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Abstract— Hyperspectral unmixing while considering end-
member variability is usually performed by the normal composi-
tional model, where the endmembers for each pixel are assumed
to be sampled from unimodal Gaussian distributions. However,
in real applications, the distribution of a material is often not
Gaussian. In this paper, we use Gaussian mixture models (GMM)
to represent endmember variability. We show, given the GMM
starting premise, that the distribution of the mixed pixel (under
the linear mixing model) is also a GMM (and this is shown from
two perspectives). The first perspective originates from random
variable transformations and gives a conditional density function
of the pixels given the abundances and GMM parameters.
With proper smoothness and sparsity prior constraints on the
abundances, the conditional density function leads to a standard
maximum a posteriori (MAP) problem which can be solved using
generalized expectation maximization. The second perspective
originates from marginalizing over the endmembers in the GMM,
which provides us with a foundation to solve for the endmembers
at each pixel. Hence, compared to the other distribution based
methods, our model can not only estimate the abundances and
distribution parameters, but also the distinct endmember set for
each pixel. We tested the proposed GMM on several synthetic
and real datasets, and showed its potential by comparing it to
current popular methods.

Index Terms— Endmember extraction, endmember variability,
hyperspectral image analysis, linear unmixing, Gaussian mixture
model.

I. INTRODUCTION

HE formation of hyperspectral images can be simplified

by the linear mixing model (LMM), which assumes that
the physical region corresponding to a pixel contains several
pure materials, so that each material contributes a fraction of
its spectra based on area to the final spectra of the pixel.
Hence, the observed spectra y, € RB.n=1,...,N (B is
the number of wavelengths and N is the number of pixels)
is a (non-negative) linear combination of the pure material
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(called endmember) spectra m; € RE, j=1....,M (M is
the number of endmembers), i.e.

M M
Yo = ijanj +m,, stoay >0, zanj =1, (@
j=1 J=1

where a,; is the proportion (called abundance) for the jth
endmember at the nth pixel (with the positivity and sum-
to-one constraint) and n, € RZ is additive noise. Here,
the endmember set {m; : j =1,..., M} is fixed for all the
pixels. This model simplifies the unmixing problem to a matrix
factorization one, leading to efficient computation and simple
algorithms such as iterative constrained endmembers (ICE),
vertex component analysis (VCA), piecewise convex multiple-
model endmember detection (PCOMMEND) [1]-[3] etc.,
which receive comprehensive reviews in [4] and [5].

However, in practice the LMM may not be valid in many
real scenarios. Even for a pure pixel that only contains one
material, its spectrum may not be consistent over the whole
image. This is due to several factors such as atmospheric
conditions, topography and intrinsic variability. For exam-
ple, in vegetation, multiple scattering and biotic variation
(e.g. differences in biochemistry and water content) cause
different reflectances among the same species. For urban
scenes, the incidence and emergence angles could be different
for the same roof, causing different reflectances. For minerals,
the spectroscopy model developed by Hapke also considers
the porosity and roughness of the material as variable [6].

In the first and third example above, Eq. (1) can be
generalized to a more abstract form y, = F ({m s Onj
j = 1,...M}), which leads to nonlinear mixing models.
For example, Halimi et al. [7] used bilinear models to handle
the vegetation case, which was also investigated using several
different nonlinear functions [8]. In [9], the Hapke model was
used to model intimate interaction among minerals. There
are also works that use kernels for flexible nonlinear mix-
ing [10], [11]. A panoply of nonlinear models can be found
in the review article [12]. We note that in these models,
a fixed endmember set is still assumed while using a more
complicated unmixing model.

While nonlinear models abound lately, it is still difficult to
account for all the scenarios. On the contrary, the LMM still
has physical significance with the intuitive area assumption.
To model real scenarios more accurately, researchers have
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taken another route by generalizing Eq. (1) to

M
Yn = Zmnjanj +ny, (2)
j=l1

where {mnj eRB: j= 1,...,M}, n=1,...,N could be
different for each n, i.e. the endmember spectra for each pixel
could be different. This is called endmember variability, and
has also received a lot of attention in the community [13], [14].
Note that given {y,}, inferring {m,,j, a,,j} is a much more
difficult problem than inferring {m s a,,j} in Eq. (1). Hence,
in many papers {mnj} are assumed to be from a spectral
library, which is usually called supervised unmixing [15]-[17].
On the other hand, if the endmember spectra are to be
extracted from the image, we call them unsupervised unmix-
ing models [18]-[20]. Obviously, unsupervised unmixing
is more challenging than its supervised counterpart and
hence more assumptions are used in this case, such as the
spatial smoothness of abundances and endmember variabil-
ity [21]-[23], small mutual distance between the endmem-
bers [22], small magnitude or spectral smoothness of the
endmember variability [22], [23].

We can also categorize the papers on endmember variability
by how this variability is modeled. In the review paper [14],
it can be modeled as a endmember set [17], [20] or as a distri-
bution [24]-[26]. One of the widely used set based methods is
multiple endmember spectral mixture analysis (MESMA) [17],
which tries every endmember combination and selects the
one with the smallest error. There are many variations to
the original MESMA. For example, the multiple-endmember
linear spectral unmixing model (MELSUM) solves the linear
equations directly using the pseudo-inverse and discards the
solutions with negative abundances [27]; automatic Monte
Carlo unmixing (AutoMCU) picks random combinations for
unmixing and averages the resulting abundances as the final
results [28], [29]. Besides MESMA variants, there are also
many other set based methods. For example, endmember
bundles form bundles from automated extracted endmembers,
take minimum and maximum abundances from bundle based
unmixing, and average them as final abundances [20]; sparse
unmixing imposes a sparsity constraint on the abundances
based on endmembers composed of all spectra from the
spectral library [30]. A comprehensive review can be found
in [13] and [14]. One disadvantage of set based methods is
that their complexity increases exponentially with increasing
library size hence in practice a laborious library reduction
approach may be required [31].

The distribution based approaches assume that the endmem-
bers for each pixel are sampled from probability distributions
[e.g. Gaussian, a.k.a. normal compositional model (NCM)],
and hence embrace large libraries while being numerically
tractable [15], [32]. Here, we give an overview of NCM
because of its simplicity and popularity [16], [18], [19].
Suppose the jth endmember at the nth pixel follows a Gaussian
distribution p (m,;) = N (my;|p;, X;) where p; € R® and
¥, € RB*B and the additive noise also follows a Gaussian
distribution p (n,) = N (n,|0,D) where D is the noise
covariance matrix. The random variable transformation (r.v.t.)
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Fig. 1. (a) Original Pavia University image and selected ROI with its ground
truth image. (b) Mean spectra of the identified 5 endmembers and histograms
of meadows and painted metal sheets (shadow is termed as endmember to
conform with the LMM though the area under shadow can be any material).
PCA is used to project the multidimensional pixels to single values which are
counted in the histograms. Although the histogram of meadows may appear
to be a Gaussian distribution, that of painted metal sheets is obviously neither
a unimodal Gaussian or Beta distribution.

(2) suggests that the probability density function of y, can be
derived as

M M
P (¥nletn, ®,D) =N [yul D ajm;, D 0r;Zj+D), (3)
j=1 j=1

where o, = [ant,...,0un]", © = {n;,%; : j =
,....M } The conditional density function in (3) is usu-
ally embedded in a Bayesian framework such that we can
incorporate priors and also estimate hyperparameters. Then,
NCM uses different optimization approaches, e.g. expectation
maximization [32], sampling methods [18], [19], [25], par-
ticle swarm optimization [24], to determine the parameters
{w;, Z;} and {a;}.

There are few papers that use other distributions. In [15], X.
Du et al. note that the Gaussian distribution may allow
negative values which are not realistic. In addition, the real
distribution may be skewed. Hence, they introduce a Beta com-
positional model (BCM) to model the variability. The problem
is that the true distribution may not be well approximated
by any unimodal distribution. Consider the Pavia University
dataset shown in Fig. 1, where the multidimensional pixels
are projected to one dimension to afford better visualiza-
tion. Among the manually identified materials, we can see
that although the histogram of meadows may look like a
Gaussian distribution, that of painted metal sheets has multiple
peaks and cannot be approximated by either a Gaussian or
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Fig. 2. Comparison of the mechanisms among LMM, NCM and GMM. We have 3 endmembers represented by the darken gray areas. LMM tries to find a
set of endmembers that fit the pixel data. NCM tries to find a set of Gaussian centers that fit the pixel data, with error weighted by the covariance matrices.
GMM tries to find Gaussian centers such that all their linear combinations fit the pixel data, with each weighted by the prior 7. We may use 6 endmembers

with NCM, but then the prior information is lost.

Beta distribution. This is due to different angles of these sheets
on the roof. Since each piece of metal sheet is tilted, it forms
a cluster of reflectances which contributes to a peak in the
histogram. This example shows that we should use a more
flexible distribution to represent the endmember variability.
In this paper, we use a mixture of Gaussians to approx-
imate any distribution that an endmember may exhibit,
and solve the LMM by considering endmember variability.
In a nutshell, the Gaussian mixture model (GMM) mod-
els p(my;) by a mixture of Gaussians, say p (my;) =

>k kN (my|p i, i), and then obtains the distribution
of y, by the r.v.t. (2), which turns out to be another mixture
of Gaussians and can be used for inference of the unknown
parameters. Here, we briefly explain how GMM works intu-
itively by comparing it to the NCM with the details given later.
The maximum likelihood estimate (MLE) of NCM (using (3))
aims to find {;L j} such that its linear combination matches y,,.
Contrary to NCM, GMM aims to find {t;} such that all of
its linear combinations match y,. Suppose we have py, o1,
2o, M31, f32, M33: then there are 6 combinations as explained
in Fig. 2, but with emphasis weighted by {7[ jk} which deter-
mines the prior probability of each linear combination.

Based on the GMM formulation, we propose a super-
vised version and an unsupervised version for unmixing. The
supervised version takes a library as input and estimates the
abundances. The unsupervised version assumes that there are
regions of pure pixels, hence segments the image first to get
pure pixels and then performs unmixing. Another advantage
over the other distribution based methods is that we can also
estimate the endmembers for each pixel, which is not achiev-
able by NCM or BCM. Note that estimating endmembers
for each pixel is generally common in non-distribution meth-
ods, both from the signal processing community [21]-[23]
or the remote sensing community [17], [27]. But it is
often achieved in the context of least-squares based unmix-
ing [33]-[35], unlike what we propose here using distribution
based unmixing.

Notation: As usual, N (x|u, X) denotes the multivariate
Gaussian density function with center u and covariance
matrix X. Let A € R™ " be a matrix with m rows and
n columns. The Hadamard product of two matrices (elemen-
twise multiplication) is denoted by o while the Kronecker

product is denoted by ®. (A);; denotes the element at the
Jjth row and kth column of matrix A. (A); denotes the jth
row of A transposed (treating A as a vector), i.e. for A =
[ar,...a,]7, (A) j =aj. vec(A) denotes the vectorization of
A, i.e. concatenating the columns of A. d;x =1 when j =k
and 0 otherwise. Ex (f (x)) is the expected value of f (x)
given random variable x. We use i = /—1 instead of as an
index throughout the paper.

II. MATHEMATICAL PRELIMINARIES
A. Linear Combination of GMM Random Variables

To use the Gaussian mixture model to model endmember
variability, we start by assuming that my,; follows a Gaussian
mixture model (GMM) and the noise also follows a Gaussian
distribution. The distribution of y, is obtained using the
following theorem.

Theorem 1: If the random variable my,; has a density

function
K
P (m4j1©) = fn; (my;) = D 7N (Ml i Tj), @
k=1

st mwi > 0, Z,ﬁl ik = 1, with K; being the number of
components, T ji (K jx € RB or Yk € RB*B) being the weight
(mean or covariance matrix) of its kth Gaussian compo-
nent, ® = {mj, wpy, Tju: j=1,....,M, k=1,...,K;},
{mnj cj=1,..., M} are independent, and the random vari-
able n, has a density function p (n,) :== N (0,0, D), then the
density function of 'y, given by the rv.t. y, = 27:1 my;o,j +
n, is another GMM

P (Yulay, ©,D) = Z N (Yn“l'nk; an),

kelC

where C .= {1,..., K1} x{l,..., Ky} x---x{1,..., Ky} is
the Cartesian product of the M index sets, k := (ky,...kpy) €
K mxk€R, p, € RE, ¥,k € REXB gre defined by

M M
Tk = Hn:jkja ”’nk Zzan]”’]kja
j=1 j=1

)

M
Tk = > anTji; +D. (6)

j=1
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The proof is detailed using a characteristic function (c.f.)
approach.

We first consider the distribution of the intermediate variable
Z, = 27:1 myjap;. The c.f. of fm; in (4), ¢m; (t) : RE - C,
is given by

Pm; (t) = Em, (eith) = /]RB eitrxfm_/ (x) dx

RB

K
= ank/ SN (xlujk, ij) dx
k=1

K
ZZE:FM¢M(Oa

k=1

N

where @i (t) denotes the c.f. of the Gaussian distribution
N (xIpji Zji) as
(8)

. 1
@ik () :=exp (th;ij - EtTijt).

