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Abstract—Hyperspectral unmixing while considering end-1

member variability is usually performed by the normal composi-2

tional model, where the endmembers for each pixel are assumed3

to be sampled from unimodal Gaussian distributions. However,4

in real applications, the distribution of a material is often not5

Gaussian. In this paper, we use Gaussian mixture models (GMM)6

to represent endmember variability. We show, given the GMM7

starting premise, that the distribution of the mixed pixel (under8

the linear mixing model) is also a GMM (and this is shown from9

two perspectives). The first perspective originates from random10

variable transformations and gives a conditional density function11

of the pixels given the abundances and GMM parameters.12

With proper smoothness and sparsity prior constraints on the13

abundances, the conditional density function leads to a standard14

maximum a posteriori (MAP) problem which can be solved using15

generalized expectation maximization. The second perspective16

originates from marginalizing over the endmembers in the GMM,17

which provides us with a foundation to solve for the endmembers18

at each pixel. Hence, compared to the other distribution based19

methods, our model can not only estimate the abundances and20

distribution parameters, but also the distinct endmember set for21

each pixel. We tested the proposed GMM on several synthetic22

and real datasets, and showed its potential by comparing it to23

current popular methods.24

Index Terms—Endmember extraction, endmember variability,25

hyperspectral image analysis, linear unmixing, Gaussian mixture26

model.27

I. INTRODUCTION28

THE formation of hyperspectral images can be simplified29

by the linear mixing model (LMM), which assumes that30

the physical region corresponding to a pixel contains several31

pure materials, so that each material contributes a fraction of32

its spectra based on area to the final spectra of the pixel.33

Hence, the observed spectra yn ∈ R
B , n = 1, . . . , N (B is34

the number of wavelengths and N is the number of pixels)35

is a (non-negative) linear combination of the pure material36
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(called endmember) spectra m j ∈ R
B , j = 1, . . . , M (M is 37

the number of endmembers), i.e. 38

yn =
M∑

j=1

m jαnj + nn, s.t. αnj ≥ 0,
M∑

j=1

αnj = 1, (1) 39

where αnj is the proportion (called abundance) for the j th 40

endmember at the nth pixel (with the positivity and sum- 41

to-one constraint) and nn ∈ R
B is additive noise. Here, 42

the endmember set
{
m j : j = 1, . . . , M

}
is fixed for all the 43

pixels. This model simplifies the unmixing problem to a matrix 44

factorization one, leading to efficient computation and simple 45

algorithms such as iterative constrained endmembers (ICE), 46

vertex component analysis (VCA), piecewise convex multiple- 47

model endmember detection (PCOMMEND) [1]–[3] etc., 48

which receive comprehensive reviews in [4] and [5]. 49

However, in practice the LMM may not be valid in many 50

real scenarios. Even for a pure pixel that only contains one 51

material, its spectrum may not be consistent over the whole 52

image. This is due to several factors such as atmospheric 53

conditions, topography and intrinsic variability. For exam- 54

ple, in vegetation, multiple scattering and biotic variation 55

(e.g. differences in biochemistry and water content) cause 56

different reflectances among the same species. For urban 57

scenes, the incidence and emergence angles could be different 58

for the same roof, causing different reflectances. For minerals, 59

the spectroscopy model developed by Hapke also considers 60

the porosity and roughness of the material as variable [6]. 61

In the first and third example above, Eq. (1) can be 62

generalized to a more abstract form yn = F
({
m j , αnj : 63

j = 1, . . . M
})
, which leads to nonlinear mixing models. 64

For example, Halimi et al. [7] used bilinear models to handle 65

the vegetation case, which was also investigated using several 66

different nonlinear functions [8]. In [9], the Hapke model was 67

used to model intimate interaction among minerals. There 68

are also works that use kernels for flexible nonlinear mix- 69

ing [10], [11]. A panoply of nonlinear models can be found 70

in the review article [12]. We note that in these models, 71

a fixed endmember set is still assumed while using a more 72

complicated unmixing model. 73

While nonlinear models abound lately, it is still difficult to 74

account for all the scenarios. On the contrary, the LMM still 75

has physical significance with the intuitive area assumption. 76

To model real scenarios more accurately, researchers have 77
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taken another route by generalizing Eq. (1) to78

yn =
M∑

j=1

mnjαnj + nn, (2)79

where
{
mnj ∈ R

B : j = 1, . . . , M
}
, n = 1, . . . , N could be80

different for each n, i.e. the endmember spectra for each pixel81

could be different. This is called endmember variability, and82

has also received a lot of attention in the community [13], [14].83

Note that given {yn}, inferring
{
mnj , αnj

}
is a much more84

difficult problem than inferring
{
m j , αnj

}
in Eq. (1). Hence,85

in many papers
{
mnj

}
are assumed to be from a spectral86

library, which is usually called supervised unmixing [15]–[17].87

On the other hand, if the endmember spectra are to be88

extracted from the image, we call them unsupervised unmix-89

ing models [18]–[20]. Obviously, unsupervised unmixing90

is more challenging than its supervised counterpart and91

hence more assumptions are used in this case, such as the92

spatial smoothness of abundances and endmember variabil-93

ity [21]–[23], small mutual distance between the endmem-94

bers [22], small magnitude or spectral smoothness of the95

endmember variability [22], [23].96

We can also categorize the papers on endmember variability97

by how this variability is modeled. In the review paper [14],98

it can be modeled as a endmember set [17], [20] or as a distri-99

bution [24]–[26]. One of the widely used set based methods is100

multiple endmember spectral mixture analysis (MESMA) [17],101

which tries every endmember combination and selects the102

one with the smallest error. There are many variations to103

the original MESMA. For example, the multiple-endmember104

linear spectral unmixing model (MELSUM) solves the linear105

equations directly using the pseudo-inverse and discards the106

solutions with negative abundances [27]; automatic Monte107

Carlo unmixing (AutoMCU) picks random combinations for108

unmixing and averages the resulting abundances as the final109

results [28], [29]. Besides MESMA variants, there are also110

many other set based methods. For example, endmember111

bundles form bundles from automated extracted endmembers,112

take minimum and maximum abundances from bundle based113

unmixing, and average them as final abundances [20]; sparse114

unmixing imposes a sparsity constraint on the abundances115

based on endmembers composed of all spectra from the116

spectral library [30]. A comprehensive review can be found117

in [13] and [14]. One disadvantage of set based methods is118

that their complexity increases exponentially with increasing119

library size hence in practice a laborious library reduction120

approach may be required [31].121

The distribution based approaches assume that the endmem-122

bers for each pixel are sampled from probability distributions123

[e.g. Gaussian, a.k.a. normal compositional model (NCM)],124

and hence embrace large libraries while being numerically125

tractable [15], [32]. Here, we give an overview of NCM126

because of its simplicity and popularity [16], [18], [19].127

Suppose the jth endmember at the nth pixel follows a Gaussian128

distribution p
(
mnj

) = N (
mnj |μ j ,� j

)
where μ j ∈ R

B and129

� j ∈ R
B×B , and the additive noise also follows a Gaussian130

distribution p (nn) = N (nn|0,D) where D is the noise131

covariance matrix. The random variable transformation (r.v.t.)132

Fig. 1. (a) Original Pavia University image and selected ROI with its ground
truth image. (b) Mean spectra of the identified 5 endmembers and histograms
of meadows and painted metal sheets (shadow is termed as endmember to
conform with the LMM though the area under shadow can be any material).
PCA is used to project the multidimensional pixels to single values which are
counted in the histograms. Although the histogram of meadows may appear
to be a Gaussian distribution, that of painted metal sheets is obviously neither
a unimodal Gaussian or Beta distribution.

(2) suggests that the probability density function of yn can be 133

derived as 134

p (yn|αn,�,D) = N


yn|
M∑

j=1

αnjμ j ,

M∑

j=1

α2
nj� j + D



, (3) 135

where αn := [αn1, . . . , αnM ]T , � := {
μ j ,� j : j = 136

1, . . . , M
}
. The conditional density function in (3) is usu- 137

ally embedded in a Bayesian framework such that we can 138

incorporate priors and also estimate hyperparameters. Then, 139

NCM uses different optimization approaches, e.g. expectation 140

maximization [32], sampling methods [18], [19], [25], par- 141

ticle swarm optimization [24], to determine the parameters 142{
μ j ,� j

}
and

{
αnj

}
. 143

There are few papers that use other distributions. In [15], X. 144

Du et al. note that the Gaussian distribution may allow 145

negative values which are not realistic. In addition, the real 146

distribution may be skewed. Hence, they introduce a Beta com- 147

positional model (BCM) to model the variability. The problem 148

is that the true distribution may not be well approximated 149

by any unimodal distribution. Consider the Pavia University 150

dataset shown in Fig. 1, where the multidimensional pixels 151

are projected to one dimension to afford better visualiza- 152

tion. Among the manually identified materials, we can see 153

that although the histogram of meadows may look like a 154

Gaussian distribution, that of painted metal sheets has multiple 155

peaks and cannot be approximated by either a Gaussian or 156
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Fig. 2. Comparison of the mechanisms among LMM, NCM and GMM. We have 3 endmembers represented by the darken gray areas. LMM tries to find a
set of endmembers that fit the pixel data. NCM tries to find a set of Gaussian centers that fit the pixel data, with error weighted by the covariance matrices.
GMM tries to find Gaussian centers such that all their linear combinations fit the pixel data, with each weighted by the prior πk. We may use 6 endmembers
with NCM, but then the prior information is lost.

Beta distribution. This is due to different angles of these sheets157

on the roof. Since each piece of metal sheet is tilted, it forms158

a cluster of reflectances which contributes to a peak in the159

histogram. This example shows that we should use a more160

flexible distribution to represent the endmember variability.161

In this paper, we use a mixture of Gaussians to approx-162

imate any distribution that an endmember may exhibit,163

and solve the LMM by considering endmember variability.164

In a nutshell, the Gaussian mixture model (GMM) mod-165

els p
(
mnj

)
by a mixture of Gaussians, say p

(
mnj

) =166

∑
k π j kN

(
mnj |μ j k,� j k

)
, and then obtains the distribution167

of yn by the r.v.t. (2), which turns out to be another mixture168

of Gaussians and can be used for inference of the unknown169

parameters. Here, we briefly explain how GMM works intu-170

itively by comparing it to the NCM with the details given later.171

The maximum likelihood estimate (MLE) of NCM (using (3))172

aims to find
{
μ j

}
such that its linear combination matches yn .173

Contrary to NCM, GMM aims to find
{
μ j k

}
such that all of174

its linear combinations match yn . Suppose we have μ11, μ21,175

μ22, μ31, μ32, μ33: then there are 6 combinations as explained176

in Fig. 2, but with emphasis weighted by
{
π j k

}
which deter-177

mines the prior probability of each linear combination.178

Based on the GMM formulation, we propose a super-179

vised version and an unsupervised version for unmixing. The180

supervised version takes a library as input and estimates the181

abundances. The unsupervised version assumes that there are182

regions of pure pixels, hence segments the image first to get183

pure pixels and then performs unmixing. Another advantage184

over the other distribution based methods is that we can also185

estimate the endmembers for each pixel, which is not achiev-186

able by NCM or BCM. Note that estimating endmembers187

for each pixel is generally common in non-distribution meth-AQ:1 188

ods, both from the signal processing community [21]–[23]189

or the remote sensing community [17], [27]. But it is190

often achieved in the context of least-squares based unmix-191

ing [33]–[35], unlike what we propose here using distribution192

based unmixing.193

Notation: As usual, N (x|μ,�) denotes the multivariate194

Gaussian density function with center μ and covariance195

matrix �. Let A ∈ R
m×n be a matrix with m rows and196

n columns. The Hadamard product of two matrices (elemen-197

twise multiplication) is denoted by ◦ while the Kronecker198

product is denoted by ⊗. (A) j k denotes the element at the 199

jth row and kth column of matrix A. (A) j denotes the jth 200

row of A transposed (treating A as a vector), i.e. for A = 201

[a1, . . . an]T , (A) j = a j . vec (A) denotes the vectorization of 202

A, i.e. concatenating the columns of A. δ j k = 1 when j = k 203

and 0 otherwise. Ex ( f (x)) is the expected value of f (x) 204

given random variable x. We use i = √−1 instead of as an 205

index throughout the paper. 206

II. MATHEMATICAL PRELIMINARIES 207

A. Linear Combination of GMM Random Variables 208

To use the Gaussian mixture model to model endmember 209

variability, we start by assuming that mnj follows a Gaussian 210

mixture model (GMM) and the noise also follows a Gaussian 211

distribution. The distribution of yn is obtained using the 212

following theorem. 213

Theorem 1: If the random variable mnj has a density 214

function 215

p
(
mnj |�

) := fm j

(
mnj

) =
K j∑

k=1

π j kN
(
mnj |μ j k,� j k

)
, (4) 216

s.t. π j k ≥ 0,
∑K j

k=1 π j k = 1, with K j being the number of 217

components, π j k (μ j k ∈ R
B or � j k ∈ R

B×B) being the weight 218

(mean or covariance matrix) of its kth Gaussian compo- 219

nent, � := {
π j k,μ j k,� j k : j = 1, . . . , M, k = 1, . . . , K j

}
, 220{

mnj : j = 1, . . . , M
}
are independent, and the random vari- 221

able nn has a density function p (nn) := N (nn |0,D), then the 222

density function of yn given by the r.v.t. yn = ∑M
j=1mnjαnj + 223

nn is another GMM 224

p (yn|αn,�,D) =
∑

k∈K
πkN

(
yn|μnk,�nk

)
, (5) 225

where K := {1, . . . , K1}× {1, . . . , K2}× · · ·× {1, . . . , KM } is 226

the Cartesian product of the M index sets, k := (k1, . . . kM ) ∈ 227

K, πk ∈ R, μnk ∈ R
B, �nk ∈ R

B×B are defined by 228

πk :=
M∏

j=1

π j k j , μnk :=
M∑

j=1

αnjμ j k j , 229

�nk :=
M∑

j=1

α2
nj� j k j + D. (6) 230
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The proof is detailed using a characteristic function (c.f.)231

approach.232

We first consider the distribution of the intermediate variable233

zn = ∑M
j=1mnjαnj . The c.f. of fm j in (4), φm j (t) : R

B → C,234

is given by235

φm j (t) = Em j

(
eit

T x
)

