biskamp & Welter 1989; Dahlburg &
Picone 1989; Politano et al. 1989, 1995; Parashar et al.
2009, 2015a; Loureiro et al. 2016; Li et al. 2016). On
the other hand, it is still reasonable to expect that the
turbulent system studied in this work shares at least some
qualitative similarities with natural turbulence occurring
at kinetic scales of the solar wind (Servidio et al. 2015;
Li et al. 2016; Wan et al. 2016). We also note that the
choice of initial conditions should not affect the small-
scale properties of turbulence due to the self-consistent
reprocess of the fluctuations by each model during the
turbulent cascade (Cerri et al. 2017).

The paper is organized as follows. In Section 2 we
provide a short summary of the kinetic models included
in the comparison, followed by a description of the simu-
lation setup in Sec. 3. The results presented in Sec. 4 are
divided into several parts. In the first part, we investigate
the spatial structure of the solutions by comparing the
snapshots of the electric current and the statistics of mag-
netic field increments (Sec. 4.1). The analysis of turbulent
structures in real space is followed by a comparison of the
global turbulence energy budgets for each model (Sec. 4.2).
Afterwards, we perform a detailed comparison of the spec-
tral properties of the solutions (Sec. 4.3), followed by the
analysis of the nonthermal ion and electron free energy
fluctuations in the spatial domain (Sec. 4.4). Finally, we
conclude the paper with a summary and discussion of our
main results (Sec. 5).

2. KINETIC MODELS INCLUDED IN THE
COMPARISON

For the sake of clarity, we provide below brief descrip-
tions of the kinetic models involved in the comparison.
However, we make no attempt to give a comprehensive
overview of each model and we refer the reader to the
references given below for further details. As is often
done in literature, we adopt here the so-called collisionless
approximation (Lifshitz & Pitaevskii 1981; Klimontovich
1997) as the basis for interpreting our results, given the
fact that the solar wind is very weakly collisional (Marsch
2006; Bruno & Carbone 2013). By definition, the colli-
sionless approximation neglects any discrete binary (and
higher order) particle interactions. It is worth mentioning
that although we do not explicitly consider the role of a



weak collisionality, our numerical solutions still contain
features which resemble (weakly) collisional effects in a
plasma. In the particle-in-cell (PIC) method, collisional-
like effects occur due to random statistical fluctuations in
the electrostatic potential felt by each finite-size particle,
and due to numerical effects related to the use of a spa-
tial grid for the electromagnetic fields (Okuda & Birdsall
1970; Hockney 1971; Birdsall & Langdon 2005). Eulerian
based methods, on the other hand, are subject to an
effective velocity space diffusion, which acts to smooth
the particle distribution function at the smallest resolved
velocity scales.

We start with a quick summary of the fully-kinetic, elec-
tromagnetic plasma model (Klimontovich 1967; Lifshitz
& Pitaevskii 1981; Klimontovich 1997; Liboff 2003). In
the collisionless limit, the kinetic properties of a plasma
are governed by the Vlasov equation for each particle
species s:
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where fq(r,p,t) is the single-particle distribution func-
tion, g, is the species charge, v is the velocity, p is the
(relativistic) momentum, and E and B are the (smooth)

self-consistent electromagnetic fields. The self-consistent
fields are obtained from the full set of Maxwell equations,
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where J =3 ,q: [Vfs d3p is the electric current and p =
Yoeqs [ fs d3p is the charge density. The above equations
form a closed set for the fully-kinetic description of a
plasma in the collisionless limit.

The hybrid-kinetic Vlasov-Maxwell model (Byers et al.
1978; Harned 1982; Winske et al. 2003) is a non-
relativistic, quasi-neutral plasma model where the ions are
fully kinetic and the electrons are treated as a background
neutralizing fluid with some underlying assumption for
their equation of state (typically an isothermal closure).
The fundamental kinetic equation solved by the HK model
is the Vlasov equation for the ions:
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where f;(r,v) is the ion single-particle distribution func-
tion and m; is the ion mass. The B field is advanced
using Faraday’s law
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Since the HK model assumes the non-relativistic limit,
the displacement current is neglected in the Ampére’s

law, which thus reads
VxB= 5. (6)
c

Finally, the electric field is obtained from the generalized
Ohm’s law (Valentini et al. 2007):

{=) B e
(1-d2V)E=-"e 22 _ Vp -
c ne
; x B 1
_ e {ug 2 —V. [min(uiui — Uele) + Hz‘] } )
m; c ne

(7)

where de, me/mq, n, n, W, U = u; — J/en, pe, and
II; are the electron skin depth, electron-ion mass ratio,
(numerical) resistivity, plasma density, ion fluid velocity,
electron fluid velocity, electron pressure, and ion pressure
tensor, respectively. The HK model is a quasi-neutral
theory (Tronci & Camporeale 2015), n; ~ ne = n, and
therefore it deals only with frequencies much smaller than
the electron plasma frequency, w <« wp.. We also note
that the finite electron mass in expression (7) is in practice
often set to zero, which consequently neglects electron
inertia and results in a much simplified version of Ohm’s
law:
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The gyrokinetic model (Frieman & Chen 1982; Brizard
& Hahm 2007) orders fluctuating quantities according to a
small expansion parameter €. In particular, the following
ordering is assumed for the fluctuating quantities:

6fs/Fo,s ~ 0B/Bo ~ qs0¢/To,s ~ €, (9)

E= . (8)

where Fp . is the background particle distribution func-
tion, 6 f, is the perturbed part of the distribution, ¢
is the perturbed electrostatic potential, Tp ¢ is the back-
ground kinetic temperature (measured in energy units),
and By is the background magnetic field. A similar order-
ing is assumed for the characteristic macroscopic length
scale Ly and the frequencies of the fluctuating quantities
w:

w/Qeg ~ ps/Lg ~ e, (10)

where ()., is the species cyclotron frequency and p; is
the species Larmor radius. For the problems of inter-
est, such as kinetic-scale turbulence in the solar wind
(Howes et al. 2006, 2008a; Schekochihin et al. 2009), the
macroscopic length scale can be typically associated with
a characteristic wavelength of the fluctuations measured
along the magnetic field. Time scales comparable to the
cyclotron period are cancelled out by performing an av-
eraging operation over the particle Larmor motion. The
phase space is then conveniently described in terms of the
coordinates (R, pts, v)), where R =1 + (v x bg) /(2 is
the particle gyrocenter position, ps = mgsv? /2By is the



magnetic moment, and v = v - bg the velocity along the
mean field, where by = By/Byp. Instead of evolving the
perturbed distribution 4 f,, the gyrokinetic equations are
typically written in terms of the ring distribution:
do(r,t
ho(Ras e, 8) = 3£u(r,v,0) + 20280 g, (0). (1)
0,8

The distribution h; is independent of the gyrophase an-
gle at fixed R;. The electromagnetic fields are obtained
self-consistently from the ring distribution under the as-
sumption (9) and (10). For the electrostatic potential, the
assumptions result in a quasineutrality condition, which
is used to determine d¢. The magnetic field, on the other
hand, is obtained from a GK version of Ampere’s law.

Finally, we summarize the main features of the so-called
Kinetic Reduced Electron Heating Model (KREHM)
(Zocco & Schekochihin 2011). KREHM is a fluid-kinetic
model, obtained as a rigorous limit of gyrokinetics for
low-beta magnetized plasmas. In particular, the low beta
assumption takes the following form:

VBe ~ \V/me/m; < 1, (12)

where (3. is the electron beta ratio. Due to its low beta
limit, the addition of KREHM to this work clarifies the
plasma beta dependence of our results. Instead of solving
for the total perturbed electron distribution function 4 fe,
KREHM is written in terms of

ge = er — (6?1/1’10 —+ 21.?”61&"18/1)?_,1,8)/1?013, (13)

where dn, is the perturbed density, du| . the perturbed
electron fluid velocity along the mean magnetic field, and
Vth,e = \/ 2T0,e/Mme is the electron thermal velocity of
the background distribution Fp . The modified distribu-
tion g, has vanishing lowest two (fluid) moments, thus
highlighting the kinetic physics contained in KREHM,
leading to small-scale velocity structures in the perturbed
distribution function. As the final set of equations for
ge does not explicitly depend on velocities perpendicu-
lar to the magnetic field, the perpendicular dynamics
may be integrated out, leaving only the parallel veloc-
ity coordinate. As such, the model is by far the least
computationally demanding of the four that we employ.
As shown in Zocco & Schekochihin (2011), a convenient
representation of g in the v space can be given in terms
of Hermite polynomials.

