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ABSTRACT: The computation of nuclear second derivatives (NSDs), or the nuclear Hessian, is an 

essential routine in quantum chemical investigations of ground and transition states, thermodynamic 

calculations, and the development of force fields. Analytic evaluation of NSDs (aNSD) requires the 

resolution of costly coupled-perturbed self-consistent field (CP-SCF) equations in second-order 

perturbation-like iterations.  Previous work has contributed to the improvement of integral evaluation. 

Another approach to facilitate NSD computations focuses on hardware-enabled input/output reduction 

through faster integral recomputation by a computer algorithm such as direct self-consistent field (SCF) 

and parallelization of integral computation by faster multi-processor communication or specialized 

processors such as graphic processing units. Herein, we present a new method of improving NSD 

computations utilizing grid computing to enable numerical differentiation of analytic first derivatives to 

calculate the Hessian: nNSD@Grid. For accelerating routine NSDs using DFT, nNSD@Grid outcompetes 

aNSD methods as the ring size grows larger than three for a test set of linear polyacenes. For 

circumventing convergence issues associated with the CP-SCF procedure in aNSD for near-degenerate 

ground states, nNSD@Gird succeeded for the orbitally degenerate 2Eg complex Rh2(O2CCH3)4
+ while 

aNSD failed to converge. For enabling NSDs using RIJCOSX-MP2, nNSD@Grid was 27 times faster 
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 2 

and 46 times less memory-intensive than aNSD using 12 processors for naphthalene and enabled 

computation of NSDs for larger linear polyacenes. Practical examples using catalytically relevant 

transition metal containing complexes with or without near-degenerate ground states were also tested 

using nNSD@Grid and showed better time and convergence performance than aNSD. Grid computing 

using numerical methods can outperform analytic methods in terms of computing time, memory 

requirements, convergence, and treatable system size. The nNSD@grid method presented herein is one 

example of this concept and a pioneer for future implementations. 

 

KEYWORDS: grid computing, Hessian evaluation, accelerating calculations, enabling calculations, 

numerical methods 

1. INTRODUCTION 

The computation of the second derivatives of the energy with respect to nuclear displacements χ and ζ 

(NSDs), or the nuclear Hessian, is an essential task in quantum chemical investigations for validating the 

curvature of potential energy surfaces at critical points, calculating or predicting vibrational spectroscopic 

features of molecules, and evaluating partition functions. Previous work on the evaluation of NSDs has 

focused on the analytic expression of NSDs (aNSD) for self-consistent field (SCF) based methods1 and 

post SCF methods such as MP2,2 CCSD,3 CCSD(T),4 and CASSCF.5 For SCF-based methods, one starts 

with the expression for the total energy of the system 

𝐸 = Tr(𝜌𝐻) +
1

2
Tr(𝜌𝐺(𝜌)) + 𝑉𝑛𝑢𝑐 + (1 − 𝑐𝑋)𝐸𝑋𝐶 (1) 

where 𝜌 is the one-electron density matrix, 𝜌𝜇𝜈 = ∑ 𝑐𝜇𝑖
∗ 𝑐𝜈𝑖𝑖  expressed in the linear combination of atomic 

basis functions, 𝐻  are the one-electron integrals, 𝐻𝜇𝜈 = (𝜇|𝜈) , 𝐺(𝜌)  are the two electron integrals, 

𝐺(𝜌) = ∑ 𝜌 𝜅𝜆 {(𝜇𝜈|𝜅𝜆) −
1

2
𝑐𝑋(𝜇𝜅|𝜈𝜆)}𝜅𝜆 , 𝑐𝑋 is the coefficient for exact exchange, i.e. 𝑐𝑋 = 1 for HF 

and 𝑐𝑋 = 0 for pure DFT,  𝑉𝑛𝑢𝑐  is the nucleus-nucleus interaction energy, and 𝐸𝑋𝐶  is the exchange-

correlation energy.  
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 3 

The analytical first derivative of the energy with respect to the nuclear displacement χ (aNFD) is 

𝜕𝐸

𝜕𝜒
≡ 𝐸𝜒 = Tr(𝜌𝐻𝜒) +

1

2
Tr(𝜌𝐺𝜒(𝜌)) + 𝑉𝑛𝑢𝑐

𝜒
+ (1 − 𝑐𝑋)𝐸𝑋𝐶

𝜒
+ Tr(𝜌𝜒𝐻) +

1

2
Tr(𝜌𝜒𝐺(𝜌)) (2) 

where the last two terms on the right-hand side require the resolution of the first derivative of the one-

electron density matrix, which requires the resolution of 3𝑁 − 6(5) coupled perturbed SCF equations 

(CP-SCF) for a N-atom molecule. 