=
∫

RB
eit

T x fm j (x) dx236

=
K j∑

k=1

π j k

∫

RB
eit

T xN (
x|μ j k,� j k

)
dx237

=
K j∑

k=1

π j kφ j k (t), (7)238

where φ j k (t) denotes the c.f. of the Gaussian distribution239

N (
x|μ j k,� j k

)
as240

φ j k (t) := exp

(
i tTμ j k − 1

2
tT� j kt

)
. (8)241

Assuming mn1, . . . ,mnM are independent, we can obtain the242

c.f. of the linear combination of these mnj by multiplying243

(7) as244

φzn (t)245

= φmn1αn1+···+mnMαnM (t) =
M∏

j=1

φm j

(
αnj t

)
246

=
K1∑

k1=1

· · ·
KM∑

kM=1

π1k1 · · ·πMkM φ1k1 (αn1t) · · · φMkM (αnM t).247

Let K, k, πk be defined as in Theorem 1. We can write the248

above multiple summations in an elegant way:249

φzn (t) =
∑

k∈K
πkφnk (t), (9)250

where πk ≥ 0,
∑

k∈K πk = 1 and251

φnk (t) := φ1k1 (αn1t) · · · φMkM (αnM t)252

= exp




i tT




M∑

j=1

αnjμ j k j



− 1

2
tT




M∑

j=1

α2
nj� j k j



 t




,253

where (8) is used. Since φnk (t) also has a form of c.f. of a254

Gaussian distribution, the corresponding distribution turns out255

to be N
(
x|∑ j αnjμ j k j ,

∑
j α

2
nj� j k j

)
. Hence, the distribu-256

tion of zn can be obtained by the Fourier transform of (9)257

fzn (zn) = 1

(2π)B

∫

RB
e−itT znφzn (t) dt258

= 1

(2π)B

∫

RB
e−itT zn

∑

k∈K
πkφnk (t) dt259

=
∑

k∈K
πkN



zn |
M∑

j=1

αnjμ j k j ,

M∑

j=1

α2
nj� j k j



, (10)260

which is still a mixture of Gaussians.261

After finding the distribution of the linear combination,262

we can add the noise term to find the distribution of yn .263

Suppose the noise also follows a Gaussian distribution,264

p (nn) := fnn (nn) = N (nn |0,D) , where D is the noise 265

covariance matrix. We assume that the noise at different 266

wavelengths is independent (σ 2
k being the noise variance of 267

the kth band), i.e. D = diag
(
σ 2
1 , σ 2

2 , . . . , σ 2
B

) ∈ R
B×B (if it is 268

not independent, the noise can actually be easily whitened to 269

be independent as in [36]). Its c.f. has the following form 270

φnn (t) = exp

(
−1

2
tTDt

)
(11) 271

by (8). Then the c.f. of yn can be obtained by multiplying (9) 272

and (11) (as zn and nn are independent) 273

φyn (t) = φzn (t) φnn (t) =
∑

k∈K
πkφnn (t) φnk (t) 274

=
∑

k∈K
πk exp

{
i tTμnk − 1

2
tT�nkt

}
, 275

where μnk and �nk are defined in (6). Finally, the distribution 276

of y can be shown to be (5) by the Fourier transform again as 277

in (10). 278

If K = {1} × {1} × · · · × {1}, i.e. each endmember has only 279

one Gaussian component, we have π11 = 1, . . . , πM1 = 1, 280

then πk = π11 · · ·πM1 = 1. The distribution of yn becomes 281

p (yn|αn,�,D) = N


yn|
M∑

j=1

αnjμ j1,

M∑

j=1

α2
nj� j1 + D



, 282

(12) 283

which is exactly the NCM in (3). 284

B. Another Perspective 285

Theorem 1 obtains the density of each pixel by directly 286

performing a r.v.t. based on the LMM, which can be 287

used to estimate the abundances and distribution parameters. 288

Here, we will obtain the density from another perspective, 289

which provides a foundation to estimate the endmembers for 290

each pixel. Again, let the noise follow the density function 291

p (nn) := N (nn|0,D). Considering
{
mnj

}
and

{
αnj

}
as fixed 292

values, the r.v.t. yn = ∑
j mnjαnj +nn implies that the density 293

of yn is given by 294

p (yn|αn,Mn,D) = N


yn|
∑

j

mnjαnj ,D



 (13) 295

where Mn = [mn1, . . . ,mnM ]T ∈ R
M×B are the endmembers 296

for the nth pixel. We have the following theorem which gives 297

the same result as in Theorem 1. 298

Theorem 2: If the random variables
{
mnj : j = 1, . . . , M

}
299

follow GMM distributions 300

p
(
mnj |�

) :=
K j∑

k=1

π j kN
(
mnj |μ j k,� j k

)
, 301

and they are independent, i.e. 302

p (Mn |�) =
M∏

j=1

p
(
mnj |�

)
, (14) 303
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TABLE I

VALUES FOR THE VARIOUS QUANTITIES IN THE SIMPLE EXAMPLE

then the conditional density p (yn |αn,�,D) obtained by mar-304

ginalizing Mn in p (yn,Mn |αn,�,D) has the same form as305

in Theorem 1:306

p (yn|αn,�,D) =
∫

p (yn|αn,Mn ,D) p (Mn |�) dMn307

=
∑

k∈K
πkN

(
yn|μnk,�nk

)
,308

where p (yn|αn,Mn ,D) = N
(
yn|∑ j mnjαnj ,D

)
.309

The proof is much more complicated (in terms of algebra) and310

therefore relegated to the supplemental material of the paper.311

C. An Example312

We give an example to illustrate the basic idea of this313

paper. Suppose we have M = 4 endmembers with K1 = 1,314

K2 = 2, K3 = 3, K4 = 1. Their distributions follow (4) with315

μ j k,� j k , j = 1, 2, 3, 4, k = 1, ..., K j . Let the weights of316

these components be π11 = π41 = 1, π21 = 0.3, π22 = 0.7,317

π31 = 0.2, π32 = 0.4, π33 = 0.4. Then, K has 6 entries318

from the Cartesian product, {1} × {1, 2} × {1, 2, 3} × {1}.319

We list the values for πk, μnk in Table I. For example, for320

k = (1, 2, 3, 1), πk = π11π22π33π41 = 0.28. The value of321

μnk is a linear combination of μ j k (pick one component for322

each j ) based on the configuration k. Hence, the distribution323

of yn in (5) is a Gaussian mixture of 6 components with πk,324

μnk given in Table I (�nk can be derived similar to μnk).325

Recalling the intuition in Fig. 2, we will show that applying326

it to hyperspectral unmixing will force each pixel to match all327

the μnks, but with emphasis determined by πnk.328

III. GAUSSIAN MIXTURE MODEL FOR329

ENDMEMBER VARIABILITY330

A. The GMM for Hyperspectral Unmixing331

Based on the analysis in Section II, we can model the332

conditional distribution of all the pixels Y := [
y1, . . . , yN

]T ∈333

R
N×B given all the abundances A := [α1, . . . ,αN ]T ∈ R

N×M
334

(αn := [αn1, . . . , αnM ]T ) and GMM parameters, which leads335

to a maximum a posteriori (MAP) problem. Using the result336

in (5) and assuming the conditional distributions of yn are337

independent, the distribution of Y given A,�,D becomes338

p (Y|A,�,D) =
N∏

n=1

p (yn|αn,�,D). (15)339

Based on the hyperspectral unmixing context, we can set340

the priors for A. Suppose we use the same prior on A341

as in [37], i.e. 342

p (A) ∝ exp

{
−β1

2
Tr
(
ATLA

)
+ β2

2
Tr
(
ATA

)}
343

= exp

{
−β1

2
Tr
(
ATKA

)}
, (16) 344

where L is a graph Laplacian matrix constructed from 345

wnm , n,m = 1, . . . , N with wnm = e−‖yn−ym‖2/2Bη2 for 346

neighboring pixels and 0 otherwise. We have Tr
(
ATLA

) = 347

1
2

∑
n,m wnm‖αn − αm‖2), K = L − β2

β1
IN (suppose β1 
= 0) 348

with β1 controlling smoothness and β2 controlling sparsity of 349

the abundance maps. 350

From the conditional density function and the priors, Bayes’ 351

theorem says the posterior is given by 352

p (A,�|Y,D) ∝ p (Y|A,�,D) p (A) p (�), (17) 353

where p (�) is assumed to follow a uniform distribu- 354

tion. Maximizing p (A,�|Y,D) is equivalent to minimizing 355

− log p (A,�|Y,D), which reduces to the following form by 356

combining (5), (15), (16) and (17): 357

E (A,�) = −
N∑

n=1

log
∑

k∈K
πkN

(
yn|μnk,�nk

) + Eprior(A), 358

s.t. πk ≥ 0,
∑

k∈K
πk = 1, αnj ≥ 0,

M∑

j=1

αnj = 1, ∀n (18) 359

where Eprior(A) = β1
2 Tr

(
ATKA

)
, and μnk,�nk are defined 360

in (6). 361

B. Relationships to Least-Squares, NCM, and MESMA 362

Let us focus on the first term in (18) and call it the 363

data fidelity term. We can relate it to NCM and the least- 364

squares term
∑

n ‖yn − ∑
j αnjm j‖2 as used in previous 365

research. The data fidelity term in NCM follows (3) and is 366

based on minimizing the negative log-likelihood 367

− log p (Y) = − log
N∏

n=1

p (yn) = −
N∑

n=1

logN (
yn|μn1,�n1

)
368

(19) 369

by assuming yns are independent, where μn1 := ∑
j αnjμ j , 370

�n1 := ∑
j α

2
nj� j + σ 2IB . Expanding (19) using the form of 371

the Gaussian distribution leads to the objective function 372

N∑

n=1

log |�n1| +
N∑

n=1

(
yn − μn1

)T
�−1

n1

(
yn − μn1

)
. (20) 373

We can see that the least-squares minimization is a special case 374

of NCM with ‖� j‖F → 0, i.e. when there is little endmember 375

variability. 376

The proposed GMM further generalizes NCM from a sta- 377

tistical perspective. Since π j k represents the prior probability 378

of the latent variable in a GMM, πk represents the prior 379

probability of picking a combination. If we see k as a (discrete) 380

random variable whose sample space is K, (5) can be seen as 381

p (yn|αn,�,D) =
∑

k∈K
p (k) p (yn |k,αn,�,D), 382

Yuan Zhou
Note
There should be no bracket here.
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where p (k) = πk and p (yn|k,αn,�,D) = N (
yn|383

μnk,�nk
)
. From this perspective, each pixel is generated384

by first sampling k, then sampling a Gaussian distribution385

determined by k,�. Unlike NCM that tries to make each yn386

close to μn1 which is a linear combination of a fixed set
{
μ j

}
,387

GMM further generalizes it by trying to make yn close to every388

μnk which are all the possible linear combinations of
{
μ j k

}
.389

It makes sense that the summation in (18) is weighted by πk in390

a way that if one combination has a high probability to appear,391

i.e. πk is larger for a certain k, the effort is biased to make392

yn closer to this particular μnk. Fig. 2 shows the differences393

among these.394

The widely adopted MESMA takes a library of endmember395

spectra as input, tries all the combinations and pick the396

combination with least reconstruction error. The philosophy397

is similar to our model despite the fundamental difference398

that MESMA is explicit whereas we are implicit in terms399

of linear combinations. Compared to MESMA, the GMM400

approach separates the library into M groups where each group401

represents a material and is clustered into several centers, such402

that the combination can only take place by picking one center403

from each group. Also, the size of each cluster affects the404

probability of picking its center. Hence, our model can adapt405

to very large library sizes as long as the number of clusters406

does not increase too much.407

C. Optimization408

Estimating the parameters of GMMs has been studied exten-409

sively, from early expectation maximization (EM) from the410

statistical community to projection based clustering from the411

computer science community [38], [39]. There are simple and412

deterministic algorithms, which usually require the centers of413

Gaussian be separable. However, we face a more challenging414

problem since each pixel is generated by a different GMM415

determined by the coefficients αn . Since EM can be seen as416

a special case of Majoriziation-Minimization algorithms [40],417

which is more flexible, we adopt this approach. Considering418

that we have too many parameters A,� to update in the M419

step, they are updated sequentially as long as the complete420

data log-likelihood increases. This is also called generalized421

expectation maximization (GEM) [41].422

Following the routine of EM, the E step calculates the423

posterior probability of the latent variable given the observed424

data and old parameters425

γnk = πkN
(
yn|μnk,�nk

)
∑

k∈K πkN
(
yn|μnk,�nk

) . (21)426

The M step usually maximizes the expected value of the427

complete data log-likelihood. Here, we have priors in the428

Bayesian formulation. Hence, we need to minimize429

EM = −
N∑

n=1

∑

k∈K
γnk

{
logπk + logN (

yn |μnk,�nk
)}+Eprior.430

(22)431

This leads to a common update step for πk as432

πk = 1

N

N∑

n=1

γnk. (23)433

We now focus on updating
{
μ j k,� j k

}
and A. To achieve this, 434

we require the derivatives of EM in (22) w.r.t. μ j k,� j k, αnj . 435

After some tedious algebra using (6), we get 436

∂EM
∂μ j l

= −
N∑

n=1

∑

k∈K
δlk j αnjλnk (24) 437

∂EM
∂� j l

= −
N∑

n=1

∑

k∈K
δlk j α

2
nj�nk, (25) 438

∂EM
∂αnj

= −
∑

k∈K
λT
nkμ j k j − 2αnj

∑

k∈K
Tr
(
�T

nk� j k j

)
439

+ β1 (KA)nj , (26) 440

where λnk ∈ R
B×1 and �nk ∈ R

B×B are given by 441

λnk = γnk�
−1
nk

(
yn − μnk

)
, (27) 442

�nk = 1

2
γnk�

−T
nk

(
yn − μnk

) (
yn − μnk

)T
�−T

nk − 1

2
γnk�

−T
nk . 443

(28) 444

It is better to represent the derivatives in matrix forms for the 445

sake of implementation convenience. Considering the multiple 446

summations in (24), (25) and (26), we can write them as 447

∂EM
∂μ j l

= −
∑

k∈K
δlk j

(
AT�k

)

j
, (29) 448

∂EM
∂vec

(
� j l

) = −
∑

k∈K
δlk j

(
(A ◦ A)T �k

)

j
, (30) 449

∂EM
∂A

= −
∑

k∈K
�kRT

k −2A ◦
∑

k∈K
�kSTk +β1KA, (31) 450

where �k ∈ R
N×B , �k ∈ R

N×B2
denote the matrices formed 451

by {λnk,�nk} as follows 452

�k := [λ1k,λ2k, . . . ,λNk]T , 453

�k := [vec (�1k) , vec (�2k) , . . . , vec (�Nk)]T , 454

and Rk ∈ R
M×B , Sk ∈ R

M×B2
are defined by 455

Rk := [
μ1k1 ,μ2k2 , . . . ,μMkM

]T
, (32) 456

Sk := [
vec

(
�1k1

)
, vec

(
�2k2

)
, . . . , vec

(
�MkM

)]T
. (33) 457

The minimum of EM corresponds to ∂EM
∂μ jl

= 0, ∂EM
∂� jl

= 0, 458

and ∂EM
∂A = 0 if the optimization problem is unconstrained. 459

However, since we have the non-negativity and sum-to-one 460

constraint to αnj and positive definite constraint of � j k , 461

minimizing EM is very difficult. Therefore, in each M step, 462

we only decrease this objective function by projected gradient 463

descent (please see [42 and 43, Sec. 2.3]) using (29), (30) 464

and (31), where the projection functions for A and
{
� j k

}
are 465

the same as in [37]. 466

Finally, from the estimated πk, we can recover the sets of 467

weights as π j l = ∑
k∈K δlk j πk. 468

D. Model Selection 469

The number of components K j can be specified or esti- 470

mated from the data. For the latter case, we have some 471

pure pixels and estimate K j by deploying a standard 472
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model selection method. Suppose we have Nj pure pixels473