3. PROBLEM DESCRIPTION AND SIMULATION
SETUP

In the following section we provide details regarding the
choice of initial condition and plasma parameters. Further
technical details describing the numerical settings used
for each type of simulation are given in Appendix A.

The initial condition used for all simulations is the
so-called Orszag-Tang vortex (Orszag & Tang 1979)—a

widely-used setup for studying decaying plasma turbu-
lence (Biskamp & Welter 1989; Dahlburg & Picone 1989;
Politano et al. 1989, 1995; Parashar et al. 2009, 2015a;
Loureiro et al. 2016; Li et al. 2016). The initial fluid
velocity and magnetic field perturbation are given by

u; = du(—sin(2ry/L) é; +sin(2rz/L) &,),  (14)
B, = 6B (—sin(2ny/L) é; +sin(dnz/L) &), (15)

where L is the size of the periodic domain (z,y € [0, L)),
and du and 4B are the initial fluid and magnetic fluc-
tuation amplitudes, respectively. A uniform magnetic
field By = Bpé; is imposed in the out-of-plane (z) di-
rection. In addition to magnetic field fluctuations, we
initialize a self-consistent electric current in accordance
with Ampere’s law:

¢ 27éB
4r L

. (2cos(4mz/L) + cos(2my/L)).  (16)
For the FK and GK simulations, we explicitly initialize
the parallel current via a locally shifted Maxwellian for the
electron species. Similarly, we prescribe the perpendicular
fluid velocities for the FK and HK models by locally
shifting the Maxwellian velocity distributions in v, and
vy. For GK and KREHM, the same approach is not
possible due to the gyrotropy assumption imposed on the
particle perpendicular velocities. Instead, the in-plane
fluid velocities for GK and KREHM are set up with a
plasma density perturbation, resulting in self-consistent
electrostatic field that gives rise to perpendicular fluid
motions via the E x B drift (Numata et al. 2010; Loureiro
et al. 2016). In the large-scale and strong guide field limit,
the leading order term for the electric field is

EJ_m—luleg (17)
c

and the perturbation is electrostatic. For better consis-
tency with reduced-kinetic models used here, the E field
for the FK model is initialized according to Eq. (17) with
a corresponding (small) electron density perturbation to
satisfy the Poisson equation for the electrostatic potential.
Apart from minor density fluctuations that account for
the electrostatic field, the initial ion and electron densi-
ties, as well as temperatures, are chosen to be uniform.
Finally, it is important to mention that we perform the
HK simulations with the generalized version of Ohm'’s
law given by Eq. (7) which includes electron inertia, and
as such features a collisionless mechanism for breaking
the magnetic field frozen-in flux constraint.

A list of simulation runs with the corresponding plasma
parameters and box sizes is given in Table 1. The key
dimensionless parameters varied between the runs are the
ion beta

Bi = 8mnoT;/ B2 (18)



and the initial turbulence fluctuation strength
e =0B/By =dufva, (19)
where v4 = By /+/4dmngm; is the Alfvén speed. Through-

out this article, the species thermal velocity is defined as
Uth,s = v/ 21 /m, and the species Larmor radius is given
by pe = Vin,s/Qes, Where Q. = eB/(myc) is the species
cyclotron frequency. Unless otherwise stated, lengths are
normalized to the ion inertial length d; = p;/\/B;, veloci-
ties to the Alfvén speed v, masses to the ion mass m;,
magnetic field to By, the electric field to v4By/c, and
density to the background value ng. We take the (integral
scale) eddy turnover time Ty as the basic time unit, which
we define here as
L
- 27mbu’
The eddy turnover time, being independent of kinetic
quantities, is a robust measure allowing for a direct com-
parison of simulations obtained from different plasma
models and for variable fluctuation levels and box sizes
(Parashar et al. 2015a). Further simulation details per-
taining to each kinetic model are provided in Appendix A.

(20)

To

Main plasma parameters

Run ,8;‘, € My fme T;'ng L,;d-;
Al 01 0.2 100 1 8
A2 01 01 100 1 8
B1 05 03 100 1 8
B2 0.5 015 100 1 8

Table 1. List of simulation runs with their correspond-
ing plasma parameters: ion beta (3;), initial turbulence
fluctuation level (e), ion-electron mass ratio (m;/m.),
ion-electron temperature ratio (7;/T.), and box size in

units of the ion inertial length (L /d;).

4. RESULTS

Below we present a detailed analysis of the simulation
runs listed in Sec. 3. All diagnostics are implemented fol-
lowing equivalent technical details for all models and the
numerical values from all the simulations are normalized
in the same way. For the root-mean-square values of
the electric current and for the spectral analysis of the
fully-kinetic PIC simulations, we use short-time averaged
data as is often done in the PIC method (Liu et al. 2013;
Daughton et al. 2014; Roytershteyn et al. 2015; Munoz
et al. 2017). The effect of short-time averaging is to high-
light the turbulent structures and reduce the amount of
fluctuations arising from PIC noise that are mainly con-
centrated at high frequencies. In our case, the averaging
roughly retains frequencies up to w < 27 for all simu-
lation runs listed in Table 1. The possibility to search for
phenomena that could potentially reach frequencies much

5

higher than the ion cyclotron frequency [e.g. whistler
waves (Saito et al. 2008; Gary & Smith 2009; Chang et al.
2014; Gary et al. 2016)] is therefore limited in the time
averaged data. We note however that without the use
of short-time averaging the amount of PIC noise in our
simulations is too high to allow for a detailed analysis
of turbulent structures at electron kinetic length scales.
The limitations set by the PIC noise are most strict for
the perpendicular electric field, the detailed knowledge of
which is an important piece of information for identifying
the small-scale nature of the turbulent cascade. Addi-
tional information regarding the short-time averaging of
the PIC simulation data is given in Appendix B.

4.1. Spatial field structure

We begin the discussion of our results by comparing
the spatial structure of the turbulent fields. In Figure 1
we compare the out-of-plane electric current J, at around
3.1 eddy turnover times 7( in the simulation. The con-
tour plots are shown for variable fluctuation strengths
€ =60B/By = éu/va and for both values of the ion beta
(B: = 0.1,0.5). The electric current obtained from FK
simulations is plotted using the raw data without any
short-time averaging or low-pass filtering to provide the
reader with a qualitative measure of the strength of back-
ground thermal fluctuations stemming from PIC noise.
To highlight the € dependence, the FK and HK data have
been rescaled by 1/e, whereas in the GK and KREHM
models the current is already naturally rescaled by 1/e.
With the exception of the KREHM solution corresponding
to the 8; = 0.5 case, a relatively good overall agreement is
found between all models. Since KREHM relies on the low
plasma beta assumption, the disagreement for 3; = 0.5 is
to be expected and highlights the influence of 3; on the
turbulent field structure. On the other hand, KREHM
gives surprisingly accurate results already for 5; = 0.1
even though the formal requirement for its validity is given
by V/Be ~ \/me/m; < 1 (Zocco & Schekochihin 2011),
which gives 8; < 0.01 in our case (using m./m; = 0.01
and Tp; = To ). By looking at Fig. 1 we also see that the
field structure changes relatively little with e. Moreover,
the field morphology depends much more on the plasma
beta than it does on the turbulence fluctuation level. It is
worth noticing that for even higher € the field structure is
expected to change significantly; at least when the sonic
Mach number M, ~ €/+/B; approaches unity (Picone &
Dahlburg 1991).

In Table 2 we list the root-mean-square values of the
out-of-plane current density at 4.7 eddy turnover times.
Short-time averaged data is used here to compute the
root-mean-square values for the FK model in order to re-
duce contributions from the background PIC noise. While
the spatial field structures are overall in good qualitative
agreement, the root-mean-square current numerical val-
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Figure 1. Contour plots of J; for 8; = 0.1 (left) and 3; = 0.5 (right). A doubly-logarithmic color scale (one for positive
and one for negative values, with a narrow linear scale around 0 to connect the two) is used here to reveal also the

fluctuations of weaker intensity. The color range has been adjusted according to the maximum value for any data set.

ues differ. More specifically, the numerical values deviate
from the FK model up to 9% for GK, up to 12 % for
KREHM, and up to 33% for the HK model. We note
that minor deviations can occur not only as a result of
physical differences but also due to differences in the nu-
merical grid size and low-pass filters, as well as due to
PIC noise in the FK runs that may slightly affect the
small-scale dynamics. On the other hand, regarding the
relatively large disagreement between the HK and FK
models, it is reasonable to assume that the main cause
for the difference are electron kinetic effects absent in the
HK approximation. To support the claim, we consider in
Fig. 2 the root-mean-square values of the low-pass filtered
electric current, J,"™5(k; < K), plotted versus the cutoff
wavenumber K. A significant difference between the HK
and FK results for Jf™s is generated over the range of
scales 1/p; < ki < 1/de, over which the HK turbulent
spectra are likely shallower due to the absence of electron
Landau damping as demonstrated in Sec. 4.3.