The resolution of CP-SCF can be avoided for aNFD by using the orthonormality of one-electron density 

matrices: 

Tr(𝜌𝑆) = 1 (3) 

where 𝑆𝜇𝜈 are the overlap integrals, 𝑆𝜇𝜈 = ⟨𝜇|𝜈⟩. The first derivative of eq. 3 yields 

Tr(𝜌𝜒𝑆) = −Tr(𝜌𝑆𝜒) (4) 

and multiplication of eq. 4 by the SCF energy (𝜖) gives 

Tr(𝜖𝜌𝜒𝑆) = −Tr(𝜖𝜌𝑆𝜒) (5). 

The Hartree-Fock equation is 

∑ 𝐹𝜇𝜈𝑐𝜈𝑖ν = ∑ 𝜖𝑖𝑆𝜇𝜈𝑐𝜈𝑖ν  (6) 

where 𝐹𝜇𝜈 is the Fock matrix, 𝐹𝜇𝜈 ≡
𝜕𝐸

𝜕𝜌𝜇𝜈
= 𝐻𝜇𝜈 +

1

2
𝐺(𝜌𝜅𝜆) . Multiplication of eq. 6 by the first derivative 

of the complex conjugate of orbital coefficients 𝑐𝜇𝑖
∗ 𝜒

 from the right gives 

∑ 𝐹𝜇𝜈𝑐𝜈𝑖𝑐𝜇𝑖
∗ 𝜒

μν = ∑ 𝜖𝑖𝑆𝜇𝜈𝑐𝜈𝑖𝑐𝜇𝑖
∗ 𝜒

ν  (7). 

Interchanging the dummy variables μ and ν in eq.7 gives 

∑ 𝐹𝜇𝜈𝑐𝜇𝑖𝑐𝜈𝑖
∗ 𝜒

μν = ∑ 𝜖𝑖𝑆𝜇𝜈𝑐𝜇𝑖𝑐𝜈𝑖
∗ 𝜒

ν  (8). 

Adding eq. 7 to eq. 8 and use the commutation relationships [ρμν, Fμν] = 0 and [ρμν, Sμν] = 0 

Tr(𝜌𝜒𝐹) = Tr(𝜖𝜌𝜒𝑆) (9). 

Substituting eq. 5 into eq. 9 and expanding the Fock matrix gives 

−Tr(𝜖𝜌𝑆𝜒) = Tr(𝜌𝜒𝐻) +
1

2
Tr(𝜌𝜒𝐺(𝜌)) (10) 

where Tr(𝜖𝜌) is known as the energy-weighted one-electron density matrix 𝑊. 
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 4 

Using 𝑊 avoids the necessity for resolution of CP-SCF equations in aNFD: 

𝐸𝜒 = Tr(𝜌𝐻𝜒) +
1

2
Tr(𝜌𝐺𝜒(𝜌)) + 𝑉𝑛𝑢𝑐

𝜒
+ (1 − 𝑐𝑋)𝐸𝑋𝐶

𝜒
− Tr(𝑊𝑆𝜒) (11). 

The derivative of eq. 11 with respect to the second nuclear displacement 𝜁 gives the following expression 

for aNSD: 

𝐸𝜒𝜁 = 𝑇𝑟(𝜌𝐻𝜒𝜁) +
1

2
𝑇𝑟 (𝜌𝐺𝜒𝜁(𝜌)) + 𝑉𝑛𝑢𝑐

𝜒𝜁
+ (1 − 𝑐𝑋)𝐸𝑋𝐶

𝜒𝜁
− 𝑇𝑟(𝑊𝑆𝜒𝜁) + 𝑇𝑟(𝜌𝜁𝐻𝜒) +

𝑇𝑟 (𝜌𝜁𝐺(𝜌)) − 𝑇𝑟(𝑊𝜁𝑆𝜒) (12) 

