Journal of Chemical Theory and Computation

This document is confidential and is proprietary to the American Chemical Society and its authors. Do not

copy or disclose without written permission. If you have received this item in error, notify the sender and
delete all copies.

Numerical Nuclear Second Derivatives on a Computing Grid:
Enabling and Accelerating Frequency Calculations on
Complex Molecular Systems

Journal: | Journal of Chemical Theory and Computation

Manuscript ID | ct-2017-01235d

Manuscript Type: | Article

Date Submitted by the Author: | 08-Dec-2017

Complete List of Authors: | Yang, Tzuhsiung; University of Wisconsin - Madison, Chemistry
Berry, John; University of Wisconsin, Department of Chemistry

ARONE"

ACS Paragon Plus Environment



Page 1 of 21 Journal of Chemical Theory and Computation

oNOYTULT D WN =

Numerical Nuclear Second Derivatives on a Computing Grid: Enabling and
Accelerating Frequency Calculations on Complex Molecular Systems
Tzuhsiung Yang and John F. Berry*

Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison,

Wisconsin 53706, United States

tyang29@wisc.edu, berry@chem.wisc.edu

RECEIVED DATE (to be automatically inserted after your manuscript is accepted if required

according to the journal that you are submitting your paper to)

ABSTRACT: The computation of nuclear second derivatives (NSDs), or the nuclear Hessian, is an
essential routine in quantum chemical investigations of ground and transition states, thermodynamic
calculations, and the development of force fields. Analytic evaluation of NSDs (aNSD) requires the
resolution of costly coupled-perturbed self-consistent field (CP-SCF) equations in second-order
perturbation-like iterations. Previous work has contributed to the improvement of integral evaluation.
Another approach to facilitate NSD computations focuses on hardware-enabled input/output reduction
through faster integral recomputation by a computer algorithm such as direct self-consistent field (SCF)
and parallelization of integral computation by faster multi-processor communication or specialized
processors such as graphic processing units. Herein, we present a new method of improving NSD
computations utilizing grid computing to enable numerical differentiation of analytic first derivatives to
calculate the Hessian: nNSD@Grid. For accelerating routine NSDs using DFT, nNSD@Grid outcompetes
aNSD methods as the ring size grows larger than three for a test set of linear polyacenes. For
circumventing convergence issues associated with the CP-SCF procedure in aNSD for near-degenerate
ground states, nNSD@Gird succeeded for the orbitally degenerate *E; complex Rha(02CCH3)s" while

aNSD failed to converge. For enabling NSDs using RIJCOSX-MP2, nNSD@Grid was 27 times faster
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and 46 times less memory-intensive than aNSD using 12 processors for naphthalene and enabled
computation of NSDs for larger linear polyacenes. Practical examples using catalytically relevant
transition metal containing complexes with or without near-degenerate ground states were also tested
using nNSD@Grid and showed better time and convergence performance than aNSD. Grid computing
using numerical methods can outperform analytic methods in terms of computing time, memory
requirements, convergence, and treatable system size. The nNSD@grid method presented herein is one

example of this concept and a pioneer for future implementations.

KEYWORDS: grid computing, Hessian evaluation, accelerating calculations, enabling calculations,

numerical methods

1. INTRODUCTION

The computation of the second derivatives of the energy with respect to nuclear displacements y and
(NSDs), or the nuclear Hessian, is an essential task in quantum chemical investigations for validating the
curvature of potential energy surfaces at critical points, calculating or predicting vibrational spectroscopic
features of molecules, and evaluating partition functions. Previous work on the evaluation of NSDs has
focused on the analytic expression of NSDs (aNSD) for self-consistent field (SCF) based methods' and
post SCF methods such as MP2,2 CCSD,* CCSD(T),* and CASSCF.? For SCF-based methods, one starts
with the expression for the total energy of the system
E = Tr(pH) + 2 Tr(pG (p)) + Ve + (1 — cx)Exc (1)
where p is the one-electron density matrix, p,,, = X; ¢;;C; expressed in the linear combination of atomic

basis functions, H are the one-electron integrals, H,,, = (u|v), G(p) are the two electron integrals,