In agreement with previous works (see review
by Matthaeus et al. (2015) and references therein), the
snapshots of J, in Fig. 1 also reveal a hierarchy of current
sheets which differentiate with respect to the background
Gaussian fluctuations, leading to scale-dependent statis-
tics also known as intermittency. To investigate inter-
mittency in our simulations, we study the statistics of

J e
,Bi =01 ,81 =0.5
e=02 e=01 e=03 e=0.15
FK 1.09 1.24 0.85 0.93
HK 1.31 1.44 1.08 1.24
GK 1.13 0.91
KREHM 1.12 0.82

Table 2. Comparison of the root-mean-square values of
J./e around 4.7 eddy turnover times in the simulation.

magnetic field increments Az By (£) = By (r+£é;)—By(r),
using the By, component and with spatial displacements £
along the (positive) = direction. In Figure 3, we compare
the probability distribution functions (PDFs) of mag-
netic field increments for the 3; = 0.1 runs. The PDFs
are computed as normalized histograms of A;By(f) with
equally spaced bins, using raw simulation data for the
FK model. We also confirmed that the PDFs of A, B, (f)
change only very little upon replacing the raw FK PIC
data with short-time averaged data (not shown here). To
smooth out the statistical fluctuations in the PDF's during
the turbulent decay, we average the PDF's over a time
window from roughly 4.4 to 5 eddy turnover times, when
the turbulence is already well developed. The departure
from a Gaussian PDF (black dashed lines in Fig. 3) in-

creases from large to small scales. Good agreement is
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Figure 2. Comparison of the root-mean-square values of
the low-pass filtered J,, plotted against the cutoff
wavenumber K.

found between all models, except for very large values at
the tails of the PDFs. Here we point out that the tails
of the PDF's are likely to be affected by the differences in
the smallest resolved scale in each model, which depends
on the numerical resolution. Even though the level of
intermittency in our simulations, compared to the solar
wind, is likely underestimated due to a limited system
size, the analysis shows that the turbulent fields still
maintain a certain degree of intermittency, which does
not appear to be particularly sensitive to different types
of reduced-kinetic approximations. Our results are also
in qualitative agreement with some observational studies
and kinetic simulations (Leonardis et al. 2013; Wu et al.
2013b; Franci et al. 2015; Leonardis et al. 2016), even
though it should be mentioned that some contradictory
results have been reported based on observational data
(Kiyani et al. 2009; Chen et al. 2014), for which the au-
thors found non-Gaussian but scale-independent PDF's
at kinetic scales.

To compare the level of intermittency in detail, we
also compute the scale-dependent flatness, K ({) =
(AzBy(0)*)/(AzBy(£)%)?, of magnetic field fluctuations
(Fig. 4), where (...) represents a space average. Similar
to the PDFs, we additionally average K (f) over a time
window from 4.4 to 5 eddy turnover times. The flatness
is close to the Gaussian value of 3 (black dashed lines
in Fig. 4) at large scales and increases well above the
K = 3 threshold at kinetic scales. Furthermore, Fig. 4
also shows that the small-scale intermittency is some-
what underestimated in the HK and KREHM simulations.
As already pointed out, intermittent properties can be
very sensitive to the choice of numerical resolution, which
might be responsible for the lower level of intermittency
in the HK simulations. In particular, the HK flatness
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is closer to the FK and GK ones for the 8; = 0.5 run,
for which the smallest relevant scale of the FK and GK
models (pe) is closer to the limits of the HK resolution
than in the 3; = 0.1 case. Further investigations will
be necessary to establish a thorough understanding of
kinetic-scale intermittency with respect to different types
of reduced-kinetic approximations. The need to perform a
detailed study of intermittency with emphasis on kinetic
model comparison has already been recognized by several
authors and a detailed plan to fulfil this (among others)
ambitious goal has been recently outlined in the so-called
“Turbulent dissipation challenge” (Parashar et al. 2015Db).

KREHM
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Figure 3. PDFs of magnetic field increments for different
separation lengths £. The data is shown for the 8; = 0.1
case with € = 0.1 for the FK and HK models. The black
dashed line corresponds to the (normalized) Gaussian

PDF.

4.2. Global time evolution

Next, we consider the global turbulence energy budget
of the decaying Orszag-Tang vortex. For this purpose, we
split the bulk energy into magnetic M = (B2 /8x), kinetic
ion K; = (nm;u?/2), kinetic electron K, = (nm.uZ/2),
internal ion I; = (3nT};/2), and internal electron I, =
(3nT,/2) energy density, where (...) denotes a space
average. To measure the energy fluctuations occurring as
a result of turbulent interactions, we consider only the
relative changes for each energy channel, normalized to
the sum of the initial magnetic and kinetic ion energy
density, Fg = M (t = 0) + K;(t = 0). The time traces for
the FK model are obtained by space-averaging the raw
simulation data without the use of short-time averaged
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Figure 4. Scale-dependent flatness of perpendicular mag-
netic field increments for 8; = 0.1 (top) and B; = 0.5
(bottom).

fields. For the GK model and KREHM, we define the
perturbed internal energy similar to Li et al. (2016) as

T
61, = —Tp 68, — 6K, + / D, dt’, (21)
0

where S, = —+ [ d’rd®vif2?/2F, ; is the perturbed
species entropy and D, is the mean species dissipation
rate, occurring as a result of (hyper)collisional and (hy-
per)diffusive terms in the equations. The first two terms
on the right-hand side correspond to free energy fluctua-
tions without contributions from bulk fluid motions. The
last term represents the amount of dissipated free energy
of species s. In full f models, the “dissipated” nonthermal
energy stemming from (numerical) collisional effects in
velocity space remains part of the distribution function
in the form of thermal fluctuations. On the other hand,
in 6 f models such as GK and KREHM the thermalized
energy is not accounted for in the background distribution
Fjy,s and has to be added explicitly to the internal energy
expression. The dissipative term is significant for both
ions and electrons. In the GK simulations, hypercollision-
ality contributes to around 56% and 67% of 4I. and to
about 5% and 14% of 6I; at t = 6.37g for 3; = 0.1 and
B; = 0.5, respectively.

The time traces of the mean energy densities are shown
in Fig. 5. The observed deviations from the FK curves
appear to be consistent with the kinetic approximations
made in each of the other three models. In particular, the
HK model exhibits an excess of magnetic and electron
kinetic energy density, which can be understood in the
context of the isothermal electron closure that prevents
turbulent energy dissipation via the electron channel. For
the GK model, the result shows that GK tends to overes-
timate the electron internal energy and underestimate the

ion one, with the deviations from the FK model growing
as € is increased. The observed amplification of ion inter-
nal energy relative to the electron one when e is increased
is also in good agreement with previous FK studies (Wu
et al. 2013a; Matthaeus et al. 2016; Gary et al. 2016). The
convergence of the FK internal energies towards the GK
result as € — 0 is consistent with the low e assumption
made in the derivation of the GK equations. Similarly, the
improved agreement of KREHM with the FK model for
the lower beta (8; = 0.1) runs can be understood in the
context of the low beta assumption made in KREHM. We
also note that ion heating is ordered out of the KREHM
equations, which appears to be reasonable given the fact
that the ion internal energy increases more rapidly in the
higher beta (5; = 0.5) run.

In summary, from the point of view of the global energy
budget, all models deliver accurate results within the
formal limits of their validity and in some cases even well
beyond. The HK model resolves well ion kinetic effects
but falls short in describing electron features, whereas
the GK model becomes increasingly inaccurate for large
turbulence fluctuation strengths. In addition to the e < 1
assumption of GK, the accuracy of KREHM also depends
on the smallness of the plasma beta. For the particular
setup considered, KREHM gives surprisingly good results
already for 8; = 0.1, which is well beyond its formal limit
of validity (8; < 0.01 for me/m; = 0.01 and Ty; = To c).

o

4.3. Spectral properties

The nature of the kinetic-scale, turbulent cascade is in-
vestigated by considering the one-dimensional (1D) turbu-
lent spectra, which we compute as follows. We divide the
two-dimensional perpendicular wavenumber plane (kz, ky)
into equally-spaced shells of width Ak = kpin = 27/L
and calculate the 1D spectra, P(k) ), by summing the
squared amplitudes of the Fourier modes contained in
each shell. The wavenumber coordinates for the 1D spec-
tra are assigned to the middle of each shell at integer
values of Ak. To compensate for the global energy varia-
tions between different models (see Fig. 5) and to account
for the fact that the turbulence is decaying, we normalize
the spectra for each simulation and for each time sepa-
rately, such that ), , P(kL) = 1. Finally, we average
the (normalized) spectral curves over a time interval from
4.4 to 5 eddy turnover times in order to smooth out the
statistical fluctuations in P(k ).

