SPIN NILHECKE ALGEBRAS OF CLASSICAL TYPE

IAN T. JOHNSON AND WEIQIANG WANG

ABSTRACT. We formulate and study the spin nilHecke algebras NH,, and °NH,, of
type B/D, which differ from the usual nilHecke algebras by some odd signs. The type
B spin nilHecke algebra is a nil version of the spin type B Hecke algebra introduced
earlier by the second author and Khongsap, but not for the type D one. We construct
faithful polynomial representations Pol,, of the nilHecke algebras via odd Demazure
operators. We formulate the spin Schubert polynomials, and use them to show that
the spin nilHecke algebras are matrix algebras with entries in a subalgebra of Pol,
consisting of spin symmetric polynomials. All these results have their counterparts
for the usual nilHecke algebras over the rational field. Our work is a generalization
of results of Lauda and Ellis-Khovanov-Lauda in usual/spin type A.
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1. INTRODUCTION

1.1. Background. Affine Hecke algebras and their degenerations [Dr86, Lu89] have
many applications in various aspects of representation theory. The nil versions of the
degenerate affine Hecke algebras, also known as nilHecke algebras, play a fundamental
role in Schubert calculus (cf. [Ku02, FK96]), and the type A nilHecke algebra is a basic
ingredient in KLR categorification (cf. [La08]).

The Schur multiplier (i.e., the second cohomology of a group) arises in projective
representations, and the Schur multiplier of an arbitrary finite Weyl group W was
computed by Ihara and Yokonuma [IY65] (also cf. [Kar87]). Given a 2-cocycle o on
W, the corresponding twisted (or spin) group algebra QW admits a Coxeter type pre-
sentation, which is almost identical to the standard Coxeter presentation modulo some

sign differences; cf. [KW09]. The spin (i.e., projective) representation theory of the
1
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symmetric groups, equivalently the linear representation theory of the spin symmetric
group algebras, was developed by Schur, and rich algebraic combinatorics such as Schur
@Q-functions arises from this.

The spin Hecke algebra of type A (called a degenerate spin affine Hecke algebra then)
was introduced by the second author in [Wa09, §3.3], and it is Morita super-equivalent
to the degenerate affine Hecke-Clifford algebra of Nazarov [Na97]. Subsequently the
spin Hecke algebras of type B and D were introduced by Khongsap and the second
author [KWO08], associated to the “most nontrivial” 2-cocycle of the corresponding Weyl
group. These algebras look almost identical to the degenerate affine Hecke algebras of
classical type in [Lu89], except some odd signs in the defining relations. A remarkable
feature is that the polynomial algebras are now replaced by skew-polynomial algebras.
The spin and the usual degenerate Hecke algebras have formally the same PBW basis.

Just as for the degenerate affine Hecke algebras, the spin Hecke algebras admit nil
versions as well. The spin nilHecke algebras of type A, denoted in this paper by NH,,,
were rediscovered and studied in depth by Ellis, Khovanov and Lauda in [EKL14]
(called the odd nilHecke algebra in loc. cit.). It also reappeared in [KKT16] as a basic
building block of a new class of (spin) quiver Hecke superalgebras.

1.2. The odd/spin type A results. Let us review some main results of [EKL14] on
the spin type A nilHecke algebras NH,,, which are most relevant to our current work.

A faithful (skew-)polynomial representation of NH, was constructed via odd De-
mazure operators. Ellis, Khovanov and Lauda [EKL14] then constructed the ring of
odd/spin symmetric polynomials ®A;, via odd Demazure operators as a subalgebra of
NH

n, and showed that NH,, is isomorphic to a matrix algebra of size n! with entries

in “A,,. The sum over all n of Grothendieck groups of Z-graded projective °A,,-modules
(with the Zs-grading forgotten), Ko("NH") = P,,~, Ko("NH,,), is shown to be a twisted
bialgebra isomorphic to half the quantum group of rank one UZ]“ (sl2).

With the Zs-grading turned on, this bialgebra isomorphism was subsequently up-
graded to an isomorphism with half the quantum covering algebra of rank one U;j7r (sl2)
in [HW15], where 7 with 72 = 1 counts the parity Zs-grading. Note the specialization
of Us (sly) at m = 1 becomes U/ (slo).

All the above results have parallels for the usual type A nilHecke algebras. The
matrix algebra identification for the type A nilHecke algebra was established in [La08§].

1.3. The goal. The goal of this paper is to formulate and establish in the framework
of spin type B/D nilHecke algebras generalizations of some main constructions and
results (modulo the diagrammatics) of [EKL14] in type A.

The spin nilHecke algebra NH, of type B studied in this paper is exactly the nil
version of the corresponding spin Hecke algebra of [KWO08]. However the spin nilHecke
algebra °NH,, of type D is new as it is not the nil version of the corresponding spin
Hecke algebra therein (which will be denoted by WH;ykw in this paper). Instead it is

associated with a different 2-cocyle of the Weyl group D,,; see §2.2 for the comparison
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of the two different type D nilHecke algebras. These spin type B/D nilHecke algebras
are Z X Zo-graded, and they contain as a subalgebra the spin type A nilHecke algebra

‘NH,,.

n

1.4. The main results. Let us describe in some detail the main results of this paper

section-wise.

(1)

(2)

We construct the (skew-)polynomial representations Pol,, of the spin nilHecke
algebras NH,, and °NH,,, where the nilCoxeter generators 9; (1 <i <n — 1),
%, %0, act by type B/D odd Demazure operators; see Theorems 2.7 and 2.10.
We introduce the rings of spin symmetric polynomials, °A,, and °A,, as the in-
tersections of the kernels of the odd Demazure operators. We show that °A,,
and °A,, are polynomial rings in n generators. See Theorem 3.5 and Proposi-
tion 3.10. The rings of spin type B/D symmetric polynomials turn out to be
not as odd as in the type A case.

We introduce the spin type B/D Schubert polynomials, parametrized by B,, and
D,,, respectively. We show that the polynomial representation Pol, is faithful
and the PBW basis theorem holds for the spin nilHecke algebras "NH, and
'NH,,. See Propositions 4.4 and 4.9.

We show that Pol;; is a free °A,,-module with these spin Schubert polynomials as
a basis; see Proposition 5.3. We establish a similar (slightly weaker) statement
in type D over the rational field Q (instead of being over the ring Z); see
Proposition 5.8. We show in Theorem 5.5 that the spin type B nilHecke algebra
®A,, is isomorphic to a matrix algebra of size |B,| with entries in the ring of
spin symmetric polynomials "A,. For a similar result in type D over Q, see
Theorem 5.10.

We show in Proposition 5.12 that Ko('NH ) = @, -, Ko('NH,,) is a bialge-
bra module over the twisted bialgebra Ko(°NH ), where the twisted bialgebra
Ko("NH") is isomorphic to the quantum covering algebra of rank one U (sl3)
[EKL14, HW15]. A similar result holds for type D.

In Appendix A we revisit the usual nilHecke algebras associated to arbitrary
Weyl groups W. The results (1)-(4) hold for nilHecke algebras associated to any
Weyl group W over Q. All these are well known, with a possible exception of
(4) on the matrix algebra identification. As we cannot find this explicitly in the
literature (except the type A case in [La08]), we offer two proofs, one algebraic
and one geometric. The geometric proof was suggested to us by Ben Webster
and Peng Shan separately. The algebraic proof is similar to the ones we gave for
the spin type D nilHecke algebra. See Remark A.5 for a possible strengthening
over Z (as in type A [La08]). The type B/D results are occasionally used to
provide shortcuts in some proofs in earlier sections in spin nilHecke algebras.
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For the convenience of the reader, the different types of spin nilHecke algebras, their
Demazure operators, spin symmetric polynomials, and matrix algebra identifications
are summarized in the following Table 1, where we set h@; =%, =9;,for1 <i<n-1.

TABLE 1. Spin type A/B/D nilHecke algebras

Type | Demazure operators | Spin symmetric polynomials | Spin nilHecke as matrix algebras
A [o,0<i<n—1] A, =N ker(d;) WH,, = Mat,,(*A;,)
B %9,,0<i<n °A,, = N, ker(%;) "NH,, = Matz,|(°A,)
D %0,,0<i<n °A,, = i ker(%9;) aNH;’@ = Mat|Dn|(aA;7Q)

1.5. Future works. There are several natural directions to pursue in the theory of
spin Hecke algebras.

The spin Hecke algebras [Wa09, KWO08] are associated to the most nontrivial 2-
cocycles of Weyl groups of classical type. The type D construction in this paper suggests
there might exist a more general class of spin Hecke algebras (and double affine versions
too) associated to more general 2-cocycles.

An open basic question is to develop a theory of spin Hecke algebras associated to
exceptional Weyl groups.