G(p) =XiaPia {(,uvlld) - %CX(MKWA)}, cy is the coefficient for exact exchange, i.e. cy = 1 for HF

and cy = 0 for pure DFT, V,,. is the nucleus-nucleus interaction energy, and Ey. is the exchange-

correlation energy.
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The analytical first derivative of the energy with respect to the nuclear displacement y (aNFD) is

OF 1 1
7 = EX = Tr(pHX) + ETr(pGX(p)) +VE. + (- cX)E))((C + Tr(p*H) + ETr(pXG(p)) (2)

where the last two terms on the right-hand side require the resolution of the first derivative of the one-
electron density matrix, which requires the resolution of 3N — 6(5) coupled perturbed SCF equations
(CP-SCF) for a N-atom molecule.

The resolution of CP-SCF can be avoided for aNFD by using the orthonormality of one-electron density
matrices:

Tr(pS) =1 (3)

where S, are the overlap integrals, S, = (u|v). The first derivative of eq. 3 yields

Tr(p*S) = =Tr(pS*) (4)

and multiplication of eq. 4 by the SCF energy (€) gives

Tr(epXS) = —Tr(epS¥) (5).

The Hartree-Fock equation is

v F;chvi =2y EiSuvcvi (6)

a—Ev =H,, + % G (py2) - Multiplication of eq. 6 by the first derivative

where F,,, is the Fock matrix, F,, = oo

of the complex conjugate of orbital coefficients c;ix from the right gives

Yo B CviCi® = Xy €S cvici™ (7).

Interchanging the dummy variables p and v in eq.7 gives

Y Bcuicy® = Xy €Smeuicy (8).

Adding eq. 7 to eq. 8 and use the commutation relationships [pw, Fw] = (0 and [puv, Su\,] =0
Tr(pXF) = Tr(epXS) (9).

Substituting eq. 5 into eq. 9 and expanding the Fock matrix gives

—Tr(epS*) = Tr(pXH) + %Tr(pXG(p)) (10)

where Tr(ep) is known as the energy-weighted one-electron density matrix W.
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Using W avoids the necessity for resolution of CP-SCF equations in aNFD:
1
EX = Tr(pHX) + ETr(pGX(p)) + Ve + (1= cx)Ef, — Tr(Wsx) (11).

The derivative of eq. 11 with respect to the second nuclear displacement ¢ gives the following expression

for aNSD:

EXS = Tr(pHX) +5Tr (pG¥ () + V& + (1 — OB — Tr(WSX6) + Tr(pé HX) +

Tr (p°G(p)) - Tr(WSs*) (12)
The resolution of CP-SCF equations to obtain p$ and W¥ in the last three terms of eq. 11 can no longer be
avoided.®

The resolution of CP-SCF equations requires numerous evaluations of two-electron integrals between
occupied and virtual orbitals, which put high demands on CPU and storage due to their asymptotic cubic
order scaling with respect to the number of atom-centered basis functions, i.e. O(Npasis’), and O(Npasis”)
scaling of input and output (I/0),'® rendering the application of aNSD for large molecules intractable. To
reduce the steep scaling of the CP-SCF equations, recent work has contributed to approximating the
evaluation of the two-electron integrals by taking advantage of the fast decay of basis functions (e.g. the
continuous fast-multipole expansion,’ the chain-of-sphere approximation®) and function expansion of
basis functions (e.g. the resolution of the identity,” occupied orbital RI-K,!° J matrix engine,!!
pseudospectral'?) to enable NSD evaluations for large systems. Detailed comparisons of these
approximations can be found in the literature.'?