Y j :=
[
y j
1, y

j
2, . . . , y

j
N j

]T ∈ R
Nj×B for the jth endmember,474

fm j

(
y|� j

)
is the estimated density function with � j :=475 {

π j k,μ j k,� j k : k = 1, . . . , K j
}
, gm j (y) is the true density476

function. The information criterion based model selection477

approach tries to find K j that minimizes their difference, e.g.478

the Kullback-Leibler (KL) divergence479

DKL
(
gm j‖ fm j

) =
∫

RB
gm j (y) log

gm j (y)

fm j

(
y|� j

)dy480

≈ − 1

Nj

Nj∑

n=1

log fm j

(
y j
n |� j

)
+ const,481

where the approximation of
∫
gm j (y) log fm j

(
y|� j

)
dy by482

the log-likelihood is usually biased as the empirical distribu-483

tion function is closer to the fitted distribution than the true484

one. Akaike’s information criterion is one way to approximate485

the bias. Here, we use the cross-validation-based information486

criterion (CVIC) to correct for the bias [44], [45]. Let487

LY j

(
� j

) =
Nj∑

n=1

log fm j

(
y j
n|� j

)
. (34)488

The V -fold cross validation (we use V = 5 here) divides the489

input set Y j into V subsets
{
Y1

j ,Y
2
j , . . . ,Y

V
j

}
with equal490

sizes. Then for each subset Yv
j , v = 1, . . . , V , the remaining491

data are used to replace Y j in (34) such that (34) is maximized492

by �v
j . Then LK j = ∑

v LYv
j

(
�v

j

)
is evaluated and the493

optimal K̂ j = argmaxK j LK j .494

E. Implementation Details495

The algorithm can be implemented in a supervised or unsu-496

pervised manner. In both cases, because of the large compu-497

tational cost, we project the pixel data to a low dimensional498

space by principal component analysis (PCA) and perform499

the optimization, the result then projected back to the original500

space. Let E ∈ R
B×d be the projection matrix and c ∈ R

B be501

the translation vector, then502

ET (yn − c) =
M∑

j=1

ET (mnj − c
)
αnj + ET nn .503

This means that for the projected pixels, the j th endmember504

m′
nj = ET

(
mnj − c

)
follows a distribution505

p
(
m′

nj |�
)

=
K j∑

k=1

π j kN
(
m′

nj |ET (μ j k − c
)
,ET � j kE

)
506

and the noise n′
n = ET nn follows N (

n′
n|0,ETDE

)
.507

In the supervised unmixing scenario, we assume that a508

library of endmember spectra is known. After estimating509

the number of components following Section III-D, and510

calculating � using the standard EM algorithm, we only511

need to update γnk by (21) and A by (31) with πk, μ j k512

and � j k fixed. The initialization of A can utilize the mul-513

tiple combinations of means. For each αn , we first set514

αnk ← (
RkRT

k + εIM
)−1

Rkyn , then project it to the simplex 515

space, and finally set αn ← αnOk with k̂ = argmink ‖yn − 516

RT
k αnk‖2, i.e. choose the αnk that minimizes the reconstruc- 517

tion error. 518

In the unsupervised unmixing scenario, we will assume the 519

resolution is high enough such that the hyperspectral image 520

can be segmented into several regions where the interior pixels 521

in each region are pure pixels. The optimization is performed 522

in several steps, where we first obtain a segmentation result, 523

then use CVIC to determine the number of components, and 524

finally estimate A with � fixed. The details are given as 525

follows. 526

Step 1: Initialization. We start with K j = 1, ∀ j and use 527

K-means to find the initial means R1. The initial A is set to 528

A ← YRT
1

(
R1RT

1 + εIM
)−1

(by minimizing ‖Y − AR1‖2F ), 529

then projected to the valid simplex space as in [37]. The 530

initial covariance matrices are set to � j1 ← 0.12IB , ∀ j . 531

For the noise matrix D, although there is research focused 532

on noise estimation [46], [47], endmember variability was 533

not considered and validation was performed only for the 534

simple LMM assumption. Hence, we use an empirical value 535

D = 0.0012IB , which is usually much less than the variability 536

of covariance matrices in (6). 537

Step 2: Segmentation. Given the initial conditions, we use 538

the GEM algorithm to iteratively update γnk by (21), πk 539

by (23), μ j k by (29), A by (31) while keeping � j k fixed. 540

For γnk and πk, a direct update equation is available. For 541

μ j k , we can use gradient descent. For A, since we have 542

the non-negativity and sum-to-one constraints, a projected 543

gradient descent similar to the one used in [37] can be applied. 544

To ensure a segmentation effect, a large β2 is used in this step. 545

Step 3: Model selection and abundance estimation. Using 546

the segmentation-like abundance maps from the previous step, 547

we can obtain the interior pixels Y j (assumed pure) by 548

thresholding the abundances (e.g. αnj > 0.99) and performing 549

image erosion to trim the boundaries with structure element 550

size rse (can be decreased gradually if large enough to trim 551

all the pixels). Following Section III-D, we can determine 552

the number of components K j and further calculate � j by 553

standard EM. Since β2 is relatively large in the previous step, 554

it is reduced by β2 ← ζβ2 where ζ = 0.05. Then we restart 555

the optimization to estimate the abundances with � fixed. 556

F. Complexity Analysis 557

The abundance estimation algorithm is an iterative process. 558

Since we used projected gradient descent with adaptive step 559

sizes, the number of iterations is usually not large as shown 560

in [43] and [48]. For each iteration, it starts with calcu- 561

lating μnk and �nk in (6), where storing all μnk (�nk) 562

requires O (|K| NB) (O
(|K|NB2

)
), the computation takes 563

O (|K|NMB) (O
(|K| NMB2

)
). Suppose the Cholesky fac- 564

torization and the matrix inversion of a B by B matrix 565

both take O
(
B3

)
time, and N � B > M . Evaluating 566

logN (
yn|μnk,�nk

)
by the Cholesky factorization will take 567

O
(
B3

)
, hence updating all the γnk takes O

(|K| NB3
)
, which 568

is also the required time for evaluating the objective function 569

(18). The calculation of λnk, �nk (in (27) and (28)) will be 570

Yuan Zhou
Note
It should be a hat here.
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Fig. 3. Abundance and endmember error statistics from 20 synthetic images for each noise level in the supervised unmixing scenario.

dominated by the inversion of �nk which takes O
(
B3

)
, hence571

the overall calculation takes O
(|K| NB3

)
with storage the572

same as μnk and �nk. Then if we move to calculating the573

derivatives in (29), (30) and (31), it is easy to verify that574

the computational costs are O (|K| NMB), O
(|K| NMB2

)
,575

O
(|K| NMB2

)
respectively (Note that K is a banded matrix576

so the computation involving it is linear). Reviewing the above577

process, we conclude that the spatial complexity is dominated578

by O
(|K| NB2

)
and the time complexity is dominated by579

O
(|K| NB3

)
.580

G. Estimation of Endmembers for Each Pixel581

While the previous sections discuss the estimation of the582

abundances and endmember distribution parameters, they do583

not actually estimate the endmembers {mnj : n = 1, . . . , N,584

j = 1, . . . , M} for each pixel. In this Section, we will discuss585

this additional problem and note its absence in the previous586

NCM literature.587

Theorem 2 implies that we can view the proposed con-588

ditional density (5) as modeling the noise as a Gaussian589

random variable followed by marginalizing over Mn , which590

is usually achieved by the evidence approximation in the591

machine learning literature due to the intractability of the592

integral ([49, Sec. 3.5]). Since we have A,� obtained from593

the previous Sections, we can get the posterior of Mn from594

this model:595

p (Mn |yn,αn,�,D) ∝ p (yn,Mn |αn,�,D)596

= p (yn|αn,Mn,D) p (Mn |�). (35)597

Maximizing log p (Mn |yn,αn,�,D) gives us another598

minimization problem599

E (Mn) = 1

2

(
yn − MT

n αn

)T
D−1

(
yn − MT

n αn

)
600

−
M∑

j=1

log

K j∑

k=1

π j kN
(
mnj |μ j k,� j k

)
(36)601

obtained by plugging (13) and (14) into (35). Note that this 602

objective function has an intuitive interpretation as the first 603

term minimizes the reconstruction error while the second term 604

forces the endmembers close to the centers of each GMM. The 605

weight factor between the two terms is the noise. From an 606

algebraic perspective, since there are also logarithms of sums 607

of Gaussian functions in this objective, we can also use the 608

EM algorithm for ease of optimization. In the E step, the soft 609

membership is calculated by 610

γnjk = π j kN
(
mnj |μ j k,� j k

)
∑

k π j kN
(
mnj |μ j k,� j k

) , k = 1, . . . , K j . 611

In the M step, the derivative w.r.t. mnj is obtained as 612

∂E
∂mnj

= −D−1
(
yn − MT

n αn

)
αnj 613

+
K j∑

k=1

γnjk�
−1
j k

(
mnj − μ j k

)
. 614

Instead of deploying gradient descent in the M step for 615

estimating the abundances, combining the derivatives for all j 616

actually leads to a closed form solution 617

vec
(
MT

n

)
=

{
αnα

T
n ⊗ D−1 + diag (Cn1, . . . ,CnM )

}−1
618

{
vec

(
D−1ynαT

n

)
+ dn

}
619

where Cnj ∈ R
B×B and dn := (

dTn1, . . . ,d
T
nM

)T ∈ R
MB×1

620

are defined as 621

Cnj :=
K j∑

k=1

γnjk�
−1
j k , dnj :=

K j∑

k=1

γnjk�
−1
j k μ j k . 622

In practice, despite the need to estimate a large M × B × N 623

tensor, the time cost is actually much less than the estimation 624

of abundances because of the closed form update equation 625

in the M step. An interesting fact is that γnjk measures the 626

closeness of estimated endmembers to clusters centers, hence 627
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Fig. 4. Unsupervised synthetic dataset. (a) and (b) are abundance maps
for two images. (c) shows original spectra from the ASTER library.
(d) and (e) show the color images.

may provide a clue on which cluster is sampled to generate628

an endmember.629

IV. RESULTS630

In the following experiments, we implemented the algorithm631

in MATLAB® and compared the proposed GMM with NCM,632

BCM (spectral version with quadratic programming) [15] on633

synthetic and real images. As mentioned previously, for GMM,634

the original image data were projected to a subspace with635

10 dimensions to speed up the computation for abundance636

estimation.1 NCM was implemented as a supervised algorithm637

wherein we input the ground truth pure pixels (in the image638

1The code of GMM is available on GitHub (https://github.com/
zhouyuanzxcv/Hyperspectral).

Fig. 5. Histograms of pure pixels for the 4 materials (when projected to a
1-dimensional space determined by performing PCA on the pure pixels of each
material) and the ground truth and estimated distributions (also projected to
the same direction) for the first image of the unsupervised synthetic dataset.
The probability of each distribution is calculated by multiplying the value of
the density function at each bin location with the bin size.

TABLE II

L2 DISTANCE BETWEEN THE FITTED DISTRIBUTIONS (GMM, NCM)
AND THE GROUND TRUTH DISTRIBUTIONS FOR THE FIRST

IMAGE OF THE UNSUPERVISED SYNTHETIC DATASET

TABLE III

ABUNDANCE ERRORS FOR THE UNSUPERVISED SYNTHETIC DATASET

with extreme abundances), modeled them by Gaussian distri- 639

butions, and obtained the abundance maps by maximizing the 640

log-likelihood. We considered two versions of NCM, one in 641

the same subspace as GMM (referred to as NCM), the other in 642

the original spectral space (referred to as NCM without PCA). 643

Since BCM is also a supervised unmixing algorithm, ground 644

truth pure pixels were again taken as input and the results 645

were the abundance maps. For GMM and the two versions 646

of NCM, using the algorithm in Section III-G we can obtain 647

the endmembers for each pixel. All the parameters of GMM 648

(except the structure element size rse) were set to β1 = 5, 649

β2 = 5 unless specified throughout the experiments. 650

For comparison of endmember distributions, we calculated 651

the L2 distance
(∫ | f (x) − g (x) |2dx)1/2 between the fitted 652

distribution and the ground truth one, where the latter was only 653
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Fig. 6. Estimated GMM in the wavelength-reflectance space for the Pavia
University dataset. The background gray image represents the histogram
created by placing the pure pixel spectra into the reflectance bins at each
wavelength. The different colors represent different components, where the
solid curve is the center μ j k , the dashed curves are μ j k ± 2σ j kv j k (σ j k is
the square root of the large eigenvalue of � j k while v j k is the corresponding
eigenvector), and the legend shows the prior probabilities.

available for the synthetic dataset. For comparison of abun-654

dances, we calculated the root mean squared error (RMSE)655 (
1
N

∑
n |αGT

nj − αest
nj |2

)1/2
where αGT

nj are the ground truth656

abundances and αest
nj are the estimated values. Since only some657

pure pixels were identified as ground truth in the real datasets,658

we calculated error j =
(

1
|I|

∑
n∈I |αGT

nj − αest
nj |2

)1/2
given659

the pure pixel index set I. For comparison of endmembers,660

the same error formula and overall schema were used, i.e. for661

an index set I j of pure pixels for the j th endmember (in the662

real datasets), error j = 1|I j |
∑

n∈I j

(
1
B ‖mGT

nj − mest
nj ‖2

)1/2
.663

A. Synthetic Datasets664

The algorithms were tested for two cases of synthetic665

images, a supervised case and an unsupervised case.666

1) Supervised: In this case, a library of ground truth667

endmembers were input and the abundances were estimated.668

The images were of size 60 × 60 with 103 wavelengths669

from 430 nm to 860 nm (≤ 5 nm spectral resolution) and670

created with two endmember classes, meadows and painted671

metal sheets, whose spectra were drawn randomly from the672

ground truth of the Pavia University dataset (shown in Fig. 1,673

meadows have 309 samples and painted metal sheets have674

Fig. 7. Scatter plot of the Pavia University dataset with the estimated GMM.
The gray dots are the projected pixels by PCA. The darkened dots with
a color represent the ground truth pure pixels for a material. The ellipses
with the same color represent the projected Gaussian components (twice the
standard deviation along the major and minor axes, covering 86% of the total
probability mass) for one endmember.