The turbulent spectra of the magnetic, perpendicular
electric, and electron density fields are compared in Fig. 6.
The spectra are shown for all simulation runs, using short-
time averaged data for the FK model. For reference, we
also plot the FK spectra obtained from the raw PIC data
in the higher € runs (A1 and B1 in Table 1).! Since differ-

1 The raw PIC E, spectra have been rescaled by
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density.

ent numerical resolutions were used for different models,
the scales at which (artificial) numerical effects become
dominant differ between the models. For the HK model,
it can be inferred from the spectrum that numerical ef-
fects due to low-pass filters (Lele 1992) become dominant
for k; 2 1/de. On the other hand, for the FK, GK
model, and KREHM, the physically well-resolved scales
are roughly limited to k; < 1/p.. In the GK model
and KREHM, the collisionless cascade is terminated by
hyperdiffusive terms. In the FK runs, the main limiting
factor are the background thermal fluctuations, which
dominate over the collisionless turbulence at high k| , as
indicated by the grey shading in Fig. 6.

Two notable features stand out when comparing the
First,
good agreement is seen between the FK and GK spec-

spectra over the range of well-resolved scales.

tra, and secondly, the HK spectra have shallower spec-

( 1, mw){( 1 avg), where E| ;. is the raw field, E| ..g is the

short-time averaged field, and the overline represents a time aver-
age from 4.4 to 5 eddy turnover times. The rescaling is used to
compensate for the large amount of PIC noise, which significantly
affects the average amount of energy in the perpendicular electric
field.

tral slopes at sub-ion scales. Under the assumptions
made in the derivation of GK, the kinetic-scale, electro-
magnetic cascade can be understood in the context of
kinetic Alfvén wave (KAW) turbulence—the nonlinear in-
teraction among quasi-perpendicularly propagating KAW
packets (Howes et al. 2008a; Schekochihin et al. 2009;
Boldyrev et al. 2013). Thus, the comparison between the
GK and FK turbulent spectra suggests a predominantly
KAW type of turbulent cascade between ion and electron
scales without major modifications due to physics not
included in GK, such as ion cyclotron resonance (Li &
Habbal 2001; Markovskii et al. 2006; He et al. 2015), high
frequency waves (Gary & Borovsky 2004; Gary & Smith
2009; Verscharen et al. 2012; Podesta 2012), and large
fluctuations in the ion and electron distribution functions.
We emphasize here that our results are, strictly speaking,
valid only for the particular setup considered and could
be modified in three-dimensional geometry and/or for a
realistic value of the ion-electron mass ratio. Concerning
the HK results, the shallower slopes can be regarded as
manifest for the influence of electron kinetic physics on
the sub-ion-scale turbulent spectra. In particular, sev-
eral previous works demonstrated that electron Landau



10

damping could be significant even at ion scales of the
solar wind (Howes et al. 2008a; TenBarge & Howes 2013;
Told et al. 2015, 2016b; Banén Navarro et al. 2016), and
therefore, we explore this aspect further in what follows.

The role of electron Landau damping is investigated
with KREHM, for which electron Landau damping is
the only process leading to irreversible heating.” All
other dissipation channels are ordered out as a result
of the low 8 and low € limit (Zocco & Schekochihin
2011). To test the influence of electron heating on the
KREHM spectra, we performed a new set of simulations
in the isothermal electron limit with g. in Eq. (13) set
equal to go = 0. In Figure 7 we compare the FK and
HK magnetic field spectra with the KREHM spectra
obtained from simulations with and without electron
heating. Only the curves corresponding to the low € runs
(A2 and B2) are shown for the FK and HK models. Over
the range of scales where numerical dissipation in the
HK runs is negligible (k) < 1/d.), excellent agreement
between the isothermal KREHM spectra and the HK
spectra is found for the 8; = 0.1 case. On the other
hand, when the isothermal electron assumption is relaxed,
the KREHM result is much closer to the FK than to
the HK spectrum. A similar trend can be inferred for
the B; = 0.5 regime, albeit with some degradation in the
accuracy of KREHM, which is to be expected given its low
3 assumption. Furthermore, to demonstrate that electron
heating indeed leads to small-scale parallel velocity space
structures, reminiscent of (linear) Landau damping, we
compute the Hermite energy spectrum of g, (Schekochihin
et al. 2009; Zocco & Schekochihin 2011; Loureiro et al.
2013; Hatch et al. 2014; Schekochihin et al. 2016), which
is shown Fig. 8. The Hermite energy spectrum can be
regarded as a decomposition of the free energy among
parallel velocity scales (the higher the Hermite mode
number m, the smaller the parallel velocity scale). Due
to a limited number of Hermite polynomials used in the
KREHM simulations (M = 30), no clean spectral slope
can be observed. However, over a limited range of scales
(m < 7), the Hermite spectrum is shallow and suggests a
tendency towards the asymptotic limit ~ m—1/2 predicted
for linear phase mixing, i.e. Landau damping (Zocco &
Schekochihin 2011). We also mention that a recent three-
dimensional study of the turbulent decay of the Orszag-
Tang vortex demonstrated a clear convergence towards
the m~1/2 limit for much larger sizes of the Hermite basis
(up to M = 100), thus indicating a certain robustness of

2 The use of the term irreversible implies here the production of
entropy, which is ultimately achieved by collisions. For weakly colli-
sional plasmas, such irreversible heating can only become significant
if there exists a kinetic mechanism, such as Landau damping, able
of generating progressively smaller velocity scales in the perturbed
distribution function (Howes et al. 2008a; Schekochihin et al. 2009;
Loureiro et al. 2013; Numata & Loureiro 2015; Pezzi et al. 2016;
Bafion Navarro et al. 2016).

the result (Fazendeiro & Loureiro 2015).

Finally, the importance of electron Landau damping
at sub-ion scales might be somewhat overestimated in
our study due to the use of a reduced ion-electron mass
ratio of 100, resulting in a ~ 4.3 times smaller scale
separation between ion and electron scales (compared
to a real hydrogen plasma). In this work, no definitive
answer concerning the role of the reduced mass ratio
can be given and further investigations with higher mass
ratios will be needed to clarify this aspect. We note,
however, that a recent GK study of KAW turbulence,
as well as a comparative study of linear wave physics
contained in the FK, HK, and GK model found that
electron Landau damping at ion and sub-ion scales can
be relevant even for a realistic mass ratio (Told et al.
2016b; Banon Navarro et al. 2016). We also mention
that, in principle, one should not overlook the fact that
electron Landau damping is absent in the HK model not
only for KAWSs but for all other waves as well, such as
the fast/whistler, slow, and ion Bernstein modes.

To compare the spectral properties of the solutions in
even greater detail, we examine the ratios of the 1D k|
spectra (Gary & Smith 2009; Boldyrev et al. 2013; Salem
et al. 2012; Chen et al. 2013; Franci et al. 2015; Cerri
et al. 2016). The ratios are often considered in litera-
ture as a diagnostic for distinguishing different types of
wave-like properties (e.g. KAWSs versus whistler waves).
We emphasize that the reference to wave physics should
not be considered as an attempt of demonstrating the
dominance of linear dynamics over the nonlinear inter-
actions. Instead, the motivation for considering linear
properties should be associated with the conjecture of
critical balance (Goldreich & Sridhar 1995; Howes et al.
2008a; Cho & Lazarian 2009; TenBarge & Howes 2012;
Boldyrev et al. 2013), which allows for strong nonlinear
interactions while still preserving certain properties of
the underlying wave physics. It is also worth mentioning
that a nonzero parallel wavenumber k| along the mag-
netic field is required for the existence of many types
of waves (such as KAWSs), relevant for the solar wind.
Wavenumbers with |k,| > 0 along the direction of the
mean field are prohibited in our simulations due to the
two-dimensional geometry adopted in this work. While
k. = 0, the magnetic fluctuations 6 By , above some refer-
ence scale £y ~ 1/K | may act as a local guide field on the
smaller scales (£ ~ 1/k < {y), giving rise to an effective
parallel wavenumber kj ~ k| - 6B /Bp (Howes et al.
2008a; Cerri et al. 2016; Li et al. 2016). In this way, cer-
tain wave properties may survive even in two-dimensional
geometry, even though a fully three-dimensional study
would surely provide a greater level of physical realism.
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reference.