Assuming myq, ..., m,y are independent, we can obtain the
c.f. of the linear combination of these m,; by multiplying
(7) as

¢z, (t)
M
= Pmyyan +Amyyany () = H ¢m_,- (a"jt)

Jj=1
K Km

=D Tiky *** TMky Piky (@n1t) - - - Ppiy (anmt).
k1=1 ky=1

Let K, k, mk be defined as in Theorem 1. We can write the
above multiple summations in an elegant way:

bu, (1) = D T (1),

ke

©)

where g > 0, D>\ . 7k = 1 and

¢k (t) = d1x, (an1t) - - - Pury (@nmt)
M 1 M
j=I

j=1
where (8) is used. Since ¢,k (t) also has a form of c.f. of a
Gaussian distribution, the corresponding distribution turns out

to be N(XI Zj AnjM ji; » Zj arzszjkj). Hence, the distribu-
tion of z, can be obtained by the Fourier transform of (9)

1 7
fz,, (zn) = W/RB e it z,,¢zn (t)dt
1 T
= G o

kel

M M
= > mN [zl D anjmjn,, D oriZjx; |, (10)
kel j=1 j=1

which is still a mixture of Gaussians.

After finding the distribution of the linear combination,
we can add the noise term to find the distribution of y,.
Suppose the noise also follows a Gaussian distribution,

IEEE TRANSACTIONS ON IMAGE PROCESSING

p () = fa, M) = N (n,]0,D), where D is the noise
covariance matrix. We assume that the noise at different
wavelengths is independent (o7 being the noise variance of
the kth band), i.e. D = diag (afk, 07,...,03) e REXB (if it is
not independent, the noise can actually be easily whitened to
be independent as in [36]). Its c.f. has the following form
17
¢n, (t) = exp (_§t Dt) an
by (8). Then the c.f. of y, can be obtained by multiplying (9)
and (11) (as z, and n, are independent)

Py, (1) = s, (O bn, (O = D Tkbn, (1) ok ()

ke

1
= Z Tk eXp [itT[Lnk — EtTZ,,kt],
ke

where u, and X,k are defined in (6). Finally, the distribution
of y can be shown to be (5) by the Fourier transform again as
in (10).

If K = {1} x {1} x --- x {1}, i.e. each endmember has only
one Gaussian component, we have 71 = 1,...,7y1 = 1,
then 7x = 711 -- -y = 1. The distribution of y,, becomes

M M
p(yn'“}h@sD):N Yn|zanj”’jl7zay2uzjl+D B
j=1 j=1

(12)
which is exactly the NCM in (3).

B. Another Perspective

Theorem 1 obtains the density of each pixel by directly
performing a r.v.t based on the LMM, which can be
used to estimate the abundances and distribution parameters.
Here, we will obtain the density from another perspective,
which provides a foundation to estimate the endmembers for
each pixel. Again, let the noise follow the density function
p () :== N (n,]0, D). Considering {m,,j} and {a,,j} as fixed
values, the r.v.t. y, = > jMyjanj+ny, implies that the density
of y, is given by

P (¥nletn, My, D) = N [ yu| D" myja,j, D (13)
J

where M, = [my1, ..., myy]7 € RM*8 are the endmembers

for the nth pixel. We have the following theorem which gives
the same result as in Theorem 1.
Theorem 2: If the random variables {m,,j j=1,..., M}
follow GMM distributions
K
p (m,;|®) := ZﬂjkN (i, Z k),
k=1

and they are independent, i.e.

M
pM,10) =[] p (m,;1©),
j=I

(14)
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TABLE I
VALUES FOR THE VARIOUS QUANTITIES IN THE SIMPLE EXAMPLE

& T i 11 ) |
(17 17 17 1) 0.06 QnlHiq + Qn2 Mo + Qn3 31 + Qnq by
(17 27 17 1) 0.14 QAnl1Hiq + Qn2 Koo + Qn3 31 + Qng by
(17 17 27 1) 0.12 Qnl1Hiq + Qn2 Ko + Qn3 K32 + Qng by
(17 27 27 1) 0.28 Qnlfiq + Qn2 oo + Qn3 32 + Qng g
(17 17 37 1) 0.12 Qnl1Hiq + Qn2 o + Qn3 33 + Qng by
(1= 27 37 1) 0.28 Qnl1Hiq + Qn2 Koo + Qn3 33 + Qng g

then the conditional density p (yn|a,, ©, D) obtained by mar-
ginalizing M,, in p (Y, M, |at,,, ®, D) has the same form as
in Theorem 1:

p (Ynlay, ©®,D) = / P (Yulety, My, D) p (M,,|®) dM,,

= > 1N (Yal oyt Tk

ke

where p (Y,|en, M,;, D) =./\/(y,,| Zj m,,janj,D).

The proof is much more complicated (in terms of algebra) and
therefore relegated to the supplemental material of the paper.

C. An Example

We give an example to illustrate the basic idea of this
paper. Suppose we have M = 4 endmembers with K1 = 1,
K, =2, K3 =3, K4 = 1. Their distributions follow (4) with
RiesZjks J = 1,2,3,4, k = 1,..., K;. Let the weights of
these components be 71; = w41 = 1, mo; = 0.3, w2 = 0.7,
w31 = 0.2, w3y = 0.4, w33 = 0.4. Then, K has 6 entries
from the Cartesian product, {1} x {1,2} x {1,2,3} x {1}.
We list the values for zk, p,k in Table I. For example, for
k = (1,2,3,1), ax = m1won33wa; = 0.28. The value of
Mk is a linear combination of ;i (pick one component for
each j) based on the configuration k. Hence, the distribution
of y, in (5) is a Gaussian mixture of 6 components with 7y,
I, given in Table I (X,k can be derived similar to g,).
Recalling the intuition in Fig. 2, we will show that applying
it to hyperspectral unmixing will force each pixel to match all
the w,s, but with emphasis determined by 7.

III. GAUSSIAN MIXTURE MODEL FOR
ENDMEMBER VARIABILITY

A. The GMM for Hyperspectral Unmixing

Based on the analysis in Section II, we can model the
conditional distribution of all the pixels Y := [yi, ..., yN]T €
RN*B given all the abundances A := [a, ..., ay]’ € RV
(otn = [0n1, ..., anm]’) and GMM parameters, which leads
to a maximum a posteriori (MAP) problem. Using the result
in (5) and assuming the conditional distributions of y, are
independent, the distribution of Y given A, ®, D becomes

N
[7Gulen. ©. D).

n=1

p(Y|A,0,D) = (15)

Based on the hyperspectral unmixing context, we can set
the priors for A. Suppose we use the same prior on A

as in [37], i.e.

p (A) x exp H b —Tr (ATLA) pe —Tr (ATA) ]

= exp I—%Tr (ATKA) ] ,

where L is a graph Laplacian matrix constructed from
Wom, ,m = 1,..., N with wy, = e~ IVn=yml*/2B7* for
neighboring pixels and 0 otherwise. We have Tr (ATLA) =
53 o lletn — amnz]?]— L — 1y (suppose fi # 0)
with f1 controlling smoothness and > controlling sparsity of
the abundance maps.

From the conditional density function and the priors, Bayes’
theorem says the posterior is given by

p(A,0]Y,D) x p(Y|A,©,D) p(A) p(0),

(16)

a7)

where p (@) is assumed to follow a uniform distribu-
tion. Maximizing p (A, ®|Y, D) is equivalent to minimizing
—log p (A, ©]Y, D), which reduces to the following form by
combining (5), (15), (16) and (17):

gprior(A),

N
E(A,©) == log > mcN (Valttuks Zuk) +

n=1 kel

M
Stk 20, D ak=1,0a,>0, > ay=1,Vn (I8)
ke j=l1
where Eprior(A) = %Tr (ATKA), and p,, Tk are defined
in (6).

B. Relationships to Least-Squares, NCM, and MESMA

Let us focus on the first term in (18) and call it the
data fidelity term. We can relate it to NCM and the least-
squares term 2, [ly, — >; anym;|? as used in previous
research. The data fidelity term in NCM follows (3) and is
based on minimizing the negative log-likelihood

N N
== IOgH p(yn) =— zlogN(Yn“Lnl» 2;nl)

n=1

—log p (Y)
n=1

19)

by assuming y,,s are independent, where u,; := Z Onjltj,
Y1 = Z anj X+ o21. Expanding (19) using the form of
the Gaussmn dlstrlbutlon leads to the objective function

Zlog X1l + Z ILnl ;11 (Yn -

We can see that the least-squares minimization is a special case
of NCM with || X || — 0, i.e. when there is little endmember
variability.

The proposed GMM further generalizes NCM from a sta-
tistical perspective. Since = j; represents the prior probability
of the latent variable in a GMM, nx represents the prior
probability of picking a combination. If we see k as a (discrete)
random variable whose sample space is /C, (5) can be seen as

P (Ynlen, ©,D) = D" p (k) p (Yulk, s, ©, D),
ke

Ra1). (20
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where p(k) = mx and p(yulk, 0., ©,D) = N(y,l
ks an). From this perspective, each pixel is generated
by first sampling k, then sampling a Gaussian distribution
determined by k, ®. Unlike NCM that tries to make each y,
close to p,,; which is a linear combination of a fixed set {[L j},
GMM further generalizes it by trying to make y, close to every
M Which are all the possible linear combinations of {s;}.
It makes sense that the summation in (18) is weighted by 7k in
a way that if one combination has a high probability to appear,
i.e. mk is larger for a certain k, the effort is biased to make
yn closer to this particular u,. Fig. 2 shows the differences
among these.

The widely adopted MESMA takes a library of endmember
spectra as input, tries all the combinations and pick the
combination with least reconstruction error. The philosophy
is similar to our model despite the fundamental difference
that MESMA is explicit whereas we are implicit in terms
of linear combinations. Compared to MESMA, the GMM
approach separates the library into M groups where each group
represents a material and is clustered into several centers, such
that the combination can only take place by picking one center
from each group. Also, the size of each cluster affects the
probability of picking its center. Hence, our model can adapt
to very large library sizes as long as the number of clusters
does not increase too much.

C. Optimization

Estimating the parameters of GMMs has been studied exten-
sively, from early expectation maximization (EM) from the
statistical community to projection based clustering from the
computer science community [38], [39]. There are simple and
deterministic algorithms, which usually require the centers of
Gaussian be separable. However, we face a more challenging
problem since each pixel is generated by a different GMM
determined by the coefficients a,. Since EM can be seen as
a special case of Majoriziation-Minimization algorithms [40],
which is more flexible, we adopt this approach. Considering
that we have too many parameters A, ® to update in the M
step, they are updated sequentially as long as the complete
data log-likelihood increases. This is also called generalized
expectation maximization (GEM) [41].

Following the routine of EM, the E step calculates the
posterior probability of the latent variable given the observed
data and old parameters

kN (Yn| Bnks Znk)

> kek TN (Yol tnxs Znk)
The M step usually maximizes the expected value of the
complete data log-likelihood. Here, we have priors in the
Bayesian formulation. Hence, we need to minimize

Vnk = 21

N
Em = - z Z Vnk {10g i + log N/ (Ynlﬂnh an)}+€prior-

n=1kelC
(22)
This leads to a common update step for 7k as
| X
ﬂzﬁgﬁk (23)
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We now focus on updating {s;, X jx} and A. To achieve this,
we require the derivatives of £y in (22) w.rt. p jko ik, Onj-
After some tedious algebra using (6), we get

N
Séu = - Z z Ol ; Otnj Ank

5 (24)
Rt n=1kekC
o0Em al
Sy = 2 2 Oy W (25)
Jt n=1kekC
o0y
o = 2 Mkt = 2 DT (i)
" kel kel
+ A1 (KA),; , (26)
where A,k € RE*! and W, € RE*5 are given by
Mk = 7k E ot (Y = Bk) 27)

1 _ T 1 _
¥k = EynkznkT (Yn N I"nk) (Yn y— ILnk) znkT - EynkznkT-
(28)
It is better to represent the derivatives in matrix forms for the

sake of implementation convenience. Considering the multiple
summations in (24), (25) and (26), we can write them as

= o, (AT AK) (29)
auﬂ kelC " ( k)j
— = > o, (AeA) W 30
dvec (X)) = i (( o k)j’ G0
a@% =~ > AR —2A0 > Wi ST +4IKA, (31)
kel kel

where A € RV*B W, e RV*B ? denote the matrices formed
by {Auk, ¥k} as follows

Ak = [AMk, A2k, - - -5 ANk
Wy = [vec (W1k), vec (¥2k), ..., vec (\IlNk)]T s

and R € RM*B_§, ¢ RM*B® are defined by

]T

>

T
Ri = [figys Mokys - o> Batiy | (32)
T
Sk := [vec (Z1x,), vee (Zany) s - - - vee (Zaky) | (33)
s o€, o0&,
The minimum of &£y, corresponds to WZ =0, a):}_‘,-d/ =0,
and ap‘/gy = 0 if the optimization problem is unconstrained.

However, since we have the non-negativity and sum-to-one
constraint to a,; and positive definite constraint of X j,
minimizing £y is very difficult. Therefore, in each M step,
we only decrease this objective function by projected gradient
descent (please see [42 and 43, Sec. 2.3]) using (29), (30)
and (31), where the projection functions for A and {Z jk} are
the same as in [37].