The resolution of CP-SCF equations to obtain ρζ and Wζ in the last three terms of eq. 11 can no longer be 

avoided.6 

The resolution of CP-SCF equations requires numerous evaluations of two-electron integrals between 

occupied and virtual orbitals, which put high demands on CPU and storage due to their asymptotic cubic 

order scaling with respect to the number of atom-centered basis functions, i.e. O(Nbasis
3), and O(Nbasis

4) 

scaling of input and output (I/O),1b rendering the application of aNSD for large molecules intractable. To 

reduce the steep scaling of the CP-SCF equations, recent work has contributed to approximating the 

evaluation of the two-electron integrals by taking advantage of the fast decay of basis functions (e.g. the 

continuous fast-multipole expansion,7 the chain-of-sphere approximation8) and function expansion of 

basis functions (e.g. the resolution of the identity,9 occupied orbital RI-K,10 J matrix engine,11 

pseudospectral12) to enable NSD evaluations for large systems. Detailed comparisons of these 

approximations can be found in the literature.13  

It was noted by Almlof and coworkers in 1982 that development of central processing units (CPU) had 

allowed faster evaluations of integrals while the storage of these integrals exerted a high demand on the 

disk space, causing an I/O bottleneck. Hence, they proposed the integral handling method “direct SCF”, 

in which integrals from trial density matrices are recalculated for every SCF cycle resulting in a longer 

computing time in exchange for less temporary disk file storage enabling integral evaluations for larger 

molecules.14 Based on the philosophy of direct SCF, Ahlrichs and coworkers suggested a combined 

integral handling, “semi-direct”, which selectively stores costly integral batches (i.e. integral batches 
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 5 

formed by higher angular momentum bases) and reduces the amount of recalculations by minimizing the 

difference between the previous and the new trial density matrices.15 Multiprocessor computers, such as 

high performance clusters (HPC), have allowed parallel computations of direct SCF16 and direct CP-

SCF17 equations over multiple CPUs. Parallel computations based on semi-direct SCF were also 

developed.18 Parallel implementation of post SCF methods has been developed as well.19 The emergence 

of specialized computer hardware such as graphics processing units (GPU) has allowed quantum 

chemistry to achieve even faster and more capable parallel SCF20 and post SCF 21 calculations. However, 

there are no implementations of CP-SCF on GPU architectures to our knowledge. 

Despite ongoing theoretical efforts in approximating two-electron integrals and computing efforts in 

improving memory/storage management and parallelization of computations, the resolution of 3𝑁 − 6(5) 

CP-SCF equations is still the most time consuming step in the aNSD.17b In addition, convergence of the 

CP-SCF equations presents another challenge for aNSD methods,22 especially for systems with a small 

HOMO-LUMO gap (vida infra). One way to mitigate these challenges is to numerically differentiate 

analytic nuclear first derivatives (aNFDs), yielding numerical nuclear derivatives, nNSDs. Numerical 

differentiation truncated at the first order is  

𝐸𝜒𝜁(𝑞𝑖) ≈
𝐸𝜒(𝑞𝑖+ℎ,𝑞𝑗,… )−𝐸𝜒(𝑞𝑖−ℎ,𝑞𝑗,… )

2ℎ
 (13) 

for 𝑖 = 1, … ,3𝑁, 𝑗 = 1, … ,3𝑁, and 𝑗 ≠ 𝑖 and where ℎ is the step size for numerical differentiation. 

The truncation error has recently been analyzed and shown to be negligible for most vibrations of chemical 

significance.23 The advantage of nNSD over aNSD is that it circumvents the resolution of the costly CP-

SCF equations, reducing the convergence issue and the asymptotic cubic scaling behavior; the scaling of 

nNSD is simply that of aNFD. In addition, nNSD is necessary when the theoretical methods employed do 

not have analytic expressions for NSD, such as OO-RIJCOSX-MP2. However, the pre-scaling factor of 

nNSD presents another challenge for conventional HPCs due to the fact that a molecule with N atoms 

will require 3N (forward or backward) or 6N (central difference) independent evaluations of the aNFD.  
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 6 