Note that our (spin) type B Schubert polynomials are not the ones defined in [FK96,
BH95], and our type B/D Schubert polynomial associated to the longest Weyl group
element is a monomial (as in type A). Our definition of Schubert polynomials is crucial
in our proof that ™NH, (or its even counterpart) is a matrix algebra over Z, but it
may not have a geometric interpretation in terms of cohomology of flag varieties as
in [BH95, FK96]. From a combinatorial viewpoint, it will be interesting to see if our
version (or another suitable version) of (spin) type B/D Schubert polynomials has
additional favorable properties, such as stabilization as n goes to infinity. It will be
very interesting to explore spin double Schubert polynomials.

Lauda and Russell [LR14]| developed an intriguing odd Springer theory, building
on the spin type A nilHecke algebra and Ellis-Khovanov’s theory of odd symmetric
polynomials. It will be interesting to see if there is a spin/odd Springer theory of type
B and D.

Acknowledgement. The research of WW and the undergraduate research of 1J
are partially supported by the NSF grants DMS-1405131 and DMS-1702254. We thank
Mike Reeks for his help with mentoring IJ in this research. We are also thankful to
Ben Webster and Peng Shan for providing a geometric proof of Theorem A.4.
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2. SPIN NILHECKE ALGEBRAS AND POLYNOMIAL REPRESENTATIONS

ns

In this section we introduce the spin nilHecke algebras, °NH,, and NH
and D. We construct the (skew-)polynomial representations Pol, of the spin nilHecke

of type B

algebras "NH,, and °NH,, via odd Demazure operators.

2.1. Spin nilHecke algebras. We denote by Pol, the skew-polynomial algebra in n
variables, that is, the Z-algebra generated by x1,...,z,, subject to the relations:

(2.1) rix; +wxjr; =0, Vi £ 4.

Definition 2.1. Let n > 1. The spin type B nilHecke algebra "NH,, is the unital Z-
algebra generated by z1,...,2, and 0y,...,0,_1, %9,,, subject to the relation (2.1) and
the following relations (2.2a)—(2.2e) and (2.3a)—(2.3e), for 1 <i<n —1:

(2:2a) (9;)* =0,

(2.2b) 0; 0;410; = 0;110; 0541,

(2.2¢) 0;0; + 0,0, =0 (Ji—j|>1),

(2.2d) 2i0; +0;xiv1 =1, Oja;+xi410; =1,
(2.2¢) Ojxj+x;0; =0 (j#4,i+1);

(2.3a) (‘0,)% =0,

(2.3b) 0,010,051 = —0,, 10,0, 10,
(2.3¢) %,0; +9;%0, =0 (1<i<n-—2),
(2.3d) %0 + 2,%0, = 1,

(2.3¢) W, +x'0, =0 (1<i<n-—1).

The spin type B nilCoxeter algebra ™NC,, is defined to be the subalgebra of 'NH,,
generated by J; for 1 <1i < n and %9,,.

Definition 2.2. Let n > 2. The spin type D nilHecke algebra °NH,, is the unital Z-

algebra generated by z1,...,z, and 9y,...,0, 1,%,, subject to the relations (2.1),
(2.2a)-(2.2¢), and the following additional relations (2.4a)—(2.4f) for %0, :

(2.4a) (0,)2 = 0,

(2.4b) 0,0, 5°0,, = 0,_5°0,0,,_»,

(2.4c) 0,0, +0;%0, =0 (1<i<n-3),

(2.4d) 0,0, -1 = 0,10, = 0,

(2.4e) Tp-1'0, — Opxn =1, 0,251 — 2,°0, =1,

(2.4f) 0,1 +2,°0, =0 (1<i<n-2).
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The spin type D nilCozeter algebra °NC,, is defined to be the subalgebra of °NH,, gen-
erated by 9, for 1 <14 < n and %9,.

We introduce a Z-grading | - | on the algebra "NH,, by declaring
(2.5) il =2, 19;] = [0, = -2,

for all possible 7, j. Similarly, the Z-grading |-| on the algebra °NH,, is given by declaring
|zi| = 2, |0;| = [°0,,| = —2, for all possible i, ;.

We also introduce a parity Zs-grading p(-) on both 'NH,, and ®NH,, by declaring all
generators x;, 95, %0, and %9, to have parity 1; that is, °NH,, and °NH,, are naturally
superalgebras with all generators being odd.

2.2. Spin Hecke vs spin nilHecke algebras. The spin Hecke algebra (also called
degenerate spin affine Hecke algebra) of type B, with 2 parameters wuq,us, denoted
by 9 , was introduced in [KWO08, Definition 4.3]; here, we set u; = ug = 1 (see
Remark 5.6 below). Using our current notation the definition of $ ~differs from °NH,,
only by substituting the “nil” relations (2.2a) and (2.3a) with the relations

0,)>=1, (9;)*=1 (1<i<n-1).

The spin Hecke algebra )5 is naturally a filtered algebra using the degrees given by
(2.5). Then *NH,, is the associated graded of the filtered algebra Hp. (le., the nil
version of §5 ). The PBW basis theorem was established in [KWO8] for $5 , and so
the PBW basis theorem for ™NH,, follows; this also follows from our results later in this
paper.

Similarly, we also have the spin Hecke algebra of type D, $, , in [KWO08, Defini-
tion 4.1], and it admits a nil version, denoted here by °NH,, . The algebra NH,,
is generated by z1,...,z, and 9y,...,0,_;,%,, subject to the relations (2.4a)—(2.4c),
(2.4f), and the following relations (2.6a)—(2.6b) (in place of (2.4d)—(2.4e)):

(2.6a) %0,0,_1+8,,_,°0,, =0,
(2.6b) T 10, +0,xn =1, 0,24 1+1,°0, = 1.
Note ?’NHAkw % NH,,. Indeed, the action of WH;L,kw on its polynomial representation

Pol,, (which is the induced representation from the trivial module of the spin nilCoxter
subalgebra) is not faithful (as one checks that %9, = 8, _;), and the action factors
through NH,,.

The finite spin nilCoxeter algebras for °NH;L7kw and for °NH,, are associated to distinct
2-cocycles of D,, in [KW09, Table 2.2] (compare (2.4d) and (2.6a)), and hence are non-
isomorphic.

Note that "NH,, (and respectively, NH,,, °NH,, ,,) contains a subalgebra NH,,, which
is generated by z1,...,2n, 07,...,0,_;. The algebra NH,, is a nil version of the spin
Hecke algebra of type A,_1 introduced in [Wa09, §3.3] and rediscovered in [EKL14,
KKT16].



SPIN NILHECKE ALGEBRAS OF CLASSICAL TYPE 7

Remark 2.3. By a detailed analysis one can show that up to isomorphism the algebras
°NH,, and °NH,, ,, are the only possible spin type D nilHecke algebras which contain

n,kw

‘NH,, as a subalgebra. The algebra °NH;7kw will not be considered further in this paper.

Remark 2.4. In [Wa09, KWO08], the Hecke-Clifford algebras of classical type were for-
mulated (the definition of type A Hecke-Clifford algebra was due to Nazarov [Na97])
and shown to be Morita super-equivalent to the spin Hecke algebras of the correspond-
ing type. Similar results are valid for the nil versions. Our new nilHecke algebra °NH,,

also suggests the existence of spin/Hecke-Clifford algebras associated to more general
2-cocycles for the finite Weyl groups; cf. [KW09, Table 2.2].

For a Z x Zs-graded algebra A with a homogeneous basis B, we define its graded
rank to be (cf. [HW15])

(2.7) thyn(4) = 3 Vw0,
beB

where 7 satisfies

2 =1.
When we need only consider the Z-grading by forgetting the Zs-grading (or when the
Zs-grading is trivial), we will use the following graded rank:

rkq(A) =rkg,1(A) = Z q"l.
beB
2.3. Odd Demazure operators of type B. We define the endomorphisms s; on
Pol,, for 1 <i <n — 1, by letting (cf. [EKL14, (2.2)])
—Tit1, forj=1
(2.8) si(zj) = —xi, forj=i+1
-y, otherwise.
In addition, we define the endomorphism U,, on Pol,, such that
(2.9) % () = —a; V3.
It is straightforward to see that U, is well defined, i.e., bsn(:nixj +ajx;) =0 for i # j.

Lemma 2.5. The operators %, and s;, for 1 <i < n — 1, satisfy the type B, Coxeter
group relations.

Proof. Tt is known (cf. [EKL14]) that s; (1 < i < n — 1) given by (2.8) satisfy the
Coxeter relations for S,,. In addition a direct computation shows that

b 2 b b .

(%sp)” =1, SnSi = Si Sn (i <n-2),
b b b b
SnSn—1 SnSn—1 = Sn—1 SnSn—1 Sn-

The lemma is proved. O
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Now, we are in a position to define the type B odd Demazure operators.