Four different ratios of the 1D spectra are considered:

Ca=|EL]*/I6BL?,  Cp=pB?|6nc|*/|6B.|%,
C, = 6n [?/|5B2,  Cy =8B, [/|8BP,

where Ce and C) are known as the electron and mag-
netic compressibility, respectively. Large scale Alfvénic
fluctuations have C4 ~ 1, whereas Cp ~ 1 implies a
balance between the perpendicular kinetic and magnetic
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pressures. In the asymptotic limit 1/p; < k1 < 1/pe,
the ratios for KAW fluctuations are expected to be-
have as C4q ~ (ki1p:i)?/(4 + 48;), Ce ~ 1/(B; + 282),
C) ~ Bi/(1+2B;), and Cp ~ 1, assuming k1 > k|, singly
charged ions, and Ty ; = Tp e (Schekochihin et al. 2009;
Boldyrev et al. 2013). Thus, the C4 ratio is expected
to grow with k), while the other three ratios are in the
first approximation roughly independent of k| on sub-ion
scales. In the regime 3; < 1 relevant to this work, we also
expect C. 2 Cj.

The spectral ratios are compared in Fig. 9. Focusing
first on the range of scales 1/p; < k1 < 1/pe, we find
good agreement between the GK and FK models, albeit
with moderate disagreements between the Cp, ratios in the
B; = 0.1 regime. Thus, the ratios provide firm evidence for
a KAW cascade scenario for 3; = 0.5, whereas for 3; = 0.1,
even though apparently dominated by KAW fluctuations,
the cascade is also influenced by phenomena excluded in
GK. Considering the large-scale dynamics in the k) <
1/p; range, very good agreement is found between the FK
and HK results, whereas the GK Ce, Cp, and C) ratios
significantly deviate. It is worth noticing that the Cj
ratio depends only on the magnetic fluctuations parallel
to the mean field § B,, which represent a fraction of the
total magnetic energy content as evident from the results
for O”

The general trends exhibited by the FK and HK ratios
seem to suggest the presence of high frequency waves (e.g.
fast magnetosonic modes) excluded in GK. To check if the
FK and HK solutions in the k) < 1/p; range (and even
beyond for 3; = 0.1) are indeed consistent with a mixture
of modes present (KAWs, slow modes, entropy modes)
and excluded (e.g. fast modes) in GK, we numerically
solve the HK dispersion relation in the 8; = 0.1 regime
using a recently developed HK dispersion relation solver
(Told et al. 2016a). The qualitative findings discussed
below for 8; = 0.1 can be also applied to the 8; = 0.5
case (not shown here).

A collection of least damped modes identified with the
HK linear dispersion relation solver is shown in Fig. 10.
Two fixed propagation angles with respect to the magnetic
field are considered; 89 and 85 degrees. The identified
branches can be interpreted as KAWSs, fast modes, and
generalized ion Bernstein modes. For the sake of simplic-
ity, we do not consider slow modes and entropy modes
because our goal here is to study the properties of waves
excluded in GK [for a detailed discussion on GK wave
physics see Howes et al. (2006)]. The identified ion Bern-
stein modes are generalized in the sense that they are
not purely perpendicularly propagating nor electrostatic
and they also split into multiple branches around the
cyclotron frequency. As pointed out by Podesta (2012),
the fine splitting of the ion Bernstein modes may increase
the opportunity for wave coupling with the fast and KAW

branch.

Having identified the main branches of interest, we
now proceed to show the corresponding spectral ratios
(Fig. 11). In addition to the spectral ratios obtained from
the HK solver, we also show for reference the GK predic-
tion for the spectral ratios of KAWs (using m;/m. = 100),
as well as the linear damping rates of the HK branches.
Comparing the linear predictions with the turbulent ra-
tios shown in the left panel of Fig. 9, we find that the
directions in which the FK and HK turbulent ratios are
“pulled away” from the GK curves are consistent with
linear properties of fast and ion Bernstein modes. In par-
ticular, the magnetic compressibility C) is order unity for
the fast and ion Bernstein modes, whereas their Cy, ratio
is below the pressure balance regime Cp ~ 1. Similarly,
the electron compressibility C, exceeds the one of KAWs
at low wavenumbers. All these properties are in qualita-
tive agreement with the general trends exhibited by the
FK and HK turbulent solutions for k; < 1/p;. Regarding
the C4 ratio, we note that 6B /6B < 1 for the fast and
ion Bernstein modes, meaning that these modes cannot
significantly influence the total |E |?/|6 B, |? ratio when
mixed together with the Alfvénic fluctuations. Looking
at the damping rates, linear theory predicts cyclotron
damping of the fast mode already at k; ~ 1/d;. However,
the GK turbulent ratios deviate from the FK model
beyond the k| ~ 1/d; scale for 8; = 0.1. Therefore, the
coupling of the fast modes to the ion Bernstein modes
is likely significant in the low-beta regime. The most
natural candidate for the conversion of the fast wave
would be the mode denoted as IB1 in Fig. 10, which is
very weakly damped in the HK model and allows for a
continuation of the fast branch above the ion cyclotron
frequency. In the FK model, ion Bernstein waves are
subject to additional damping due to electron Landau
resonance which could potentially explain why all the
FK ratios show a tendency for converging onto the GK
curves with increasing wavenumbers, whereas in the HK
model, the turbulent ratios (in particular C}, and C)) do
not share the same trend.

In summary, we conclude that the deviation of the GK
model from the FK and HK turbulent solutions in the
range k1 < 1/p;, and possibly even beyond for 8; = 0.1,
can be reasonably well explained with the presence of
fast magnetosonic and ion Bernstein modes, coexisting
together with Alfvénic fluctuations. On the other hand,
we admit that alternative explanations involving, for ex-
ample, non-wave-like phenomena could be in principle
possible. As a side note, it is also worth mentioning
that according to linear theory, KAWs should undergo
cyclotron resonance around k; d; ~ 10 (see bottom plot
in Fig. 11), resulting in an abrupt change in the spectral
ratios. No such variation is found in the FK turbulent
ratios. This suggests that cyclotron resonance has in our
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in the FK simulations.
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Figure 10. Numerical solutions of the hybrid-kinetic
dispersion relation for 8; = 0.1. The labels KA, F, and
IB are used to denote kinetic Alfvén waves, fast waves, and
(different branches of) ion Bernstein modes, respectively.

case only a minor effect on the turbulent cascade, in con-
sistency with the arguments against cyclotron resonance
given by Howes et al. (2008a).

4.4. Ion and electron nonthermal free energy fluctuations

At last, motivated by previous works on non-Maxwellian
velocity structures in HK simulations (Greco et al. 2012;
Valentini et al. 2014; Servidio et al. 2015) and free energy

cascades in GK and KREHM (Schekochihin et al. 2009;
Banon Navarro et al. 2011; Zocco & Schekochihin 2011;
Told et al. 2015; Schekochihin et al. 2016), we investigate
the spatial distribution of the nonthermal species free
energy fluctuations:

TO,SJ.)FSZ

08 = 2P,

d’v, (22)
where 8, is the perturbed part of the distribution func-
tion with vanishing lowest three moments (density, fluid
velocity, and temperature), Ty ¢ is the equilibrium temper-
ature, and Fp ¢ is the background Maxwellian. Expression
(22) can be regarded as a measure for quantifying the
deviations from local thermodynamic equilibrium, charac-
terized by non-Maxwellian fluctuations in velocity space
that set the stage for irreversible plasma heating to oc-
cur. Due to a limited availability of data and refined
diagnostic tools, needed for the calculation of the non-
thermal free energy as a function of space, we present
here only the results from a subset of all simulations and
models. In particular, we focus on the 8; = 0.1 regime
and consider the ion nonthermal fluctuations calculated
from the HK model and the electron nonthermal fluc-
tuations calculated from the v, -integrated distribution
functions in the FK model and KREHM. In the HK and
FK models, we define Jfg as 5}; = fs — Fo,e, where Fp .
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is the local Maxwellian with matching density, fluid ve-
locity, and temperatures of the total distribution fs. In
KREHM, the equivalent of expression (22) can be defined
as 545””,9 =noTo,e ng:3 g=./2, where g, are the Hermite
expansion coefficients of g, (Zocco & Schekochihin 20115
Schekochihin et al. 2016). By skipping the lowest three
coefficients (m < 2) in the above sum, the contributions
from density, fluid velocity, and temperature fluctuations
are explicitly excluded from the KREHM free energy.
Here, we only consider parallel electron velocity fluctu-
ations because g. does not depend on v; in KREHM.
For the FK model, on the other hand, the v -integrated
electron distribution function is used as a necessity, due
to a limitation in diagnostic tools presently available for
the FK PIC code used in this work. The limitation to
parallel velocity fluctuations is, however, physically well-
motivated for the electrons based on a number of previous
works, which showed that electron heating takes place
predominantly in the parallel direction (Saito et al. 2008;
TenBarge & Howes 2013; Haynes et al. 2014; Numata &
Loureiro 2015; Li et al. 2016; Banén Navarro et al. 2016).