Finally, from the estimated 7k, we can recover the sets of
weights as 1 = > ycx Ok, Tk-

D. Model Selection

The number of components K; can be specified or esti-
mated from the data. For the latter case, we have some
pure pixels and estimate K; by deploying a standard
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model selection method. Suppose we have N; pure pixels

Y, = [y{, yé, e yf\,j] € RNi*B for the jth endmember,
Jm; (yl@ j) is the estimated density function with @; :=
{ﬂjk, Rijks Zjk : k=1,..., Kj}, gm; (y) is the true density
function. The information criterion based model selection
approach tries to find K; that minimizes their difference, e.g.

the Kullback-Leibler (KL) divergence

gm; (¥)
= m; log———d

N,
1 J .
- E logfmj (y,ﬂ@j) + const,
T n=1

D (gm, 1 im,)

%

where the approximation of [ gm ;i (y)1og fm; (y|® j) dy by
the log-likelihood is usually biased as the empirical distribu-
tion function is closer to the fitted distribution than the true
one. Akaike’s information criterion is one way to approximate
the bias. Here, we use the cross-validation-based information
criterion (CVIC) to correct for the bias [44], [45]. Let

Nj '
Ly, (®)) = > log fm, (y{zle) ,-). (34)
n=1

The V-fold cross validation (we use V = 5 here) divides the
input set Y; into V subsets {Y},Y;, e ,Y}/} with equal

sizes. Then for each subset Y%, v = 1,..., V, the remaining
data are used to replace Y in (34) such that (34) is maximized

by ©}. Then Lk, = X, ,CYII{ (@3) is evaluated and the

optimal K; = arg maxg; EK_/..

E. Implementation Details

The algorithm can be implemented in a supervised or unsu-
pervised manner. In both cases, because of the large compu-
tational cost, we project the pixel data to a low dimensional
space by principal component analysis (PCA) and perform
the optimization, the result then projected back to the original
space. Let E € RE*? be the projection matrix and ¢ € R? be
the translation vector, then

M
E" (y, —¢)= > E’ (m,; — c)ay; + En,.
j=1

This means that for the projected pixels, the jth endmember

m,; =E" (m,; — ¢) follows a distribution

K
) (m;,j|®) = > N (m,;j|ET (wji — ) ,ET):jkE)
k=1

and the noise nj, = E”n, follows A/ (n,|0, E'DE).

In the supervised unmixing scenario, we assume that a
library of endmember spectra is known. After estimating
the number of components following Section III-D, and
calculating © using the standard EM algorithm, we only
need to update y,x by (21) and A by (31) with 7k, pj
and X, fixed. The initialization of A can utilize the mul-
tiple combinations of means. For each «,, we first set

anx < (ReR] + eIM)7l Ryy,, then project it to the simplex
space, and finally set o, <« an{r%]th k = argmin ||y, —
Rzanknz, i.e. choose the a,x that minimizes the reconstruc-
tion error.

In the unsupervised unmixing scenario, we will assume the
resolution is high enough such that the hyperspectral image
can be segmented into several regions where the interior pixels
in each region are pure pixels. The optimization is performed
in several steps, where we first obtain a segmentation result,
then use CVIC to determine the number of components, and
finally estimate A with © fixed. The details are given as
follows.

Step 1: Initialization. We start with K; = 1, Vj and use
K-means to find the initial means Rj. The initial A is set to
A < YRT (R{RT + ely)~" (by minimizing ||Y — AR; |2,
then projected to the valid simplex space as in [37]. The
initial covariance matrices are set to X < 0.1%1, Vj.
For the noise matrix D, although there is research focused
on noise estimation [46], [47], endmember variability was
not considered and validation was performed only for the
simple LMM assumption. Hence, we use an empirical value
D = 0.001%I, which is usually much less than the variability
of covariance matrices in (6).

Step 2: Segmentation. Given the initial conditions, we use
the GEM algorithm to iteratively update y,x by (21), mk
by (23), mjr by (29), A by (31) while keeping X ji fixed.
For y,x and mk, a direct update equation is available. For
Kjk, We can use gradient descent. For A, since we have
the non-negativity and sum-to-one constraints, a projected
gradient descent similar to the one used in [37] can be applied.
To ensure a segmentation effect, a large £ is used in this step.

Step 3: Model selection and abundance estimation. Using
the segmentation-like abundance maps from the previous step,
we can obtain the interior pixels Y; (assumed pure) by
thresholding the abundances (e.g. a,; > 0.99) and performing
image erosion to trim the boundaries with structure element
size rg. (can be decreased gradually if large enough to trim
all the pixels). Following Section III-D, we can determine
the number of components K; and further calculate ®; by
standard EM. Since S, is relatively large in the previous step,
it is reduced by S < ¢f> where ¢ = 0.05. Then we restart
the optimization to estimate the abundances with © fixed.

F. Complexity Analysis

The abundance estimation algorithm is an iterative process.
Since we used projected gradient descent with adaptive step
sizes, the number of iterations is usually not large as shown
in [43] and [48]. For each iteration, it starts with calcu-
lating p, and X,k in (6), where storing all p, (Z;k)
requires O (|| NB) (O (IICINBZ)), the computation takes
O (IKINMB) (O (IK| NMB?)). Suppose the Cholesky fac-
torization and the matrix inversion of a B by B matrix
both take O (33) time, and N > B > M. Evaluating
log N (ynlunk, ):,,k) by the Cholesky factorization will take
O (B®), hence updating all the y,x takes O (|K| NB3), which
is also the required time for evaluating the objective function
(18). The calculation of Ak, ¥,k (in (27) and (28)) will be
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Fig. 3. Abundance and endmember error statistics from 20 synthetic images for each noise level in the supervised unmixing scenario.

dominated by the inversion of X,k which takes O (B 3), hence
the overall calculation takes O (|K| NB3) with storage the
same as f,x and X,k. Then if we move to calculating the
derivatives in (29), (30) and (31), it is easy to verify that
the computational costs are O (|| NMB), O (IICI NMBZ),
O (IK| NM B?) respectively (Note that K is a banded matrix
so the computation involving it is linear). Reviewing the above
process, we conclude that the spatial complexity is dominated
by O (IICI N Bz) and the time complexity is dominated by
O (IKINB3).

G. Estimation of Endmembers for Each Pixel

While the previous sections discuss the estimation of the
abundances and endmember distribution parameters, they do
not actually estimate the endmembers {m,; : n =1,..., N,
j=1,..., M} for each pixel. In this Section, we will discuss
this additional problem and note its absence in the previous
NCM literature.

Theorem 2 implies that we can view the proposed con-
ditional density (5) as modeling the noise as a Gaussian
random variable followed by marginalizing over M,,, which
is usually achieved by the evidence approximation in the
machine learning literature due to the intractability of the
integral ([49, Sec. 3.5]). Since we have A, ® obtained from
the previous Sections, we can get the posterior of M,, from
this model:

p (Mn|y,,,an, QaD) X p (Yn,Mn|“n, ®aD)

= p (Ynlan, My, D) p (M,|@®).  (35)

Maximizing log p (M,|y,, &y, ©,D) gives us another

minimization problem
1 r_ _
EM,) = 3 (vo —Mla,) D' (y, - M@,

M K

— D log D mpN (mylp i, Zjx)  (36)

j=1 k=l

obtained by plugging (13) and (14) into (35). Note that this
objective function has an intuitive interpretation as the first
term minimizes the reconstruction error while the second term
forces the endmembers close to the centers of each GMM. The
weight factor between the two terms is the noise. From an
algebraic perspective, since there are also logarithms of sums
of Gaussian functions in this objective, we can also use the
EM algorithm for ease of optimization. In the E step, the soft
membership is calculated by

7N (g |, i)
> N (e, Z i)
In the M step, the derivative w.r.t. m,; is obtained as

o€

6mnj

k=1,...

Ynjk = , K.

=-Dp! (yn — M,{ocn) Opj
K
+ z anszkl (m,; — I’vjk)~
k=1
Instead of deploying gradient descent in the M step for

estimating the abundances, combining the derivatives for all j
actually leads to a closed form solution

vec (Mf ) =

{ana; D! + diag (Cp1, - - -, C,ZM)}i1
{vec (D_lyna,{) + dn}

where C,; € RB*E and d, := (dT ..,dZM)T e RMBx1

nl> -
are defined as

K K
. . -1 R . -1
Cyj = E ynjkzjk , dpj = E ankzjk K-
k=1 k=1

In practice, despite the need to estimate a large M x B x N
tensor, the time cost is actually much less than the estimation
of abundances because of the closed form update equation
in the M step. An interesting fact is that y,;; measures the
closeness of estimated endmembers to clusters centers, hence
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Fig. 4. Unsupervised synthetic dataset. (a) and (b) are abundance maps
for two images. (c) shows original spectra from the ASTER library.
(d) and (e) show the color images.

may provide a clue on which cluster is sampled to generate
an endmember.

IV. RESULTS

In the following experiments, we implemented the algorithm
in MATLAB® and compared the proposed GMM with NCM,
BCM (spectral version with quadratic programming) [15] on
synthetic and real images. As mentioned previously, for GMM,
the original image data were projected to a subspace with
10 dimensions to speed up the computation for abundance
estimation.! NCM was implemented as a supervised algorithm
wherein we input the ground truth pure pixels (in the image

IThe code of GMM is
zhouyuanzxcv/Hyperspectral).

available on GitHub (https://github.com/

Ground Truth == == *GMM ======:NCM =====m== NCM w/o PCA
0.15 0.15

> >
= o1 = 01
] S -
Qo Qo /
[ <]
& 0.05 & 0.05

0 0 ¥

0.2  -0.1 0 0.1 0.2 -0.2  -0.1 0 0.1 0.2

limestone basalt
0.2 0.15

>0.15 >
B = 041
] ]
3 0.1 3
= = 0.05
0 0.05 o

0 0

-04 -02 0 0.2 0.4 -0.2 -0.1 0 0.1

concrete asphalt
Fig. 5. Histograms of pure pixels for the 4 materials (when projected to a

1-dimensional space determined by performing PCA on the pure pixels of each
material) and the ground truth and estimated distributions (also projected to
the same direction) for the first image of the unsupervised synthetic dataset.
The probability of each distribution is calculated by multiplying the value of
the density function at each bin location with the bin size.

TABLE II

L> DISTANCE BETWEEN THE FITTED DISTRIBUTIONS (GMM, NCM)
AND THE GROUND TRUTH DISTRIBUTIONS FOR THE FIRST
IMAGE OF THE UNSUPERVISED SYNTHETIC DATASET

[ x 108 [ Limestone [ Basalt [ Concrete [ Asphalt [ Mean ]

GMM 445 3.46 341 428 3.85
NCM 427 5.86 4.95 4.02 477
TABLE III
ABUNDANCE ERRORS FOR THE UNSUPERVISED SYNTHETIC DATASET
[ [ x10=% ] GMM [ NCM [ NCM w/o PCA [ BCM |

Limestone 50 107 92 126

" Basalt 40 74 67 158
e Concrete 41 66 62 186

E Asphalt 69 T41 123 292
Mean 59 97 86 190
Limestone 157 1086 396 231

N Basalt 126 | 445 270 204
o0 Concrete 103 985 229 206
E Asphalt 225 170 706 445
Mean 153 671 400 272

with extreme abundances), modeled them by Gaussian distri-
butions, and obtained the abundance maps by maximizing the
log-likelihood. We considered two versions of NCM, one in
the same subspace as GMM (referred to as NCM), the other in
the original spectral space (referred to as NCM without PCA).
Since BCM is also a supervised unmixing algorithm, ground
truth pure pixels were again taken as input and the results
were the abundance maps. For GMM and the two versions
of NCM, using the algorithm in Section III-G we can obtain
the endmembers for each pixel. All the parameters of GMM
(except the structure element size rg) were set to f; = 5,
f> = 5 unless specified throughout the experiments.

For comparison of endmember distributions, we calculated
the L, distance ( J1f x) — g (x) |2dx)1/ ? between the fitted
distribution and the ground truth one, where the latter was only
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Fig. 6. Estimated GMM in the wavelength-reflectance space for the Pavia

University dataset. The background gray image represents the histogram
created by placing the pure pixel spectra into the reflectance bins at each
wavelength. The different colors represent different components, where the
solid curve is the center p ji, the dashed curves are p i & 20 vk (o) is
the square root of the large eigenvalue of X j; while v is the corresponding
eigenvector), and the legend shows the prior probabilities.

available for the synthetic dataset. For comparison of abun-
dances, we calculated the root mean squared error (RMSE)

1 GT est|2 172 GT
(W Zn |anj — Oy I ) nj
abundances and a% are the estimated values. Since only some

pure pixels were identified as ground truth in the real datasets,

where a are the ground truth

1/
we calculated error; = (ﬁ D onel |anGjT — aflj.tlz) given
the pure pixel index set Z. For comparison of endmembers,
the same error formula and overall schema were used, i.e. for
an index set Z; of pure pixels for the jth endmember (in the

1/2
real datasets), error; = |Il—| 2 et (% IImnGjT - mfl;’||2)
J

A. Synthetic Datasets

The algorithms were tested for two cases of synthetic
images, a supervised case and an unsupervised case.

1) Supervised: In this case, a library of ground truth
endmembers were input and the abundances were estimated.
The images were of size 60 x 60 with 103 wavelengths
from 430 nm to 860 nm (< 5 nm spectral resolution) and
created with two endmember classes, meadows and painted
metal sheets, whose spectra were drawn randomly from the
ground truth of the Pavia University dataset (shown in Fig. 1,
meadows have 309 samples and painted metal sheets have

IEEE TRANSACTIONS ON IMAGE PROCESSING
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Fig. 7. Scatter plot of the Pavia University dataset with the estimated GMM.
The gray dots are the projected pixels by PCA. The darkened dots with
a color represent the ground truth pure pixels for a material. The ellipses
with the same color represent the projected Gaussian components (twice the
standard deviation along the major and minor axes, covering 86% of the total
probability mass) for one endmember.
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Fig. 8. Histograms of pure pixels for the Pavia University dataset and the
estimated distributions from GMM and NCM when projected to 1 dimension.