Definition 2.6. The type B odd Demazure operators 9; (1 <i < n — 1) and %9, are
defined as Z-linear operators on Pol, which satisfy (2.10)—(2.13) below:

. . 1, forj=id,i+1
(2.10) 9; (1) =0, 0; (z5) = {

0, otherwise,

. 1, forj=n
(2.11) ban(wj) B {O, otherwise,
and the Leibniz rule:
(2.12) 3 (f9) = 3 (D) + s:(1); (9),
(2.13) 0,(£9) = 0,(£)g + *u(£)0,(g), Vf.g € Pol,.
< n — 1) are the type A odd Demazure operators defined

Note that 9; (1 < i
in [EKL14, (2.3)-(2.4)].

Theorem 2.7. The operators 0y, ...,0, 1,%, in (2.10)~(2.13), along with the left

yYn—1>
multiplication operators x1,...,T,, define a representation of "NH,, on Pol.

Proof. The proof consists in showing that the relations given in Definition 2.1 hold.
The first set of relations (2.2a)—(2.2e), corresponding to type A, have already been
proved in [EKL14, Proposition 2.1]. Thus, we need only prove the remaining rela-
tions (2.3a)—(2.3e).
We first prove (2.3d) and (2.3e), as they will be useful in the proofs of the remaining
three relations. Let f € Pol,. Then, by the Leibniz rule, %0, (z,f) = f — 2,0, (f), so
that 0, x, + 2,%,, = 1, whence (2.3d). Similarly, for 1 <i <n — 1,

0, (zif) = 0— 20, (f) = %0, (f),

so that *0,z; + 2;%0,, = 0, whence (2.3¢).

To prove (2.3a)—(2.3c), it suffices to prove them in the case where each relation is
applied to a monomial; we do so by induction on the degree of the monomial.

For (2.3a), the base case is trivial, i.e., (%9,)%(1) = 0. For the inductive step, we
divide into two cases. In the first case, the monomial is of the form x,, f, where f is a
monomial. Then, using (2.3d) and the inductive assumption, we have

(°0,)(xnf) = 0, (f — 240, (f))
=0, (f) =0, (f) + 2a(%0,)*(f) = 2 (0,)*(f) = 0.
In the second case, the monomial is of the form x; f for ¢ < n, and we have
(0. (wif) = 0 (—2:°0,(f)) = :(0,)*(f) = 0,

using (2.3e) and induction.
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For (2.3b), we again have a trivial base case. There are now three cases, on the first
factor in the monomial. In the first case, we consider a monomial of the form x,, f:

"ana; 15(9”8; 1(xnf) = [’8”6; 10n(f = 2n-10,_1(f))
=10,0,_1"0,(f) + 0,0, 1 (2n-1'0,0,_,(f))
= 0,0, 10, (F) + 05 (0,0, () — 210,01 (1))
= 50,0, 10, (f) + (0,)%0,_1 ()
— 0,10, 0,1 (f) + ©0"0,0, 10,0, ()
= 0,0,,1"0,(f) = 0, 10,0, _1 () + 0°0,0,,_1"0,0,,_1 (),
and
010,01 0y () = 0, 10,0, 1 (f — 00, (f))
= 010,051 () = 10y (D) = 2018010 ())
=0, 1'0,0,1(f) = 0,1(0,)*(f) = 051 (20 10,0, _,"0,([))
1(f

= 87 ba 87 ) ba 87 lban(f) + ‘Tnan—l anaﬁ—l an(f)

We arrive at 9,0, 10,0, _1(xnf) = —0,_1%0,0,_ 1%, (z,f) by the inductive assump-
tion and the above computations, completing this case.

In the second case, we consider a monomial of the form z,_1f. The computations
are very similar to the above; for completeness, they are given below.

0,05, 10,05, 1 (n—1.f) = 0,0, 10, (f — 2001 (f))
= 0,0, 10,(f) = 0,0, 1 (01 (f) = 20,0, (£)
= 0,0, 10, (f) = 0,0, _1)*(f)
+ 0, (0,01 (f) = 201001 0,0, 1 ()
= 0,0, 10, (f) + Tn-1'0,0,_1"0,0,_1(f),
and
0,_ [’6 0, 18 (Tp-1f) =0, b@ 0,_1(— mn,lb&;(f))

= 00 10, (=0 (f) + 2n 010 ()
=0y (8;_1"a;<f> ~ 20,0, 10, (/)
= —"0,0, 10, (f) + 2010, _1"0,0, 10, (f).

Again, we arrive at the desired conclusion via induction
The final case, '0,,0,, (xif) = %,,0, %0, (x;f), for i <n—2, is easily

nnlnnl nlnnln

verified. This completes the proof of (2.3b)
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Finally, for (2.3c) with i < n — 2, we again induct on the degree of monomials. First
consider a monomial of the form z,, f. Then

“0,0; (xnf) = =0, (xn0; (f)) = —8; (f) + 2.°0,0; (f),
8; 0, (wn f) = 0; (f — 2"0,(f)) = 0; (f) + 2n0; "0, (f)-

The result follows in this case by induction. The other three cases, namely the mono-
mials of the forms z;f, x;41f, and zpf for k # n,i,i + 1, are similar, and will be
skipped. ]

2.4. Odd Demazure operators of type D. Define an endomorphism °,, on Pol,
by letting

Tp_1, fori=mn
(2.14) %, (xi) =z, fori=n—1

—x;, otherwise.

It is straightforward to check that %,, is well defined, that is, %, (z;z; + zjz;) = 0 for
i # j. We also recall the operators s;, for 1 <i <mn —1, from (2.8).

Lemma 2.8. The operators %, and s; (1 < i < n — 1) satisfy the type D Coxeter
relations.

Proof. We already know that s; (1 <14 < n—1) satisfy the type A,,—1 Coxeter relations.
It remains to check that

(OSN)Q = 17 Sibsn = asnsz‘ (Z 7é n — 2)7

0 0 _ 0
SnSn—2 Sn = Sp—2 SnSn—2.

The first relation is immediate. For the second relation, if ¢ < n — 2, we compute

—Tp—1, forj=mn
—Tn, forj=n—-1
8:%n(x;) = spsi(z) = < i, forj=i+1
Tit1, for j =1
[ 25, otherwise;
and if 1 = n — 1, then we compute
—Zn, for j=n
%n8n—1(2j) = Sp—1%n(7;) =  —xp_y, forj=n—1

xj, otherwise.
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Finally, for the third relation, we compute

Tn—2, for j=n

) > N > N st forj=n-—1

SnSn—2 Sn(xj) = Sp—2 5n5n72(l‘_y) = .
T, for j=n—2
—Tj, otherwise.

The lemma, is proved. g
Definition 2.9 (Type D odd Demazure operators). We define 9, for 1 <i <n —1,

as before by (2.10) and (2.12). We also define %9, to be the Z-linear operator of Pol,,
which satisfies

-1, forj=n
(2.15) 0,(1)=0 0 (z;)=K1, forj=n—1
0, otherwise,

and the Leibniz rule

0,(fg9) ="0,(f)g + sn(f)0,(9), Vf,g € Pol,.
Theorem 2.10. The operators 0y,...,0, 1,%, in (2.10) and (2.15), along with the

y Yn—1>9
left multiplication operators x1,...,x,, define a representation of °NH,, on Pol .

Proof. The proof consists in showing that the relations given in Definition 2.2 hold.
Relations (2.4e)—(2.4f) are easy consequences of the Leibniz rule. The remaining
relations are proved by induction on the degree of a monomial.
For (2.4a), we assume (°9,,)?(f) = 0 and must show that (%,,)*(x;f) =0for 1 < j <
n. For j < mn — 2, this follows easily from (2.4f). For j =n — 1, we compute
(0.)*(@n-1F) =0, (f +20°0,(f))
=0,(f) = 0, (f) + 2n1 (0,)*(f) = 0.

The computation for j = n is similar, and so we have (9,,_;)* = 0, whence (2.4a).
For (2.4b), the inductive step for a monomial of the form z;f where j < n — 2 is
again trivial using (2.4f). For j = n — 2, we compute

0,0y 2% 0y (Tn-2f) = 0,0, _5(xn—2°0,(f))
= —%0,(°0,(f) = 29-10,_5°0,,(f))
=0, (21-10,_5"0,(f))
= 0,_2°0,(f) + .°0,0,_5°0,,(f),
and
020,09 (¥n—2f) = 0,30, (f — 2010, _5(f))
= 0,20, (f) + 02—, o (f) — 20,8, _5(f))
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= 8,20, (f) + 200, _5°0,0,, _5(f),
which agrees with (2.4b) in this case via induction. For j =n — 1, we have
%0, 020, (201 f) = 0,0, _o(f + %0, (f))
= 0,0, 2 (f) + 0, (200, _5°0,,(f))
= 0,0, _2(f) + 0,20, (f) — 1-1°0,0,,_5°0, (),
and
020,03 (¥n-1f) = 0,50, (f — 2020, _5(f))
= 0,20, (f) + 0,5 (20-2%0,0,, 5(f))
= 0, _0°0,(f) + 0,0, _o(f) = #n-10,_5%0,0,_5(f),
which again agrees with (2.4b) in this case by induction. For j = n, we compute
%0, 052" 0y (wn f) = 0,0, _o(—f + 2010, (f))
= —0,0,,_5(f) +°0,(°0,(f) — 2n—20,_5"0,,(f))
= =0,0,_5(f) + £n-2°0,0,_5°0,(f),
and
O 2030 5(wnf) = 0y 500 (—2n0p_5(f))
= 8, 2(0p2(f) = 20-1%0,0,5(f))
= —0,0,_5(f) + 2n—20,_5°0,0, _5(f),

thus completing the proof of (2.4b).
For (2.4c), we must check the monomial z;f for j =n —1,n,4,i+ 1 (the other cases
follow trivially by (2.4f)). For j = i, we have