The nonthermal ion and electron free energy fluctua-
tions are shown in Fig. 12. The snapshots correspond to
the 8; = 0.1 runs around 4.7 eddy turnover times, with

e =0.2 in the HK and FK simulations. For reference, we
also show in Fig. 13 the corresponding ion and electron
temperature fluctuations 67 = T, — (1), plotted at same
time in the HK and FK simulation. A highly nonuniform
spatial distribution of the nonthermal free energy is found
for both ions and electrons. Furthermore, by overplotting
the contours of the vector potential A, we find that the
nonthermal fluctuations are mostly concentrated around
small-scale magnetic reconnection sites, corresponding (in
2D) to the X-points of A,. Fig. 12 also shows some dis-
agreements in the nonthermal free energy spatial profiles
between the FK model and KREHM. Considering the
abovementioned circumstances, one could suppose that
the disagreements are related to the small-scale differences
in magnetic field configuration, which might consequently
impact the exact locations where reconnection is taking
place. A detailed investigation of the possible causes for
the observed disagreements is beyond the scope of this
study but could be carried out in future works.

The observed correlation between reconnection sites
and nonthermal fluctuations is in good agreement with
previous works (Greco et al. 2012; Valentini et al. 2014;
Haynes et al. 2014; Servidio et al. 2015) and as such rein-
forces the idea that reconnection might play a significant
role in the turbulent heating of kinetic-scale, collisionless
plasma turbulence. Compared to Fig. 13, it is seen that
the nonthermal free energy peaks are well correlated with
temperature fluctuations, the main difference to the lat-
ter being that the nonthermal fluctuations are spatially
more diffused. This seems to suggest that the energy sup-
plied to the particles at reconnection sites is progressively
cascaded to smaller velocity scales in the reconnection
outflows, thus allowing the nonthermal fluctuations to
spread over a larger volume compared to the temperature
fluctuations. The generation of non-Maxwellian velocity
space fluctuations can be, on the other hand, linked with
the presence of wave-particle interactions such as Landau
damping, as well as with kinetic instabilities (Haynes et al.
2014).

While the role of Landau damping in kinetic-scale, col-
lisionless plasma turbulence is presently somewhat less
known for the ions, the significance of electron Landau
damping has been demonstrated in many previous stud-
ies (Howes et al. 2008a; TenBarge & Howes 2013; Told
et al. 2015; Banon Navarro et al. 2016) and in Sec. 4.3 of
this work. Conversely, we find—at the same time—that
reconnection could as well be a major process leading to
heating in collisionless plasma turbulence. Similar as for
Landau damping, the latter idea is also well-supported
by a number of previous studies (Sundkvist et al. 2007;
Osman et al. 2011; Karimabadi et al. 2013; Chasapis et al.
2015; Matthaeus et al. 2015). Some of the previous works
tried to establish a sharp distinction between heating due
to wave-particle interactions versus heating occurring as
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Figure 12. Nonthermal electron and ion free energy fluctuations. In the left and middle plots, we compare the FK
and KREHM electron free energy, stemming from small scale structures in v)|. The plot on the right shows the (total)
nonthermal ion free energy obtained from the HK simulation. Overplotted are the contours of the vector potential A, .
The color map is normalized to the maximum value of the free energy, separately for each plot.

677 (HK)

Figure 13. lIon and electron temperature fluctuations
corresponding to the HK and FK nonthermal free energies
shown in Fig. 12.

a consequence of reconnection, often favouring one of the
two possibilities as the main cause for turbulent heat-
ing. As one additional option, we would like to promote
a rather different view, which is that these two seem-
ingly distinct processes might work hand in hand and
are spatially entangled with each other, making a clear
distinction between heating due to Landau damping and
reconnection a somewhat ill-posed task. Instead, it might
be more instructive to consider these two processes in a
unified framework and investigate, for example, how the
(nonuniform) damping via Landau resonance might be
affected by the presence of reconnection outflows, which
could (locally) modify the Landau resonance condition.
This view is supported by previous studies of weakly-
collisional reconnection (Loureiro et al. 2013; Numata &
Loureiro 2015), and by a recent study of GK turbulence
(Klein et al. 2017) which showed that, contrary to naive
expectations, Landau damping in a turbulent setting can
be spatially highly nonuniform and might be responsible

for the intermittent heating observed in the vicinity of
current sheets (Sundkvist et al. 2007; Osman et al. 2011;
Wu et al. 2013b; Karimabadi et al. 2013; Chasapis et al.
2015). The possibility of a close relationship between
reconnection and Landau damping was also implied in
a recent study by Parashar & Matthaeus (2016), which
mentioned a mechanism described as a nonlinear general-
ization of Landau resonance.

Finally, it is worth acknowledging one additional aspect
of kinetic-scale reconnection, recently explored by Cerri &
Califano (2017), Mallet et al. (2017), Loureiro & Boldyrev
(2017), and Franci et al. (2017). In the abovementioned
works, the authors argue that reconnection could also
significantly impact the nonlinear energy transfer and
the shape of the turbulent spectra at kinetic scales. This
would consequently imply a more generalized type of ki-
netic cascade; one which is also influenced by non-local
energy transfers (in spectral space) as opposed to local
mode couplings in wave-like models of turbulence (Galtier
& Bhattacharjee 2003; Howes et al. 2008a; Schekochihin
et al. 2009; Boldyrev et al. 2013; Passot & Sulem 2015).
A detailed investigation of this novel cascade phenomenol-
ogy is beyond the scope of this work. Strictly speaking,
the turbulent spectra and spectral ratios alone are not
sufficient to unambiguously determine whether the energy
transfer is local or not. Instead, the spectra and spectral
ratios can only point out the dominant type of turbulent
fluctuations at each wavenumber separately.

5. CONCLUSIONS

In this work, we performed a detailed comparison of
kinetic models in two-dimensional, collisionless plasma
turbulence with emphasis on kinetic-scale dynamics. Four
distinct models were included in the comparison: the fully-
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kinetic (FK), hybrid-kinetic (HK) with fluid electrons, gy-
rokinetic (GK), and a reduced gyrokinetic model, formally
derived as a low beta limit of gyrokinetics (KREHM). Two
different ion beta (f3;) regimes and variable turbulence
fluctuation amplitudes (€) were considered (8; = 0.1 using
€ =0.1,0.2 and 5; = 0.5 using € = 0.15,0.3). The main
findings can be summarized as follows:

e For 3; = 0.5, the kinetic-scale (k) = 1/d;) spectral
properties of the FK and GK solutions were found
to be in good agreement, thus suggesting a kinetic
Alfvén cascade scenario from ion to electron scales
without significant modifications due to physics not

included in GK (Figs. 6 and 9).

e A detailed comparison between the GK and FK
spectral ratios at 3; = 0.1 reveals a deviation be-
tween the two models at kinetic scales (Fig. 9).
However, given that the kinetic-scale (k1 = 1/d;)
disagreement is clearly observed only for two out
of four different spectral ratios considered, nor is
it clearly seen in the turbulent spectra themselves
(Fig. 6), it is reasonable to assume that kinetic
Alfvén fluctuations still play a significant role even
in the low-beta regime.

e At the largest scales (k1 < 1/d;), the ratios of the
GK turbulent spectra notably deviate from the FK
and HK approaches for both ion betas (0.1 and
0.5), the likely cause for it being the lack of the
fast magnetosonic modes in the GK approximation
(Figs. 9, 10, and 11). The disagreement is larger
for higher fluctuation amplitudes and for the lower
value of the ion beta (f5; = 0.1), for which the
deviations carry over to kinetic scales, possibly via
mode coupling to ion Bernstein waves.

e The sub-ion-scale HK spectra were found to be
shallower than those obtained from the FK and GK
simulations, presumably due to the lack of electron
Landau damping (Figs. 6, 7, and 8).

e The real space turbulent field structures are in good
qualitative agreement (Fig. 1). Furthermore, all
models considered give rise to intermittent statistics
at kinetic scales, albeit with some minor quantita-
tive differences between the models (Figs. 3 and
4). The main reason for the observed deviations
might be related to the fact that different numerical
resolutions were used for different models. Further
studies will be necessary to identify if the observed
quantitative differences are indeed physical.

e The spatial profiles of the nonthermal ion and elec-
tron free energy fluctuations suggest that kinetic-
scale reconnection might play an important role

in the heating of the plasma (Figs. 12 and 13).
Furthermore, our results also suggest that reconnec-
tion might be closely entangled with (nonuniform)
Landau damping, making the distinction between
heating due to reconnection versus heating due to
Landau damping an ill-posed task.

e KREHM delivers surprisingly accurate results al-
ready for 3; = 0.1, even though its range of validity
is formally limited to §8; < 0.01 for our choice of
the reduced mass ratio and equal ion and electron
background temperatures (Figs. 1, 3, 4, 5, and 6).