It was noted by Almlof and coworkers in 1982 that development of central processing units (CPU) had
allowed faster evaluations of integrals while the storage of these integrals exerted a high demand on the
disk space, causing an I/O bottleneck. Hence, they proposed the integral handling method “direct SCF”,
in which integrals from trial density matrices are recalculated for every SCF cycle resulting in a longer
computing time in exchange for less temporary disk file storage enabling integral evaluations for larger
molecules.'* Based on the philosophy of direct SCF, Ahlrichs and coworkers suggested a combined

integral handling, “semi-direct”, which selectively stores costly integral batches (i.e. integral batches
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formed by higher angular momentum bases) and reduces the amount of recalculations by minimizing the
difference between the previous and the new trial density matrices.'> Multiprocessor computers, such as
high performance clusters (HPC), have allowed parallel computations of direct SCF'® and direct CP-
SCF!7 equations over multiple CPUs. Parallel computations based on semi-direct SCF were also
developed.'® Parallel implementation of post SCF methods has been developed as well.!” The emergence
of specialized computer hardware such as graphics processing units (GPU) has allowed quantum
chemistry to achieve even faster and more capable parallel SCF?° and post SCF 2! calculations. However,
there are no implementations of CP-SCF on GPU architectures to our knowledge.

Despite ongoing theoretical efforts in approximating two-electron integrals and computing efforts in
improving memory/storage management and parallelization of computations, the resolution of 3N — 6(5)
CP-SCF equations is still the most time consuming step in the aNSD.!” In addition, convergence of the
CP-SCF equations presents another challenge for aNSD methods,** especially for systems with a small
HOMO-LUMO gap (vida infra). One way to mitigate these challenges is to numerically differentiate
analytic nuclear first derivatives (aNFDs), yielding numerical nuclear derivatives, nNSDs. Numerical
differentiation truncated at the first order is

Ex(qi+h,q]',... )—Ex(qi—h,qj,...
2h

EXS(q;) = ) (13)

fori=1,..,3N,j=1,..,3N,and j # i and where h is the step size for numerical differentiation.

The truncation error has recently been analyzed and shown to be negligible for most vibrations of chemical
significance.?® The advantage of nNSD over aNSD is that it circumvents the resolution of the costly CP-
SCF equations, reducing the convergence issue and the asymptotic cubic scaling behavior; the scaling of
nNSD is simply that of aNFD. In addition, nNSD is necessary when the theoretical methods employed do
not have analytic expressions for NSD, such as OO-RIJCOSX-MP2. However, the pre-scaling factor of
nNSD presents another challenge for conventional HPCs due to the fact that a molecule with N atoms

will require 3N (forward or backward) or 6N (central difference) independent evaluations of the aNFD.
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To remedy the unfavorable prefactor of nNSD, we exploit here recent developments in computing
hardware, optical fibers, the Internet, and protocols for internetwork communication. Computing grids
have arisen from these tools as a new form of computing infrastructure taking advantage of the curation
of computer clusters at most academic institutions. Grid computing consists of a collection of distributed
computing resources that are geographically disperse** yet allows users to access thousands of nodes
across the globe. However, due to the decentralized nature of the network, less communication among
nodes can be achieved than on a conventional HPC. This fact renders parallel computations that demand
frequent communication and file sharing among nodes slower despite the increased amount of CPU hours
available. On the other hand, calculations that are embarrassingly parallel (a feature of numerical
differentiations such as nNSD!) can benefit greatly from grid computing. In this article, we present our
new approach to performing nNSD on a grid platform: nNSD@Grid. We describe its implementation
using the computing grid Open Science Grid (OSG),? including issues with and a solution to hardware
inhomogeneity associated with the computing grid. At the level of Density Functional Theory (DFT), the
performance of nNSD@Grid compared to aNSD is benchmarked to a systematic increase in molecule
size and is found to excel for larger catalytically relevant transition metal containing complexes. The
efficieny of nNSD@Grid in terms of computing time and memory for RIJCOSX-MP2 is also investigated.
Finally, nNSD@Grid is used to accelerate nNSD using theoretical methods that do not yet have an analytic

expression, such as OO-RIJCOSX-MP2, for their NSD.