050, (i f) = 0; (—2i°0,(f)) = =0, (f) + 241050, (),
and
%0,0; (w: f) = 0, (f — i110; (f)) = 0, (f) + 2i31°0,0; (f),

verifying (2.4¢) in this case by induction. The case j =i + 1 is similar. For j =n — 1,
we compute

050, (xn-1f) = 0; (f + 220, (f)) = 0; (f) — 2n0;°0,,(f),
%0,0; (xn-1f) =0, (—2n—10; (f)) = =05 (f) — 2°0,0; (),

giving the expected result. The case j = n is similar, completing the proof of (2.4c).
For (2.4d), we must check the cases z; f with j =n —1,n. For j =n — 1, we have

Op 10, (xn1f) = O0p_1(f + 220, (f))
=0, 1(f) +°0,(f) — xn-10,_1°0,(f),
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and
0,001 (xn-1f) = 0,(f — 200, _1(f))
=0,(f) + 0,1 (f) = 20—1%0,0,_1 (),

verifying the given relation by induction. The case j = n is similar. This completes
the proof of the theorem. O

3. THE RINGS OF SPIN SYMMETRIC POLYNOMIALS

In this section, we formulate and study the rings of spin symmetric polynomials of
type B and D, which are defined via the odd Demazure operators.

3.1. Spin type B symmetric polynomials.
Lemma 3.1. We have im(%9,) = ker(%0,,), and im(9;) = ker(9;) for 1 <i <n — 1.

Proof. Tt follows by (2.3a) that im(%9,) C ker(%9,). Now suppose that %9, (f) = 0.
Then by (2.3d), we have f = (%0, + 2,%0;,)f = %0, (xnf), and so f € im(%9;). The
remaining equalities were shown in [EKL14], and can be proved similarly as above. [

The ring of spin type B symmetric polynomials is defined to be
n—1 n—1
(3.1) ", = () im(9;) Nim(%d,) = () ker(d;) Nker(%D,,).
i=1 i=1
The second equality above follows by Lemma 3.1. We remark that
n—1 n—1
N, o= () im(9;) = () ker(;)
i=1 i=1
was studied in depth in [EKL14] in connection with NH,.
The following lemma will be useful later on for computing %9, .

Lemma 3.2. For k > 0, we have

k) _ 0, for k even
k=1 for k odd.

Proof. Follows by a simple induction via the Leibniz rule. O

Below (in Lemma 3.3 and its proof) we find it convenient to use some standard
results on the usual (i.e., non-spin) nilHecke algebras NH,, and °NH,, or rather on
its subalgebra of Weyl group invariant polynomials. These results can be found in
Appendix A, where we describe the nilHecke algebras in general (including the classical
type in more detail). We adopt the convention of dropping the superscript — from
notations for spin nilHecke algebras and their related constructions to denote their non-
spin counterparts. We denote by Pol, = Z[x1,...,x%,] the usual polynomial algebra,
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where the Weyl group of classical type acts naturally. The subalgebra of Weyl group
invariant polynomials are denoted by A, "A,,, °A,,, respectively. We recall (A.3) here:

aAn:Z[Xla"'7Xn]Sn7 bAn:Z[X%v"' X2]Sn> aAn:bAn[Xl"'Xn]'

ren

Lemma 3.3. For any polynomial f in n variables, we have f(x2,...,x2) € °A,, if and
only if f(x2,...,x2) € °A,,.

Proof. Tt is well known that the subalgebra “A,, of the type A Weyl group invariant poly-
nomials coincides with the intersection of the kernels of the corresponding Demazure
operators; cf. (A.2).

A direct computation in the setting of skew-polynomial representation Pol,, of the
type A spin nilHecke algebras gives us

:B?H, for j =1 Ti — Ty, forj=i1
2 . . —, 9 . .
si(z7) = q a7, for j=i+1 0; (z7) = Q wiy1 —xj, forj=i+4+1
sz7 otherwise, 0, otherwise,

A completely analogous computation in the setting of polynomial representation Pol,
of the usual type A nilHecke algebras gives us

XZ?+1’ for j =1 X; — Xjy1, for j =1
Sz’(Xg-): x2 for j =i+ 1 8-(x2-): X1 — % for j—it1
J L7 (AN i+1 iy J 7
ij , otherwise, 0, otherwise.

As can be seen from the above, the actions of the Demazure operators are for-
mally identical on polynomials of even degree in each variable in the spin and non-
spin settings. Therefore, f(z?,...,22) € (/2 ker(8;) if and only if f(x3,...,x2) €
N ker(d;). The lemma follows. O

Define the spin type B elementary symmetric functions, for 1 < k < n:

(3.2) by, ... Tn) = Z a? xfk

1<y < <ip<n

Lemma 3.4. The elements be,;(xl, ooy Zp) for all 1 < k < n commute with each other.
Moreover, we have %, (x1,...,2,) € °A,,.

Proof. The commutativity is clear as these elements are of the form f(z?, ... 22). Tt
follows by Lemma 3.3 that the elements %, (21, ..., ,) are in ®A,,. Furthermore, they
are also in ker(%0,) by Lemma 3.2. Therefore they are in °A,, Nker(%d;) = °A,, (the
equality follows by definition). O

We can now provide a complete description of °A,,.

Theorem 3.5. We have °A,, = Z[x2, ... 22]%" which is a polynomial algebra generated

b b b
by e, %y, ..., €y
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Proof. We adapt the proof of [EKL14, Proposition 2.2] here. We give some details, as
we will repeat the argument for type D later.

Set A, ™ = Z[22,... 22]5", which is well known to be a polynomial algebra
generated by %7, %,,...,%,. So we have °A; selem ’A,, by Lemma 3.4, and we shall
prove the equality holds.

Claim. Both °A,, and A, "™ have free abelian group complements in Pol .

Let us take the Claim for granted for now. Recalling the non-spin type B construc-
tions in Appendix A, we observe the spin and the usual constructions coincide over the
field Zy. In particular, rk,(°A,,) = rk,(°A,,). Now since A, selem — ’A,, and both have
free complements by the Claim, the graded dimensions over Zs of their reductions mod
2 coincide if and only if they are equal.

It remains to prove the Claim. For PA,, this is because if there were no free com-
plement, some free direct summand (as a Z-submodule) would be wholly divisible by
an integer d > 1. But then we could divide generators of this summand by d. The
result would still be in the kernel of all the odd Demazure operators, a contradiction.
As for ®A; ™™ one checks that with respect to a lexicographic order on monomials,
the highest order term of the basis of elementary symmetric polynomials always has
coefficient 1. The Claim (and hence the theorem) is proved. O

We define the (g, 7)-integers, the g-integers, the g-double factorial, and the (q,7)-
double factorial as follows:

=L 70" i = R2ali2n - 2] 42
q—q
33 _ T —q" " — _9 ...
] = —— 2n]|.!! = [2n],[2n — 2], [4][2] 7.

We have the following corollary to Theorem 3.5.

Corollary 3.6. The algebra °A., has graded rank
1 1
4 k(A )=qg ™ .
In particular, we have tky(°A,,) = 1k, (°A,,).
3.2. Spin type D symmetric polynomials.
Lemma 3.7. We have im(%9,)) = ker(%9,,), and im(9;) = ker(9;) for 1 <i<mn—1.

Proof. We only need to verify the first identity. By (2.4a), im(%9,) C ker(%9,). If
f € ker(%9,,), then by (2.4e) we have that f = —(°0,z, — ,-1%0,)f = %0, (—xnf), and
so f €im(%0,). O

The ring of spin type D symmetric polynomials is defined to be
n—1 n—1
(3.5) N, = () im(8;) Nim(%,) = () ker(d;) Nker(%D,,).
i=1

n
=1
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The second equality above follows by Lemma 3.7.
Define the spin type D elementary symmetric functions:
2 2
(3.6) % (21, .., 7)) = Di<iy<<ip<n Ty g, for 1<k <n—1
1 T, for k =n.

The following lemma will be useful in considering the spin type D symmetric func-
tions.

Lemma 3.8. We have

—Tp — Tp—1, fori=n

087;(1‘12) =\ ZTn + Tn-1, Jori=n-—1
0, otherwise.
Proof. Follows by a simple calculation from the definitions. O

Lemma 3.9. The elements ae,;, for 1 <k <n, commute with each other. Moreover,
we have %, € °A,, for each k.