Fig. 8. Histograms of pure pixels for the Pavia University dataset and the
estimated distributions from GMM and NCM when projected to 1 dimension.

941 samples in the ROI). Since painted metal sheets have 675

multiple modes in the distribution, it should reflect a true 676

difference between GMM and the other distributions. The 677

abundances were sampled from a Dirichlet distribution so each 678

pixel had random values. Also, an additive noise sampled from 679

N (nn |0,D) was added to the mixed spectra, where the noise 680

was assumed to be independent at different wavelengths, i.e. 681

D = diag
(
σ 2
1 , . . . , σ 2

B

)
while σk was again sampled from a 682

uniform distribution on [0, σY ]. 683

We tested the algorithms for different σY . The effects of 684

priors were all removed in this case, i.e. β1 = 0, β2 = 0. 685

Fig. 3 shows the box plots of abundance and endmember 686

errors. We can see that GMM has small errors in general for 687

different noise levels. NCM also has relatively small errors 688

in most cases, but tends to produce large errors occasionally 689
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Fig. 9. Abundance maps for the Pavia University dataset. The corresponding
endmembers from left to right are meadows, bare soil, painted metal sheets,
shadows and pavement. (a) GMM. (b) NCM. (c) NCM w/o PCA. (d) BCM.

TABLE IV

ABUNDANCE AND ENDMEMBER ERRORS FOR PAVIA UNIVERSITY

(4 out of 20 runs). NCM without PCA has very good results690

except for large noise, where it performed worst among all the691

methods. BCM has the largest errors overall. For the endmem-692

bers, although NCM or NCM without PCA sometimes has693

Fig. 10. (a) Original RGB image of the Mississippi Gulfport dataset with
selected ROI and (b) Ground truth materials in the ROI with their mean
spectra.

TABLE V

ABUNDANCE AND ENDMEMBER ERRORS FOR THE GULFPORT DATASET

less errors than GMM, the difference is less than 0.005 hence 694

negligible. 695

2) Unsupervised: We created two synthetic images in this 696

case, the first was used to validate the ability to estimate the 697

distribution parameters on scenes with regions of pure pixels, 698

the second was used to validate the segmentation strategy on 699

images with insufficient pure pixels. They were both of size 700

60 × 60 pixels and constructed from 4 endmember classes: 701

limestone, basalt, concrete, asphalt, whose spectral signatures 702

were highly differentiable. We assumed that the endmem- 703

bers were sampled from GMMs following the example in 704

Section II-C. The means of the GMMs were from the ASTER 705

spectral library [50] (see Fig. 4(c) for their spectra) with slight 706

constant changes, which determined a spectral range from 707

0.4 µm to 14 µm, re-sampled into 200 values. The covariance 708

matrices were constructed by a2j kIB + b2j ku j kuTjk where u j k 709

was a unit vector controlling the major variation direction. 710

For the first image, we assumed the 4 materials occupied the 711

4 quadrants of the square image as pure pixels. Then Gaussian 712

smoothing was applied on each abundance map to make the 713

boundary pixels of each quadrant be mixed by the neighboring 714

materials. For the second image, we made the first mater- 715

ial as background, the other materials randomly placed on 716

this background. The procedure of generating the abundance 717
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maps followed [37]: for each material (not as background),718

150 Gaussian blobs were randomly placed, whose location and719

shape width were both sampled from Gaussian distributions.720

Finally, noise produced similar to above with σY = 0.001 was721

added to the generated pixels. Fig. 4 shows the abundance722

maps, the original spectra of these materials, and the resulting723

color images by extracting the bands corresponding to wave-724

lengths 488 nm, 556 nm, 693 nm.725

The parameters of GMM were rse = 5 for the two images,726

β1 = 0.1, β2 = 0.1 for the second image. Fig. 5 shows727

the histograms of ground truth pure pixels and the estimated728

distributions for the first image. The ground truth distribution729

is barely visible as most of the time it coincides with GMM.730

For limestone and asphalt, all the distributions are similar731

since the pure pixels are generated by a unimodal Gaussian.732

However, for basalt and concrete, GMM provides a more733

accurate estimation while the two NCMs seem inferior due734

to the single Gaussian assumption. The quantitative analysis735

in Table II implies a similar result by calculating the L2736

distance between the estimated distribution and the ground737

truth.738

Table III shows the comparison of abundance errors from739

the two images. Since the second image is much more chal-740

lenging than the first one, we can expect increased errors from741

all the methods. In general, the results of BCM and the two742

NCMs show slightly inferior abundances compared to GMM743

despite the fact that they have access to pure pixels in the744

image to train their models.745

B. Pavia University746

The Pavia University dataset was recorded by the Reflective747

Optics System Imaging Spectrometer (ROSIS) during a flight748

over Pavia, northern Italy. The dimension is 340 by 610 with749

a spatial resolution of 1.3 meters/pixel. It has 103 bands with750

wavelengths ranging from 430 nm to 860 nm. As Fig. 1751

shows, the original image contains several man-made and752

natural materials. Considering that the whole dataset contains753

many different objects, we only performed experiments on754

the exemplar ROI (47 by 106) shown in Fig. 1, in which755

5 endmembers, meadows, bare soil, painted metal sheets,756

shadows and pavement, are manually identified.757

The parameter of GMM was rse = 2. Fig. 6 shows the758

GMM in the wavelength-reflectance space, where we can759

see the centers and the major variations of the Gaussians.760

Fig. 7 shows the scatter plot of the results in the projected761

space. The scatter plot shows that the identified Gaussian762

components cover the ground truth pure pixels very well. For763

painted metal sheets, which has a broad range of pure pixels,764

it estimated 4 components to cover them. For shadows, only765

one component was estimated. Fig. 8 shows the histograms766

of pure pixels and the estimated distributions of GMM and767

NCMs. We can see that GMM matches the background768

histogram better than NCMs.769

Fig. 9 shows the abundance map comparison. Comparing770

them with the ground truth shown in Fig. 1(a), we can see that771

BCM failed to estimate the pure pixels of painted metal sheets,772

although ground truth pure pixels were used for training.773

Fig. 11. Estimated GMM in the wavelength-reflectance space for the
Mississippi Gulfport dataset. The background gray image and the curves have
the same meaning as in Fig. 6.

Fig. 12. Scatter plot of the Mississippi Gulfport dataset with the estimated
GMM. The ellipses and the dots have the same meaning as in Fig. 7.

For example, the third and fourth abundance maps of BCM 774

show that the pixels in the lower part of painted metal sheets 775

are mixed with shadows, while the reduced reflectances are 776

only caused by angle variation. The result of GMM not only 777

shows sparse abundances for that region, but also interprets the 778

boundary as a combination of neighboring materials. Since this 779
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Fig. 13. Histograms of pure pixels for the Gulfport dataset and the estimated
distributions from GMM and NCM when projected to 1 dimension.

Fig. 14. Abundance maps for the Gulfport dataset. The corresponding
endmembers from left to right are asphalt, grass, shadow, tree and grey roof.
(a) GMM. (b) NCM. (c) NCM w/o PCA. (d) BCM.

dataset has a spatial spacing of 1.3 meters/pixel, we think this780

soft transition is more realistic than a simple segmentation.781

Although the results of NCMs look good in general, the abun-782

dances in a pure material region are inconsistent. The errors of783

abundances and endmembers for these algorithms are shown784

in Table IV, which implies that GMM performed best overall.785

C. Mississippi Gulfport786

The dataset was collected over the University of Southern787

Mississippis-Gulfpark Campus [51]. It is a 271 by 284 image788

with 72 bands corresponding to wavelengths 0.368 µm to789

1.043 µm. The spatial resolution is 1 meter/pixel. The scene790

contains several man-made and natural materials including 791

sidewalks, roads, various types of building roofs, concrete, 792

shrubs, trees, and grasses. Since the scene contains many 793

cloths for target detection, we tried to avoid the cloths and 794

selected a 58 by 65 ROI that contains 5 materials [52]. 795

The original RGB image and the selected ROI are shown 796

in Fig. 10(a) while the identified materials and the mean 797

spectra are shown in (b). 798

The parameter of GMM was rse = 1. Fig. 11 shows the 799

GMM result in the wavelength-reflectance space and Fig. 12 800

shows the scatter plot. We can see that the estimated Gaussian 801

components successfully cover the identified pure pixels. 802

Fig. 13 shows the estimated distributions. Although there are 803

no multiple peaks in any of the histograms, NCMs still do not 804

fit the histograms of shadow and gray roof. In contrast, GMM 805

gives a much better fit for these 2 endmember distributions. 806

Fig. 14 shows the abundance maps from different algo- 807

rithms. We can see that GMM matches the ground truth 808

in Fig. 10(b) best, followed by NCM without PCA. This is also 809

verified in the quantitative analysis in Table V. Although NCM 810

and BCM take ground truth pure pixels as input, the scattered 811

dots for trees (fourth abundance map) in both of them and the 812

incomplete region of grass for NCM (asphalt for BCM) show 813

their insufficiency in this case. 814

V. DISCUSSION AND CONCLUSION 815

In this paper, we introduced a GMM approach to represent 816

endmember variability, by observing that the identified pure 817

pixels in real applications usually can not be well fitted by a 818

unimodal distribution as in NCM or BCM. We solved several 819

obstacles in linear unmixing using this distribution, including 820

(i) deriving the conditional probability density function of 821

the mixed pixel given each endmember modeled as GMM 822

from two perspectives; (ii) estimating the abundances and 823

endmember distributions by maximizing the log-likelihood 824

with a prior enforcing abundance smoothness and sparsity; 825

(iii) estimating the endmembers for each pixel given the abun- 826

dances and distribution parameters. The results on synthetic 827

and real datasets show superior accuracy compared to current 828

popular methods like NCM, BCM. Here we have some final 829

remarks. 830

A. Complexity 831

As analyzed in Section III-F, each iteration in the estimation 832

of abundances has spatial complexity O
(|K| NB2

)
and time 833

complexity O
(|K| NB3

)
. For comparison, the implemented 834

NCM has the same complexity but with |K| = 1. For 835

the supervised synthetic dataset which contains 60 images, 836

the total running time of GMM was 9709 seconds, on a 837

desktop with a Intel Core i7-3820 CPU and 64 GB memory. 838

For comparison, the running time of NCM, NCM without 839

PCA, and BCM was 941, 50751, 62525 seconds respectively. 840

In real applications, running GMM on the Pavia University 841

and Mississippi Gulfport ROIs required 734 seconds and 842

97 seconds respectively for abundance estimation (24 seconds 843

and 17 seconds for endmember estimation), compared to 844

40 and 34 seconds from NCM, 1389 and 396 seconds from 845
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NCM without PCA, 1170 and 616 seconds from BCM. As ana-846

lyzed, the main factors affecting the efficiency of GMM and847

NCMs are |K| and B .848

B. Limitation849

The complexity analysis leads to one limitation of the850

method. That is, the complexity grows exponentially with851

increasing numbers of components. This could cause prob-852

lems for a large amount of pure pixels. To overcome this853

shortcoming, there are some empirical workarounds, such as854

reducing the number of components by introducing thresh-855

olds, or reducing the number of pure pixels to a fixed number856

by random sampling. Another limitation is that the proposed857

unsupervised version assumes presence of regions of pure858

pixels, which mostly happens in urban scenes. For scenes with859

a lot of mixed pixels, this assumption may not hold. Note that860

unsupervised unmixing is a very challenging problem. The861

previous works for this problem all assume several properties862

on the abundances and endmembers [21]–[23]. Hence, this863

limitation exists more or less in all the works on this problem.864

Finally, the method was only evaluated on real urban datasets865

with only ground truth on pure pixels: it is therefore unclear866

if the abundance estimation on mixed pixels is also accurate.867

This is due to lack of datasets and ground truth in the868

hyperspectral community. We plan to validate it on a more869

comprehensive dataset given in [31] in the future.870

C. Future Work871

The proposed GMM formulation has several applications872

that we can investigate in the future. First, in target detection,873

endmember variability may interfere with the target as well as874

the background [53]. By modeling the target or the background875

as spectra sampled from GMM distributions, we may devise876

more sophisticated and accurate target detection algorithms.877

Second, in fusion of hyperspectral and multispectral images,878

the LMM is usually used to overcome the underdetermined879

nature of the problem [54], [55]. However, the LMM does880

not hold in real scenarios as shown in this work. If we use881

the LMM with endmember variability, which is modeled by882

samples from GMM distributions, we may have a fusion883

algorithm that better fits the data. Finally, in estimating the884

noise or intrinsic dimension of hyperspectral images, simulated885

data are generated to quantify the results [46]. When these886

simulated data are created, usually the LMM is used without887

considering the endmember variability. Using the GMM for-888

mulation, we may generate distinct endmembers for each pixel889

and create more realistic synthetic data.890
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A Gaussian Mixture Model Representation
of Endmember Variability in