2. IMPLEMENTATION
To implement and test the nNSD@Grid method with the OSG, unless specified otherwise, we used the

hybrid generalized gradient approximation (hGGA) functional B3LYP?¢ under the zeroth order regular

approximation for scalar relativistic corrections (ZORA)?’ using the one-center approximation with the

resolution of the identity and the chain-of-sphere approximations (RIJCOSX-ZORA-B3LYP) with the

SARC-def2-SVP basis set (SARC-def2-TZVPP is employed on transition metals)®® and the

t29

corresponding density fitting basis set” on CsHe (186 primitive Gaussian functions (GFs) and 516
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primitive Gaussian basis sets for density fitting (DFGFs)), Ci10Hs (296 GFs and 828 DFGFs), Ci4H1o (406
GFs and 1140 DFGFs), CisHi2 (516 GFs and 1452 DFGFs), C22Hi4 (626 GFs and 1764 DFGFs), CasHie
(736 GFs and 2076 DFGFs), and C30His (846 GFs and 2388 DFGFs). A step size of 0.005 bohr is used
for the numerical differentiation. For each aNFD calculation in one nNSD@Grid, we used one processor
by job. For comparison, aNSD performed on our HPC was executed with one core and twelve processors
by core. All calculations except RIICOSX-B2PLYP? calculations (Orca 4.0.0°! was used instead) were
performed with the Orca 3.0.3 program package® for its compatibility with various types of computer
platforms in the computing grid.
a. The workflow of nNSD@Grid.

To implement nNSD@Grid, we take advantage of one of the available computing grids in the United
States, OSG. OSG allows users to access computing resources at other organizations through the protocols
Globus and the job batch system HTCondor, in the form of HTCondor-G.** The strengths of HTCondor-
G to the implementation of nNSD@Grid are the ease to bring users’ input and software packages to
various locations and the HTCondor utility Direct Acyclic Graph Manager (DAGMan). DAGMan allows
the execution of jobs with declared dependencies.** This feature is essential for (NSD@Grid because
fault tolerance of nNSD is stringent—any error in one of the aNFDs results in artifacts in the calculated
nuclear Hessian—and the numerical differentiation can only be performed after all aNFDs are complete.

DAGMan provides a mechanism for job preparation (PRE SCRIPT), execution (JOB), monitoring and
processing (POST SCRIPT), retry (RETRY), and child job execution (CHILD; for example, if
thermodynamic parameters are to be calculated based on the nuclear Hessian). We therefore utilize these
functions of DAGMan to (i) generate perturbed coordinates (y+A,(,...) based on an initial coordinate
(%,G,...) and a given increment of perturbation (A), (ii) submit concurrently duplicates of all aNFD
calculations based on the perturbed coordinates, (iii) verify convergence of the aNFDs and (iv) retry if
not converged and remove duplicates after the first in the duplicate set is complete, (v) differentiate the
aNFDs numerically to produce the nNSD, and (vi) assemble all 3N nNSDs into the nuclear Hessian

matrix (Scheme 1).
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Scheme 1. Workflow of nNSD@Grid. All the arrows are controlled by the DAGMan utility. (i) A PRE
SCRIPT is used to generate perturbed geometries based on a given initial geometry, (ii) each perturbed
geometry is submitted as a JOB to the OSG to compute the aNFD (i.e. eq. 12), (iii)) a POST SCRIPT
checks the convergence of the computation after each completion of a JOB, (iv) RETRY is demanded if
convergence was not detected in (iii), and (v) a POST SCRIPT to numerically differentiate EX at the first
order (eq. 13) and (vi) assemble each numerically differentiated EX(q;) to give the nuclear Hessian

matrix.

Initial geometry (qf,qj, )

(i) Generate perturbed geometries
ie. (Qf +h.q; )

(ii) Submit to a remote node in the
computing grid

Evaluate for E¥(q; + h, q;, ... ) (iv)

no
(iii) Check for convergence

yes

Differentiate E*¢(q;, qj, ... ) using
(V) EX((q-) ~ EX(qi+hqj...)—EX(q;—haqj,...)
L ! 2h

(Vi) Assemble the 3N X 3N Hessian matrix
using 3N EX¢(g;) vectors

b. Effect of grid inhomogeneity in computing time.