Proof. The commutativity is clear since %, for k < n — 1, have even degree in each z;.
We have seen that Ds; = be; € A, for 1 <k < n —1. One checks directly that
9;(%,) =0,for 1 <i<n-—1,and so %, € “A,,. (Alternatively, %, = +%,, € °A,, by

[EKL14].) It remains to show that %9, (%;) = 0 for 1 < k < n, since °A;, = *A,,Nker ().
We first check %9, (%,,) = 0. Indeed,

0, (%) =0y (w1wa - )
= (=1)""2z1 -2, 2%, (Tn_12n)
= (=1)""2%z; -2y o(x, —z,) =0.
It follows that %9, (%, ) = 0 thanks to %, = (—1)(721)(?‘5;)2.

We next show %9, (%) = 0, for 1 < k <n—1, by induction on n; the base case n = 2
is trivial using Lemma 3.8. Let n > 2. Note that, for 1 <k <n —1,

ey, n) =% (w2, my) 2R % (2, ),

where %’;,_; is the same as %, _,, but with the indices of all variables shifted by 1 as
indicated. Using the Leibniz rule and the inductive hypothesis we have

0, (@1 mn)) =0, (@2, .. @) + 27 %y (22, 7)) =0+ 27 - 0=0.
The lemma, is proved. U
Proposition 3.10. The algebra®A,, is a polynomial algebra generated by %1, %5, ..., %,,.

Proof. The same as the proof of Theorem 3.5, using Lemma 3.9 in place of Lemma 3.3.
O
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Corollary 3.11. We have "A,, C °A,,, where °A,, has graded rank
1 1
0= @) e -2

rky(*A,,) = ¢ ")

Proof. The inclusion follows by noting %, = %, (k # n) and %, = (—1)(3)(%;)2. It
follows by Proposition 3.10 the graded rank is the same as for the usual type D. O

The following is a nil version of [KWO08, Proposition 4.6].

Corollary 3.12. The centers of the algebras "NH,, and °NH,, are Z[z?, ... 22]%".

n

Proof. The quickest way is to refer to [EKL14, Proposition 2.15], which states that
the center of WH,, is Z[2?,...,22]%. As both "NH, and ®NH, contain NH, as a

rr'n

subalgebra, so their centers are included in Z[z?,...,22]%». On the other hand, it is
easy to check that each element in Z[z?, ..., 22]% commutes with %), and %), and so

it is central in °NH,, or °NH,,. O

4. SPIN SCHUBERT POLYNOMIALS OF CLASSICAL TYPE

In this section we introduce the spin type B/D Schubert polynomials. We compute
the Schubert polynomials associated to the identity element of the type B/D Weyl
groups as some explicit nonzero constants.

4.1. Spin type B Schubert polynomials. We denote by B,, = (s1,...,5,_1, %)
the Weyl group of type B,. When there is no confusion, we also write s, = ,,.
For w € By, we choose a reduced expression w = s;, ---s;, for w in terms of simple
transpositions and define %0, = 9;, -+ 0;,. A different choice of reduced expression for
w gives the same %0, only up to a sign.

We introduce a shorthand s, ; to denote the consecutive product from s, to sp;
similarly, s, p. . denotes the consecutive product from s, to s, and then to s.. For
example, we have s1 .1 = 8152 - Sp—1%nSn_1 - - S251.

We choose the following reduced expression for the longest element “w,, in B,,:

(4.1) Wy = [’wn =S1.n.1"52.n.2" " --." S(nfl)..n..(nfl) . bSn.
For an n-tuple of integers r = (r1,...,7,), we write 2= = z]' - - - zI». Set
(4.2) %, = (2n—1,2n—3,...,1), 20 = L2 g,

We define the spin type B Schubert polynomials to be, for w € By,
(4.3) (1, oy @n) = Oy 1y (20).
The following formulas hold, for w,u € By:

%%_F%uwmmmmww

(4.4)
0 otherwise,
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and

(4.5)
0 otherwise.

- {ibswu1 if f(wu™t) = l(w) — £(u)
u Sw =

Our next goal is to compute %,, where e € B,, is the identity.
Denote by "™NH’,_; the subalgebra of "NH, generated by 9; and z; for 2 < i < n,

which is isomorphic to "NH,_ ;. We shall use the prime notation to denote items

associated to "NH’ ~_; systematically, such as

bwqu 1 =52.n.2°83.n3" --." (Sn—lbsnsn—l) : bsn)
Poll,_, = Z[za,...,z,] C Pol,,

A= ﬂ ker(9; : "Pol’, | — *Pol’_,),

R (2n 3,...,3,1).
The following is a type A analogue of Lemma 3.2.

Lemma 4.1. For 1 <1 <n, we have

k
_ 1 _k—
(4.7) 0; (xf) = Z( 1)7- 1135+1931 7,
j=1
k
1 k
(4’8) i 1+1 Z j ! 3 z-|—1
7=1
Proof. It follows by a simple induction on k and the Leibniz rule for 9;. U

Proposition 4.2. We have %, = +1.

Proof. We shall use a shorthand notation similar to (4.1) such as
O pa = 0105+ 0,y 10,0, 1 -+~ 00,
We proceed by induction on n, with the base case n = 1 being clear.
Assume n > 1. Then
- b
bse = bawn (z 5”)
= 010y (@ )
- - bs/—

= Oy (=" 1b8wn (z 1))
=0, .20 (27 )

2n—1

=20 o | Y (—1) e e

=1
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2n—1

=10, Z 0o n.2 < 17! J2 1) ff?n_j_l-

Now, the expression %9, --- 9, _,%9,0, ;- -, consists of 2n — 3 Demazure operators,
each of which will decrease the degree of a polynomial by 1. Hence the only terms in
the above sum which will survive are j = 2n — 2,2n — 1, which leads to the following

simplification:
2n—1
o _ _ j—1.4-1\  2n—j—1
5e = +0; E 0.2 ((_1) ) ) Ty
j=2n—2
2n—1 Ji—1
_ - - 31 1 j2 1 ]2 1 Ji=ja—1 2n—j1-1
= +0; E 03.n.3 E ) Ty
Jj1=2n—2 Jo=1

2n—1 Ji—1

==+0; Z 0y Z a3n3( )Jl 1( 1)j271$§2_137]2'1_j2_1> x%n_j1_1~

Jj1=2n—2 Jjo=2n—4
Continuing this process,

2n—1 ji—1 Jn—2—1

R DS

1=2n-2jo=2n—4  jn_1=2

n—1

_ 1 i—ja—1 2n—ji—1
o, - [’8 (( )J1+ Ajn—1+n— 11.]71 11 dn—2=jn-1-1 ] )

2n—1 ji—1 Jn—3—1 jn—2—1

Sl IND DD DIDS

j1=2n—2 jo=2n—4 Jn—2=4 jn-1=2
Jn—1 even
3;...3*

n— L1

L <(_1)j1+"'+jn72+774+11:,zln71_2 Jn—2—jn-1—1 xé’l*j2*1$§n*j1*1) )
Now, we factor all z; for ¢ < n — 2 to the right of J,_;, and consider only the

2 1
expression 9, (w2 gln 21T

terms with nonzero powers of x,, will be annihilated by 9; ---0,,_

). After expanding this expression, any monomial
o for degree reasons
and hence can be ignored. Thus, we can use the Leibniz rule combined with Lemma 4.1
to simplify this expression: for j,—1 —2 # 0,1 and j,—2 — jpo—1 — 1 # 0,1, we have
(ignoring all terms with nonzero powers of )

O,y (1~ 29531” = Jnmah
= Oy (wfp )l T e (<) R R, ()

= (—1)j"*1_3xf{ff_4 4 (=1)in—172 51" < * = 0 (modulo monomials involving ).

So we need only consider the cases when j,1 —2=0or j,—2 — jn—1 — 1 = 0,1 (recall
Jn—1 is always even). It is also readily checked that the case where j,—; —2 > 0 and
Jn—2 — jn—1 — 1 = 1, we obtain the same result as above (that the expression equals
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zero). Additionally, the cases j,—1 — 2 = 0 and j,—2 — jp—1 — 1 = 0 are mutually
exclusive, since j,—2 > 4 in the sum. In the case j,—1 —2 = 0, we obtain (regardless of
the value of j,_o — j,—1 — 1, since it cannot be zero)

(4.9) 8;_1(557]'{512_3) = x,jl":f_‘l (modulo monomials involving x,,).

In the case j,—2 — jp—1 — 1 = 0, we obtain
(4.10)
o

- (adn273) = (1)t = g2 (6 dulo monomials involving ),

n—1 n—1
since j,—1 is always even and so j,—2 = j,—1 + 1 is odd.