941 samples in the ROI). Since painted metal sheets have
multiple modes in the distribution, it should reflect a true
difference between GMM and the other distributions. The
abundances were sampled from a Dirichlet distribution so each
pixel had random values. Also, an additive noise sampled from
N (n,]0, D) was added to the mixed spectra, where the noise
was assumed to be independent at different wavelengths, i.e.
D = diag (07,...,03) while oy was again sampled from a
uniform distribution on [0, oy].

We tested the algorithms for different oy. The effects of
priors were all removed in this case, i.e. f1 = 0, f» = 0.
Fig. 3 shows the box plots of abundance and endmember
errors. We can see that GMM has small errors in general for
different noise levels. NCM also has relatively small errors
in most cases, but tends to produce large errors occasionally
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(d)

Fig. 9. Abundance maps for the Pavia University dataset. The corresponding
endmembers from left to right are meadows, bare soil, painted metal sheets,
shadows and pavement. (a) GMM. (b) NCM. (c) NCM w/o PCA. (d) BCM.

TABLE IV
ABUNDANCE AND ENDMEMBER ERRORS FOR PAVIA UNIVERSITY

[ X100 ] GMM | NCM [ NCM w/o PCA | BCM |
Meadow | 187\ 44" 405\ 113 378\ 114 711
Soil 175130 | 581\ 68 507 \ 66 1049
Metal | 476 \49 | 1236\ 237 917 \ 349 1285
Shadow | 44\44 | 736\ 48 914\ 34 1287
Pavement | 473\39 | 1064\ 114 3331103 612
Mean | 271\41 | 804\ 116 610 \ 133 989

4 the numbers in ".\." denote the abundance and endmember errors.

(4 out of 20 runs). NCM without PCA has very good results
except for large noise, where it performed worst among all the
methods. BCM has the largest errors overall. For the endmem-
bers, although NCM or NCM without PCA sometimes has
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Fig. 10. (a) Original RGB image of the Mississippi Gulfport dataset with
selected ROI and (b) Ground truth materials in the ROI with their mean
spectra.

TABLE V
ABUNDANCE AND ENDMEMBER ERRORS FOR THE GULFPORT DATASET

[ x100* [ GMM [ NCM [ NCM w/o PCA [ BCM |
Asphalt [ 205\ 52% [ 1693\ 94 939159 1420
Grass | 169\58 | 1982\ 121 558\ 65 2145
Shadow | 499149 | 1294168 921143 1315
Tree | 1029\89 | 21941234 1106 \ 185 2279
Roof | 908176 | 2143\ 174 1234\ 104 1657
Mean | 562165 | 1861\ 138 952\ 91 1763

4 the numbers in ".\." denote the abundance and endmember errors.

less errors than GMM, the difference is less than 0.005 hence
negligible.

2) Unsupervised: We created two synthetic images in this
case, the first was used to validate the ability to estimate the
distribution parameters on scenes with regions of pure pixels,
the second was used to validate the segmentation strategy on
images with insufficient pure pixels. They were both of size
60 x 60 pixels and constructed from 4 endmember classes:
limestone, basalt, concrete, asphalt, whose spectral signatures
were highly differentiable. We assumed that the endmem-
bers were sampled from GMMs following the example in
Section II-C. The means of the GMMs were from the ASTER
spectral library [50] (see Fig. 4(c) for their spectra) with slight
constant changes, which determined a spectral range from
0.4 um to 14 um, re-sampled into 200 values. The covariance
matrices were constructed by ajzklg + b?ku jkujrk where u
was a unit vector controlling the major variation direction.
For the first image, we assumed the 4 materials occupied the
4 quadrants of the square image as pure pixels. Then Gaussian
smoothing was applied on each abundance map to make the
boundary pixels of each quadrant be mixed by the neighboring
materials. For the second image, we made the first mater-
ial as background, the other materials randomly placed on
this background. The procedure of generating the abundance
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maps followed [37]: for each material (not as background),
150 Gaussian blobs were randomly placed, whose location and
shape width were both sampled from Gaussian distributions.
Finally, noise produced similar to above with gy = 0.001 was
added to the generated pixels. Fig. 4 shows the abundance
maps, the original spectra of these materials, and the resulting
color images by extracting the bands corresponding to wave-
lengths 488 nm, 556 nm, 693 nm.

The parameters of GMM were rg, = 5 for the two images,
p1 = 0.1, fo = 0.1 for the second image. Fig. 5 shows
the histograms of ground truth pure pixels and the estimated
distributions for the first image. The ground truth distribution
is barely visible as most of the time it coincides with GMM.
For limestone and asphalt, all the distributions are similar
since the pure pixels are generated by a unimodal Gaussian.
However, for basalt and concrete, GMM provides a more
accurate estimation while the two NCMs seem inferior due
to the single Gaussian assumption. The quantitative analysis
in Table II implies a similar result by calculating the Lo
distance between the estimated distribution and the ground
truth.

Table III shows the comparison of abundance errors from
the two images. Since the second image is much more chal-
lenging than the first one, we can expect increased errors from
all the methods. In general, the results of BCM and the two
NCMs show slightly inferior abundances compared to GMM
despite the fact that they have access to pure pixels in the
image to train their models.

B. Pavia University

The Pavia University dataset was recorded by the Reflective
Optics System Imaging Spectrometer (ROSIS) during a flight
over Pavia, northern Italy. The dimension is 340 by 610 with
a spatial resolution of 1.3 meters/pixel. It has 103 bands with
wavelengths ranging from 430 nm to 860 nm. As Fig. 1
shows, the original image contains several man-made and
natural materials. Considering that the whole dataset contains
many different objects, we only performed experiments on
the exemplar ROI (47 by 106) shown in Fig. 1, in which
5 endmembers, meadows, bare soil, painted metal sheets,
shadows and pavement, are manually identified.

The parameter of GMM was rg, = 2. Fig. 6 shows the
GMM in the wavelength-reflectance space, where we can
see the centers and the major variations of the Gaussians.
Fig. 7 shows the scatter plot of the results in the projected
space. The scatter plot shows that the identified Gaussian
components cover the ground truth pure pixels very well. For
painted metal sheets, which has a broad range of pure pixels,
it estimated 4 components to cover them. For shadows, only
one component was estimated. Fig. 8 shows the histograms
of pure pixels and the estimated distributions of GMM and
NCMs. We can see that GMM matches the background
histogram better than NCMs.

Fig. 9 shows the abundance map comparison. Comparing
them with the ground truth shown in Fig. 1(a), we can see that
BCM failed to estimate the pure pixels of painted metal sheets,
although ground truth pure pixels were used for training.
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Fig. 11. Estimated GMM in the wavelength-reflectance space for the
Mississippi Gulfport dataset. The background gray image and the curves have
the same meaning as in Fig.6.
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Fig. 12.  Scatter plot of the Mississippi Gulfport dataset with the estimated
GMM. The ellipses and the dots have the same meaning as in Fig. 7.

For example, the third and fourth abundance maps of BCM
show that the pixels in the lower part of painted metal sheets
are mixed with shadows, while the reduced reflectances are
only caused by angle variation. The result of GMM not only
shows sparse abundances for that region, but also interprets the
boundary as a combination of neighboring materials. Since this
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Fig. 13. Histograms of pure pixels for the Gulfport dataset and the estimated
distributions from GMM and NCM when projected to 1 dimension.

Fig. 14.  Abundance maps for the Gulfport dataset. The corresponding
endmembers from left to right are asphalt, grass, shadow, tree and grey roof.
(a) GMM. (b) NCM. (c) NCM w/o PCA. (d) BCM.

dataset has a spatial spacing of 1.3 meters/pixel, we think this
soft transition is more realistic than a simple segmentation.
Although the results of NCMs look good in general, the abun-
dances in a pure material region are inconsistent. The errors of
abundances and endmembers for these algorithms are shown
in Table IV, which implies that GMM performed best overall.

C. Mississippi Gulfport

The dataset was collected over the University of Southern
Mississippis-Gulfpark Campus [51]. It is a 271 by 284 image
with 72 bands corresponding to wavelengths 0.368 wum to
1.043 um. The spatial resolution is 1 meter/pixel. The scene

contains several man-made and natural materials including
sidewalks, roads, various types of building roofs, concrete,
shrubs, trees, and grasses. Since the scene contains many
cloths for target detection, we tried to avoid the cloths and
selected a 58 by 65 ROI that contains 5 materials [52].
The original RGB image and the selected ROI are shown
in Fig. 10(a) while the identified materials and the mean
spectra are shown in (b).

The parameter of GMM was r;, = 1. Fig. 11 shows the
GMM result in the wavelength-reflectance space and Fig. 12
shows the scatter plot. We can see that the estimated Gaussian
components successfully cover the identified pure pixels.
Fig. 13 shows the estimated distributions. Although there are
no multiple peaks in any of the histograms, NCMs still do not
fit the histograms of shadow and gray roof. In contrast, GMM
gives a much better fit for these 2 endmember distributions.

Fig. 14 shows the abundance maps from different algo-
rithms. We can see that GMM matches the ground truth
in Fig. 10(b) best, followed by NCM without PCA. This is also
verified in the quantitative analysis in Table V. Although NCM
and BCM take ground truth pure pixels as input, the scattered
dots for trees (fourth abundance map) in both of them and the
incomplete region of grass for NCM (asphalt for BCM) show
their insufficiency in this case.

V. DISCUSSION AND CONCLUSION

In this paper, we introduced a GMM approach to represent
endmember variability, by observing that the identified pure
pixels in real applications usually can not be well fitted by a
unimodal distribution as in NCM or BCM. We solved several
obstacles in linear unmixing using this distribution, including
(1) deriving the conditional probability density function of
the mixed pixel given each endmember modeled as GMM
from two perspectives; (ii) estimating the abundances and
endmember distributions by maximizing the log-likelihood
with a prior enforcing abundance smoothness and sparsity;
(iii) estimating the endmembers for each pixel given the abun-
dances and distribution parameters. The results on synthetic
and real datasets show superior accuracy compared to current
popular methods like NCM, BCM. Here we have some final
remarks.

A. Complexity

As analyzed in Section III-F, each iteration in the estimation
of abundances has spatial complexity O (|K| NB?) and time
complexity O (|IC| N 83). For comparison, the implemented
NCM has the same complexity but with || = 1. For
the supervised synthetic dataset which contains 60 images,
the total running time of GMM was 9709 seconds, on a
desktop with a Intel Core i7-3820 CPU and 64 GB memory.
For comparison, the running time of NCM, NCM without
PCA, and BCM was 941, 50751, 62525 seconds respectively.
In real applications, running GMM on the Pavia University
and Mississippi Gulfport ROIs required 734 seconds and
97 seconds respectively for abundance estimation (24 seconds
and 17 seconds for endmember estimation), compared to
40 and 34 seconds from NCM, 1389 and 396 seconds from
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NCM without PCA, 1170 and 616 seconds from BCM. As ana-
lyzed, the main factors affecting the efficiency of GMM and
NCMs are |K| and B.

B. Limitation

The complexity analysis leads to one limitation of the
method. That is, the complexity grows exponentially with
increasing numbers of components. This could cause prob-
lems for a large amount of pure pixels. To overcome this
shortcoming, there are some empirical workarounds, such as
reducing the number of components by introducing thresh-
olds, or reducing the number of pure pixels to a fixed number
by random sampling. Another limitation is that the proposed
unsupervised version assumes presence of regions of pure
pixels, which mostly happens in urban scenes. For scenes with
a lot of mixed pixels, this assumption may not hold. Note that
unsupervised unmixing is a very challenging problem. The
previous works for this problem all assume several properties
on the abundances and endmembers [21]-[23]. Hence, this
limitation exists more or less in all the works on this problem.
Finally, the method was only evaluated on real urban datasets
with only ground truth on pure pixels: it is therefore unclear
if the abundance estimation on mixed pixels is also accurate.
This is due to lack of datasets and ground truth in the
hyperspectral community. We plan to validate it on a more
comprehensive dataset given in [31] in the future.