Grid computing suffers from computer hardware inhomogeneity, which reduces the efficiency of
nNSD@Grid since all aNFS evaluations for a given set of coordinates have to finish before numerical
differentiation can be performed to generate the nuclear Hessian matrix. Because of the opportunistic
nature of grid computing, users have marginal control over the computer hardware on which their
computing jobs are being executed. This issue causes the completion time of nNSD@Grid to fluctuate for

replicates of any given calculation. To investigate how the fluctuation in computing time affects
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nNSD@Grid, we performed nNSD@Grid on CgHg six times and the computing time of all the aNFDs in
each replicate is shown on the left in Figure 1. Because there are multiple computations of aNFD for each
nNSD@Grid, the computing times for all these calculations are shown in percentile bars with the thicker
portion representing the mid-range 25—-75% timings. It can be conceived that 75% of all the aNFDs for
CsHs finished within 100 seconds after execution. However, the whole nNSD can take up to almost double
the time of the 75" percentile due to the variation in hardware on the computing grid. In addition, the

variation in the total computing time (the 100™ percentile) of the six replicates ranges by 33%.

200 A

400 7 3 nNsD@Grid

T T

0 2 4 6 8 0 1 2

time / sec

time / sec

replicate duplicates

Figure 1. Variation in the computing time within each set of aNFDs and among replicates of nNSD @ Grid
on C¢He (left) and the computing time performance of nNSD@Grid on CsHe using duplicates of
submissions (right)
c. Mitigation of grid inhomogeneity with duplicate submissions

Inhomogeneity of the computing grid causes a skewed distribution of computing times within a set of
aNFDs for one nNSD@Grid calculation, delaying the completion of the nNSD@Grid calculation. To
mitigate this inherent issue of grid computing, we take advantage of the high throughput aspect of the
cyberinfrastructure. The probability of two identical submissions finishing at the same time in the
computing grid is almost negligible; one calculation almost always finishes earlier than the other. Hence,
we may submit duplicates of a set of aNFDs to remedy the delay due to hardware heterogeneity of the
computing grid. The results of the distribution of computing time of nNSD@Grid on C¢Hs using one and
two duplicates as compared to that without duplicates are shown on the right in Figure 1. It can be seen

that the completion time is reduced by a factor of two by using one duplicate of nNSD@Grid, making the
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time performance of nNSD@Grid comparable to that of aNSD. Including two duplicates only marginally
improves the computing time for nNSD@Grid compared to that using one duplicate. To reduce the
amount of computing resources wasted in computing duplicates of the individual aNFDs, we utilized the

POST SCRIPT function in DAGMan to remove the slow duplicate executions on-the-fly once one aNFD

oNOYTULT D WN =

calculation is complete in a set of duplicates.

14 3. APPLICATIONS

16 a. Performance of nNSD@Grid compared to aNSD

19 i. Time performance for a systematic increase in system size

21 Hessian matrices for compounds having various numbers of linearly fused benzene rings were
computed using either n(NSD@Grid or aNSD. The computing time for either method is shown in Figure
2% 2. It can be found that nNSD@Grid outcompetes aNSD as the number of fused benzene rings becomes
28 larger than three. The advantage of nNSD@Grid in terms of timing becomes more prominent as the

30 system size grows.

33 6000 - [ nNSD@Grid

34 H [ ansD
35 l '
n-1 H

36 4000 A

time / sec

2000 A

48 Figure 2. Computing time on various sizes of fused benzene molecules performed by nNSD@Grid (black
50 percentile bars) versus aNSD (grey bars).

i1. Convergence performance for multiconfigurational/multireference states

56 Degenerate/Near-degenerate ground states can cause difficulties for the evaluation of CP-SCF

58 equations due to the instability of the first derivatives of the density matrix and the energy weighted
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density matrix caused by large changes in the coefficients of atomic orbitals due to nuclear displacements.
This problem renders the convergence of CP-SCF equations slow or difficult but is mitigated by nNSD.
To demonstrate the advantage of nNSD@Grid over aNSD in degenerate/near-degenerate ground states,
we performed nNSD@Grid and aNSD calculations on the [Rh2(O2CCH3)4]" ion. [Rh2(O2CCH3)4]" has an
orbitally degenerate doublet ground state °E, in the high symmetry Dan group (Figure 3)* and axially
ligated derivatives of the complex have abnormal Landé g factors arising from strong first order spin-
orbital coupling.*® aNSD of [Rh2(O2CCHj3)4]" was performed using the SCF convergence method of Pulay
(the direct inversion of the iterative space),’’ of Pople,*® or the conjugated gradient method. All three
convergence methods failed to converge the CP-SCF equations after 128 cycles. In contrast, nANSD@Grid

completed resolution of the nuclear Hessian in 11-46-61-74-169 min (for the 1st, 25th, 50th, 75th, and