Hyperspectral Unmixing
Yuan Zhou , Student Member, IEEE, Anand Rangarajan, Member, IEEE, and Paul D. Gader, Fellow, IEEE

Abstract— Hyperspectral unmixing while considering end-1

member variability is usually performed by the normal composi-2

tional model, where the endmembers for each pixel are assumed3

to be sampled from unimodal Gaussian distributions. However,4

in real applications, the distribution of a material is often not5

Gaussian. In this paper, we use Gaussian mixture models (GMM)6

to represent endmember variability. We show, given the GMM7

starting premise, that the distribution of the mixed pixel (under8

the linear mixing model) is also a GMM (and this is shown from9

two perspectives). The first perspective originates from random10

variable transformations and gives a conditional density function11

of the pixels given the abundances and GMM parameters.12

With proper smoothness and sparsity prior constraints on the13

abundances, the conditional density function leads to a standard14

maximum a posteriori (MAP) problem which can be solved using15

generalized expectation maximization. The second perspective16

originates from marginalizing over the endmembers in the GMM,17

which provides us with a foundation to solve for the endmembers18

at each pixel. Hence, compared to the other distribution based19

methods, our model can not only estimate the abundances and20

distribution parameters, but also the distinct endmember set for21

each pixel. We tested the proposed GMM on several synthetic22

and real datasets, and showed its potential by comparing it to23

current popular methods.24

Index Terms— Endmember extraction, endmember variability,25

hyperspectral image analysis, linear unmixing, Gaussian mixture26

model.27

I. INTRODUCTION28

THE formation of hyperspectral images can be simplified29

by the linear mixing model (LMM), which assumes that30

the physical region corresponding to a pixel contains several31

pure materials, so that each material contributes a fraction of32

its spectra based on area to the final spectra of the pixel.33

Hence, the observed spectra yn ∈ R
B , n = 1, . . . , N (B is34

the number of wavelengths and N is the number of pixels)35

is a (non-negative) linear combination of the pure material36
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(called endmember) spectra m j ∈ R
B , j = 1, . . . , M (M is 37

the number of endmembers), i.e. 38

yn =
M∑

j=1

m jαnj + nn, s.t. αnj ≥ 0,

M∑

j=1

αnj = 1, (1) 39

where αnj is the proportion (called abundance) for the j th 40

endmember at the nth pixel (with the positivity and sum- 41

to-one constraint) and nn ∈ R
B is additive noise. Here, 42

the endmember set
{
m j : j = 1, . . . , M

}
is fixed for all the 43

pixels. This model simplifies the unmixing problem to a matrix 44

factorization one, leading to efficient computation and simple 45

algorithms such as iterative constrained endmembers (ICE), 46

vertex component analysis (VCA), piecewise convex multiple- 47

model endmember detection (PCOMMEND) [1]–[3] etc., 48

which receive comprehensive reviews in [4] and [5]. 49

However, in practice the LMM may not be valid in many 50

real scenarios. Even for a pure pixel that only contains one 51

material, its spectrum may not be consistent over the whole 52

image. This is due to several factors such as atmospheric 53

conditions, topography and intrinsic variability. For exam- 54

ple, in vegetation, multiple scattering and biotic variation 55

(e.g. differences in biochemistry and water content) cause 56

different reflectances among the same species. For urban 57

scenes, the incidence and emergence angles could be different 58

for the same roof, causing different reflectances. For minerals, 59

the spectroscopy model developed by Hapke also considers 60

the porosity and roughness of the material as variable [6]. 61

In the first and third example above, Eq. (1) can be 62

generalized to a more abstract form yn = F
({

m j , αnj : 63

j = 1, . . . M
})

, which leads to nonlinear mixing models. 64

For example, Halimi et al. [7] used bilinear models to handle 65

the vegetation case, which was also investigated using several 66

different nonlinear functions [8]. In [9], the Hapke model was 67

used to model intimate interaction among minerals. There 68

are also works that use kernels for flexible nonlinear mix- 69

ing [10], [11]. A panoply of nonlinear models can be found 70

in the review article [12]. We note that in these models, 71

a fixed endmember set is still assumed while using a more 72

complicated unmixing model. 73

While nonlinear models abound lately, it is still difficult to 74

account for all the scenarios. On the contrary, the LMM still 75

has physical significance with the intuitive area assumption. 76

To model real scenarios more accurately, researchers have 77

1057-7149 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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taken another route by generalizing Eq. (1) to78

yn =
M∑

j=1

mnj αnj + nn, (2)79

where
{
mnj ∈ R

B : j = 1, . . . , M
}
, n = 1, . . . , N could be80

different for each n, i.e. the endmember spectra for each pixel81

could be different. This is called endmember variability, and82

has also received a lot of attention in the community [13], [14].83

Note that given {yn}, inferring
{
mnj , αnj

}
is a much more84

difficult problem than inferring
{
m j , αnj

}
in Eq. (1). Hence,85

in many papers
{
mnj

}
are assumed to be from a spectral86

library, which is usually called supervised unmixing [15]–[17].87

On the other hand, if the endmember spectra are to be88

extracted from the image, we call them unsupervised unmix-89

ing models [18]–[20]. Obviously, unsupervised unmixing90

is more challenging than its supervised counterpart and91

hence more assumptions are used in this case, such as the92

spatial smoothness of abundances and endmember variabil-93

ity [21]–[23], small mutual distance between the endmem-94

bers [22], small magnitude or spectral smoothness of the95

endmember variability [22], [23].96

We can also categorize the papers on endmember variability97

by how this variability is modeled. In the review paper [14],98

it can be modeled as a endmember set [17], [20] or as a distri-99

bution [24]–[26]. One of the widely used set based methods is100

multiple endmember spectral mixture analysis (MESMA) [17],101

which tries every endmember combination and selects the102

one with the smallest error. There are many variations to103

the original MESMA. For example, the multiple-endmember104

linear spectral unmixing model (MELSUM) solves the linear105

equations directly using the pseudo-inverse and discards the106

solutions with negative abundances [27]; automatic Monte107

Carlo unmixing (AutoMCU) picks random combinations for108

unmixing and averages the resulting abundances as the final109

results [28], [29]. Besides MESMA variants, there are also110

many other set based methods. For example, endmember111

bundles form bundles from automated extracted endmembers,112

take minimum and maximum abundances from bundle based113

unmixing, and average them as final abundances [20]; sparse114

unmixing imposes a sparsity constraint on the abundances115

based on endmembers composed of all spectra from the116

spectral library [30]. A comprehensive review can be found117

in [13] and [14]. One disadvantage of set based methods is118

that their complexity increases exponentially with increasing119

library size hence in practice a laborious library reduction120

approach may be required [31].121

The distribution based approaches assume that the endmem-122

bers for each pixel are sampled from probability distributions123

[e.g. Gaussian, a.k.a. normal compositional model (NCM)],124

and hence embrace large libraries while being numerically125

tractable [15], [32]. Here, we give an overview of NCM126

because of its simplicity and popularity [16], [18], [19].127

Suppose the jth endmember at the nth pixel follows a Gaussian128

distribution p
(
mnj

) = N (
mnj |μ j ,� j

)
where μ j ∈ R

B and129

� j ∈ R
B×B , and the additive noise also follows a Gaussian130

distribution p (nn) = N (nn|0, D) where D is the noise131

covariance matrix. The random variable transformation (r.v.t.)132

Fig. 1. (a) Original Pavia University image and selected ROI with its ground
truth image. (b) Mean spectra of the identified 5 endmembers and histograms
of meadows and painted metal sheets (shadow is termed as endmember to
conform with the LMM though the area under shadow can be any material).
PCA is used to project the multidimensional pixels to single values which are
counted in the histograms. Although the histogram of meadows may appear
to be a Gaussian distribution, that of painted metal sheets is obviously neither
a unimodal Gaussian or Beta distribution.

(2) suggests that the probability density function of yn can be 133

derived as 134

p (yn|αn,�, D) = N


yn|
M∑

j=1

αnj μ j ,

M∑

j=1

α2
nj � j + D



, (3) 135

where αn := [αn1, . . . , αnM ]T , � := {
μ j ,� j : j = 136

1, . . . , M
}
. The conditional density function in (3) is usu- 137

ally embedded in a Bayesian framework such that we can 138

incorporate priors and also estimate hyperparameters. Then, 139

NCM uses different optimization approaches, e.g. expectation 140

maximization [32], sampling methods [18], [19], [25], par- 141

ticle swarm optimization [24], to determine the parameters 142{
μ j ,� j

}
and

{
αnj

}
. 143

There are few papers that use other distributions. In [15], X. 144

Du et al. note that the Gaussian distribution may allow 145

negative values which are not realistic. In addition, the real 146

distribution may be skewed. Hence, they introduce a Beta com- 147

positional model (BCM) to model the variability. The problem 148

is that the true distribution may not be well approximated 149

by any unimodal distribution. Consider the Pavia University 150

dataset shown in Fig. 1, where the multidimensional pixels 151

are projected to one dimension to afford better visualiza- 152

tion. Among the manually identified materials, we can see 153

that although the histogram of meadows may look like a 154

Gaussian distribution, that of painted metal sheets has multiple 155

peaks and cannot be approximated by either a Gaussian or 156
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Fig. 2. Comparison of the mechanisms among LMM, NCM and GMM. We have 3 endmembers represented by the darken gray areas. LMM tries to find a
set of endmembers that fit the pixel data. NCM tries to find a set of Gaussian centers that fit the pixel data, with error weighted by the covariance matrices.
GMM tries to find Gaussian centers such that all their linear combinations fit the pixel data, with each weighted by the prior πk. We may use 6 endmembers
with NCM, but then the prior information is lost.

Beta distribution. This is due to different angles of these sheets157

on the roof. Since each piece of metal sheet is tilted, it forms158

a cluster of reflectances which contributes to a peak in the159

histogram. This example shows that we should use a more160

flexible distribution to represent the endmember variability.161

In this paper, we use a mixture of Gaussians to approx-162

imate any distribution that an endmember may exhibit,163

and solve the LMM by considering endmember variability.164

In a nutshell, the Gaussian mixture model (GMM) mod-165

els p
(
mnj

)
by a mixture of Gaussians, say p

(
mnj

) =166

∑
k π j kN

(
mnj |μ j k,� j k

)
, and then obtains the distribution167

of yn by the r.v.t. (2), which turns out to be another mixture168

of Gaussians and can be used for inference of the unknown169

parameters. Here, we briefly explain how GMM works intu-170

itively by comparing it to the NCM with the details given later.171

The maximum likelihood estimate (MLE) of NCM (using (3))172

aims to find
{
μ j

}
such that its linear combination matches yn .173

Contrary to NCM, GMM aims to find
{
μ j k

}
such that all of174

its linear combinations match yn . Suppose we have μ11, μ21,175

μ22, μ31, μ32, μ33: then there are 6 combinations as explained176

in Fig. 2, but with emphasis weighted by
{
π j k

}
which deter-177

mines the prior probability of each linear combination.178

Based on the GMM formulation, we propose a super-179

vised version and an unsupervised version for unmixing. The180

supervised version takes a library as input and estimates the181

abundances. The unsupervised version assumes that there are182

regions of pure pixels, hence segments the image first to get183

pure pixels and then performs unmixing. Another advantage184

over the other distribution based methods is that we can also185

estimate the endmembers for each pixel, which is not achiev-186

able by NCM or BCM. Note that estimating endmembers187

for each pixel is generally common in non-distribution meth-AQ:1 188

ods, both from the signal processing community [21]–[23]189

or the remote sensing community [17], [27]. But it is190

often achieved in the context of least-squares based unmix-191

ing [33]–[35], unlike what we propose here using distribution192

based unmixing.193

Notation: As usual, N (x|μ,�) denotes the multivariate194

Gaussian density function with center μ and covariance195

matrix �. Let A ∈ R
m×n be a matrix with m rows and196

n columns. The Hadamard product of two matrices (elemen-197

twise multiplication) is denoted by ◦ while the Kronecker198

product is denoted by ⊗. (A) j k denotes the element at the 199

jth row and kth column of matrix A. (A) j denotes the jth 200

row of A transposed (treating A as a vector), i.e. for A = 201

[a1, . . . an]T , (A) j = a j . vec (A) denotes the vectorization of 202

A, i.e. concatenating the columns of A. δ j k = 1 when j = k 203

and 0 otherwise. Ex ( f (x)) is the expected value of f (x) 204

given random variable x. We use i = √−1 instead of as an 205

index throughout the paper. 206

II. MATHEMATICAL PRELIMINARIES 207

A. Linear Combination of GMM Random Variables 208

To use the Gaussian mixture model to model endmember 209

variability, we start by assuming that mnj follows a Gaussian 210

mixture model (GMM) and the noise also follows a Gaussian 211

distribution. The distribution of yn is obtained using the 212

following theorem. 213

Theorem 1: If the random variable mnj has a density 214

function 215

p
(
mnj |�

) := fm j

(
mnj

) =
K j∑

k=1

π j kN
(
mnj |μ j k,� j k

)
, (4) 216

s.t. π j k ≥ 0,
∑K j

k=1 π j k = 1, with K j being the number of 217

components, π j k (μ j k ∈ R
B or � j k ∈ R

B×B) being the weight 218

(mean or covariance matrix) of its kth Gaussian compo- 219

nent, � := {
π j k,μ j k,� j k : j = 1, . . . , M, k = 1, . . . , K j

}
, 220{

mnj : j = 1, . . . , M
}

are independent, and the random vari- 221

able nn has a density function p (nn) := N (nn |0, D), then the 222

density function of yn given by the r.v.t. yn = ∑M
j=1 mnjαnj + 223

nn is another GMM 224

p (yn|αn,�, D) =
∑

k∈K
πkN

(
yn|μnk,�nk

)
, (5) 225

where K := {1, . . . , K1}× {1, . . . , K2}× · · ·× {1, . . . , KM } is 226

the Cartesian product of the M index sets, k := (k1, . . . kM ) ∈ 227

K, πk ∈ R, μnk ∈ R
B, �nk ∈ R

B×B are defined by 228

πk :=
M∏

j=1

π j k j , μnk :=
M∑

j=1

αnj μ j k j
, 229

�nk :=
M∑

j=1

α2
nj � j k j + D. (6) 230
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The proof is detailed using a characteristic function (c.f.)231