C. Future Work

The proposed GMM formulation has several applications
that we can investigate in the future. First, in target detection,
endmember variability may interfere with the target as well as
the background [53]. By modeling the target or the background
as spectra sampled from GMM distributions, we may devise
more sophisticated and accurate target detection algorithms.
Second, in fusion of hyperspectral and multispectral images,
the LMM is usually used to overcome the underdetermined
nature of the problem [54], [55]. However, the LMM does
not hold in real scenarios as shown in this work. If we use
the LMM with endmember variability, which is modeled by
samples from GMM distributions, we may have a fusion
algorithm that better fits the data. Finally, in estimating the
noise or intrinsic dimension of hyperspectral images, simulated
data are generated to quantify the results [46]. When these
simulated data are created, usually the LMM is used without
considering the endmember variability. Using the GMM for-
mulation, we may generate distinct endmembers for each pixel
and create more realistic synthetic data.
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Abstract— Hyperspectral unmixing while considering end-
member variability is usually performed by the normal composi-
tional model, where the endmembers for each pixel are assumed
to be sampled from unimodal Gaussian distributions. However,
in real applications, the distribution of a material is often not
Gaussian. In this paper, we use Gaussian mixture models (GMM)
to represent endmember variability. We show, given the GMM
starting premise, that the distribution of the mixed pixel (under
the linear mixing model) is also a GMM (and this is shown from
two perspectives). The first perspective originates from random
variable transformations and gives a conditional density function
of the pixels given the abundances and GMM parameters.
With proper smoothness and sparsity prior constraints on the
abundances, the conditional density function leads to a standard
maximum a posteriori (MAP) problem which can be solved using
generalized expectation maximization. The second perspective
originates from marginalizing over the endmembers in the GMM,
which provides us with a foundation to solve for the endmembers
at each pixel. Hence, compared to the other distribution based
methods, our model can not only estimate the abundances and
distribution parameters, but also the distinct endmember set for
each pixel. We tested the proposed GMM on several synthetic
and real datasets, and showed its potential by comparing it to
current popular methods.

Index Terms— Endmember extraction, endmember variability,
hyperspectral image analysis, linear unmixing, Gaussian mixture
model.

I. INTRODUCTION

HE formation of hyperspectral images can be simplified

by the linear mixing model (LMM), which assumes that
the physical region corresponding to a pixel contains several
pure materials, so that each material contributes a fraction of
its spectra based on area to the final spectra of the pixel.
Hence, the observed spectra y, € RE n=1,...,N (B is
the number of wavelengths and N is the number of pixels)
is a (non-negative) linear combination of the pure material
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(called endmember) spectram; € RB, j = 1,...,M (M is
the number of endmembers), i.e.

M M

Ya = D Myl + 0y, oo 20, D ay =1, (D)

j=1 j=1

where a,; is the proportion (called abundance) for the jth
endmember at the nth pixel (with the positivity and sum-
to-one constraint) and n, € R is additive noise. Here,
the endmember set {m; : j =1,..., M} is fixed for all the
pixels. This model simplifies the unmixing problem to a matrix
factorization one, leading to efficient computation and simple
algorithms such as iterative constrained endmembers (ICE),
vertex component analysis (VCA), piecewise convex multiple-
model endmember detection (PCOMMEND) [1]-[3] etc.,
which receive comprehensive reviews in [4] and [5].

However, in practice the LMM may not be valid in many
real scenarios. Even for a pure pixel that only contains one
material, its spectrum may not be consistent over the whole
image. This is due to several factors such as atmospheric
conditions, topography and intrinsic variability. For exam-
ple, in vegetation, multiple scattering and biotic variation
(e.g. differences in biochemistry and water content) cause
different reflectances among the same species. For urban
scenes, the incidence and emergence angles could be different
for the same roof, causing different reflectances. For minerals,
the spectroscopy model developed by Hapke also considers
the porosity and roughness of the material as variable [6].

In the first and third example above, Eq. (1) can be
generalized to a more abstract form y, = F ({mj,anj
j = 1,...M}), which leads to nonlinear mixing models.
For example, Halimi et al. [7] used bilinear models to handle
the vegetation case, which was also investigated using several
different nonlinear functions [8]. In [9], the Hapke model was
used to model intimate interaction among minerals. There
are also works that use kernels for flexible nonlinear mix-
ing [10], [11]. A panoply of nonlinear models can be found
in the review article [12]. We note that in these models,
a fixed endmember set is still assumed while using a more
complicated unmixing model.

While nonlinear models abound lately, it is still difficult to
account for all the scenarios. On the contrary, the LMM still
has physical significance with the intuitive area assumption.
To model real scenarios more accurately, researchers have

1057-7149 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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taken another route by generalizing Eq. (1) to
M

Yn = Zmnjanj +n,, (2)
=1

where {mnj cRE: Jj= 1,...,M}, n=1,...,N could be
different for each n, i.e. the endmember spectra for each pixel
could be different. This is called endmember variability, and
has also received a lot of attention in the community [13], [14].
Note that given {y,}, inferring {m,,j,a,,j} is a much more
difficult problem than inferring {m j»On j} in Eq. (1). Hence,
in many papers {mnj} are assumed to be from a spectral
library, which is usually called supervised unmixing [15]-[17].
On the other hand, if the endmember spectra are to be
extracted from the image, we call them unsupervised unmix-
ing models [18]-[20]. Obviously, unsupervised unmixing
is more challenging than its supervised counterpart and
hence more assumptions are used in this case, such as the
spatial smoothness of abundances and endmember variabil-
ity [21]-[23], small mutual distance between the endmem-
bers [22], small magnitude or spectral smoothness of the
endmember variability [22], [23].

We can also categorize the papers on endmember variability
by how this variability is modeled. In the review paper [14],
it can be modeled as a endmember set [17], [20] or as a distri-
bution [24]-[26]. One of the widely used set based methods is
multiple endmember spectral mixture analysis (MESMA) [17],
which tries every endmember combination and selects the
one with the smallest error. There are many variations to
the original MESMA. For example, the multiple-endmember
linear spectral unmixing model (MELSUM) solves the linear
equations directly using the pseudo-inverse and discards the
solutions with negative abundances [27]; automatic Monte
Carlo unmixing (AutoMCU) picks random combinations for
unmixing and averages the resulting abundances as the final
results [28], [29]. Besides MESMA variants, there are also
many other set based methods. For example, endmember
bundles form bundles from automated extracted endmembers,
take minimum and maximum abundances from bundle based
unmixing, and average them as final abundances [20]; sparse
unmixing imposes a sparsity constraint on the abundances
based on endmembers composed of all spectra from the
spectral library [30]. A comprehensive review can be found
in [13] and [14]. One disadvantage of set based methods is
that their complexity increases exponentially with increasing
library size hence in practice a laborious library reduction
approach may be required [31].

The distribution based approaches assume that the endmem-
bers for each pixel are sampled from probability distributions
[e.g. Gaussian, a.k.a. normal compositional model (NCM)],
and hence embrace large libraries while being numerically
tractable [15], [32]. Here, we give an overview of NCM
because of its simplicity and popularity [16], [18], [19].
Suppose the jth endmember at the nth pixel follows a Gaussian
distribution p (m,;) = N (my;|p;, £;) where u; € R? and
¥; € RB*B and the additive noise also follows a Gaussian
distribution p (n,) = N (n,]|0,D) where D is the noise
covariance matrix. The random variable transformation (r.v.t.)

IEEE TRANSACTIONS ON IMAGE PROCESSING

Meadows

Bare Soil

Metal

Shadows
.'I. J""
"u

oy Pavement

Meadows
Bare Soil
Painted Metal Sheets
Shadows

08

Probability
o
o =

3 Pavement
£ 08 1 0 1 2
g Meadows
E 04 = 0.2
=
02 T 0.1
[
V o
[o} 0
0.4 05 06 07 08 0.9 -4 -2 0 2

Wavelength (micrometer) Painted Metal Sheets

(b)

Fig. 1. (a) Original Pavia University image and selected ROI with its ground
truth image. (b) Mean spectra of the identified 5 endmembers and histograms
of meadows and painted metal sheets (shadow is termed as endmember to
conform with the LMM though the area under shadow can be any material).
PCA is used to project the multidimensional pixels to single values which are
counted in the histograms. Although the histogram of meadows may appear
to be a Gaussian distribution, that of painted metal sheets is obviously neither
a unimodal Gaussian or Beta distribution.

(2) suggests that the probability density function of y, can be
derived as

M M
P (nlan, ©,D) =N [ yal D" anjmj, D 0r;Zi+D |, (3)
j=1 j=1

where &, = [an1,...,aum]’, @ = {u;.%; : j =
,....M } The conditional density function in (3) is usu-
ally embedded in a Bayesian framework such that we can
incorporate priors and also estimate hyperparameters. Then,
NCM uses different optimization approaches, e.g. expectation
maximization [32], sampling methods [18], [19], [25], par-
ticle swarm optimization [24], to determine the parameters
{w;, Z;} and {a;}.

There are few papers that use other distributions. In [15], X.
Du et al. note that the Gaussian distribution may allow
negative values which are not realistic. In addition, the real
distribution may be skewed. Hence, they introduce a Beta com-
positional model (BCM) to model the variability. The problem
is that the true distribution may not be well approximated
by any unimodal distribution. Consider the Pavia University
dataset shown in Fig. 1, where the multidimensional pixels
are projected to one dimension to afford better visualiza-
tion. Among the manually identified materials, we can see
that although the histogram of meadows may look like a
Gaussian distribution, that of painted metal sheets has multiple
peaks and cannot be approximated by either a Gaussian or
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Fig. 2. Comparison of the mechanisms among LMM, NCM and GMM. We have 3 endmembers represented by the darken gray areas. LMM tries to find a

set of endmembers that fit the pixel data. NCM tries to find a set of Gaussian centers that fit the pixel data, with error weighted by the covariance matrices.
GMM tries to find Gaussian centers such that all their linear combinations fit the pixel data, with each weighted by the prior 7. We may use 6 endmembers

with NCM, but then the prior information is lost.

Beta distribution. This is due to different angles of these sheets
on the roof. Since each piece of metal sheet is tilted, it forms
a cluster of reflectances which contributes to a peak in the
histogram. This example shows that we should use a more
flexible distribution to represent the endmember variability.
In this paper, we use a mixture of Gaussians to approx-
imate any distribution that an endmember may exhibit,
and solve the LMM by considering endmember variability.
In a nutshell, the Gaussian mixture model (GMM) mod-
els p(m,;) by a mixture of Gaussians, say p(m,;) =

Dk kN (myj|p e, jx) , and then obtains the distribution
of y, by the r.v.t. (2), which turns out to be another mixture
of Gaussians and can be used for inference of the unknown
parameters. Here, we briefly explain how GMM works intu-
itively by comparing it to the NCM with the details given later.
The maximum likelihood estimate (MLE) of NCM (using (3))
aims to find {[L j} such that its linear combination matches y,,.
Contrary to NCM, GMM aims to find {j;} such that all of
its linear combinations match y,. Suppose we have pqy, o1,
Moo, I31, f3p, 33: then there are 6 combinations as explained
in Fig. 2, but with emphasis weighted by {7r jk} which deter-
mines the prior probability of each linear combination.

Based on the GMM formulation, we propose a super-
vised version and an unsupervised version for unmixing. The
supervised version takes a library as input and estimates the
abundances. The unsupervised version assumes that there are
regions of pure pixels, hence segments the image first to get
pure pixels and then performs unmixing. Another advantage
over the other distribution based methods is that we can also
estimate the endmembers for each pixel, which is not achiev-
able by NCM or BCM. Note that estimating endmembers
for each pixel is generally common in non-distribution meth-
ods, both from the signal processing community [21]-[23]
or the remote sensing community [17], [27]. But it is
often achieved in the context of least-squares based unmix-
ing [33]-[35], unlike what we propose here using distribution
based unmixing.

Notation: As usual, N (x|u, ) denotes the multivariate
Gaussian density function with center g and covariance
matrix X. Let A € R™" be a matrix with m rows and
n columns. The Hadamard product of two matrices (elemen-
twise multiplication) is denoted by o while the Kronecker

product is denoted by ®. (A);; denotes the element at the
Jjth row and kth column of matrix A. (A); denotes the jth
row of A transposed (treating A as a vector), i.e. for A =
[al,...a,]7, (A) j =aj.vec (A) denotes the vectorization of
A, i.e. concatenating the columns of A. Jjx =1 when j =k
and O otherwise. Eyx (f (x)) is the expected value of f (x)
given random variable x. We use i = /—1 instead of as an
index throughout the paper.

II. MATHEMATICAL PRELIMINARIES
A. Linear Combination of GMM Random Variables

To use the Gaussian mixture model to model endmember
variability, we start by assuming that m,,; follows a Gaussian
mixture model (GMM) and the noise also follows a Gaussian
distribution. The distribution of y, is obtained using the
following theorem.

Theorem 1: If the random variable my,; has a density
function
K
p (M) = fum; (my)) = D 7 pN (myj|pjie, Zjx), ()
k=1

st wix > 0, Z/ﬁlﬂjk = 1, with K; being the number of
components, 7 ji (R jx € RE or Yk € RE*B) being the weight
(mean or covariance matrix) of its kth Gaussian compo-
nent, ® = {mj, wpy, Tjx: j=1,...,M, k=1,...,K;},
{mnj cj=1,..., M} are independent, and the random vari-
able n, has a density function p (n,) := N (n,|0, D), then the
density function of y, given by the rv.t.y, = ijzl my;onj +
n, is another GMM

p (Ynlon, ©,D) = Z N (Yn“"vnka an),

ke

where K :={1,..., K1} x{l,..., Ko} x---x{l,..., Ky} is
the Cartesian product of the M index sets, k := (k1,...ky) €
K, 7k € R, p, € RE, X,k € REXB are defined by

M M
ﬂk ::Hnjkjs I'Lnk ::Zanj”‘jkjs
J=1 j=1

5)

M
Tk = D o Tk, +D. (6)

j=1
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The proof is detailed using a characteristic function (c.f.)
approach.