Now, considering the terms in the sum for a particular value of j,,_o, we will obtain
a contribution from (4.9) from the term j,—; = 2; if j,_2 is odd, we will also obtain a
distinct contribution from (4.10), which cancels the first contribution. Therefore, only
even values of j,_o contribute anything to the sum, and we can write
2n—1 ji—1 Jn—4—1 jn-3—1

I VD Sl S

J1=2n—2 jo=2n—4 Jn—3=6 jJpn_o2=4
Jn—2 even

— bo— Jit+in—z+n+l, Jn-2-2_ jn-3—jn-2—1 Jji—j2—1,_2n—ji—1
Oy 0p_g ((—1) " Tp1 Tpo ! 31 .
This expression is of the same form as before, and we repeat this same procedure n — 2
more times to arrive at

%, = +(—1)" = £1.

The proposition is proved. O

Lemma 4.3. Let w,u € B,. If f(w) < £(u), then (27%0,)(%.) = 0. Moreover, if
L(w) = L(u), then
ot ifw=
(th@:)(%w) _ { £ ifw=u

0 otherwise.
Proof. By (4.4)—(4.5) we have
+%,,1  if fwuTt) = £(w) — £(u)
0 otherwise.

(4.11) %, (%) = {

The lemma follows from (4.11). O

Proposition 4.4. There are no linear relations among the images of {a- baz;}weBn,zeN"
or among those of {0, 2"} e, renn i End(Poly). Thus these two sets form Z-bases

for °NH,,.

Proof. The proof here is fairely standard using Lemma 4.3.

Note these two sets are spanning sets for '™NH,, by the defining relations of "NH, . It
suffices to prove the linear independence of either of these two sets, and we choose to
prove that {279, }, B, renn 1 linearly independent.
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Assume we have a nontrivial relation S := > curz” %0, = 0 for some scalars

u€By,reN"
Cu,yr, and w is of minimal length such that ¢, ,» # 0 for some /. By Lemma 4.3, we

have 0 = S(%,,) = > Fewrx", which is a contradiction. O
Recall the notion of (g, 7w)-double factorial [2n];!! from (3.3).

Corollary 4.5. The representation of the spin type B nilHecke algebra "NH,, on Pol
is faithful. Moreover, we have the following graded rank formulas:
rky - ("NC,) = (mq) ™™ [2n],!1,

(wq) " [2n],!

rkq,ﬂ(bNH’r:) = (1 o 7T(]2)n

Proof. The faithfulness is a simple consequence of Proposition 4.4.
The first graded rank formula follows from the definition of the Z-grading

rkq,w(bNC;z) = Z rtw) g =2t(w) — (7rq)_”2 [2n],!.

wE By,

The second formula follows from the above and that rky . (Pol,) = (1_;(12)”. O

The above formula can be compared with the graded rank formula for the nilHecke
algebra of type A [HW15, (5.16)]:

(qm)~ ) [n),!

rey (NI, =

4.2. Spin type D Schubert polynomials. Let n > 2. Let D, = (s1,...,8n_1, %n)
denote the Weyl group of type D. Sometimes we write s, = %,. For w € D,, we
choose a reduced expression w = s;, - - - 5;, in terms of simple transpositions and define

%0, = %0y, - - - °0;,. We consider the following reduced expression of the longest word “w,
of D,,:

(4.12) W = aw; = S81.(n—2)n.1 " 52.(n-2)n..2 " ---" (SanOSn)'

Set

(4.13) %= (2n—2,2n—4,...,2,0),  z0 =222 42

n—1-
For w € D,,, we define the spin type D Schubert polynomials

(4.14) % (21, ) =0, 1, (27).

As in type B, we have
% — {i%wu O(wu) = 0(w) + £(u)

0 otherwise,
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and

(4.15) % (%) = +%,.-1 Lwut) = L(w) — £(u)
b 0 otherwise.

The following lemma is a generalization of Lemma 3.8.

Lemma 4.6. For any k > 1, we have

7=1
k
_ ] k
Dan(xﬁfl) = Z(E% 1xn—]l
j=1
Proof. 1t follows by an induction on k& and the Leibniz rule. O

Proposition 4.7. We have %, = 2" 1.
Proof. We proceed by induction on n. In the base case n = 2, we have
% =0,,(z") = 0,0, (27) = 0y (w1 + 23) = 2.
For n > 2, using inductive assumption we have

0. _ 09— Bn\ _ 9 09— 2n—2, %', _
5 =0y, (z°") = a1..(n—2)n..1 0 <551 z 1)

/
Wy —1

= 01—yt (1" 7%0)

= 2n_26£.(n—2)n..1 (;U%n_Q)'

Again, we use Lemma 4.1 and a similar trick as in the proof of Proposition 4.2 to
simplify the sums involved:
2n—2
T U SR
j1=2n—-3
2n—2 gzl . . . .
T I Sl Sl e
j1=2n—3 jo=2n—5
m—2  j1-1 jn—a—1

— on—2 Z Z Z

Jj1=2n—3 j2=2n->5 Jn—1=1

— 09— 1\ttt in—1tn—1_jn_1—1 Jn—2—Jn—1—1 J1—j2—1_2n—j1—2
1..(n—2) On (( 1) " Ty Xy ) zy .

As in the proof of Proposition 4.2, we want to evaluate Da;(x%"_rlxi”__f*j”_lfl), ig-
noring any resulting monomial terms involving x,, which will be annihilated by 9; (n—2)"
Thus, if we have j,—1 — 1, jp—2 — jn—1 — 1 # 0, we can use Lemma 4.6 to compute

8 . _ i D S 1 i i 9
aan(x%”_l 1x£1n_12 In—1 )E _‘szn—ll xfln—lg In—1 +xizn—11 ‘Tiln—lz In—1
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= 0 (modulo monomials involving x,,),

thus leaving only the terms with j,—1 = 1 and j,—1 = jp—2 — 1 (note that these cases
are mutually exclusive). In the former case j,—1 = 1, we have

09—/ Jn—2—2 Jn—2—3
an(xn—l2 ) = xn—12 ’
with a leading coefficient of (—1)/1F+in—1tn=1 — (_1)fit+in-24n.in the latter case
Jn—1 = Jn—2 — 1, we have
— ‘n7 —2 _ 'nf -3
0, (w27 =~y
with a leading coefficient of (—1)/1F+in—1+n=1 — (_1)jiit+jn-34n_ Thys, these two
distinct terms will cancel each other when j,_o is even, and will combine when j,_o is

odd. This gives us

2n—2 jl*l jn74_1 jn73_1

eyt Yy Y

J1=2n—-3 j2=2n—>5 IJn—3=5 jn—2=3
Jn—2 odd

L _o(_1\ji+tin—stn, Jn-2—3_ Jn-3—jn-2—1  _j1—jo—1 2n—j1—2
o 671—2( 2(-1) " Tp1 Tp_o xy Zy .

We can now apply a similar observation to the above using Lemma 4.1 (which is
effectively the same usage as in the proof of Proposition 4.2) to obtain

2n—2 jl—l jn—S*l jn—4*1

LD YD YD VS

J1=2n—3 jo=2n—>5 In—a=T7 jn—3=H

Jn—3 odd
— ... o j1+---+j _4+n+1 _7'n7375 jn747.7'n73*1 . jl_jQ_l 2n_j1_2
01 0,3 (( 1) " Tp_o Tp_3 ) Zy
— _2 . 271—2(_1)271—3 — 2n—1
The proposition is proved. O

The obvious type D counterparts of (4.4), (4.5) and (4.11) remain to be valid. To-
gether with %, = 277! (see Proposition 4.7), these imply the following type D counter-
part of Lemma, 4.3.

Lemma 4.8. Let w,u € D,. If {(w) < {(u), then (2=%0,)(%w) = 0. Moreover, if
l(w) = l(u), then
+27 gt fw=u

0 otherwise.

(29,) (%sw) = {

Proposition 4.9. There are no linear relations among the images of {gﬂaaqjj}weDmﬂeNn
or among those of {°8;,gﬂ}w€DmreNn in End(Pol,)). Thus these two sets form Z-bases

for °NH, .

Proof. The proof is identical to the one for Proposition 4.4. O
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Corollary 4.10. The action of the spin type D nilHecke algebra on Pol,, is faithful.
We have the following graded rank formulas:
rky »(°NC,,) = (7¢) """ Vn].[2n — 2],

(mq) "™ D] [2n — 2], !!

rkq,ﬂ'(DNH;z) = (1 . qu)n

Proof. We have the following identity:

rky - (NC,,) = Z 7 W26 — (zg)= =D [n] 20 — 2], 1.
weDy,

The rest of the proof is the same as for Corollary 4.5. O

5. SPIN NILHECKE ALGEBRAS AS MATRIX ALGEBRAS

In this section we show that Pol, is a free A, -module with a basis of spin Schubert
polynomials, and then show that NH,, is a matrix algebra over °A,, of size 2"n!. We also
show that after a base change to Q, ?’NH;@ is a matrix algebra over DALQ of size 2"~ 1n).
Finally, we show the spin nilHecke algebras of classical type provide a categorification
of a bialgebra module over the quantum covering algebra of rank one.