We emphasize that, strictly speaking, our findings are
valid only for the particular setup considered and could
be modified in a more realistic setting. In particular,
the results could be modified in a full three-dimensional
geometry, which allows for arbitrary wave propagation
angles with respect to the mean magnetic field (Howes
et al. 2008b; Chang et al. 2014; Vasquez et al. 2014; Howes
2015; Wan et al. 2015). Another aspect which might have
impacted our results is the reduced ion-electron mass
ratio of 100. For a realistic mass ratio, the increased
separation between ion and electron scales might improve
the agreement between the HK and FK models at sub-ion
scales as well as potentially reveal certain deviations from
the phenomenology of KAW turbulence at electron scales
(Shaikh & Zank 2009; Podesta et al. 2010). No defini-
tive answer regarding the role of these limitations can be
presently given. However, based on a number of previous
works, it is still reasonable to expect that the simplified
setup adopted in this work can qualitatively capture at
least some of the key features of natural turbulence at
kinetic-scales of the solar wind (Servidio et al. 2015; Li
et al. 2016; Wan et al. 2016). Furthermore, many of the
turbulent properties found in this work, such as the dom-
inance KAW fluctuations (Salem et al. 2012; Chen et al.
2013), non-Gaussian statistics at kinetic scales (Kiyani
et al. 2009; Wu et al. 2013b; Chen et al. 2014; Perrone
et al. 2016), and kinetic-scale reconnection (Sundkvist
et al. 2007; Osman et al. 2011; Chasapis et al. 2015) are
supported by in-situ spacecraft observations.

Lastly, apart from exposing the pros and cons of
reduced-kinetic treatments, the outcome of the study
demonstrates that detailed comparisons between fully-
kinetic and reduced-kinetic models can provide significant
advantages for elucidating the nature of kinetic-scale dy-
namics and may also serve as a much needed aid for
interpreting the results of fully-kinetic simulations, as
well as guide the interpretation of experimental data,
acquired from present and (potential) future spacecraft
missions (Burch et al. 2016; Fox et al. 2016; Vaivads
et al. 2016). An ambitious plan to perform a study sim-
ilar to the one presented in this work, but involving an
even larger participation from the community, has been



recently outlined by Parashar et al. (2015b). For the
proposed comparative study, and perhaps others to come,
our results could provide valuable guidelines.

We gratefully acknowledge helpful discussions with
O. Alexandrova, P. Astfalk, V. Decyk, T. Gorler,
Y. Kawazura, W. Mori, P. Mufioz, F. Tsung, and
M. Weidl. NFL thanks A. Schekochihin and A. Zocco for
useful discussions on the KREHM model. The research

leading to these results has received funding from the

17

fully-kinetic simulations have been provided by the Max
Planck Computing and Data Facility and by the Gauss
Centre for Supercomputing/Leibniz Supercomputing Cen-
tre under grant pr74vi, for which we also acknowledge
Principal Investigator J. Biichner for providing access
to the computing resource. We also acknowledge the
Italian supercomputing center CINECA (Bologna) under
the ISCRA supercomputing initiative. The gyrokinetic
simulations presented in this work used resources of the
National Energy Research Scientific Computing Center,

a DOE Office of Science User Facility supported by the
Office of Science of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231. Computations with

the Viriato code were conducted at Massachusetts Green

European Research Council under the European Union’s
Seventh Framework Programme (FP7/2007-2013)/ERC
Grant Agreement No. 277870. C. Willmott was sup-
ported by MIT’s Charles E. Reed Faculty Initiative
Fund. N. Loureiro was partially supported by the NSF-
DOE partnership in basic plasma science and engineer-
ing, award no. DE-SC0016215, and by NSF CAREER
award no. 1654168. Furthermore, this work was facili-
tated by the Max-Planck/Princeton Center for Plasma
Physics. Computer resources for the hybrid-kinetic and

High Performance Computing Center on the Plasma Sci-
ence and Fusion Center partition of the Engaging cluster,
supported by the Department of Energy. The authors
would like to acknowledge the OSIRIS Consortium, con-
sisting of UCLA and IST (Lisbon, Portugal) for the use of
OSIRIS, for providing access to the OSIRIS framework.

APPENDIX

A. NUMERICAL DETAILS

For the fully-kinetic, electromagnetic simulations, we use the particle-in-cell (PIC) code OSIRIS (Fonseca et al. 2002,
2008). The reader is referred to Dawson (1983) and Birdsall & Langdon (2005) for a detailed overview of the PIC
method. Parameters specific to the PIC simulations are given in Table 3. A 2nd order compensated binomial filter
is applied on the electric current at each time step and we perform all simulations using cubic spline particle shape
factors (Birdsall & Langdon 2005). For the problem type considered here, preliminary tests have shown that cubic
shape factors deliver superior numerical results, compared to lower-order quadratic and linear splines, due to better
energy conservation properties and a significant reduction in the amount of so-called PIC noise. However, even with
the use of large numbers of particles and smooth particle shapes, the background thermal fluctuations may still mask
the fluctuations arising from the turbulent cascade which are of main interest here. Therefore, to further reduce PIC
noise we also employ short-time averages of the turbulent fields. A detailed discussion regarding the time averaging is
given in Appendix B.

FK (PIC)
Run N, Nppe Az/AD vihe/c wpe/Qee
Al 20482 625 1.0 0.174 1.822
A2 20482 625 1.0 0.174 1.822
B1 1920 1024 1.0 0.185 3.820
B2 1920 1024 1.0 0.185 3.820

Table A3:. Numerical parameters for the FK PIC simulations: the real space resolution (N, ), number of particles per
cell per species (Nppc), the grid spacing in units of the Debye length (Az/Ap), the electron thermal velocity compared
to speed of light (v, /c), and the plasma frequency to cyclotron frequency ratio (wpe/Sce)-

The HK simulations are performed with the Eulerian hybrid Vlasov-Maxwell solver HVM (Valentini et al. 2007). For
a detailed description of numerical algorithms employed by the HVM code, we refer the reader to Matthews (1994) and
Mangeney et al. (2002). Parameters specific to the HK simulations are given in Table 4. An isothermal equation of state
is assumed for the electrons. No explicit resistivity is used, but one effectively exists due to the low-pass filters that
are used by the code’s algorithm (Lele 1992). For better consistency with the FK, GK model, and KREHM, the HK
simulations are performed using the generalized Ohm’s law given by Eq. (7), which retains electron inertia (Valentini
et al. 2007).
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HK (Eulerian)

Run Ny Ny AI/’dg 'Urnax,;'vt-'l
A1 5122 51 0.49 3.54
A2 5122 51  0.49 3.54
B1 5122 51° 049 3.54
B2 5122 51° 049 3.54

Table A4:. Parameters for the Eulerian HK simulations: the real space resolution (N,), the velocity space resolution
(Ny), grid spacing (Az/d.), and the maximally resolved velocity (vmax/vtn)-

The GK simulations are carried out with the Eulerian GK code GENE (Jenko et al. 2000). Parameters describing the
numerical settings for the Eulerian GK simulations are given in Table 5. Only one simulation is performed for type A
and type B runs because € does not appear as a parameter in the normalized GK equations. For the Orszag-Tang
vortex initialization, we follow the implementation details described in Numata et al. (2010). Numerical instabilities at
the grid scale are eliminated by adding high-order hyperviscous (~ k3 ) and hypercollisional terms to the perpendicular
dynamics in spectral space and to the parallel dynamics in velocity space, respectively. With GENE being a grid-based
spectral code, the (artificial) symmetry of the Orszag-Tang vortex is reflected in the numerical solution at all scales
with high precision. In the FK model, on the other hand, minor asymmetries are naturally present due to PIC noise.
In order to incorporate slight deviations from the ideal symmetry into the initial condition, we use an approach similar
to the one employed by TenBarge et al. (2014) and add a small amount of random perturbations to the electron and
ion distribution functions. The perturbations are limited to the wavenumber range k) < 1/d..