100th percentiles).
o o] 4+ =
O—Rh—0, . 4 &
\/0’ N 45
/1 o A o
—Rh—0 ‘;TF °
0” =

Figure 3. Structure (left) and electronic configuration (right) of 2[Rh2(0.CCHj3)a4]".

b. Enabling theoretical methods that are prohibitively expensive for large molecules using
aNSD by nNSD@Grid

1. Hessian evaluation using RIJCOSX-MP2 for various numbers of fused benzene rings

aNSD calculations using canonical MP2 scale formally as O(Nbasis®).? The steep scaling renders aNSD
intractable for large molecules on a conventional HPC. In comparison, energy and gradient calculations
using canonical MP2 are one order more tractable, formally scaling as O(Npasis”) With system size.*
Therefore, nNSD@Grid is computationally more accessible for larger molecules compared to aNSD. To
study the computing time and memory performance of nNSD@Grid vs. aNSD, we computed the
RIJCOSX-MP2 Hessian matrix of the seven polyacenes using nNSD@Grid or aNSD and the results are

shown in Figure 4. It is evident that nNSD@Grid outperforms aNSD in both computing time and memory
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usage, where nNSD@Grid is 8 times faster and 13 times less memory-intensive for CsHs and 27 times
faster and 46 times less memory-intensive for CioHg than is aNSD using 12 processors. aNSD could not

even be completed for larger linear polyacenes using RIJCOSX-MP2 without further approximations.

3 nNsD@Grid 10000 - [ nNSD@Grid

50000 H m
O(O' [ anso = 9500- I ansD
45000 - niq H %_ 9000 H
5 -
o - © 8500 Ole'
] "]
240000+ o 8ooo— ni H
©10000 T o 2000
E 8000 2 15001
- >
6000 - 5 1000 - D
4000 4 £
500 7 5 |:|
20004 = * é b . L
Q ==y ‘I T T T T T E 0- ! ! ! ! !
N v DR 6 A N v > * ° © A
ring size ring size

Figure 4. Computing time (left) and memory usage per processor (right) for various molecules of linearly
fused benzene rings by nNSD@Grid (black percentile bars) and aNSD (only trackable for C¢Hs and
CioHs; grey bars) using RIJCOSX-MP2 are shown.

ii. Hessian evaluation using RIJCOSX-B2PLYP for various numbers of fused benzene

rings

Double hybrid density functionals (DHDFs) are an emerging rung on the Jacob’s Ladder of density
functionals that demonstrate improved performance, compared to the already successful hybrid DFT, for
their improved recovery of nonlocal correlation energy.** The computing time performance of
nNSD@Grid using a DHDF, RIJCOSX-B2PLYP, is shown in Figure 5. It can be found that RIJCOSX-
B2PLYP frequencies can easily be routine for systems as big as C3oHis, finishing within 6 hours (vida
supra for the number of GFs and DFGFs). Inspecting the distribution of total computing time among
various components of the RIJCOSX-B2PLYP aNFD calculations, it becomes apparent that more than
50% of the computing time was invested in preparing and solving the MP2 correction of the nonlocal
exchange (Figure 5). Any improvement, such as parallel calculation, in the MP2 timing would
significantly accelerate the computing time of nNSD@Grid. However, parallel calculation of each aNFD
of nNSD@Grid using more than one processor in one remote computer node significantly reduces the
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number of available nodes in the computing grid, hence, lengthening the queue time of each aNFD. One
potential way to mitigate the time investment in the MP2 module is to partition the correlation space into
small orbital fragments and distribute each fragment to each remote node in the computing grid,
transforming the MP2 amplitude calculation into an embarrassingly parallel task, further taking advantage
of the high scalability of the computing grid. Future development of nNSD@Grid to incorporate various

types of fragmentation methods, such as divide-expand-consolidate,*' is foreseeable.