5.1. The spin type B case. Let

(5.1) *(, = spany{z" € Pol,, | r < 4, termwise}
. = spang{z|' - -2 | r; <2n—2i+1for 1 <i<n}.

Lemma 5.1. The spin type B Schubert polynomials {bsw}weBn form a Z-basis for *K,,.

Proof. 1t follows immediately from their definition that the spin type B Schubert poly-
nomials are all contained in °},. Both ®}, and the set of spin type B Schubert
polynomials have (2n)!! elements. Thus, if we have

Z cwbsw(x) =0

wEBn

for some ¢, € Q, we can apply the operators %, as in the proof of Proposition 4.4 to
deduce that all ¢;, = 0. In other words, we pick out a longest word w such that ¢, # 0
and apply b@;},l to obtain (by Lemma 4.3) that +¢,, = 0, a contradiction. This proves
linear independence over Q.

Now, if we have an expression f =5 cw%y, for f € %, we similarly take a word
w of maximal length such that ¢, € Q\ Z and apply %9, to get +c, = %9,f. But
since f has integral coefficients, so does 1’8;”_1 f. Thus we obtain +c¢,, € Z, which is a
contradiction. 0

If R C S is a subring and s € S, we write R[s] for the subring of S generated by R
and s. This will allow us to formulate the following lemma, corresponding to [EKL14,
Corollary 2.6]. Recall *A’, ;| C Pol/,_; from (4.6).
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Lemma 5.2. The following identity inside Pol,, holds: *A,[x?] = °A!_ | [23].

Proof. Recall from Theorem 3.5 that A, = Z[%,%,,...,%,], and similarly we have
A =7Z[%,...,% ,]. One checks by definition that, for any k > 0,
k
(5.2) %= (12 by
§=0
It follows that °A, [#2] D "A’ ", [#?]. Rewrite (5.2) as
k
=" =Y (-1l

j=1

This implies by induction on k that %, € ®A/_,[2?], and so °A, [2%] C °Al_, [z7]. O

Proposition 5.3. As a left or right °A,, -module, Pol, is a free of graded rank q"2 [2n]!!,

with a homogeneous basis given by the spin type B Schubert polynomials {bsw}weBn'

Proof. The proof below imitates the type A proof for [EKL14, Proposition 2.13]. We
shall give the detail on the left module case. It suffices to show that multiplication map
°A,, ® ®,, — Pol, is an isomorphism of abelian groups.
To that end, we fist claim that any f € Pol,, can be expressed in the form
2n—1

f= trjhugah,
k=1 j

for hy; € "M, 1,0, € "A,. We prove this by induction on n, with the base case
n = 1 being trivial. Given f € Pol,, we expand in powers of z1: f = ), 2% fr, for
fr € Pol,_,, and then use the inductive hypothesis to write

n—1»

2n—3

. ,
F=32000 wllijnhignas,
k=1 j

where h; jx € "H! o, 4i 1 € °Al_, and fi, € Pol),_; for all i, j, k. Since h; ; pxh € "H/,_,
(after moving the x9, at the expense of a sign change), using Lemma 5.2 we can rewrite

this expression as
2n—1

f= Z Zwlfek,jhk,ja
k=1
where hy, ; € H/,_| and (4 ; € °A,,.
The above claim implies surjectivity of the multiplication map, with injectivity fol-
lowing from an identical argument as for Lemma 5.7 below. Finally the graded rank
formula follows from the identity

D = Y7 =g 2l

wEBn ’LUGBTL
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The proposition is proved. O

Lemma 5.4. For 1 <i<mn, g €\, and f € Pol,,, we have

n’

0; (fg9) ="0; (f)g-
Hence the left action of NH,, and the right action of °A., on Pol, commute.
Proof. This follows by (2.12)—(2.13) and the fact that g € ker(%9;). O

Finally, we arrive at the main structure result for "NH, .

Theorem 5.5. We have the following Z-algebra isomorphisms:

bNH;L — End"A; (POI;L) = Ma’tqn2 [Qn]gg(bA;L)‘

Proof. 1t follows by Lemma 5.4 that we have an algebra homomorphism
¢ : 'NH,, — Endsy_(Pol,),

where Pol,, is regarded as a right A, -module.

The injectivity of ¢ follows from the faithfulness of the action of "NH,,. Since "NH,,
and Endey - (Pol,,) have the same graded rank by Corollary 3.6, Corollary 4.5 and Propo-
sition 5.3, ¢ is surjective as well. O

Remark 5.6. The type B spin Hecke algebra $ defined in [KWO08, Definition 4.3] has
2 parameters uy, us € C. A spin type B nilHecke algebra of 2 parameters "NH, (u1, us)
can be defined as in Definition 2.1, replacing (2.2d) by

x;0; + 0; Tit1 = uy, 0;xi + i410; = uy,
and (2.3d) by
b@;xn + mnbﬁfl = Uo.

Now assume both u; and uy are nonzero. All constructions and results in this paper
remain valid for the spin type B nilHecke algebra with 2 parameters, once we relax the
base ring from Z to C. This is true because the corresponding Demazure operators (of
2 parameters) can be simply obtained by a rescaling of the current ones, i.e., replacing

0; by u10; and %0, by u2%,,. In particular, over the field C, Theorem 5.5 still holds for
bNH;L (ul, UQ) .

5.2. The spin type D case. Let %}, be the Z-span of the spin type D Schubert
polynomials {%, }wep, . Denote by

Pol, o = Q®z Pol,,, Ao =Q®z°A,, NH,o=QzNH,.

Lemma 5.7.

(1) The Schubert polynomials {%. }wep, form a Z-basis for °H,,.
(2) The multiplication map *H,, ®°A,, — Pol. is injective.
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Proof. We make the following

Claim. ZwEDn %,,cw = 0 for ¢, € DA;LQ if and only if ¢,, = 0 for all w.

Indeed, assume Zwe D, %,Cp = 0 and u € D,, is a maximal length element such that
cy # 0. It follows by Proposition 4.7, (4.15) and the Leibniz rule that

2" e, =%, ( Z %y C) = 0,

weDy,

and so ¢, = 0, a contradiction. The Claim is proved.
Both (1) and (2) follows from this Claim. O

Proposition 5.8. As a right (or a left) DA;@—module, Pol,, o is free of graded rank
"D [n][2n — 2)!! with a homogeneous basis given by the spin type D Schubert polyno-

mials {%y }wep,, -

Proof. The two cases are similar, and let us choose to prove the right module case.

It follows by Lemma 5.7(2) that the multiplication map °H, ® °A, — Pol,, is in-
jective. The surjectivity of this map follows by comparing the graded ranks, using
Corollary 3.11 and Lemma 5.7(1). Therefore the proposition follows by noting that
rk, (%K) = ¢"™V[n][2n — 2)!. O

The following is a type D analogue of Lemma 5.4 with the same proof.
Lemma 5.9. For 1 <i<mn, g€°\,, and f € Pol,,, we have %0, (fg) =°0; (f)g.

n’

Theorem 5.10. We have the following algebra isomorphisms:
NH,, o — Enday -  (Pol, o) = Matgui-p, oo (A 0)-
Proof. 1t follows by Lemma 5.9 that we have an algebra homomorphism
¢ : NH,, — Endyy_ (Pol,,),

where Pol, is regarded as a right °A,-module. The injectivity of ¢ follows from the
faithfulness of the action of °NH,,. Since °NH,, and Endsy_ (Pol,,) have the same graded
rank by Corollary 3.11, Corollary 4.10 and Proposition 5.8, ¢ is surjective as well. [J

Denote by NH,,[1] = Z[}] ®z °NH,, after a base change, and so on. The following
conjecture has been verified for n = 2.

Conjecture 5.11. We have the following graded algebra isomorphism

B B Sy 1
Dl\IHn[i] — EndaA;L[%] (Poln[§]> = Matqn(n—l)[n]pn_z}“ (DAn[§]>
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5.3. Categorification. We consider the category "NH, -pmod (and respectively, NH, -
pmod) of finitely generated Z x Zg-graded left projective E’l\IH;l@—rrlodlllfss (respectively,
NH,, g-modules) and its Grothendieck group Ko(*NH,,) (respectively, Ko("NH,,)). The
category "NH, -pmod admits a Z-grading shift functor q and a parity shift functor II.
Define

Ko(NH ) = P Ko(NH,),  Ko("NH ) = P Ko("NH,)).
n>0 n=>0

Via the natural inclusion of algebras ‘NH,, @ NH,, — NH,, .,
and restriction functors (for varying m,n), which give rise to an induction functor and

one defines the induction

a restriction functor on the Grothendieck group level as follows:

IND : Ko("NH ) @ Ko("NH ) — Ko(°NH),
RES : Ko("NH ) — Ko("NH ) @ Ko(°NH ).

These functors equip a twisted bialgebra structure on Ko(“NH ") [EKL14, HW15] (also
cf. [La08]).