To remedy the unfavorable prefactor of nNSD, we exploit here recent developments in computing 

hardware, optical fibers, the Internet, and protocols for internetwork communication. Computing grids 

have arisen from these tools as a new form of computing infrastructure taking advantage of the curation 

of computer clusters at most academic institutions. Grid computing consists of a collection of distributed 

computing resources that are geographically disperse24 yet allows users to access thousands of nodes 

across the globe. However, due to the decentralized nature of the network, less communication among 

nodes can be achieved than on a conventional HPC. This fact renders parallel computations that demand 

frequent communication and file sharing among nodes slower despite the increased amount of CPU hours 

available. On the other hand, calculations that are embarrassingly parallel (a feature of numerical 

differentiations such as nNSD!) can benefit greatly from grid computing. In this article, we present our 

new approach to performing nNSD on a grid platform: nNSD@Grid. We describe its implementation 

using the computing grid Open Science Grid (OSG),25 including issues with and a solution to hardware 

inhomogeneity associated with the computing grid. At the level of Density Functional Theory (DFT), the 

performance of nNSD@Grid compared to aNSD is benchmarked to a systematic increase in molecule 

size and is found to excel for larger catalytically relevant transition metal containing complexes. The 

efficieny of nNSD@Grid in terms of computing time and memory for RIJCOSX-MP2 is also investigated. 

Finally, nNSD@Grid is used to accelerate nNSD using theoretical methods that do not yet have an analytic 

expression, such as OO-RIJCOSX-MP2, for their NSD. 

 

2. IMPLEMENTATION 

To implement and test the nNSD@Grid method with the OSG, unless specified otherwise, we used the 

hybrid generalized gradient approximation (hGGA) functional B3LYP26 under the zeroth order regular 

approximation for scalar relativistic corrections (ZORA)27 using the one-center approximation with the 

resolution of the identity and the chain-of-sphere approximations (RIJCOSX-ZORA-B3LYP) with the 

SARC-def2-SVP basis set (SARC-def2-TZVPP is employed on transition metals)28 and the 

corresponding density fitting basis set29 on C6H6 (186 primitive Gaussian functions (GFs) and 516 
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 7 

primitive Gaussian basis sets for density fitting (DFGFs)), C10H8 (296 GFs and 828 DFGFs), C14H10 (406 

GFs and 1140 DFGFs), C18H12 (516 GFs and 1452 DFGFs), C22H14 (626 GFs and 1764 DFGFs), C26H16 

(736 GFs and 2076 DFGFs), and C30H18 (846 GFs and 2388 DFGFs). A step size of 0.005 bohr is used 

for the numerical differentiation. For each aNFD calculation in one nNSD@Grid, we used one processor 

by job. For comparison, aNSD performed on our HPC was executed with one core and twelve processors 

by core. All calculations except RIJCOSX-B2PLYP30 calculations (Orca 4.0.031 was used instead) were 

performed with the Orca 3.0.3 program package32 for  its compatibility with various types of computer 

platforms in the computing grid. 

a. The workflow of nNSD@Grid. 

To implement nNSD@Grid, we take advantage of one of the available computing grids in the United 

States, OSG. OSG allows users to access computing resources at other organizations through the protocols 

Globus and the job batch system HTCondor, in the form of HTCondor-G.33 The strengths of HTCondor-

G to the implementation of nNSD@Grid are the ease to bring users’ input and software packages to 

various locations and the HTCondor utility Direct Acyclic Graph Manager (DAGMan). DAGMan allows 

the execution of jobs with declared dependencies.34 This feature is essential for nNSD@Grid because 

fault tolerance of nNSD is stringent—any error in one of the aNFDs results in artifacts in the calculated 

nuclear Hessian—and the numerical differentiation can only be performed after all aNFDs are complete.  

DAGMan provides a mechanism for job preparation (PRE SCRIPT), execution (JOB), monitoring and 

processing (POST SCRIPT), retry (RETRY), and child job execution (CHILD; for example, if 

thermodynamic parameters are to be calculated based on the nuclear Hessian). We therefore utilize these 

functions of DAGMan to (i) generate perturbed coordinates (χ+Δ,ζ,…) based on an initial coordinate 

(χ,ζ,…) and a given increment of perturbation (∆), (ii) submit concurrently duplicates of all aNFD 

calculations based on the perturbed coordinates, (iii) verify convergence of the aNFDs and (iv) retry if 

not converged and remove duplicates after the first in the duplicate set is complete, (v) differentiate the 

aNFDs numerically to produce the nNSD, and (vi) assemble all 3𝑁 nNSDs into the nuclear Hessian 

matrix (Scheme 1).  
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 8 

Scheme 1. Workflow of nNSD@Grid. All the arrows are controlled by the DAGMan utility. (i) A PRE 