We first consider the distribution of the intermediate variable
2, = WL myjay;. The c.f. of fm, in (4), ¢m, (t) : RE — C,
is given by

b, (8) = Em, (ef‘TX) - /R ) I fin () dx

J

-

ﬂjk/ et XN (xlujk, T jk) dx
RB

k=1

Ko

= D mwirpjk (t), )

~
I
-

where @i (t) denotes the c.f. of the Gaussian distribution
N (xIp i, Zji) as
) 1
Pji (t) == exp (ltTﬂjk - EtTijt)- ()
Assuming m,1, ..., M,y are independent, we can obtain the
c.f. of the linear combination of these m,; by multiplying
(7) as

Pa, (V)
M
= ¢mnlanl+‘“+mnManM (t) = H ¢m, (anjt)
j=1
K Ky

Tiky * TMky Plky (@n1t) - Prky (@nmt).
k=1 ky=1

Let IC, k, mk be defined as in Theorem 1. We can write the
above multiple summations in an elegant way:

bu, () = D Tk (1),

ke

(C))

where g > 0, >\ i 7k = 1 and

Pnk () = P1iy (@n1t) - - Py (@npt)
M i M
T J
_Et Zanjzl‘kj ty,
=1

= exp it? Zan./ﬂjkj
j=1
where (8) is used. Since ¢,k (t) also has a form of c.f. of a
Gaussian distribution, the corresponding distribution turns out
to be N(xl > AnjMji; » > aﬁj)ljkj). Hence, the distribu-
tion of z, can be obtained by the Fourier transform of (9)

_ 1 7ith,,
o) = g /R e ig, ) dt

1 T

kel

M M
= D aN |zl D anbeg. D ok |- (10)
kek j=1 j=1

which is still a mixture of Gaussians.

After finding the distribution of the linear combination,
we can add the noise term to find the distribution of y,.
Suppose the noise also follows a Gaussian distribution,

IEEE TRANSACTIONS ON IMAGE PROCESSING

p () = fa, ;) = N (n,]0,D), where D is the noise
covariance matrix. We assume that the noise at different
wavelengths is independent (o7 being the noise variance of
the kth band), i.e. D = diag (07, 05, ..., 03) € RE*B (if it is
not independent, the noise can actually be easily whitened to
be independent as in [36]). Its c.f. has the following form
17
f, (©) = exp (‘5‘ Dt) (an
by (8). Then the c.f. of y, can be obtained by multiplying (9)
and (11) (as z, and n, are independent)

Pyn () = ¢, () G, (O = D_ Tkebn, (1) bk ()

ke

. 1
= Z Tk EXp [ltT[Lnk — EtTant},
ke

where p,c and X, are defined in (6). Finally, the distribution
of y can be shown to be (5) by the Fourier transform again as
in (10).

If K = {1} x {1} x --- x {1}, i.e. each endmember has only
one Gaussian component, we have 711 = 1,..., 7y = 1,
then 7x = 711 --- 7wy = 1. The distribution of y, becomes

M M
p (Ynlan, ®,D) =N Yn|zan./ﬂjlaza5jzjl+l) >
=1 =1

(12)
which is exactly the NCM in (3).

B. Another Perspective

Theorem 1 obtains the density of each pixel by directly
performing a r.v.t. based on the LMM, which can be
used to estimate the abundances and distribution parameters.
Here, we will obtain the density from another perspective,
which provides a foundation to estimate the endmembers for
each pixel. Again, let the noise follow the density function
p (n,) := N (n,|0, D). Considering {m,,j} and {a,,j} as fixed
values, the r.v.t. y, = > My O j +n,, implies that the density
of y, is given by

P (Ynlan, My, D) = N [ yal D"y, D (13)
J

where M, = [my,[, ..., mup ]’ € R”*B are the endmembers
for the nth pixel. We have the following theorem which gives
the same result as in Theorem 1.

Theorem 2: If the random variables {m,,j j=1..., M}
follow GMM distributions

K .

J
p (m,;|©) := Zﬂjk/\/ (1 e, i),
k=1

and they are independent, i.e.

M
pM,10) =[] p (m,;1©), (14)
j=1
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TABLE I
VALUES FOR THE VARIOUS QUANTITIES IN THE SIMPLE EXAMPLE

[ k [ me | Kok in (6) |
(17 17 17 1) 0.06 aplfi] + Qn2fog + Qn3 M3 + anaplyy
(1,2,1,1) | 0.14 | anipyy + onatoy + om3psy + omattyy
(1,1,2,1) | 012 | anipyy + onator + om3isy + Omaflyy
(1,2,2,1) | 028 | anipyy + onatoy + 0m3sy + Omattyy
(1,1,3,1) | 012 | anipyy + onato) + om3pss + Omatty
(1,2,3,1) | 028 | anipyy + onatoy + 0m3pss + omafyy

then the conditional density p (yn|a,, ©, D) obtained by mar-
ginalizing M, in p (Yyp, M, |a,, @, D) has the same form as
in Theorem 1:

P (Ynlon, ©,D) = / p (Ynlotn, My, D) p (M, |©) dM,,
= Z N (ynlﬂnk> an),

ke

where p (ynlam Mns D) :N(yn| Zj my;oy;, D)

The proof is much more complicated (in terms of algebra) and
therefore relegated to the supplemental material of the paper.

C. An Example

We give an example to illustrate the basic idea of this
paper. Suppose we have M = 4 endmembers with Kj = 1,
Ky =2, K3 =3, K4 = 1. Their distributions follow (4) with
;ij,Ejk, Jj=123,4k =1,..K;. Let the weights of
these components be 711 = w41 = 1, 721 = 0.3, 7 = 0.7,
731 = 0.2, m3p = 0.4, 733 = 0.4. Then, K has 6 entries
from the Cartesian product, {1} x {1,2} x {1,2,3} x {1}.
We list the values for 7k, p, in Table I. For example, for
k = (1,2,3,1), ax = m1mpnn33we; = 0.28. The value of
M,k 18 a linear combination of ;i (pick one component for
each j) based on the configuration k. Hence, the distribution
of y, in (5) is a Gaussian mixture of 6 components with 7y,
It given in Table I (X,k can be derived similar to ).
Recalling the intuition in Fig. 2, we will show that applying
it to hyperspectral unmixing will force each pixel to match all
the s, but with emphasis determined by 7.

ITIT. GAUSSIAN MIXTURE MODEL FOR
ENDMEMBER VARIABILITY

A. The GMM for Hyperspectral Unmixing

Based on the analysis in Section II, we can model the

conditional distribution of all the pixels Y := [y1,...,y N]T €

RN*B given all the abundances A := [a1, ..., ay]] € RVM

(0ty := [an1, ..., anm]") and GMM parameters, which leads
to a maximum a posteriori (MAP) problem. Using the result
in (5) and assuming the conditional distributions of y, are
independent, the distribution of Y given A, ®, D becomes

N
= H p (yn|“ns G)s D)

n=1

r(Y|A,0,D) 5)

Based on the hyperspectral unmixing context, we can set
the priors for A. Suppose we use the same prior on A

as in [37], i.e.

p (A) o exp | b —Tr (ATLA) + = P —Tr (ATA)]

= exp I—%Tr (ATKA) ] ,

where L is a graph Laplacian matrix constructed from
Wam, nom = 1,...,N with wpy = e I¥n—¥nl?/2B7 for
neighboring pixels and 0 otherwise. We have Tr (ATLA) =
33 wamllen — anll?), K = L — 2Ly (suppose Bi # 0)
with 1 controlling smoothness and /)’2 controlling sparsity of
the abundance maps.

From the conditional density function and the priors, Bayes’
theorem says the posterior is given by

p(A,0]Y,D) x p(Y|A,©,D) p(A) p(©),

(16)

7)

where p(®) is assumed to follow a uniform distribu-
tion. Maximizing p (A, ®|Y, D) is equivalent to minimizing
—log p (A, ©|Y, D), which reduces to the following form by
combining (5), (15), (16) and (17):

N
E(A, @) == log > mkN (Yaltuk: Znk) +
kel

gprior (A) s

n=1
M

s.t. i > 0, an =1, ayj >0, Za,,j =1, Vn (18)
ke j=1

where Eprior(A) = %Tr (ATKA), and p,,
in (6).

Y,k are defined

B. Relationships to Least-Squares, NCM, and MESMA

Let us focus on the first term in (18) and call it the
data fidelity term. We can relate it to NCM and the least-
squares term > [ly, — Zj oz,,jmj||2 as used in previous
research. The data fidelity term in NCM follows (3) and is
based on minimizing the negative log-likelihood

N
- ZlogN(Yn“Lnla Zn1)

n=1

N
—logp(Y)=—log[ ]| p(ya) =

19)

by assuming y,,s are independent, where p,; := Z anjltj,
Y= Z a E +021p. Expanding (19) using the form of
the Gauss1an dlStI‘lbuthIl leads to the objective function

Zlog|zn1|+z

We can see that the least-squares minimization is a special case
of NCM with || X || — 0, i.e. when there is little endmember
variability.

The proposed GMM further generalizes NCM from a sta-
tistical perspective. Since 7 jx represents the prior probability
of the latent variable in a GMM, nx represents the prior
probability of picking a combination. If we see k as a (discrete)
random variable whose sample space is /C, (5) can be seen as

P (Ynlan, ©,D) = > p (K) p (yu |k, @, ©,D),
kel

— 1) ) (V= par). (20)
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where p(k) = mx and p(yulk,a,, ©,D) = N(yal
Hoks an). From this perspective, each pixel is generated
by first sampling k, then sampling a Gaussian distribution
determined by k, ©. Unlike NCM that tries to make each y,
close to u,,; which is a linear combination of a fixed set {[L j},
GMM further generalizes it by trying to make y,, close to every
It Which are all the possible linear combinations of {u jk}.
It makes sense that the summation in (18) is weighted by 7 in
a way that if one combination has a high probability to appear,
i.e. mk is larger for a certain Kk, the effort is biased to make
yn closer to this particular p,. Fig. 2 shows the differences
among these.

The widely adopted MESMA takes a library of endmember
spectra as input, tries all the combinations and pick the
combination with least reconstruction error. The philosophy
is similar to our model despite the fundamental difference
that MESMA is explicit whereas we are implicit in terms
of linear combinations. Compared to MESMA, the GMM
approach separates the library into M groups where each group
represents a material and is clustered into several centers, such
that the combination can only take place by picking one center
from each group. Also, the size of each cluster affects the
probability of picking its center. Hence, our model can adapt
to very large library sizes as long as the number of clusters
does not increase too much.

C. Optimization

Estimating the parameters of GMMs has been studied exten-
sively, from early expectation maximization (EM) from the
statistical community to projection based clustering from the
computer science community [38], [39]. There are simple and
deterministic algorithms, which usually require the centers of
Gaussian be separable. However, we face a more challenging
problem since each pixel is generated by a different GMM
determined by the coefficients a,. Since EM can be seen as
a special case of Majoriziation-Minimization algorithms [40],
which is more flexible, we adopt this approach. Considering
that we have too many parameters A, ® to update in the M
step, they are updated sequentially as long as the complete
data log-likelihood increases. This is also called generalized
expectation maximization (GEM) [41].

Following the routine of EM, the E step calculates the
posterior probability of the latent variable given the observed
data and old parameters

N (yn (ks 2:nk)

2 keic TN (Ynl Bk, Znk)
The M step usually maximizes the expected value of the
complete data log-likelihood. Here, we have priors in the
Bayesian formulation. Hence, we need to minimize

Ynk = 21

N
Em = — Z Z Vnk {log mx + log N (Ynlﬂnka an)}+gprior-
n=1kelC
(22)
This leads to a common update step for 7 as
N
1
= Z‘; k. (23)

IEEE TRANSACTIONS ON IMAGE PROCESSING

We now focus on updating {s ., Z jx} and A. To achieve this,
we require the derivatives of £y in (22) w.r.t. g ko X ks Anj-
After some tedious algebra using (6), we get

N
Pw_ Z Z Olk ; Onj Ank

3 (24)
Rt n=1kek
o0&y al
Sy = 2 2 Ok Wk, (25)
jl n=1kek
o€y
o Z )‘r{k"jkj = 2an; Z Tr (‘I‘,{ijkj)
& kel kel
+ p1 (KA),; , (26)
where A,k € RE*! and W, € RE*8 are given by
Mok = 7k Z (Yo — Mok 27)

1 _ T 1 _
¥,k = EynkznkT (yn N ﬂnk) (yn y ﬂnk) znkT - E)’nankT-
(28)
It is better to represent the derivatives in matrix forms for the

sake of implementation convenience. Considering the multiple
summations in (24), (25) and (26), we can write them as

- _ on. (AT Ax) (29)
O kZeI:C W ( k)j
- - ¥ O (Ao A)' W 30
ovec (Zjl) kze;‘c B (( °4) k)j’ G0
56%4 =~ AR 240 > W SI + KA, (1)
kel kel

where Ak € RV*B_ W, e RV*B” denote the matrices formed
by {Auk, ¥k} as follows

Ak = [Miks Aok, -5 Akl
Wy = [vec (W k), vec (¥2k), ..., vec (‘I’Nk)]T >

and R € RMXB_ S, e RM*B” are defined by

Rk := [Il‘lklbll‘zkzs"'sILMkM]Ts (32)
Sk = [vec (Z1g ) » vee (Zat) - - vee (Zany )] - (33)
The minimum of £y corresponds to %’7’ =0, %1‘;’1 =0,

and ‘7(%” = 0 if the optimization problem is unconstrained.
However, since we have the non-negativity and sum-to-one
constraint to a,; and positive definite constraint of X j,
minimizing &y is very difficult. Therefore, in each M step,
we only decrease this objective function by projected gradient
descent (please see [42 and 43, Sec. 2.3]) using (29), (30)
and (31), where the projection functions for A and {Z jk} are
the same as in [37].