approach.232

We first consider the distribution of the intermediate variable233

zn = ∑M
j=1 mnjαnj . The c.f. of fm j in (4), φm j (t) : R

B → C,234

is given by235

φm j (t) = Em j

(
eitT x

)
=
∫

RB
eitT x fm j (x) dx236

=
K j∑

k=1

π j k

∫

RB
eitT xN (

x|μ j k,� j k
)

dx237

=
K j∑

k=1

π j kφ j k (t), (7)238

where φ j k (t) denotes the c.f. of the Gaussian distribution239

N (
x|μ j k,� j k

)
as240

φ j k (t) := exp

(
i tT μ j k − 1

2
tT � j kt

)
. (8)241

Assuming mn1, . . . , mnM are independent, we can obtain the242

c.f. of the linear combination of these mnj by multiplying243

(7) as244

φzn (t)245

= φmn1αn1+···+mnM αnM (t) =
M∏

j=1

φm j

(
αnj t

)
246

=
K1∑

k1=1

· · ·
KM∑

kM =1

π1k1 · · ·πMkM φ1k1 (αn1t) · · · φMkM (αnM t).247

Let K, k, πk be defined as in Theorem 1. We can write the248

above multiple summations in an elegant way:249

φzn (t) =
∑

k∈K
πkφnk (t), (9)250

where πk ≥ 0,
∑

k∈K πk = 1 and251

φnk (t) := φ1k1 (αn1t) · · · φMkM (αnM t)252

= exp




i tT




M∑

j=1

αnj μ j k j



− 1

2
tT




M∑

j=1

α2
nj � j k j



 t




,253

where (8) is used. Since φnk (t) also has a form of c.f. of a254

Gaussian distribution, the corresponding distribution turns out255

to be N
(

x|∑ j αnjμ j k j
,
∑

j α2
nj � j k j

)
. Hence, the distribu-256

tion of zn can be obtained by the Fourier transform of (9)257

fzn (zn) = 1

(2π)B

∫

RB
e−itT zn φzn (t) dt258

= 1

(2π)B

∫

RB
e−itT zn

∑

k∈K
πkφnk (t) dt259

=
∑

k∈K
πkN



zn |
M∑

j=1

αnjμ j k j
,

M∑

j=1

α2
nj � j k j



, (10)260

which is still a mixture of Gaussians.261

After finding the distribution of the linear combination,262

we can add the noise term to find the distribution of yn .263

Suppose the noise also follows a Gaussian distribution,264

p (nn) := fnn (nn) = N (nn |0, D) , where D is the noise 265

covariance matrix. We assume that the noise at different 266

wavelengths is independent (σ 2
k being the noise variance of 267

the kth band), i.e. D = diag
(
σ 2

1 , σ 2
2 , . . . , σ 2

B

) ∈ R
B×B (if it is 268

not independent, the noise can actually be easily whitened to 269

be independent as in [36]). Its c.f. has the following form 270

φnn (t) = exp

(
−1

2
tT Dt

)
(11) 271

by (8). Then the c.f. of yn can be obtained by multiplying (9) 272

and (11) (as zn and nn are independent) 273

φyn (t) = φzn (t) φnn (t) =
∑

k∈K
πkφnn (t) φnk (t) 274

=
∑

k∈K
πk exp

{
i tT μnk − 1

2
tT �nkt

}
, 275

where μnk and �nk are defined in (6). Finally, the distribution 276

of y can be shown to be (5) by the Fourier transform again as 277

in (10). 278

If K = {1} × {1} × · · · × {1}, i.e. each endmember has only 279

one Gaussian component, we have π11 = 1, . . . , πM1 = 1, 280

then πk = π11 · · ·πM1 = 1. The distribution of yn becomes 281

p (yn|αn,�, D) = N


yn|
M∑

j=1

αnj μ j1,

M∑

j=1

α2
nj� j1 + D



, 282

(12) 283

which is exactly the NCM in (3). 284

B. Another Perspective 285

Theorem 1 obtains the density of each pixel by directly 286

performing a r.v.t. based on the LMM, which can be 287

used to estimate the abundances and distribution parameters. 288

Here, we will obtain the density from another perspective, 289

which provides a foundation to estimate the endmembers for 290

each pixel. Again, let the noise follow the density function 291

p (nn) := N (nn|0, D). Considering
{
mnj

}
and

{
αnj

}
as fixed 292

values, the r.v.t. yn = ∑
j mnjαnj +nn implies that the density 293

of yn is given by 294

p (yn|αn, Mn, D) = N


yn|
∑

j

mnjαnj , D



 (13) 295

where Mn = [mn1, . . . , mnM ]T ∈ R
M×B are the endmembers 296

for the nth pixel. We have the following theorem which gives 297

the same result as in Theorem 1. 298

Theorem 2: If the random variables
{
mnj : j = 1, . . . , M

}
299

follow GMM distributions 300

p
(
mnj |�

) :=
K j∑

k=1

π j kN
(
mnj |μ j k,� j k

)
, 301

and they are independent, i.e. 302

p (Mn |�) =
M∏

j=1

p
(
mnj |�

)
, (14) 303
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TABLE I

VALUES FOR THE VARIOUS QUANTITIES IN THE SIMPLE EXAMPLE

then the conditional density p (yn |αn,�, D) obtained by mar-304

ginalizing Mn in p (yn, Mn |αn,�, D) has the same form as305

in Theorem 1:306

p (yn|αn,�, D) =
∫

p (yn|αn, Mn , D) p (Mn |�) dMn307

=
∑

k∈K
πkN

(
yn|μnk,�nk

)
,308

where p (yn|αn, Mn , D) = N
(

yn|∑ j mnjαnj , D
)

.309

The proof is much more complicated (in terms of algebra) and310

therefore relegated to the supplemental material of the paper.311

C. An Example312

We give an example to illustrate the basic idea of this313

paper. Suppose we have M = 4 endmembers with K1 = 1,314

K2 = 2, K3 = 3, K4 = 1. Their distributions follow (4) with315

μ j k,� j k , j = 1, 2, 3, 4, k = 1, ..., K j . Let the weights of316

these components be π11 = π41 = 1, π21 = 0.3, π22 = 0.7,317

π31 = 0.2, π32 = 0.4, π33 = 0.4. Then, K has 6 entries318

from the Cartesian product, {1} × {1, 2} × {1, 2, 3} × {1}.319

We list the values for πk, μnk in Table I. For example, for320

k = (1, 2, 3, 1), πk = π11π22π33π41 = 0.28. The value of321

μnk is a linear combination of μ j k (pick one component for322

each j ) based on the configuration k. Hence, the distribution323

of yn in (5) is a Gaussian mixture of 6 components with πk,324

μnk given in Table I (�nk can be derived similar to μnk).325

Recalling the intuition in Fig. 2, we will show that applying326

it to hyperspectral unmixing will force each pixel to match all327

the μnks, but with emphasis determined by πnk.328

III. GAUSSIAN MIXTURE MODEL FOR329

ENDMEMBER VARIABILITY330

A. The GMM for Hyperspectral Unmixing331

Based on the analysis in Section II, we can model the332

conditional distribution of all the pixels Y := [
y1, . . . , yN

]T ∈333

R
N×B given all the abundances A := [α1, . . . ,αN ]T ∈ R

N×M
334

(αn := [αn1, . . . , αnM ]T ) and GMM parameters, which leads335

to a maximum a posteriori (MAP) problem. Using the result336

in (5) and assuming the conditional distributions of yn are337

independent, the distribution of Y given A,�, D becomes338

p (Y|A,�, D) =
N∏

n=1

p (yn|αn,�, D). (15)339

Based on the hyperspectral unmixing context, we can set340

the priors for A. Suppose we use the same prior on A341

as in [37], i.e. 342

p (A) ∝ exp

{
−β1

2
Tr
(

AT LA
)

+ β2

2
Tr
(

AT A
)}

343

= exp

{
−β1

2
Tr
(

AT KA
)}

, (16) 344

where L is a graph Laplacian matrix constructed from 345

wnm , n, m = 1, . . . , N with wnm = e−‖yn−ym‖2/2Bη2
for 346

neighboring pixels and 0 otherwise. We have Tr
(
AT LA

) = 347

1
2

∑
n,m wnm‖αn − αm‖2), K = L − β2

β1
IN (suppose β1 
= 0) 348

with β1 controlling smoothness and β2 controlling sparsity of 349

the abundance maps. 350

From the conditional density function and the priors, Bayes’ 351

theorem says the posterior is given by 352

p (A,�|Y, D) ∝ p (Y|A,�, D) p (A) p (�), (17) 353

where p (�) is assumed to follow a uniform distribu- 354

tion. Maximizing p (A,�|Y, D) is equivalent to minimizing 355

− log p (A,�|Y, D), which reduces to the following form by 356

combining (5), (15), (16) and (17): 357

E (A,�) = −
N∑

n=1

log
∑

k∈K
πkN

(
yn|μnk,�nk

) + Eprior(A), 358

s.t. πk ≥ 0,
∑

k∈K
πk = 1, αnj ≥ 0,

M∑

j=1

αnj = 1, ∀n (18) 359

where Eprior(A) = β1
2 Tr

(
AT KA

)
, and μnk,�nk are defined 360

in (6). 361

B. Relationships to Least-Squares, NCM, and MESMA 362

Let us focus on the first term in (18) and call it the 363

data fidelity term. We can relate it to NCM and the least- 364

squares term
∑

n ‖yn − ∑
j αnj m j ‖2 as used in previous 365

research. The data fidelity term in NCM follows (3) and is 366

based on minimizing the negative log-likelihood 367

− log p (Y) = − log
N∏

n=1

p (yn) = −
N∑

n=1

logN (
yn|μn1,�n1

)
368

(19) 369

by assuming yns are independent, where μn1 := ∑
j αnj μ j , 370

�n1 := ∑
j α2

nj � j + σ 2IB . Expanding (19) using the form of 371

the Gaussian distribution leads to the objective function 372

N∑

n=1

log |�n1| +
N∑

n=1

(
yn − μn1

)T
�−1

n1

(
yn − μn1

)
. (20) 373

We can see that the least-squares minimization is a special case 374

of NCM with ‖� j ‖F → 0, i.e. when there is little endmember 375

variability. 376

The proposed GMM further generalizes NCM from a sta- 377

tistical perspective. Since π j k represents the prior probability 378

of the latent variable in a GMM, πk represents the prior 379

probability of picking a combination. If we see k as a (discrete) 380

random variable whose sample space is K, (5) can be seen as 381

p (yn|αn,�, D) =
∑

k∈K
p (k) p (yn |k,αn,�, D), 382
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where p (k) = πk and p (yn|k,αn,�, D) = N (
yn|383

μnk,�nk
)
. From this perspective, each pixel is generated384

by first sampling k, then sampling a Gaussian distribution385

determined by k,�. Unlike NCM that tries to make each yn386

close to μn1 which is a linear combination of a fixed set
{
μ j

}
,387

GMM further generalizes it by trying to make yn close to every388

μnk which are all the possible linear combinations of
{
μ j k

}
.389

It makes sense that the summation in (18) is weighted by πk in390

a way that if one combination has a high probability to appear,391

i.e. πk is larger for a certain k, the effort is biased to make392

yn closer to this particular μnk. Fig. 2 shows the differences393

among these.394

The widely adopted MESMA takes a library of endmember395

spectra as input, tries all the combinations and pick the396

combination with least reconstruction error. The philosophy397

is similar to our model despite the fundamental difference398

that MESMA is explicit whereas we are implicit in terms399

of linear combinations. Compared to MESMA, the GMM400

approach separates the library into M groups where each group401

represents a material and is clustered into several centers, such402

that the combination can only take place by picking one center403

from each group. Also, the size of each cluster affects the404

probability of picking its center. Hence, our model can adapt405

to very large library sizes as long as the number of clusters406

does not increase too much.407

C. Optimization408

Estimating the parameters of GMMs has been studied exten-409

sively, from early expectation maximization (EM) from the410

statistical community to projection based clustering from the411

computer science community [38], [39]. There are simple and412

deterministic algorithms, which usually require the centers of413

Gaussian be separable. However, we face a more challenging414

problem since each pixel is generated by a different GMM415

determined by the coefficients αn . Since EM can be seen as416

a special case of Majoriziation-Minimization algorithms [40],417

which is more flexible, we adopt this approach. Considering418

that we have too many parameters A,� to update in the M419

step, they are updated sequentially as long as the complete420

data log-likelihood increases. This is also called generalized421

expectation maximization (GEM) [41].422

Following the routine of EM, the E step calculates the423

posterior probability of the latent variable given the observed424

data and old parameters425

γnk = πkN
(
yn|μnk,�nk

)
∑

k∈K πkN
(
yn|μnk,�nk

) . (21)426

The M step usually maximizes the expected value of the427

complete data log-likelihood. Here, we have priors in the428

Bayesian formulation. Hence, we need to minimize429

EM = −
N∑

n=1

∑

k∈K
γnk

{
log πk + logN (

yn |μnk,�nk
)}+Eprior.430

(22)431

This leads to a common update step for πk as432

πk = 1

N

N∑

n=1

γnk. (23)433

We now focus on updating
{
μ j k,� j k

}
and A. To achieve this, 434

we require the derivatives of EM in (22) w.r.t. μ j k,� j k, αnj . 435

After some tedious algebra using (6), we get 436

∂EM

∂μ j l
= −

N∑

n=1

∑

k∈K
δlk j αnjλnk (24) 437

∂EM

∂� j l
= −

N∑

n=1

∑

k∈K
δlk j α

2
nj�nk, (25) 438

∂EM

∂αnj
= −

∑

k∈K
λT

nkμ j k j
− 2αnj

∑

k∈K
Tr
(
�T

nk� j k j

)
439

+ β1 (KA)nj , (26) 440

where λnk ∈ R
B×1 and �nk ∈ R

B×B are given by 441

λnk = γnk�−1
nk

(
yn − μnk

)
, (27) 442

�nk = 1

2
γnk�−T

nk

(
yn − μnk

) (
yn − μnk

)T
�−T

nk − 1

2
γnk�−T

nk . 443

(28) 444

It is better to represent the derivatives in matrix forms for the 445

sake of implementation convenience. Considering the multiple 446

summations in (24), (25) and (26), we can write them as 447

∂EM

∂μ j l
= −

∑

k∈K
δlk j

(
AT �k

)

j
, (29) 448

∂EM

∂vec
(
� j l

) = −
∑

k∈K
δlk j

(
(A ◦ A)T �k

)

j
, (30) 449

∂EM

∂A
= −

∑

k∈K
�kRT

k −2A ◦
∑

k∈K
�kST

k +β1KA, (31) 450

where �k ∈ R
N×B , �k ∈ R

N×B2
denote the matrices formed 451

by {λnk,�nk} as follows 452

�k := [λ1k,λ2k, . . . ,λNk]T , 453

�k := [vec (�1k) , vec (�2k) , . . . , vec (�Nk)]T , 454

and Rk ∈ R
M×B , Sk ∈ R

M×B2
are defined by 455

Rk := [
μ1k1

,μ2k2
, . . . ,μMkM

]T
, (32) 456

Sk := [
vec

(
�1k1

)
, vec

(
�2k2

)
, . . . , vec

(
�MkM

)]T
. (33) 457

The minimum of EM corresponds to ∂EM
∂μ jl

= 0, ∂EM
∂� jl

= 0, 458

and ∂EM
∂A = 0 if the optimization problem is unconstrained. 459

However, since we have the non-negativity and sum-to-one 460

constraint to αnj and positive definite constraint of � j k , 461

minimizing EM is very difficult. Therefore, in each M step, 462

we only decrease this objective function by projected gradient 463

descent (please see [42 and 43, Sec. 2.3]) using (29), (30) 464

and (31), where the projection functions for A and
{
� j k

}
are 465

the same as in [37]. 466

Finally, from the estimated πk, we can recover the sets of 467

weights as π j l = ∑
k∈K δlk j πk. 468

D. Model Selection 469

The number of components K j can be specified or esti- 470

mated from the data. For the latter case, we have some 471

pure pixels and estimate K j by deploying a standard 472
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model selection method. Suppose we have N j pure pixels473