20000 - H = nNSD@Grid 100 7 H [ nNsD@grid
CI I
H 90 H
15000 - n-1 = n-1
IT) T
[«] -
3 £ 80
010000' g
£ = 70+
4 L £ %
5000 ! > 60- @
£
: =
0 y + =| r T r T 50 T T T T T T T
N 6 S ™ % o A N v » e ° © A
ring size ring size

Figure 5. Computing time (left) and fraction of total computing time spent in the MP2 module (right) for
various molecules of linearly fused benzene rings by nNSD@Grid using RIJCOSX-B2PLYP are shown.
c. Accelerating computation of theoretical methods without aNSD expressions by
nNSD@Grid
Theoretical methods that have aNFD expressions but do not yet have aNSD expressions are less
commonly employed for frequency calculations due to the unfavorable prefactor of nNSD for large
molecules. This limitation hampers routine performance of these methods for reactivity relevant studies
despite their improved accuracy. nNSD@Grid allows attenuation of the unfavorable prefactor at the
expense of a longer computation time of each aNFD owing to the fewer accessible multiprocessor
computing slots in the computing grid. The efficiency of nNSD@Grid compared to conventional nNSD
on a conventional HPC using central differences can be approximately equated to:

Computing time for one aNFD using nNSD@Grid =t (14)

6Nt
(np)@

Computing time for one NSD using nNSD on an HPC = (15)
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where N is the number of atoms, 7 is the number of sets of processors dedicated to solving each aNFD, p
is the number of processors in each n set dedicated to solving one aNFD, a is the scalability of aNFD with

respect to the number of processors.

6N
(np)®

Dividing eq. 15 by eq. 14 gives the relative speed of nNSD@Grid vs. nNSD on an HPC as

For example, for one CsHg molecule running on 12 processors in 1 node, N=12,n=1, and p =12, nNSD
completed in 459 seconds compared to at most 158 seconds by nNSD@Grid. Using a phenomenological
inverse relationship (a« = 1) between the computing time and n X p (Figure 6), the computing time of
nNSD is extrapolated to 135 seconds on 36 processors, which is comparable to that of nNSD@Grid in

spite of the high demand on the number of processors for a molecule as small as C¢Hs.

6000 A

4000 A

time / sec

2000

0 1 T 1 1
0.0 0.3 0.6 0.9 1.2

(np)”’

Figure 6. Linear correlation between the amount of time to complete nNSD for C¢Hg and the inverse of
the mutplication of the number of computer cores by the number of processors per computer core. The

fitted linear regression is time = 4872 X (np)~L.

After demonstrating the advantage of nNSD@Grid over nNSD in the demand of the number of
processors in each node, we now show the applicability of nNSD@Grid using OO-RIJCOSX-MP2, an
improved formulation of RIJCOSX-MP2 for radicals, to linear polyacenes.

MP2 provides less accurate results for open-shell systems than DFT due to the only partial recovery of
electron correlation from the poor HF reference.*’ It has been shown that some electron correlation can
be further recovered at the MP2 level by basing the calculation on the Hylleraas functional which is made
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stationary with respect to both amplitude variations and orbital rotations.** Despite its improvement over
RIJCOSX-MP2, OO-RIJCOSX-MP2 calculations require more computing time for orbital optimizations.
We first show the computing time and memory performance of OO-RIJCOSX-MP2. Comparing Figure
7 with Figure 4, it can be seen that OO-RIJCOSX-MP2 has an overall similar memory usage to RIJCOSX-
MP2 using nNSD@Grid. On the other hand, the nNSD@Grid computing time performance is 10 times
slower for OO-RIJCOSX-MP2 than RIJCOSX-MP2. In closer inspection of the contributions from
various integral computations, we found that 99% of the computing time was invested in the MP2 module
for OO-RIJCOSX-MP2 compared to 92.7% for RICOSX-MP2 (not shown). The longer time investment
in the MP2 module is a result of orbital optimization in addition to the calculation of the canonical MP2
excitations. The longer computing time in the MP2 module hampers the efficiency of nNSD@Grid as