Finally, from the estimated 7, we can recover the sets of
weights as 7j; = D i Otk T -

D. Model Selection

The number of components K; can be specified or esti-
mated from the data. For the latter case, we have some
pure pixels and estimate K; by deploying a standard
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model selection method. Suppose we have N; pure pixels
S T
Y, = [vlvhovd]
Jm; (yl@ j) is the estimated density function with @; :=
{njk, Ri: Zjk:k=1,..., Kj}, gm; (y) is the true density
function. The information criterion based model selection

approach tries to find K; that minimizes their difference, e.g.
the Kullback-Leibler (KL) divergence

€ RNi*B for the jth endmember,

DKL (gm,-“fmj) = ‘/RB gmj (Y)logm y

N.
1 <& i
= _Vj E 10g fm; (y{1|®j) + const,
n=1

where the approximation of f gm; (¥)10g fm; (y|®j) dy by
the log-likelihood is usually biased as the empirical distribu-
tion function is closer to the fitted distribution than the true
one. Akaike’s information criterion is one way to approximate
the bias. Here, we use the cross-validation-based information
criterion (CVIC) to correct for the bias [44], [45]. Let

Nj '
Ly, () = Zlogfm, (y,ﬁI@j). (34)
n=1

The V-fold cross validation (we use V = 5 here) divides the
input set Y; into V subsets {Y},Y?, .. ,Y}/} with equal

sizes. Then for each subset Y?, v = 1, ..., V, the remaining
data are used to replace Y in (34) such that (34) is maximized

by ©}. Then Lk, = X, LY? (G)?) is evaluated and the

optimal K; = argmaxg; Lk;.

E. Implementation Details

The algorithm can be implemented in a supervised or unsu-
pervised manner. In both cases, because of the large compu-
tational cost, we project the pixel data to a low dimensional
space by principal component analysis (PCA) and perform
the optimization, the result then projected back to the original
space. Let E € RE*? be the projection matrix and ¢ € R? be
the translation vector, then

M
E” (y, —¢)= > B’ (m,; — ¢) ay+E'n,.
=

This means that for the projected pixels, the jth endmember
m;; = E” (m,; — ¢) follows a distribution

K
P (m;j|®) => 1N (m,’”.|ET (rji — ) ,ET):jkE)
k=1

and the noise nj, = E”n, follows A/ (n},|0, E'DE).

In the supervised unmixing scenario, we assume that a
library of endmember spectra is known. After estimating
the number of components following Section III-D, and
calculating © using the standard EM algorithm, we only
need to update y,x by (21) and A by (31) with 7wk, pj;
and X fixed. The initialization of A can utilize the mul-
tiple combinations of means. For each o, we first set

ank < (RkRY + eIM)f1 Ry, then project it to the simplex
space, and finally set a, < o, with k = argming ||y, —
Rl{oc,,knz, i.e. choose the «,k that minimizes the reconstruc-
tion error.

In the unsupervised unmixing scenario, we will assume the
resolution is high enough such that the hyperspectral image
can be segmented into several regions where the interior pixels
in each region are pure pixels. The optimization is performed
in several steps, where we first obtain a segmentation result,
then use CVIC to determine the number of components, and
finally estimate A with @ fixed. The details are given as
follows.

Step 1: Initialization. We start with K; = 1, Vj and use
K-means to find the initial means Rj. The initial A is set to
A < YRT (R{RY +¢ly)” (by minimizing |Y — AR, [2),
then projected to the valid simplex space as in [37]. The
initial covariance matrices are set to X ;3 < 0.1213, Vj.
For the noise matrix D, although there is research focused
on noise estimation [46], [47], endmember variability was
not considered and validation was performed only for the
simple LMM assumption. Hence, we use an empirical value
D = 0.001%I, which is usually much less than the variability
of covariance matrices in (6).

Step 2: Segmentation. Given the initial conditions, we use
the GEM algorithm to iteratively update y,x by (21), mx
by (23), ik by (29), A by (31) while keeping X ;; fixed.
For y,x and mg, a direct update equation is available. For
Rji, we can use gradient descent. For A, since we have
the non-negativity and sum-to-one constraints, a projected
gradient descent similar to the one used in [37] can be applied.
To ensure a segmentation effect, a large £ is used in this step.

Step 3: Model selection and abundance estimation. Using
the segmentation-like abundance maps from the previous step,
we can obtain the interior pixels Y; (assumed pure) by
thresholding the abundances (e.g. a;,; > 0.99) and performing
image erosion to trim the boundaries with structure element
size rg. (can be decreased gradually if large enough to trim
all the pixels). Following Section III-D, we can determine
the number of components K; and further calculate ®; by
standard EM. Since S, is relatively large in the previous step,
it is reduced by f < (f> where ¢ = 0.05. Then we restart
the optimization to estimate the abundances with © fixed.

F. Complexity Analysis

The abundance estimation algorithm is an iterative process.
Since we used projected gradient descent with adaptive step
sizes, the number of iterations is usually not large as shown
in [43] and [48]. For each iteration, it starts with calcu-
lating p, and X,k in (6), where storing all p, (k)
requires O ([K|NB) (O (|IC|NBZ)), the computation takes
O (IKINMB) (O (/K| NMB?)). Suppose the Cholesky fac-
torization and the matrix inversion of a B by B matrix
both take O (33) time, and N > B > M. Evaluating
log N (ynlunk, Z,,k) by the Cholesky factorization will take
O (B?), hence updating all the y,x takes O (|K| NB?), which
is also the required time for evaluating the objective function
(18). The calculation of Ak, ¥,k (in (27) and (28)) will be
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Fig. 3. Abundance and endmember error statistics from 20 synthetic images for each noise level in the supervised unmixing scenario.

dominated by the inversion of X,k which takes O (B 3), hence
the overall calculation takes O (|K| NB®) with storage the
same as f, and X,k. Then if we move to calculating the
derivatives in (29), (30) and (31), it is easy to verify that
the computational costs are O (|| NMB), O (|IC| NMBZ),
O (IK| NM B?) respectively (Note that K is a banded matrix
so the computation involving it is linear). Reviewing the above
process, we conclude that the spatial complexity is dominated
by O (|IC| N Bz) and the time complexity is dominated by
O (IK|I NB3).

G. Estimation of Endmembers for Each Pixel

While the previous sections discuss the estimation of the
abundances and endmember distribution parameters, they do
not actually estimate the endmembers {m,; : n =1,..., N,
Jj=1,..., M} for each pixel. In this Section, we will discuss
this additional problem and note its absence in the previous
NCM literature.

Theorem 2 implies that we can view the proposed con-
ditional density (5) as modeling the noise as a Gaussian
random variable followed by marginalizing over M,,, which
is usually achieved by the evidence approximation in the
machine learning literature due to the intractability of the
integral ([49, Sec. 3.5]). Since we have A, ® obtained from
the previous Sections, we can get the posterior of M,, from
this model:

17 (Ml’l|yn9 al’la 99 D) X 17 (YnaMana ®9 D)

= p (Yuloy, My, D) p (M, 1©).  (35)

Maximizing log p (M, |y, @y, ®,D) gives us another

minimization problem
1 T
£My) = 5 (va = Mf ) D' (yu — M e, )

M K;

— ZlogZﬂjkN (mnj|ﬂjk, ij) (36)

j=1 k=l

obtained by plugging (13) and (14) into (35). Note that this
objective function has an intuitive interpretation as the first
term minimizes the reconstruction error while the second term
forces the endmembers close to the centers of each GMM. The
weight factor between the two terms is the noise. From an
algebraic perspective, since there are also logarithms of sums
of Gaussian functions in this objective, we can also use the
EM algorithm for ease of optimization. In the E step, the soft
membership is calculated by

\ N (|, 2 i)

njk = )
2N (|, X i)

In the M step, the derivative w.r.t. m,; is obtained as

o€
omy,;

k=1,...

, K.

=_Dp! (yn — M,{an) Onj
Kj
+ Z )’njkz;kl (my; — ).
k=1
Instead of deploying gradient descent in the M step for

estimating the abundances, combining the derivatives for all j
actually leads to a closed form solution

vec (M,{) = {ot,,ot,{ D! + diag (Cpp, . . ., CnM)}71
{Vec (D_lynu,{) + dn}

where C,; € RB*EB and d, = (dT .,dr{M)T e RMBx1

ol
are defined as

Ko

K

- -
ynjkzjk , dpj = z ankzjk K-
1 k=1

an =

~
I

In practice, despite the need to estimate a large M x B x N
tensor, the time cost is actually much less than the estimation
of abundances because of the closed form update equation
in the M step. An interesting fact is that y,;; measures the
closeness of estimated endmembers to clusters centers, hence
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Fig. 4. Unsupervised synthetic dataset. (a) and (b) are abundance maps
for two images. (c) shows original spectra from the ASTER library.
(d) and (e) show the color images.

may provide a clue on which cluster is sampled to generate
an endmember.

IV. RESULTS

In the following experiments, we implemented the algorithm
in MATLAB® and compared the proposed GMM with NCM,
BCM (spectral version with quadratic programming) [15] on
synthetic and real images. As mentioned previously, for GMM,
the original image data were projected to a subspace with
10 dimensions to speed up the computation for abundance
estimation.! NCM was implemented as a supervised algorithm
wherein we input the ground truth pure pixels (in the image

IThe code of GMM is
zhouyuanzxcv/Hyperspectral).

available on GitHub (https:/github.com/
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Fig. 5. Histograms of pure pixels for the 4 materials (when projected to a
1-dimensional space determined by performing PCA on the pure pixels of each
material) and the ground truth and estimated distributions (also projected to
the same direction) for the first image of the unsupervised synthetic dataset.
The probability of each distribution is calculated by multiplying the value of
the density function at each bin location with the bin size.

TABLE II

L> DISTANCE BETWEEN THE FITTED DISTRIBUTIONS (GMM, NCM)
AND THE GROUND TRUTH DISTRIBUTIONS FOR THE FIRST
IMAGE OF THE UNSUPERVISED SYNTHETIC DATASET

| x10° [ Limestone | Basalt | Concrete | Asphalt | Mean |

GMM 4.45 3.46 341 4.28 3.85
NCM 4.27 5.86 4.95 4.02 4.77
TABLE III
ABUNDANCE ERRORS FOR THE UNSUPERVISED SYNTHETIC DATASET
[ [ x10=" ] GMM [ NCM [ NCM w/o PCA [ BCM |

Limestone 50 107 92 126

. Basalt 40 74 67 158
20 Concrete 41 66 62 186

E Asphalt 69 141 123 292
Mean 59 97 86 190
Limestone 157 1086 396 231

% Basalt 126 | 445 270 204
20 Concrete 103 985 229 206

E Asphalt 225 170 706 445
Mean 153 671 400 272

with extreme abundances), modeled them by Gaussian distri-
butions, and obtained the abundance maps by maximizing the
log-likelihood. We considered two versions of NCM, one in
the same subspace as GMM (referred to as NCM), the other in
the original spectral space (referred to as NCM without PCA).
Since BCM is also a supervised unmixing algorithm, ground
truth pure pixels were again taken as input and the results
were the abundance maps. For GMM and the two versions
of NCM, using the algorithm in Section III-G we can obtain
the endmembers for each pixel. All the parameters of GMM
(except the structure element size rg.) were set to i = 5,
p> =5 unless specified throughout the experiments.

For comparison of endmember distributions, we calculated
the Ly distance ([ |f (x) — g (x) |2dx)1/ ® between the fitted
distribution and the ground truth one, where the latter was only
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Fig. 6. Estimated GMM in the wavelength-reflectance space for the Pavia

University dataset. The background gray image represents the histogram
created by placing the pure pixel spectra into the reflectance bins at each
wavelength. The different colors represent different components, where the
solid curve is the center i i, the dashed curves are p i & 20V (o) is
the square root of the large eigenvalue of X j while v i is the corresponding
eigenvector), and the legend shows the prior probabilities.

available for the synthetic dataset. For comparison of abun-
dances, we calculated the root mean squared error (RMSE)

1 GT est |2 12 GT
(N > | — ayi| ) where a;
abundances and aZS.t are the estimated values. Since only some
pure pixels were identified as ground truth in the real datasets,

are the ground truth

1 GT est|2 l :
we calculated error; = (m ZneI|“nj — a2’ ) given

nj
the pure pixel index set Z. For comparison of endmembers,
the same error formula and overall schema were used, i.e. for

an index set Z; of pure pixels for the jth endmember (in the

12
. S L imGT _ mest |2
real datasets), error; = 7] > nel; (B llmnj m;- | )

A. Synthetic Datasets

The algorithms were tested for two cases of synthetic
images, a supervised case and an unsupervised case.