Y j :=
[
y j

1, y j
2, . . . , y j

N j

]T ∈ R
N j ×B for the jth endmember,474

fm j

(
y|� j

)
is the estimated density function with � j :=475 {

π j k,μ j k,� j k : k = 1, . . . , K j
}
, gm j (y) is the true density476

function. The information criterion based model selection477

approach tries to find K j that minimizes their difference, e.g.478

the Kullback-Leibler (KL) divergence479

DKL
(
gm j ‖ fm j

) =
∫

RB
gm j (y) log

gm j (y)

fm j

(
y|� j

)dy480

≈ − 1

N j

N j∑

n=1

log fm j

(
y j

n |� j

)
+ const,481

where the approximation of
∫

gm j (y) log fm j

(
y|� j

)
dy by482

the log-likelihood is usually biased as the empirical distribu-483

tion function is closer to the fitted distribution than the true484

one. Akaike’s information criterion is one way to approximate485

the bias. Here, we use the cross-validation-based information486

criterion (CVIC) to correct for the bias [44], [45]. Let487

LY j

(
� j

) =
N j∑

n=1

log fm j

(
y j

n|� j

)
. (34)488

The V -fold cross validation (we use V = 5 here) divides the489

input set Y j into V subsets
{

Y1
j , Y2

j , . . . , YV
j

}
with equal490

sizes. Then for each subset Yv
j , v = 1, . . . , V , the remaining491

data are used to replace Y j in (34) such that (34) is maximized492

by �v
j . Then LK j = ∑

v LYv
j

(
�v

j

)
is evaluated and the493

optimal K̂ j = arg maxK j LK j .494

E. Implementation Details495

The algorithm can be implemented in a supervised or unsu-496

pervised manner. In both cases, because of the large compu-497

tational cost, we project the pixel data to a low dimensional498

space by principal component analysis (PCA) and perform499

the optimization, the result then projected back to the original500

space. Let E ∈ R
B×d be the projection matrix and c ∈ R

B be501

the translation vector, then502

ET (yn − c) =
M∑

j=1

ET (
mnj − c

)
αnj + ET nn .503

This means that for the projected pixels, the j th endmember504

m′
nj = ET

(
mnj − c

)
follows a distribution505

p
(

m′
nj |�

)
=

K j∑

k=1

π j kN
(

m′
nj |ET (

μ j k − c
)
, ET � j kE

)
506

and the noise n′
n = ET nn follows N (

n′
n|0, ET DE

)
.507

In the supervised unmixing scenario, we assume that a508

library of endmember spectra is known. After estimating509

the number of components following Section III-D, and510

calculating � using the standard EM algorithm, we only511

need to update γnk by (21) and A by (31) with πk, μ j k512

and � j k fixed. The initialization of A can utilize the mul-513

tiple combinations of means. For each αn , we first set514

αnk ← (
RkRT

k + εIM
)−1

Rkyn , then project it to the simplex 515

space, and finally set αn ← αnOk with k̂ = arg mink ‖yn − 516

RT
k αnk‖2, i.e. choose the αnk that minimizes the reconstruc- 517

tion error. 518

In the unsupervised unmixing scenario, we will assume the 519

resolution is high enough such that the hyperspectral image 520

can be segmented into several regions where the interior pixels 521

in each region are pure pixels. The optimization is performed 522

in several steps, where we first obtain a segmentation result, 523

then use CVIC to determine the number of components, and 524

finally estimate A with � fixed. The details are given as 525

follows. 526

Step 1: Initialization. We start with K j = 1, ∀ j and use 527

K-means to find the initial means R1. The initial A is set to 528

A ← YRT
1

(
R1RT

1 + εIM
)−1

(by minimizing ‖Y − AR1‖2
F ), 529

then projected to the valid simplex space as in [37]. The 530

initial covariance matrices are set to � j1 ← 0.12IB , ∀ j . 531

For the noise matrix D, although there is research focused 532

on noise estimation [46], [47], endmember variability was 533

not considered and validation was performed only for the 534

simple LMM assumption. Hence, we use an empirical value 535

D = 0.0012IB , which is usually much less than the variability 536

of covariance matrices in (6). 537

Step 2: Segmentation. Given the initial conditions, we use 538

the GEM algorithm to iteratively update γnk by (21), πk 539

by (23), μ j k by (29), A by (31) while keeping � j k fixed. 540

For γnk and πk, a direct update equation is available. For 541

μ j k , we can use gradient descent. For A, since we have 542

the non-negativity and sum-to-one constraints, a projected 543

gradient descent similar to the one used in [37] can be applied. 544

To ensure a segmentation effect, a large β2 is used in this step. 545

Step 3: Model selection and abundance estimation. Using 546

the segmentation-like abundance maps from the previous step, 547

we can obtain the interior pixels Y j (assumed pure) by 548

thresholding the abundances (e.g. αnj > 0.99) and performing 549

image erosion to trim the boundaries with structure element 550

size rse (can be decreased gradually if large enough to trim 551

all the pixels). Following Section III-D, we can determine 552

the number of components K j and further calculate � j by 553

standard EM. Since β2 is relatively large in the previous step, 554

it is reduced by β2 ← ζβ2 where ζ = 0.05. Then we restart 555

the optimization to estimate the abundances with � fixed. 556

F. Complexity Analysis 557

The abundance estimation algorithm is an iterative process. 558

Since we used projected gradient descent with adaptive step 559

sizes, the number of iterations is usually not large as shown 560

in [43] and [48]. For each iteration, it starts with calcu- 561

lating μnk and �nk in (6), where storing all μnk (�nk) 562

requires O (|K| N B) (O
(|K|N B2

)
), the computation takes 563

O (|K|N M B) (O
(|K| N M B2

)
). Suppose the Cholesky fac- 564

torization and the matrix inversion of a B by B matrix 565

both take O
(
B3

)
time, and N � B > M . Evaluating 566

logN (
yn|μnk,�nk

)
by the Cholesky factorization will take 567

O
(
B3

)
, hence updating all the γnk takes O

(|K| N B3
)
, which 568

is also the required time for evaluating the objective function 569

(18). The calculation of λnk, �nk (in (27) and (28)) will be 570
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Fig. 3. Abundance and endmember error statistics from 20 synthetic images for each noise level in the supervised unmixing scenario.

dominated by the inversion of �nk which takes O
(
B3

)
, hence571

the overall calculation takes O
(|K| N B3

)
with storage the572

same as μnk and �nk. Then if we move to calculating the573

derivatives in (29), (30) and (31), it is easy to verify that574

the computational costs are O (|K| N M B), O
(|K| N M B2

)
,575

O
(|K| N M B2

)
respectively (Note that K is a banded matrix576

so the computation involving it is linear). Reviewing the above577

process, we conclude that the spatial complexity is dominated578

by O
(|K| N B2

)
and the time complexity is dominated by579

O
(|K| N B3

)
.580

G. Estimation of Endmembers for Each Pixel581

While the previous sections discuss the estimation of the582

abundances and endmember distribution parameters, they do583

not actually estimate the endmembers {mnj : n = 1, . . . , N,584

j = 1, . . . , M} for each pixel. In this Section, we will discuss585

this additional problem and note its absence in the previous586

NCM literature.587

Theorem 2 implies that we can view the proposed con-588

ditional density (5) as modeling the noise as a Gaussian589

random variable followed by marginalizing over Mn , which590

is usually achieved by the evidence approximation in the591

machine learning literature due to the intractability of the592

integral ([49, Sec. 3.5]). Since we have A,� obtained from593

the previous Sections, we can get the posterior of Mn from594

this model:595

p (Mn |yn,αn,�, D) ∝ p (yn, Mn |αn,�, D)596

= p (yn|αn, Mn, D) p (Mn |�). (35)597

Maximizing log p (Mn |yn,αn,�, D) gives us another598

minimization problem599

E (Mn) = 1

2

(
yn − MT

n αn

)T
D−1

(
yn − MT

n αn

)
600

−
M∑

j=1

log

K j∑

k=1

π j kN
(
mnj |μ j k,� j k

)
(36)601

obtained by plugging (13) and (14) into (35). Note that this 602

objective function has an intuitive interpretation as the first 603

term minimizes the reconstruction error while the second term 604

forces the endmembers close to the centers of each GMM. The 605

weight factor between the two terms is the noise. From an 606

algebraic perspective, since there are also logarithms of sums 607

of Gaussian functions in this objective, we can also use the 608

EM algorithm for ease of optimization. In the E step, the soft 609

membership is calculated by 610

γnjk = π j kN
(
mnj |μ j k,� j k

)
∑

k π j kN
(
mnj |μ j k,� j k

) , k = 1, . . . , K j . 611

In the M step, the derivative w.r.t. mnj is obtained as 612

∂E
∂mnj

= −D−1
(

yn − MT
n αn

)
αnj 613

+
K j∑

k=1

γnjk�
−1
j k

(
mnj − μ j k

)
. 614

Instead of deploying gradient descent in the M step for 615

estimating the abundances, combining the derivatives for all j 616

actually leads to a closed form solution 617

vec
(

MT
n

)
=

{
αnαT

n ⊗ D−1 + diag (Cn1, . . . , CnM )
}−1

618

{
vec

(
D−1ynα

T
n

)
+ dn

}
619

where Cnj ∈ R
B×B and dn := (

dT
n1, . . . , dT

nM

)T ∈ R
M B×1

620

are defined as 621

Cnj :=
K j∑

k=1

γnjk�
−1
j k , dnj :=

K j∑

k=1

γnjk�
−1
j k μ j k . 622

In practice, despite the need to estimate a large M × B × N 623

tensor, the time cost is actually much less than the estimation 624

of abundances because of the closed form update equation 625

in the M step. An interesting fact is that γnjk measures the 626

closeness of estimated endmembers to clusters centers, hence 627
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Fig. 4. Unsupervised synthetic dataset. (a) and (b) are abundance maps
for two images. (c) shows original spectra from the ASTER library.
(d) and (e) show the color images.

may provide a clue on which cluster is sampled to generate628

an endmember.629

IV. RESULTS630

In the following experiments, we implemented the algorithm631

in MATLAB® and compared the proposed GMM with NCM,632

BCM (spectral version with quadratic programming) [15] on633

synthetic and real images. As mentioned previously, for GMM,634

the original image data were projected to a subspace with635

10 dimensions to speed up the computation for abundance636

estimation.1 NCM was implemented as a supervised algorithm637

wherein we input the ground truth pure pixels (in the image638

1The code of GMM is available on GitHub (https://github.com/
zhouyuanzxcv/Hyperspectral).

Fig. 5. Histograms of pure pixels for the 4 materials (when projected to a
1-dimensional space determined by performing PCA on the pure pixels of each
material) and the ground truth and estimated distributions (also projected to
the same direction) for the first image of the unsupervised synthetic dataset.
The probability of each distribution is calculated by multiplying the value of
the density function at each bin location with the bin size.

TABLE II

L2 DISTANCE BETWEEN THE FITTED DISTRIBUTIONS (GMM, NCM)
AND THE GROUND TRUTH DISTRIBUTIONS FOR THE FIRST

IMAGE OF THE UNSUPERVISED SYNTHETIC DATASET

TABLE III

ABUNDANCE ERRORS FOR THE UNSUPERVISED SYNTHETIC DATASET

with extreme abundances), modeled them by Gaussian distri- 639

butions, and obtained the abundance maps by maximizing the 640

log-likelihood. We considered two versions of NCM, one in 641

the same subspace as GMM (referred to as NCM), the other in 642

the original spectral space (referred to as NCM without PCA). 643

Since BCM is also a supervised unmixing algorithm, ground 644

truth pure pixels were again taken as input and the results 645

were the abundance maps. For GMM and the two versions 646

of NCM, using the algorithm in Section III-G we can obtain 647

the endmembers for each pixel. All the parameters of GMM 648

(except the structure element size rse) were set to β1 = 5, 649

β2 = 5 unless specified throughout the experiments. 650

For comparison of endmember distributions, we calculated 651

the L2 distance
(∫ | f (x) − g (x) |2dx

)1/2
between the fitted 652

distribution and the ground truth one, where the latter was only 653
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Fig. 6. Estimated GMM in the wavelength-reflectance space for the Pavia
University dataset. The background gray image represents the histogram
created by placing the pure pixel spectra into the reflectance bins at each
wavelength. The different colors represent different components, where the
solid curve is the center μ j k , the dashed curves are μ j k ± 2σ j k v j k (σ j k is
the square root of the large eigenvalue of � j k while v j k is the corresponding
eigenvector), and the legend shows the prior probabilities.

available for the synthetic dataset. For comparison of abun-654

dances, we calculated the root mean squared error (RMSE)655 (
1
N

∑
n |αGT

nj − αest
nj |2

)1/2
where αGT

nj are the ground truth656

abundances and αest
nj are the estimated values. Since only some657

pure pixels were identified as ground truth in the real datasets,658

we calculated error j =
(

1
|I|

∑
n∈I |αGT

nj − αest
nj |2

)1/2
given659

the pure pixel index set I. For comparison of endmembers,660

the same error formula and overall schema were used, i.e. for661

an index set I j of pure pixels for the j th endmember (in the662

real datasets), error j = 1|I j |
∑

n∈I j

(
1
B ‖mGT

nj − mest
nj ‖2

)1/2
.663

A. Synthetic Datasets664

The algorithms were tested for two cases of synthetic665

images, a supervised case and an unsupervised case.666

1) Supervised: In this case, a library of ground truth667

endmembers were input and the abundances were estimated.668

The images were of size 60 × 60 with 103 wavelengths669

from 430 nm to 860 nm (≤ 5 nm spectral resolution) and670

created with two endmember classes, meadows and painted671

metal sheets, whose spectra were drawn randomly from the672

ground truth of the Pavia University dataset (shown in Fig. 1,673

meadows have 309 samples and painted metal sheets have674

Fig. 7. Scatter plot of the Pavia University dataset with the estimated GMM.
The gray dots are the projected pixels by PCA. The darkened dots with
a color represent the ground truth pure pixels for a material. The ellipses
with the same color represent the projected Gaussian components (twice the
standard deviation along the major and minor axes, covering 86% of the total
probability mass) for one endmember.