SCRIPT is used to generate perturbed geometries based on a given initial geometry, (ii) each perturbed 

geometry is submitted as a JOB to the OSG to compute the aNFD (i.e. eq. 12), (iii) a POST SCRIPT 

checks the convergence of the computation after each completion of a JOB, (iv) RETRY is demanded if 

convergence was not detected in (iii), and (v) a POST SCRIPT to numerically differentiate 𝐸𝜒 at the first 

order (eq. 13) and (vi) assemble each numerically differentiated 𝐸𝜒(𝑞𝑖) to give the nuclear Hessian 

matrix. 

 

b. Effect of grid inhomogeneity in computing time.  

Grid computing suffers from computer hardware inhomogeneity, which reduces the efficiency of 

nNSD@Grid since all aNFS evaluations for a given set of coordinates have to finish before numerical 

differentiation can be performed to generate the nuclear Hessian matrix. Because of the opportunistic 

nature of grid computing, users have marginal control over the computer hardware on which their 

computing jobs are being executed. This issue causes the completion time of nNSD@Grid to fluctuate for 

replicates of any given calculation. To investigate how the fluctuation in computing time affects 
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 9 

nNSD@Grid, we performed nNSD@Grid on C6H6 six times and the computing time of all the aNFDs in 

each replicate is shown on the left in Figure 1. Because there are multiple computations of aNFD for each 

nNSD@Grid, the computing times for all these calculations are shown in percentile bars with the thicker 

portion representing the mid-range 25–75% timings. It can be conceived that 75% of all the aNFDs for 

C6H6 finished within 100 seconds after execution. However, the whole nNSD can take up to almost double 

the time of the 75th percentile due to the variation in hardware on the computing grid. In addition, the 

variation in the total computing time (the 100th percentile) of the six replicates ranges by 33%.  
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Figure 1. Variation in the computing time within each set of aNFDs and among replicates of nNSD@Grid 

on C6H6 (left) and the computing time performance of nNSD@Grid on C6H6 using duplicates of 

submissions (right) 

c. Mitigation of grid inhomogeneity with duplicate submissions 

Inhomogeneity of the computing grid causes a skewed distribution of computing times within a set of 

aNFDs for one nNSD@Grid calculation, delaying the completion of the nNSD@Grid calculation. To 

mitigate this inherent issue of grid computing, we take advantage of the high throughput aspect of the 

cyberinfrastructure. The probability of two identical submissions finishing at the same time in the 

computing grid is almost negligible; one calculation almost always finishes earlier than the other. Hence, 

we may submit duplicates of a set of aNFDs to remedy the delay due to hardware heterogeneity of the 

computing grid. The results of the distribution of computing time of nNSD@Grid on C6H6 using one and 

two duplicates as compared to that without duplicates are shown on the right in Figure 1. It can be seen 

that the completion time is reduced by a factor of two by using one duplicate of nNSD@Grid, making the 
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 10 

time performance of nNSD@Grid comparable to that of aNSD. Including two duplicates only marginally 

improves the computing time for nNSD@Grid compared to that using one duplicate. To reduce the 

amount of computing resources wasted in computing duplicates of the individual aNFDs, we utilized the 

POST SCRIPT function in DAGMan to remove the slow duplicate executions on-the-fly once one aNFD 

calculation is complete in a set of duplicates. 

 

3. APPLICATIONS 

a. Performance of nNSD@Grid compared to aNSD 

i. Time performance for a systematic increase in system size 

Hessian matrices for compounds having various numbers of linearly fused benzene rings were 

computed using either nNSD@Grid or aNSD. The computing time for either method is shown in Figure 

2. It can be found that nNSD@Grid outcompetes aNSD as the number of fused benzene rings becomes 

larger than three. The advantage of nNSD@Grid in terms of timing becomes more prominent as the 

system size grows.  
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n

ti
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 /
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a N S D

 

Figure 2. Computing time on various sizes of fused benzene molecules performed by nNSD@Grid (black 

percentile bars) versus aNSD (grey bars). 

ii. Convergence performance for multiconfigurational/multireference states 

Degenerate/Near-degenerate ground states can cause difficulties for the evaluation of CP-SCF 

equations due to the instability of the first derivatives of the density matrix and the energy weighted 
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 11 

density matrix caused by large changes in the coefficients of atomic orbitals due to nuclear displacements. 