1) Supervised: In this case, a library of ground truth
endmembers were input and the abundances were estimated.
The images were of size 60 x 60 with 103 wavelengths
from 430 nm to 860 nm (< 5 nm spectral resolution) and
created with two endmember classes, meadows and painted
metal sheets, whose spectra were drawn randomly from the
ground truth of the Pavia University dataset (shown in Fig. 1,
meadows have 309 samples and painted metal sheets have

15 -1 05 0 0.5 1 1.5 2 25 3

Fig. 7. Scatter plot of the Pavia University dataset with the estimated GMM.
The gray dots are the projected pixels by PCA. The darkened dots with
a color represent the ground truth pure pixels for a material. The ellipses
with the same color represent the projected Gaussian components (twice the
standard deviation along the major and minor axes, covering 86% of the total
probability mass) for one endmember.
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Fig. 8. Histograms of pure pixels for the Pavia University dataset and the
estimated distributions from GMM and NCM when projected to 1 dimension.

941 samples in the ROI). Since painted metal sheets have
multiple modes in the distribution, it should reflect a true
difference between GMM and the other distributions. The
abundances were sampled from a Dirichlet distribution so each
pixel had random values. Also, an additive noise sampled from
N (n,]0, D) was added to the mixed spectra, where the noise
was assumed to be independent at different wavelengths, i.e.
D = diag (012, .. .,0123) while o, was again sampled from a
uniform distribution on [0, oy].

We tested the algorithms for different oy. The effects of
priors were all removed in this case, i.e. f1 = 0, f» = 0.
Fig. 3 shows the box plots of abundance and endmember
errors. We can see that GMM has small errors in general for
different noise levels. NCM also has relatively small errors
in most cases, but tends to produce large errors occasionally
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Fig. 10. (a) Original RGB image of the Mississippi Gulfport dataset with
selected ROI and (b) Ground truth materials in the ROI with their mean
spectra.

(b)

TABLE V
ABUNDANCE AND ENDMEMBER ERRORS FOR THE GULFPORT DATASET

[ x10™¥ ] " GMM [ NCM [ NCM w/o PCA [ BCM |
Asphalt | 2051527 | 1693\ 94 939159 1420
Grass | 169\58 | 1982\ 121 558\ 65 2145
Shadow | 499149 | 1294168 921143 1315
Tree | 1029\89 | 2194\ 234 1106 \ 185 2279
Roof | 908176 | 2143\ 174 1234\ 104 1657
Mean | 562165 | 1861\ 138 952\ 91 1763

(d)

Fig. 9. Abundance maps for the Pavia University dataset. The corresponding
endmembers from left to right are meadows, bare soil, painted metal sheets,
shadows and pavement. (a) GMM. (b) NCM. (c) NCM w/o PCA. (d) BCM.

TABLE IV
ABUNDANCE AND ENDMEMBER ERRORS FOR PAVIA UNIVERSITY

[ x10=T [ GMM NCM | NCM w/o PCA [ BCM |
Meadow | 187 \44%[ 405\ 113 378\ 114 711
Soil 175130 | 581168 507 \ 66 1049
Metal | 476 \ 49 | 1236\ 237 9171349 1285
Shadow | 44\ 44 | 736\48 914\ 34 1287
Pavement | 473139 | 1064\ 114 3331103 612
Mean | 271\41 | 804\ 116 610\ 133 989

4 the numbers in ".\." denote the abundance and endmember errors.

(4 out of 20 runs). NCM without PCA has very good results
except for large noise, where it performed worst among all the
methods. BCM has the largest errors overall. For the endmem-
bers, although NCM or NCM without PCA sometimes has

4 the numbers in ".\." denote the abundance and endmember errors.

less errors than GMM, the difference is less than 0.005 hence
negligible.

2) Unsupervised: We created two synthetic images in this
case, the first was used to validate the ability to estimate the
distribution parameters on scenes with regions of pure pixels,
the second was used to validate the segmentation strategy on
images with insufficient pure pixels. They were both of size
60 x 60 pixels and constructed from 4 endmember classes:
limestone, basalt, concrete, asphalt, whose spectral signatures
were highly differentiable. We assumed that the endmem-
bers were sampled from GMMs following the example in
Section II-C. The means of the GMMs were from the ASTER
spectral library [50] (see Fig. 4(c) for their spectra) with slight
constant changes, which determined a spectral range from
0.4 um to 14 um, re-sampled into 200 values. The covariance
matrices were constructed by ajz.kIB + b;ku jkuJTk where ux
was a unit vector controlling the major variation direction.
For the first image, we assumed the 4 materials occupied the
4 quadrants of the square image as pure pixels. Then Gaussian
smoothing was applied on each abundance map to make the
boundary pixels of each quadrant be mixed by the neighboring
materials. For the second image, we made the first mater-
ial as background, the other materials randomly placed on
this background. The procedure of generating the abundance
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maps followed [37]: for each material (not as background),
150 Gaussian blobs were randomly placed, whose location and
shape width were both sampled from Gaussian distributions.
Finally, noise produced similar to above with oy = 0.001 was
added to the generated pixels. Fig. 4 shows the abundance
maps, the original spectra of these materials, and the resulting
color images by extracting the bands corresponding to wave-
lengths 488 nm, 556 nm, 693 nm.

The parameters of GMM were rg, = 5 for the two images,
p1 = 0.1, po = 0.1 for the second image. Fig. 5 shows
the histograms of ground truth pure pixels and the estimated
distributions for the first image. The ground truth distribution
is barely visible as most of the time it coincides with GMM.
For limestone and asphalt, all the distributions are similar
since the pure pixels are generated by a unimodal Gaussian.
However, for basalt and concrete, GMM provides a more
accurate estimation while the two NCMs seem inferior due
to the single Gaussian assumption. The quantitative analysis
in Table II implies a similar result by calculating the L,
distance between the estimated distribution and the ground
truth.

Table III shows the comparison of abundance errors from
the two images. Since the second image is much more chal-
lenging than the first one, we can expect increased errors from
all the methods. In general, the results of BCM and the two
NCMs show slightly inferior abundances compared to GMM
despite the fact that they have access to pure pixels in the
image to train their models.

B. Pavia University

The Pavia University dataset was recorded by the Reflective
Optics System Imaging Spectrometer (ROSIS) during a flight
over Pavia, northern Italy. The dimension is 340 by 610 with
a spatial resolution of 1.3 meters/pixel. It has 103 bands with
wavelengths ranging from 430 nm to 860 nm. As Fig. 1
shows, the original image contains several man-made and
natural materials. Considering that the whole dataset contains
many different objects, we only performed experiments on
the exemplar ROI (47 by 106) shown in Fig. 1, in which
5 endmembers, meadows, bare soil, painted metal sheets,
shadows and pavement, are manually identified.

The parameter of GMM was r;, = 2. Fig. 6 shows the
GMM in the wavelength-reflectance space, where we can
see the centers and the major variations of the Gaussians.
Fig. 7 shows the scatter plot of the results in the projected
space. The scatter plot shows that the identified Gaussian
components cover the ground truth pure pixels very well. For
painted metal sheets, which has a broad range of pure pixels,
it estimated 4 components to cover them. For shadows, only
one component was estimated. Fig. 8 shows the histograms
of pure pixels and the estimated distributions of GMM and
NCMs. We can see that GMM matches the background
histogram better than NCMs.

Fig. 9 shows the abundance map comparison. Comparing
them with the ground truth shown in Fig. 1(a), we can see that
BCM failed to estimate the pure pixels of painted metal sheets,
although ground truth pure pixels were used for training.
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Fig. 11. Estimated GMM in the wavelength-reflectance space for the
Mississippi Gulfport dataset. The background gray image and the curves have
the same meaning as in Fig.6.
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Fig. 12.  Scatter plot of the Mississippi Gulfport dataset with the estimated

GMM. The ellipses and the dots have the same meaning as in Fig. 7.

For example, the third and fourth abundance maps of BCM
show that the pixels in the lower part of painted metal sheets
are mixed with shadows, while the reduced reflectances are
only caused by angle variation. The result of GMM not only
shows sparse abundances for that region, but also interprets the
boundary as a combination of neighboring materials. Since this
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Fig. 13. Histograms of pure pixels for the Gulfport dataset and the estimated
distributions from GMM and NCM when projected to 1 dimension.

Fig. 14.  Abundance maps for the Gulfport dataset. The corresponding
endmembers from left to right are asphalt, grass, shadow, tree and grey roof.
(a) GMM. (b) NCM. (c) NCM w/o PCA. (d) BCM.

dataset has a spatial spacing of 1.3 meters/pixel, we think this
soft transition is more realistic than a simple segmentation.
Although the results of NCMs look good in general, the abun-
dances in a pure material region are inconsistent. The errors of
abundances and endmembers for these algorithms are shown
in Table IV, which implies that GMM performed best overall.

C. Mississippi Gulfport

The dataset was collected over the University of Southern
Mississippis-Gulfpark Campus [51]. It is a 271 by 284 image
with 72 bands corresponding to wavelengths 0.368 wum to
1.043 um. The spatial resolution is 1 meter/pixel. The scene

contains several man-made and natural materials including
sidewalks, roads, various types of building roofs, concrete,
shrubs, trees, and grasses. Since the scene contains many
cloths for target detection, we tried to avoid the cloths and
selected a 58 by 65 ROI that contains 5 materials [52].
The original RGB image and the selected ROI are shown
in Fig. 10(a) while the identified materials and the mean
spectra are shown in (b).

The parameter of GMM was rg, = 1. Fig. 11 shows the
GMM result in the wavelength-reflectance space and Fig. 12
shows the scatter plot. We can see that the estimated Gaussian
components successfully cover the identified pure pixels.
Fig. 13 shows the estimated distributions. Although there are
no multiple peaks in any of the histograms, NCMs still do not
fit the histograms of shadow and gray roof. In contrast, GMM
gives a much better fit for these 2 endmember distributions.

Fig. 14 shows the abundance maps from different algo-
rithms. We can see that GMM matches the ground truth
in Fig. 10(b) best, followed by NCM without PCA. This is also
verified in the quantitative analysis in Table V. Although NCM
and BCM take ground truth pure pixels as input, the scattered
dots for trees (fourth abundance map) in both of them and the
incomplete region of grass for NCM (asphalt for BCM) show
their insufficiency in this case.

V. DISCUSSION AND CONCLUSION

In this paper, we introduced a GMM approach to represent
endmember variability, by observing that the identified pure
pixels in real applications usually can not be well fitted by a
unimodal distribution as in NCM or BCM. We solved several
obstacles in linear unmixing using this distribution, including
(1) deriving the conditional probability density function of
the mixed pixel given each endmember modeled as GMM
from two perspectives; (ii) estimating the abundances and
endmember distributions by maximizing the log-likelihood
with a prior enforcing abundance smoothness and sparsity;
(iii) estimating the endmembers for each pixel given the abun-
dances and distribution parameters. The results on synthetic
and real datasets show superior accuracy compared to current
popular methods like NCM, BCM. Here we have some final
remarks.

A. Complexity

As analyzed in Section III-F, each iteration in the estimation
of abundances has spatial complexity O (|KC| NB?) and time
complexity O (|IC| N B3). For comparison, the implemented
NCM has the same complexity but with || = 1. For
the supervised synthetic dataset which contains 60 images,
the total running time of GMM was 9709 seconds, on a
desktop with a Intel Core i7-3820 CPU and 64 GB memory.
For comparison, the running time of NCM, NCM without
PCA, and BCM was 941, 50751, 62525 seconds respectively.
In real applications, running GMM on the Pavia University
and Mississippi Gulfport ROIs required 734 seconds and
97 seconds respectively for abundance estimation (24 seconds
and 17 seconds for endmember estimation), compared to
40 and 34 seconds from NCM, 1389 and 396 seconds from
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NCM without PCA, 1170 and 616 seconds from BCM. As ana-
lyzed, the main factors affecting the efficiency of GMM and
NCMs are K| and B.

B. Limitation

The complexity analysis leads to one limitation of the
method. That is, the complexity grows exponentially with
increasing numbers of components. This could cause prob-
lems for a large amount of pure pixels. To overcome this
shortcoming, there are some empirical workarounds, such as
reducing the number of components by introducing thresh-
olds, or reducing the number of pure pixels to a fixed number
by random sampling. Another limitation is that the proposed
unsupervised version assumes presence of regions of pure
pixels, which mostly happens in urban scenes. For scenes with
a lot of mixed pixels, this assumption may not hold. Note that
unsupervised unmixing is a very challenging problem. The
previous works for this problem all assume several properties
on the abundances and endmembers [21]-[23]. Hence, this
limitation exists more or less in all the works on this problem.
Finally, the method was only evaluated on real urban datasets
with only ground truth on pure pixels: it is therefore unclear
if the abundance estimation on mixed pixels is also accurate.
This is due to lack of datasets and ground truth in the
hyperspectral community. We plan to validate it on a more
comprehensive dataset given in [31] in the future.

C. Future Work

The proposed GMM formulation has several applications
that we can investigate in the future. First, in target detection,
endmember variability may interfere with the target as well as
the background [53]. By modeling the target or the background
as spectra sampled from GMM distributions, we may devise
more sophisticated and accurate target detection algorithms.
Second, in fusion of hyperspectral and multispectral images,
the LMM is usually used to overcome the underdetermined
nature of the problem [54], [55]. However, the LMM does
not hold in real scenarios as shown in this work. If we use
the LMM with endmember variability, which is modeled by
samples from GMM distributions, we may have a fusion
algorithm that better fits the data. Finally, in estimating the
noise or intrinsic dimension of hyperspectral images, simulated
data are generated to quantify the results [46]. When these
simulated data are created, usually the LMM is used without
considering the endmember variability. Using the GMM for-
mulation, we may generate distinct endmembers for each pixel
and create more realistic synthetic data.
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