Fig. 8. Histograms of pure pixels for the Pavia University dataset and the
estimated distributions from GMM and NCM when projected to 1 dimension.

941 samples in the ROI). Since painted metal sheets have 675

multiple modes in the distribution, it should reflect a true 676

difference between GMM and the other distributions. The 677

abundances were sampled from a Dirichlet distribution so each 678

pixel had random values. Also, an additive noise sampled from 679

N (nn |0, D) was added to the mixed spectra, where the noise 680

was assumed to be independent at different wavelengths, i.e. 681

D = diag
(
σ 2

1 , . . . , σ 2
B

)
while σk was again sampled from a 682

uniform distribution on [0, σY ]. 683

We tested the algorithms for different σY . The effects of 684

priors were all removed in this case, i.e. β1 = 0, β2 = 0. 685

Fig. 3 shows the box plots of abundance and endmember 686

errors. We can see that GMM has small errors in general for 687

different noise levels. NCM also has relatively small errors 688

in most cases, but tends to produce large errors occasionally 689
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Fig. 9. Abundance maps for the Pavia University dataset. The corresponding
endmembers from left to right are meadows, bare soil, painted metal sheets,
shadows and pavement. (a) GMM. (b) NCM. (c) NCM w/o PCA. (d) BCM.

TABLE IV

ABUNDANCE AND ENDMEMBER ERRORS FOR PAVIA UNIVERSITY

(4 out of 20 runs). NCM without PCA has very good results690

except for large noise, where it performed worst among all the691

methods. BCM has the largest errors overall. For the endmem-692

bers, although NCM or NCM without PCA sometimes has693

Fig. 10. (a) Original RGB image of the Mississippi Gulfport dataset with
selected ROI and (b) Ground truth materials in the ROI with their mean
spectra.

TABLE V

ABUNDANCE AND ENDMEMBER ERRORS FOR THE GULFPORT DATASET

less errors than GMM, the difference is less than 0.005 hence 694

negligible. 695

2) Unsupervised: We created two synthetic images in this 696

case, the first was used to validate the ability to estimate the 697

distribution parameters on scenes with regions of pure pixels, 698

the second was used to validate the segmentation strategy on 699

images with insufficient pure pixels. They were both of size 700

60 × 60 pixels and constructed from 4 endmember classes: 701

limestone, basalt, concrete, asphalt, whose spectral signatures 702

were highly differentiable. We assumed that the endmem- 703

bers were sampled from GMMs following the example in 704

Section II-C. The means of the GMMs were from the ASTER 705

spectral library [50] (see Fig. 4(c) for their spectra) with slight 706

constant changes, which determined a spectral range from 707

0.4 µm to 14 µm, re-sampled into 200 values. The covariance 708

matrices were constructed by a2
j kIB + b2

j ku j kuT
jk where u j k 709

was a unit vector controlling the major variation direction. 710

For the first image, we assumed the 4 materials occupied the 711

4 quadrants of the square image as pure pixels. Then Gaussian 712

smoothing was applied on each abundance map to make the 713

boundary pixels of each quadrant be mixed by the neighboring 714

materials. For the second image, we made the first mater- 715

ial as background, the other materials randomly placed on 716

this background. The procedure of generating the abundance 717



IEE
E P

ro
of

12 IEEE TRANSACTIONS ON IMAGE PROCESSING

maps followed [37]: for each material (not as background),718

150 Gaussian blobs were randomly placed, whose location and719

shape width were both sampled from Gaussian distributions.720

Finally, noise produced similar to above with σY = 0.001 was721

added to the generated pixels. Fig. 4 shows the abundance722

maps, the original spectra of these materials, and the resulting723

color images by extracting the bands corresponding to wave-724

lengths 488 nm, 556 nm, 693 nm.725

The parameters of GMM were rse = 5 for the two images,726

β1 = 0.1, β2 = 0.1 for the second image. Fig. 5 shows727

the histograms of ground truth pure pixels and the estimated728

distributions for the first image. The ground truth distribution729

is barely visible as most of the time it coincides with GMM.730

For limestone and asphalt, all the distributions are similar731

since the pure pixels are generated by a unimodal Gaussian.732

However, for basalt and concrete, GMM provides a more733

accurate estimation while the two NCMs seem inferior due734

to the single Gaussian assumption. The quantitative analysis735

in Table II implies a similar result by calculating the L2736

distance between the estimated distribution and the ground737

truth.738

Table III shows the comparison of abundance errors from739

the two images. Since the second image is much more chal-740

lenging than the first one, we can expect increased errors from741

all the methods. In general, the results of BCM and the two742

NCMs show slightly inferior abundances compared to GMM743

despite the fact that they have access to pure pixels in the744

image to train their models.745

B. Pavia University746

The Pavia University dataset was recorded by the Reflective747

Optics System Imaging Spectrometer (ROSIS) during a flight748

over Pavia, northern Italy. The dimension is 340 by 610 with749

a spatial resolution of 1.3 meters/pixel. It has 103 bands with750

wavelengths ranging from 430 nm to 860 nm. As Fig. 1751

shows, the original image contains several man-made and752

natural materials. Considering that the whole dataset contains753

many different objects, we only performed experiments on754

the exemplar ROI (47 by 106) shown in Fig. 1, in which755

5 endmembers, meadows, bare soil, painted metal sheets,756

shadows and pavement, are manually identified.757

The parameter of GMM was rse = 2. Fig. 6 shows the758

GMM in the wavelength-reflectance space, where we can759

see the centers and the major variations of the Gaussians.760

Fig. 7 shows the scatter plot of the results in the projected761

space. The scatter plot shows that the identified Gaussian762

components cover the ground truth pure pixels very well. For763

painted metal sheets, which has a broad range of pure pixels,764

it estimated 4 components to cover them. For shadows, only765

one component was estimated. Fig. 8 shows the histograms766

of pure pixels and the estimated distributions of GMM and767

NCMs. We can see that GMM matches the background768

histogram better than NCMs.769

Fig. 9 shows the abundance map comparison. Comparing770

them with the ground truth shown in Fig. 1(a), we can see that771

BCM failed to estimate the pure pixels of painted metal sheets,772

although ground truth pure pixels were used for training.773

Fig. 11. Estimated GMM in the wavelength-reflectance space for the
Mississippi Gulfport dataset. The background gray image and the curves have
the same meaning as in Fig. 6.

Fig. 12. Scatter plot of the Mississippi Gulfport dataset with the estimated
GMM. The ellipses and the dots have the same meaning as in Fig. 7.

For example, the third and fourth abundance maps of BCM 774

show that the pixels in the lower part of painted metal sheets 775

are mixed with shadows, while the reduced reflectances are 776

only caused by angle variation. The result of GMM not only 777

shows sparse abundances for that region, but also interprets the 778

boundary as a combination of neighboring materials. Since this 779
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Fig. 13. Histograms of pure pixels for the Gulfport dataset and the estimated
distributions from GMM and NCM when projected to 1 dimension.

Fig. 14. Abundance maps for the Gulfport dataset. The corresponding
endmembers from left to right are asphalt, grass, shadow, tree and grey roof.
(a) GMM. (b) NCM. (c) NCM w/o PCA. (d) BCM.

dataset has a spatial spacing of 1.3 meters/pixel, we think this780

soft transition is more realistic than a simple segmentation.781

Although the results of NCMs look good in general, the abun-782

dances in a pure material region are inconsistent. The errors of783

abundances and endmembers for these algorithms are shown784

in Table IV, which implies that GMM performed best overall.785

C. Mississippi Gulfport786

The dataset was collected over the University of Southern787

Mississippis-Gulfpark Campus [51]. It is a 271 by 284 image788

with 72 bands corresponding to wavelengths 0.368 µm to789

1.043 µm. The spatial resolution is 1 meter/pixel. The scene790

contains several man-made and natural materials including 791

sidewalks, roads, various types of building roofs, concrete, 792

shrubs, trees, and grasses. Since the scene contains many 793

cloths for target detection, we tried to avoid the cloths and 794

selected a 58 by 65 ROI that contains 5 materials [52]. 795

The original RGB image and the selected ROI are shown 796

in Fig. 10(a) while the identified materials and the mean 797

spectra are shown in (b). 798

The parameter of GMM was rse = 1. Fig. 11 shows the 799

GMM result in the wavelength-reflectance space and Fig. 12 800

shows the scatter plot. We can see that the estimated Gaussian 801

components successfully cover the identified pure pixels. 802

Fig. 13 shows the estimated distributions. Although there are 803

no multiple peaks in any of the histograms, NCMs still do not 804

fit the histograms of shadow and gray roof. In contrast, GMM 805

gives a much better fit for these 2 endmember distributions. 806

Fig. 14 shows the abundance maps from different algo- 807

rithms. We can see that GMM matches the ground truth 808

in Fig. 10(b) best, followed by NCM without PCA. This is also 809

verified in the quantitative analysis in Table V. Although NCM 810

and BCM take ground truth pure pixels as input, the scattered 811

dots for trees (fourth abundance map) in both of them and the 812

incomplete region of grass for NCM (asphalt for BCM) show 813

their insufficiency in this case. 814

V. DISCUSSION AND CONCLUSION 815

In this paper, we introduced a GMM approach to represent 816

endmember variability, by observing that the identified pure 817

pixels in real applications usually can not be well fitted by a 818

unimodal distribution as in NCM or BCM. We solved several 819

obstacles in linear unmixing using this distribution, including 820

(i) deriving the conditional probability density function of 821

the mixed pixel given each endmember modeled as GMM 822

from two perspectives; (ii) estimating the abundances and 823

endmember distributions by maximizing the log-likelihood 824

with a prior enforcing abundance smoothness and sparsity; 825

(iii) estimating the endmembers for each pixel given the abun- 826

dances and distribution parameters. The results on synthetic 827

and real datasets show superior accuracy compared to current 828

popular methods like NCM, BCM. Here we have some final 829

remarks. 830

A. Complexity 831

As analyzed in Section III-F, each iteration in the estimation 832

of abundances has spatial complexity O
(|K| N B2

)
and time 833

complexity O
(|K| N B3

)
. For comparison, the implemented 834

NCM has the same complexity but with |K| = 1. For 835

the supervised synthetic dataset which contains 60 images, 836

the total running time of GMM was 9709 seconds, on a 837

desktop with a Intel Core i7-3820 CPU and 64 GB memory. 838

For comparison, the running time of NCM, NCM without 839

PCA, and BCM was 941, 50751, 62525 seconds respectively. 840

In real applications, running GMM on the Pavia University 841

and Mississippi Gulfport ROIs required 734 seconds and 842

97 seconds respectively for abundance estimation (24 seconds 843

and 17 seconds for endmember estimation), compared to 844

40 and 34 seconds from NCM, 1389 and 396 seconds from 845
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NCM without PCA, 1170 and 616 seconds from BCM. As ana-846

lyzed, the main factors affecting the efficiency of GMM and847

NCMs are |K| and B .848

B. Limitation849

The complexity analysis leads to one limitation of the850

method. That is, the complexity grows exponentially with851

increasing numbers of components. This could cause prob-852

lems for a large amount of pure pixels. To overcome this853

shortcoming, there are some empirical workarounds, such as854

reducing the number of components by introducing thresh-855

olds, or reducing the number of pure pixels to a fixed number856

by random sampling. Another limitation is that the proposed857

unsupervised version assumes presence of regions of pure858

pixels, which mostly happens in urban scenes. For scenes with859

a lot of mixed pixels, this assumption may not hold. Note that860

unsupervised unmixing is a very challenging problem. The861

previous works for this problem all assume several properties862

on the abundances and endmembers [21]–[23]. Hence, this863

limitation exists more or less in all the works on this problem.864

Finally, the method was only evaluated on real urban datasets865

with only ground truth on pure pixels: it is therefore unclear866

if the abundance estimation on mixed pixels is also accurate.867

This is due to lack of datasets and ground truth in the868

hyperspectral community. We plan to validate it on a more869

comprehensive dataset given in [31] in the future.870

C. Future Work871

The proposed GMM formulation has several applications872

that we can investigate in the future. First, in target detection,873

endmember variability may interfere with the target as well as874

the background [53]. By modeling the target or the background875

as spectra sampled from GMM distributions, we may devise876

more sophisticated and accurate target detection algorithms.877

Second, in fusion of hyperspectral and multispectral images,878

the LMM is usually used to overcome the underdetermined879

nature of the problem [54], [55]. However, the LMM does880

not hold in real scenarios as shown in this work. If we use881

the LMM with endmember variability, which is modeled by882

samples from GMM distributions, we may have a fusion883

algorithm that better fits the data. Finally, in estimating the884

noise or intrinsic dimension of hyperspectral images, simulated885

data are generated to quantify the results [46]. When these886

simulated data are created, usually the LMM is used without887

considering the endmember variability. Using the GMM for-888

mulation, we may generate distinct endmembers for each pixel889

and create more realistic synthetic data.890
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