This problem renders the convergence of CP-SCF equations slow or difficult but is mitigated by nNSD. 

To demonstrate the advantage of nNSD@Grid over aNSD in degenerate/near-degenerate ground states, 

we performed nNSD@Grid and aNSD calculations on the [Rh2(O2CCH3)4]
+ ion. [Rh2(O2CCH3)4]

+ has an 

orbitally degenerate doublet ground state 2Eg in the high symmetry D4h group (Figure 3)35 and axially 

ligated derivatives of the complex have abnormal Landé g factors arising from strong first order spin-

orbital coupling.36 aNSD of [Rh2(O2CCH3)4]
+ was performed using the SCF convergence method of Pulay 

(the direct inversion of the iterative space),37 of Pople,38 or the conjugated gradient method. All three 

convergence methods failed to converge the CP-SCF equations after 128 cycles. In contrast, nNSD@Grid 

completed resolution of the nuclear Hessian in 11-46-61-74-169 min (for the 1st, 25th, 50th, 75th, and 

100th percentiles). 

σ

 

Figure 3. Structure (left) and electronic configuration (right) of 2[Rh2(O2CCH3)4]
+. 

b. Enabling theoretical methods that are prohibitively expensive for large molecules using 

aNSD by nNSD@Grid 

i. Hessian evaluation using RIJCOSX-MP2 for various numbers of fused benzene rings 

aNSD calculations using canonical MP2 scale formally as O(Nbasis
6).2 The steep scaling renders aNSD 

intractable for large molecules on a conventional HPC. In comparison, energy and gradient calculations 

using canonical MP2 are one order more tractable, formally scaling as O(Nbasis
5) with system size.39 

Therefore, nNSD@Grid is computationally more accessible for larger molecules compared to aNSD. To 

study the computing time and memory performance of nNSD@Grid vs. aNSD, we computed the 

RIJCOSX-MP2 Hessian matrix of the seven polyacenes using nNSD@Grid or aNSD and the results are 

shown in Figure 4. It is evident that nNSD@Grid outperforms aNSD in both computing time and memory 
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usage, where nNSD@Grid is 8 times faster and 13 times less memory-intensive for C6H6 and 27 times 

faster and 46 times less memory-intensive for C10H8 than is aNSD using 12 processors. aNSD could not 

even be completed for larger linear polyacenes using RIJCOSX-MP2 without further approximations. 
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Figure 4. Computing time (left) and memory usage per processor (right) for various molecules of linearly 

fused benzene rings by nNSD@Grid (black percentile bars) and aNSD (only trackable for C6H6 and 

C10H8; grey bars) using RIJCOSX-MP2 are shown. 

ii. Hessian evaluation using RIJCOSX-B2PLYP for various numbers of fused benzene 

rings 

Double hybrid density functionals (DHDFs) are an emerging rung on the Jacob’s Ladder of density 

functionals that demonstrate improved performance, compared to the already successful hybrid DFT, for 

their improved recovery of nonlocal correlation energy.40 The computing time performance of 

nNSD@Grid using a DHDF, RIJCOSX-B2PLYP, is shown in Figure 5. It can be found that RIJCOSX-

B2PLYP frequencies can easily be routine for systems as big as C30H18, finishing within 6 hours (vida 

supra for the number of GFs and DFGFs). Inspecting the distribution of total computing time among 

various components of the RIJCOSX-B2PLYP aNFD calculations, it becomes apparent that more than 

50% of the computing time was invested in preparing and solving the MP2 correction of the nonlocal 

exchange (Figure 5). Any improvement, such as parallel calculation, in the MP2 timing would 

significantly accelerate the computing time of nNSD@Grid. However, parallel calculation of each aNFD 

of nNSD@Grid using more than one processor in one remote computer node significantly reduces the 