GK (Eulerian)
Run Nz Ny Ny Az/pe vmax,s/vins
A 15362 32 16 0.73 35
B 7682 32 16 0.65 35

Table A5:. Parameters for the Eulerian GK simulations: total number of grid points in spectral space (N;), parallel
velocity resolution (NVy, ), p space resolution (NN, ), grid spacing (Az/pe), and the maximally resolved species velocity
(Vmax,s/Vth,s). Note that the number of fully-dealiased modes in spectral space is given by (2/ 3)2N¢.

For the KREHM simulations we use the Viriato code (Loureiro et al. 2016). The chosen numerical parameters are
listed in Table 6. The implementation details for the Orszag-Tang vortex are described in the abovementioned reference.
Similar to Loureiro et al. (2013), hyperviscous and hyperresistive terms are added to the perpendicular dynamics in
order to terminate the turbulent cascade before it reaches the limits of the numerical grid. For the parallel velocity
space, a model hypercollision operator is adopted. Even though KREHM is a low-beta limit of GK, we still perform
separate simulations for the 5; = 0.1 and 3; = 0.5 case by varying the p;/d. ratio for the two cases.

KREHM
Run N, M Azx/d.
A 15362 30 0.16
B 7682 30 0.33

Table A6:. Parameters for the KREHM Fourier-Hermite spectral simulations: total grid size in spectral space (N,),
size of the Hermite basis for v (M), and the grid spacing (Ax/d.).

B. REDUCTION OF PARTICLE NOISE BY TIME AVERAGING

In order to reduce the background thermal fluctuations, originating from discrete particle effects in the fully-kinetic
PIC simulations, we average the raw simulation data over a time window of duration At = 0.59;1, resulting in a
sample of over 1,000 and 2,000 snapshots for the 5; = 0.1 and 3; = 0.5 simulation runs, respectively. The time-averaged
data is used on an as-needed basis, in cases where there are good reasons to believe that some particular result
would have been otherwise significantly affected by the particle noise. In our present understanding, the relative

strength of the background particle noise is a highly problem-dependent property, depending on the numerical as
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well as physical parameters of the PIC simulation. Furthermore, the degree to which the particle noise masks the
collective, self-consistent plasma response can vary even between different types of data of a single simulation. It is in
our opinion therefore best to consider various noise reduction approaches (if at all needed) on a case-by-case basis by
visually inspecting the data in real space and by considering the spectral properties of the solutions in comparison to
the estimated background particle noise. Below we provide a detailed discussion and analysis of the effects of time
averaging, comparing the time-averaged data with the raw data and with the estimated level of background particle
noise. We also briefly discuss our results for the out-of-plane electric field, E,, even though this quantity is otherwise
never used in our comparative study.

In Figure 14 we compare the raw data for FE,, E,, and J, with the time-averaged data in real space for the 5; = 0.1
set of runs around 4.7 eddy turnover times. The contour plots are zoomed into a subdomain of the entire simulation
plane to highlight the small-scale structure of the fields. Qualitatively similar results are obtained for the 3; = 0.5 case
(not shown here). The E; and J, fields have been low-pass filtered to wavenumbers k| < 4/d., which is slightly higher
than the maximal wavenumber still considered for the comparison of spectral properties between different models (the
wavenumber range below the gray-shaded regions in Figs. 6 and 9). The E; field is low-pass filtered to wavenumbers
k1 < 2/d.. As Fig. 14 evidently shows, the relative strength of PIC noise is different for different types of data. Time
averaging makes J, only slightly smoother without significantly altering the shape of the turbulent structures, whereas
the time-averaged E, and E, are significantly less affected by noise than their raw data counterparts. For E_, time
averaging not only retains any features still visible in the raw data but even reveals certain small-scale properties which
would otherwise remain hidden in the background noise. For E,, on the other hand, the result shows that the raw data
is completely dominated by noise even when very aggressively low-pass filtered. It is therefore difficult to confidently
determine if time averaging for F, is in our case appropriate or not, because the amount of noise in the raw data is too
large to clearly recognize any kind of small-scale turbulent structures which suddenly appear in the time-averaged PIC
data. For these reasons, we never use E, when comparing the results obtained from different kinetic models.

-0.5 01 0 01 0.5-005 -0.0050 0005 005-15 -03 0 03 1.5 03 D06 0 006 03 -002 -00020 0002 002 -1.5 -0.3 [1] 03 1.5
| ommmmmm— ] cossssmee ] ossa—— | _oemsmm—— ] oo —m—
E, (k. <4/d,) E,(k.<2ld.) J, (k. <4ld,) E. (k. <4/d,) E, (k. <2id,) J, (k. <4ld,)
1 1 1 1 1 1 I |Ir 1
] ] . [# | ]
= = "
=) =)
= > o/ ——
< <

Raw data
Raw data

10 14

2 6 10 14 6
x/d; xld;

6
xld;

Figure B14:. Comparison of the raw and time-averaged PIC data in the 8; = 0.1 simulations around 4.7 eddy turnover
times for € = 0.2 (left) and € = 0.1 (right). A doubly-logarithmic scale is used, similar as in Fig. 1. Only a subpart of
the entire £ — y domain is shown to highlight the small-scale features of the turbulent fields.

In Figure 15 we compare the spectra calculated from the raw and time-averaged data to the estimates for the
background particle noise. The turbulent spectra are shown at a single time in the simulation at around 4.7 eddy
turnover times. All curves are normalized in such a way that Zkl P(k,) gives the mean square value of each field in
the default physical units adopted in this study (see Sec. 3). The background particle noise is estimated as follows. For
each f3; we initialize a (uniform) thermal plasma with the exact physical parameters as in the turbulence simulations
(including a mean magnetic field) but without any (smooth) perturbations that would drive the turbulent cascade.
We then integrate the system using the exact same numerical parameters for a few thousand time steps, until the
electromagnetic fluctuations driven by discrete particle effects attain a quasi-steady state. We then proceed to calculate
the spectra from the thermal plasma simulations and use the results as a proxy for the particle noise in the turbulent
runs. As such, our estimate neglects the possible influence of turbulence (in particular, spatial and temporal variations



20

in plasma parameters) on the background noise. However, given the fact that the raw turbulent spectra in Fig. 15 are
in relatively good agreement with the PIC noise proxy at the largest wavenumbers, our estimate still appears to be a
reasonable one and we are presently unaware of a better alternative for estimating the PIC noise over the entire range
of wavenumbers in a turbulent simulation. As shown in Fig. 15, time averaging significantly modifies the turbulent
spectra only over the range of wavenumbers, where the raw data is not well-separated from the estimated noise floor
(black curves in Fig. 15). Light red/orange shading is used here to indicate the spectral amplitudes that are no more
than an order of magnitude below the reference raw data curves. At each given scale, the raw data is decomposed
of a mixture of the turbulent signal and particle noise. Therefore, the raw simulation data should be well-separated
from the noise floor for the (raw) spectrum to be regarded as physically meaningful at some given scale. The critical
wavenumber at which the time-averaged data deviates from the raw data is generally lower for the simulations with
a lower value of € (red/blue curves in Fig. 15). This can be naturally explained by the fact that the relative “signal
to noise” ratio is lower in these simulations, because the particle noise does not critically depend on the turbulence
amplitude in the first approximation. Similar to a recent work by Haggerty et al. (2017), we find that time averaging
modifies the F, spectrum at very large scales. However, as shown in Fig. 15, it is worth considering the fact that the
relative strength of particle noise is significantly higher for E, than for any other field. Thus, comparing the turbulent
spectra obtained from raw data with those calculated from time-averaged data, without explicitly estimating the
strength of particle noise and without visually comparing the data in real space, is not always sufficient to determine
whether time averaging is appropriate or not. In summary, we conclude that the time averaging over At = 0.59;1 does
not seem to significantly modify our simulation results over the range of scales which are well-separated from the noise
floor. It does, on the other hand, allow for a more detailed investigation of turbulent structures (in particular for F| ),
which are not nearly as clearly recognizable in the raw simulation data.
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Figure B15:. Comparison of the turbulent spectra obtained from raw and time-averaged data to the estimated
background particle noise for 8; = 0.1 (left) and ; = 0.5 (right). Light red (orange) shading is used to indicate the
spectral amplitudes that are no more than an order of magnitude below the reference raw data curves in the low (high)
€ simulations. As long as the shading is above the black line, the amplitude of the raw spectrum is more than an order
of magnitude above the estimated noise floor.
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