only one processor is used to solve each OO-RIJCOSX-MP2 aNFD.
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Figure 7. Computing time (left) and memory usage per processor (right) for various molecules of linearly
fused benzene rings by nNSD@Grid using OO-RIJCOSX-MP2 are shown.
4. PRACTICAL EXAMPLES
a. Hessian evaluation using nNSD@Grid for a large open-shell transition-metal-
containing complex
E-Agx("bustpy)2OTH(NSO3-2,6-dFPh) (‘bustpy = 4-,4'-,4"-tri-tert-butyl-2-,2":6'-2"-terpyridine, OTf =
triflate, and dFPh = difluorophenyl), whose structure is shown in Figure 8, is a proposed metal-nitrene

reactive intermediate in silver-catalyzed intermolecular nitrene transfer reactions with a triplet electronic
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ground state.** Such complexes are important for atom-efficient addition of nitrogen functionalities to
organic molecules. With SARC-def2-TZVPP on Ag and SARC-def2-SVP on the rest of the elements
adding up to 2705 GFs and 7094 DFGFs, nNSD@Grid took 181-239-257-286-483 minutes for E-
Ag(bustpy)20TH(NSOs3-2,6-dFPh) with 432-686-728-814-981 MB memory usage per processor. In
contrast, an aNSD calculation completed in 3730 minutes using 12 processors and 4343 MB per processor.
Overall, (NSD@Grid is 7.7 times faster in computing time and 4.4 times less memory intense than aNSD

using 12 processors on a molecule consisting of 156 atoms, among them two transition metal atoms.

Figure 8. Structure of E-Agx(‘bustpy)>OTf(NSOs-2,6-dFPh), a proposed reactive intermediate in silver-
catalyzed nitrene transfer, containing 156 atoms with two heavy metals.
b. Hessian evaluation using nNSD@Grid for a reactive catalytic intermediate with a
multiconfigurational ground state
The 91 atom %[Rha(esp)z-nitrene]” (esp = o, a, o, o'-tetramethyl-1,3-benzenedipropanoate and nitrene
= NSO3CH3) complex, shown in Figure 9, is the proposed reactive intermediate formed by one of the
leading transition metal catalysts for nitrene transfer. This complex has been shown to be
multiconfigurational with three major configuration state functions that contribute to the ground state
CASSCF wavefunction: 1) A triplet nitrene (S = 1) antiferromagnetically coupled to [Rha(esp)2]” (S =
1/2), 2) a nitrene radical anion (S = 1/2) bound to a closed shell [Rha(esp)2]*" unit, and 3) a nitrene
radical cation (S = 1/2) bound to a closed shell Rha(esp): unit (Figure 9).>> On this complex system,

aNSD experiences difficulty due to the instability in solving the CP-SCF equations; no convergence (first
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of the seven batches) was conceivable after 80 iterations, which spent 1440 minutes on 12 processors. In

contrast, (NSD@Grid on >[Rha(esp)2NSO3;CHs]" completes in 95-134-178-239-878 minutes.

e

oNOYTULT D WN =

29 weight (%) 46.5 26.3 16.7

34 AT " -5 - o

Figure 9. Structure of (top), the three dominant CASSCF configurations of (bottom), and the four frontier
39 orbitals (lower right) in 2[Rhy(esp)2NSO3CH3]" .

41 5. CONCLUSION AND OUTLOOK

Continuous developments in computing hardware, optical fibers, the Internet, and protocols for
46 internetwork communication have enabled us to develop a new computing-grid-enabled numerical
48 nuclear second derivative method for computing nuclear Hessian matrices: nNSD@Grid. nNSD@Grid
50 can outperform aNSD in terms of computing time and the convergence behavior for B3LYP (and other
similar or lower scaling density functionals) and of treatable system size using less memory for higher
55 level computational methods. For theoretical methods without an aNSD expression, an excessive number

57 of processors is required to achieve the temporal performance of nNSD@Grid on a conventional HPC.

60 ACS Paragon Plus Environment
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To our knowledge, the study reported herein is the first example of the utilization of grid computing to
improve the applicability of NSD to various chemical systems using a broad range of theoretical methods.
We envision future developments of computing-grid-enabled quantum chemical methods, especially for

methods that are embarrassingly parallel that can readily be adapted to grid computing.
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