One can introduce a bar map ~— on Kyo("NH ) which satisfies § = mq~
[HW15]; the (g, 7)-integers (3.3) are bar-invariant. The category NH, -pmod contains
a unique (up to isomorphism) self-dual projective indecomposable module &™) . Hence,

L7 =7 cf.

we have
Ko("NH,) 2 Z[g,q ', 7],  Ko(NH) = @,50Z[q,q ", m]e™.

The twisted bialgebra Ko(*NH") is identified with the half quantum covering algebra of
rank one U/l (slp); cf. [HW15]. Recall U/ (slo) = OnenZlq, ¢, 7| E™ is an algebra
such that
[m + n|.!

[m]z! - [n]x!
If we ignore the Zo-grading in the above considerations (which correspond to setting
m = 1), then the twisted bialgebra Ky(*"NH") is identified with the half quantum group
of rank one U/ (sly), as first shown in [EKL14].

Now we consider the type B algebras as well as type A algebras. There exist natural

E(m)E(n) - E(m+n)

inclusion of algebras
NH,, ® NH,, — NH,, .,

and this gives rise to an induction functor and a restriction functor on the Grothendieck
group level as follows:

IND : Ko("NH) @ Ko("NH ) — Ko(°NH"),
RES : Ko("NH ) — Ko(NH ) @ Ko("NH").

Proposition 5.12. The functors IND, RES equip Ko(*"NH") with a bialgebra module
structure over the twisted bialgebra Ko("NH").
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We skip the proof of the above proposition, which does not really differ from the
proof for the bialgebra structure on Ko(“NH ") in [La08, EKL14, HW15].

The category "NH, -pmod contains a unique (up to isomorphism) self-dual projective
indecomposable module %€ which is isomorphic to (up to some grading shift) the
polynomial representation Pol . Hence we have

Ko(NH ) = @ Z[g.q", 7).

n>0

Denote by %€" the regular representation of "NH,. Recalling [n],!! from (3.3), we have

hgn ~ @ bg(n)

[n]-!

Here @ M, for a Laurent polynomial f = Zja fia@m™ € N[g,¢~1, 7] and a graded
7 ;
module M, denote the direct sum of f;, copies of Q/TI*M. Thus the left Ko("NH)-

module structure on Ko(°NH") is given by

gm g — (M) wgman) oo [MoEn] _ Rm o 2nll
no g ’ o [mls![2n]

Remark 5.13. A similar categorification in type D can be formulated as above.

APPENDIX A. NILHECKE ALGEBRAS ARE MATRIX ALGEBRAS

In this appendix, we review the polynomial representation of the nilHecke algebra
NHy associated to any Weyl group via Demazure operators. We show that the alge-
bra NHyyg over Q is a matrix algebra with entries in the the algebra of W-invariant
polynomials.

A.1. The polynomial representations. Let W be a finite Weyl group generated by
simple reflections s; (i € I), and b be the reflection representation (over Z) of W. Let
a; € h* denote the simple root and let o/ € h be the simple coroot, for i € I. The
degenerate affine Hecke algebra £y associated to W was introduced by Lusztig [Lu89],
and its corresponding nilHecke agebra over Z will be denoted by NHyy .

As a Z-module, NHy = NCy ® S(h), and NHyy contains the nilCoxeter algebra
NCw = Z(0;,i € I) (with 8? = 0) and the symmetric algebra S() as Z-subalgebras.
In addition, it satisfies the following relations:

(A.1) x0; — 0; 2% = (x, ay), forx € bh,i e,

where 2% denotes the image of  under the reflection s;. One sometimes multiplies the
RHS of (A.1) by a parameter u; depending on the W-conjugacy classes of s;, and u;
is normalized to be 1 in this paper. Note NHyy is a Z-graded algebra with |0;| = —2
and |h| =2, for all i € I and h € . Alternatively, there is a natural Z-filtered algebra
structure on Hy and its associated graded is isomorphic to NHy. The following fact
is folklore.
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Proposition A.l1. The nilHecke agebra NHy, admits a polynomial representation
Poly = S(b), where h € b acts as a multiplication operator and 0; acts as the De-

mazure operator - 1=s;
o

Proof. Define Poly to be the induced $)-module IndﬁCWZ from the trivial NCy-module
Z. The rest follows. g

An argument almost identical to Lemma 3.1 shows that ker(9;) = im(9;) C S(b).
Define
Af) = ﬂker((?,)
el
It follows from Proposition A.1 that
(A.2) Ay = S(p)",
the subalgebra of W-invariants in S(b).

A.2. The nilHecke algebras of classical type. Let us be more explicit for classical
type. For W of classical types A,,_1, Bn, Dy, we naturally identify S(f) with the poly-
nomial algebra Z[x1, .. .,%,], and write NH,, = NHg,, "NH,, = NHp,, °NH,, = NHp, .

Remark A.2. The only difference between presentations of NH,, (and respectively,
NH,,) and *NH,, in Definition 2.1 (and respectively, °NH,, in Definition 2.2) are some
suitable sign changes; such a phenomenon has already been observed between degener-
ate affine Hecke algebras of classical type and their spin counterparts [KWO08].

In classical types, let us write Ay in terms of the more familiar notations A, PA,,,
°A,,, and so forth; we also write Poly as Pol,. The equality (A.2) for classical types

reads

(A.3) A, = Z[x1,... ,xn]S", A, = Z[x3,. .. ,xi]S", N, = Ap[x1 - xy).

Introduce, for 1 < k <n —1,

(A.4) b (x1, .., %0) = Yep(x1, ..., %) = Z X%l---xgk,
1<iy < <ig<n

(A.5) b (X1, Xp) = X2 X2, (X1, ., Xp) = X1 - Xp.

By Chevalley’s theorem, °A,, and °A,, are polynomial algebras in n generators, and
(A.6) Ay = Z[%1, ..., %0 1, %], Ny = Z%1, ..., %n 1, %0
We record the following corollary of (A.6).

Corollary A.3. The graded ranks of °A, and °A,, are given as follows:

b o —’I’L2 1 1
el = Ty

1 1
0 _ ,—n(n-1)
() = ey o —

(A7)
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A.3. The matrix algebra identification. Denote by tk, W = > ‘@) the
Poincare polynomial of W. It is equal to the graded rank for NCyy, upon the replace-
ment of ¢ by ¢~'. Note that the action of NHy on Poly in Proposition A.1 induces a
Z-algebra homomorphism NHy, — Endy, (Poly). The following result in type A was
established in [La08] over Z. We add a subscript Q to indicate the base change from Z
to Q, writing NHyy,g and so on.

Theorem A.4. We have the following isomorphism of graded algebras:
NHyyg — Enda, o (Poly,q) = Matu,w(Ag.q)-

Proof. We give two proofs below: an algebraic argument in (a), and (Webster and
Shan) a geometric argument in (g).

(a). The general W case follow by the same type of arguments for Theorem 5.10 in
spin type D, with key input being Proposition 5.8 (which is in turn based on Proposi-
tion 4.7). Recall Poly g = S(hg). Let wy denotes the longest element in W. Thus for
the argument to go through in the general W case, all we need is the following.

Claim. There exists s,, € S(hg) such that 0y, (54,) is a nonzero constant.

Let us prove the Claim. We use the following well known facts over a field of char-
acteristic zero, cf. [Hi82]. The module S(hg) is free over the algebra S(hg)", with
a basis given by any lift of a basis for the coinvariant algebra S(hg)w. Let s, be a
homogeneous lift of a highest degree element p,, in S(hg)w (for example, p,, can be
the Schubert class of a point in the identification S(hg)w with the cohomology ring of
a flag variety G/B of corresponding type). By [BGGT73, De74], we have Oy, (pw,) # 0.
Thus Oy, (5w,) # 0, and for degree reasons, Oy, (54,) must be a constant.

(g). When the second author showed the isomorphism in Theorem A.4(2) to Peng
Shan and Ben Webster some time ago, they separately supplied a geometric argument,
which is sketched as follows.

Let G be a simple algebraic group with a Borel subgroup B and Weyl group W.
The nilHecke algebra NHyy is the G-equivariant homology of G/B x G /B endowed
with convolution product (the BGG-Demazure operator for w € W corresponds to
the fundamental class of the orbit closure associated to w). This is the same as the
Ext-algebra Ext*(7,Q, 7.Q) in the G-equivariant derived category (cf. [CG97]), where
7.Q denotes the pushforward of the constant sheaf with 7 : G/B — pt. The latter
can be identified as the algebra of endomorphisms of H(G/B) over H(pt), which is
a matrix algebra, since G/B is equivariantly formal. U

Remark A.5. One can show a variant of Theorem A.4 for type B over Z, following
the proof of Theorem 5.5; and also for type A, see [La08]. The counterpart of Conjec-
ture 5.11 (if proven) provides an integral version of Theorem A.4 for type D over the
ring Z[%] According to Webster, the geometric argument can be strengthened to work
over any subring of Q in which the torsion primes of G are invertible.
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