Page 12 of 21

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 13 

number of available nodes in the computing grid, hence, lengthening the queue time of each aNFD. One 

potential way to mitigate the time investment in the MP2 module is to partition the correlation space into 

small orbital fragments and distribute each fragment to each remote node in the computing grid, 

transforming the MP2 amplitude calculation into an embarrassingly parallel task, further taking advantage 

of the high scalability of the computing grid. Future development of nNSD@Grid to incorporate various 

types of fragmentation methods, such as divide-expand-consolidate,41 is foreseeable. 
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Figure 5. Computing time (left) and fraction of total computing time spent in the MP2 module (right) for 

various molecules of linearly fused benzene rings by nNSD@Grid using RIJCOSX-B2PLYP are shown. 

c. Accelerating computation of theoretical methods without aNSD expressions by 

nNSD@Grid 

Theoretical methods that have aNFD expressions but do not yet have aNSD expressions are less 

commonly employed for frequency calculations due to the unfavorable prefactor of nNSD for large 

molecules. This limitation hampers routine performance of these methods for reactivity relevant studies 

despite their improved accuracy. nNSD@Grid allows attenuation of the unfavorable prefactor at the 

expense of a longer computation time of each aNFD owing to the fewer accessible multiprocessor 

computing slots in the computing grid. The efficiency of nNSD@Grid compared to conventional nNSD 

on a conventional HPC using central differences can be approximately equated to:  

Computing time for one aNFD using nNSD@Grid = 𝑡 (14) 

Computing time for one NSD using nNSD on an HPC = 
6𝑁𝑡

(𝑛𝑝)𝛼 (15) 
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where N is the number of atoms, n is the number of sets of processors dedicated to solving each aNFD, p 

is the number of processors in each n set dedicated to solving one aNFD, α is the scalability of aNFD with 

respect to the number of processors.  

Dividing eq. 15 by eq. 14 gives the relative speed of nNSD@Grid vs. nNSD on an HPC as 
6𝑁

(𝑛𝑝)𝛼
. 

For example, for one C6H6 molecule running on 12 processors in 1 node, N = 12, n = 1, and p = 12, nNSD 

completed in 459 seconds compared to at most 158 seconds by nNSD@Grid. Using a phenomenological 

inverse relationship (α = 1) between the computing time and 𝑛 × 𝑝 (Figure 6), the computing time of 

nNSD is extrapolated to 135 seconds on 36 processors, which is comparable to that of nNSD@Grid in 

spite of the high demand on the number of processors for a molecule as small as C6H6.  
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Figure 6. Linear correlation between the amount of time to complete nNSD for C6H6 and the inverse of 

the mutplication of the number of computer cores by the number of processors per computer core. The 

fitted linear regression is 𝑡𝑖𝑚𝑒 = 4872 × (𝑛𝑝)−1. 

After demonstrating the advantage of nNSD@Grid over nNSD in the demand of the number of 

processors in each node, we now show the applicability of nNSD@Grid using OO-RIJCOSX-MP2, an 

improved formulation of RIJCOSX-MP2 for radicals, to linear polyacenes. 

MP2 provides less accurate results for open-shell systems than DFT due to the only partial recovery of 

electron correlation from the poor HF reference.42 It has been shown that some electron correlation can 

be further recovered at the MP2 level by basing the calculation on the Hylleraas functional which is made 
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stationary with respect to both amplitude variations and orbital rotations.42 Despite its improvement over 

RIJCOSX-MP2, OO-RIJCOSX-MP2 calculations require more computing time for orbital optimizations. 

We first show the computing time and memory performance of OO-RIJCOSX-MP2. Comparing Figure 

7 with Figure 4, it can be seen that OO-RIJCOSX-MP2 has an overall similar memory usage to RIJCOSX-

MP2 using nNSD@Grid. On the other hand, the nNSD@Grid computing time performance is 10 times 

slower for OO-RIJCOSX-MP2 than RIJCOSX-MP2. In closer inspection of the contributions from 

various integral computations, we found that 99% of the computing time was invested in the MP2 module 

for OO-RIJCOSX-MP2 compared to 92.7% for RIJCOSX-MP2 (not shown). The longer time investment 

in the MP2 module is a result of orbital optimization in addition to the calculation of the canonical MP2 

excitations. The longer computing time in the MP2 module hampers the efficiency of nNSD@Grid as 

only one processor is used to solve each OO-RIJCOSX-MP2 aNFD. 
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Figure 7. Computing time (left) and memory usage per processor (right) for various molecules of linearly 

fused benzene rings by nNSD@Grid using OO-RIJCOSX-MP2 are shown. 

4. PRACTICAL EXAMPLES 

a. Hessian evaluation using nNSD@Grid for a large open-shell transition-metal-

containing complex 

E-Ag2(
tbu3tpy)2OTf(NSO3-2,6-dFPh) (tbu3tpy = 4-,4'-,4''-tri-tert-butyl-2-,2':6'-2''-terpyridine, OTf = 

triflate, and dFPh = difluorophenyl), whose structure is shown in Figure 8, is a proposed metal-nitrene 

reactive intermediate in silver-catalyzed intermolecular nitrene transfer reactions with a triplet electronic 
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ground state.43 Such complexes are important for atom-efficient addition of nitrogen functionalities to 

organic molecules. With SARC-def2-TZVPP on Ag and SARC-def2-SVP on the rest of the elements 

adding up to 2705 GFs and 7094 DFGFs, nNSD@Grid took 181-239-257-286-483 minutes for E-

Ag2(
tbu3tpy)2OTf(NSO3-2,6-dFPh) with 432-686-728-814-981 MB memory usage per processor. In 

contrast, an aNSD calculation completed in 3730 minutes using 12 processors and 4343 MB per processor. 

Overall, nNSD@Grid is 7.7 times faster in computing time and 4.4 times less memory intense than aNSD 

using 12 processors on a molecule consisting of 156 atoms, among them two transition metal atoms.  

 

Figure 8. Structure of E-Ag2(
tbu3tpy)2OTf(NSO3-2,6-dFPh), a proposed reactive intermediate in silver-

catalyzed nitrene transfer, containing 156 atoms with two heavy metals.  

b. Hessian evaluation using nNSD@Grid for a reactive catalytic intermediate with a 

multiconfigurational ground state 

The 91 atom 2[Rh2(esp)2-nitrene]+ (esp = α, α, α', α'-tetramethyl-1,3-benzenedipropanoate and nitrene 

= NSO3CH3) complex, shown in Figure 9, is the proposed reactive intermediate formed by one of the 

leading transition metal catalysts for nitrene transfer. This complex has been shown to be 

multiconfigurational with three major configuration state functions that contribute to the ground state 

CASSCF wavefunction: 1) A triplet nitrene (𝑆 = 1) antiferromagnetically coupled to [Rh2(esp)2]
+ (𝑆 =

1 2⁄ ), 2) a nitrene radical anion (𝑆 = 1 2⁄ ) bound to a closed shell [Rh2(esp)2]
2+ unit, and 3) a nitrene 

radical cation (𝑆 = 1 2⁄ ) bound to a closed shell Rh2(esp)2 unit (Figure 9).35 On this complex system, 

aNSD experiences difficulty due to the instability in solving the CP-SCF equations; no convergence (first 
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of the seven batches) was conceivable after 80 iterations, which spent 1440 minutes on 12 processors. In 

contrast, nNSD@Grid on 2[Rh2(esp)2NSO3CH3]
+ completes in 95-134-178-239-878 minutes. 

  

 

Figure 9. Structure of (top), the three dominant CASSCF configurations of (bottom), and the four frontier 

orbitals (lower right) in 2[Rh2(esp)2NSO3CH3]
+  . 

5. CONCLUSION AND OUTLOOK 

Continuous developments in computing hardware, optical fibers, the Internet, and protocols for 

internetwork communication have enabled us to develop a new computing-grid-enabled numerical 

nuclear second derivative method for computing nuclear Hessian matrices: nNSD@Grid. nNSD@Grid 

can outperform aNSD in terms of computing time and the convergence behavior for B3LYP (and other 

similar or lower scaling density functionals) and of treatable system size using less memory for higher 

level computational methods. For theoretical methods without an aNSD expression, an excessive number 

of processors is required to achieve the temporal performance of nNSD@Grid on a conventional HPC. 
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To our knowledge, the study reported herein is the first example of the utilization of grid computing to 

improve the applicability of NSD to various chemical systems using a broad range of theoretical methods. 

We envision future developments of computing-grid-enabled quantum chemical methods, especially for 

methods that are embarrassingly parallel that can readily be adapted to grid computing. 
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