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Abstract. Let g be a complex finite-dimensional semisimple Lie algebra and k be
any sl(2)-subalgebra of g. In this paper we prove an earlier conjecture by Penkov and
Zuckerman claiming that the first derived Zuckerman functor provides an equivalence
between a truncation of a thick parabolic category O for g and a truncation of the category
of admissible (g, k)-modules. This latter truncated category consists of admissible (g, k)-
modules with sufficiently large minimal k-type. We construct an explicit functor inverse to
the Zuckerman functor in this setting. As a corollary we obtain an estimate for the global
injective dimension of the inductive completion of the truncated category of admissible
(g, k)-modules.

1. Introduction

Let g be a complex finite-dimensional semisimple Lie algebra and k ⊆ g be a
reductive in g subalgebra. An admissible (g, k)-module is a g-module on which k
acts semisimply, locally finitely, and with finite multiplicities. The study of the
category of admissible (g, k)-modules is a main objective of the theory of generalized
Harish-Chandra modules, see [PZ1].

In the case of a general reductive in g subalgebra k, a central result of the
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existing theory of generalized Harish-Chandra modules is the classification of
simple admissible (g, k)-modules with generic minimal k-type [PZ1]. Other notable
results for a general k are established in [PSZ], [PS], [PZ2], and [PZ4].

There are three special cases for k in which more detailed information on
admissible (g, k)-modules is available. First of all, this is the case when k is a
symmetric subalgebra of g, i.e., k coincides with the fixed points of an involution
on g. This case, the theory of Harish-Chandra modules, is in the origin of the
studies of generalized Harish-Chandra modules. There is an extensive literature
on Harish-Chandra modules, see for instance [V], [KV], and references therein. (In
particular, some remarks on the history of Harish-Chandra modules can be found
in [KV].) Another case which has drawn considerable attention is the case when k
is a Cartan subalgebra of g, see for instance [BL], [BBL], [F], [Fe], [M], [GS1], [GS2],
and references therein. In both these cases, a classification of simple admissible
(g, k)-modules is available and there has been progress in the study of the category
of admissible (g, k)-modules.

A third natural choice for k is to let k be isomorphic to sl(2). This case “inter-
polates” between the above two cases and is a natural experimentation ground
when aiming at the case of a general k. For k ≃ sl(2), there is no classification of
simple admissible (g, k)-modules for a general g and an arbitrary sl(2)-subalgebra
k ⊂ g; however, for k ≃ sl(2) the partial classification of [PZ1] can be carried out
under much less severe restrictions on the minimal k-type: the details are explained
in [PZ3] and [PZ4]. Since the k-types are parametrized here simply by nonnegative
integers, one can talk about a truncated category of admissible (g, k)-modules: it
consists of finite-length admissible modules whose minimal k-type is larger than
or equal to a bound Λ depending on the pair (g, k). The simple objects of this
truncated category have been classified in [PZ3] (see also [PZ4]).

The purpose of this paper is to describe the above truncated category of admis-
sible (g, k)-modules for k = sl(2) by proving that it is equivalent to an explicit
full subcategory of a thick parabolic category O for g. In fact, the objects of
the truncated category of (g, k)-modules are constructed by simply applying the
Zuckerman (first derived) functor Γ1 to a subcategory of a thick parabolic category
O. It was conjectured in [PZ3] that the functor Γ1 yields an equivalence of these
categories, and here we prove this conjecture. We construct a left adjoint to
Γ1 defined on all finitely generated admissible (g, k)-modules, and then show that,
when restricted to the truncated category of admissible (g, k)-modules, this functor
is an inverse to the appropriately restricted functor Γ1.

The history of
(
g, sl(2)

)
-modules goes back to the 1940’s: a classical example

here is the Lorentz pair
(
sl(2) ⊕ sl(2), diagonal sl(2)

)
studied by Harish-Chandra

[HC], Gelfand–Minlos–Shapiro [GMS], and others. Explaining how exactly the
theorem proved in this paper fits in the 70-year history of the topic is a task so
complex that we do not really attempt to tackle it. Nonetheless, we would like to
mention that in this subject many equivalences of categories have been established;
some relate algebraic categories of g-modules to geometric categories of sheaves,
others relate algebraic categories of g-modules to other algebraic categories of g-
modules. The equivalence we establish is clearly of the second kind and could be
seen as an analogue of Bernstein–Gelfand’s equivalence of a certain subcategory of
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Harish-Chandra bimodules (or (g ⊕ g, diagonal g)-modules) with category O. An
extension of the geometric techniques introduced by Beilinson and Bernstein from
the theory of Harish-Chandra modules to generalized Harish-Chandra modules is
not straightforward (see some results in this direction in [PSZ], [PS], and [Pe]),
and fitting the main result of the present paper into a geometric context is an
open problem. We show, however, that the algebraic methods from the 1970’s
(where, in addition to the third author’s contribution, we would like to mention
the important contributions by Enright–Varadarajan and Enright), together with
the more recent ideas of [PZ1], [PZ3], and [PZ4] (which are building up on Vogan’s
work), are well suited to yield concrete results about the structure of categories of
generalized Harish-Chandra modules.

The paper is structured as follows. We state the main result in Section 3. In
particular, we introduce the functor B1 which will then be shown to be inverse to
the functor Γ1. In Section 4 we present some results which deal mostly with the
structure of the semi-thick parabolic category O we work with. Section 5 contains
the proof of the adjointness of Γ1 and B1. The proof of the fact that Γ1 and B1

are mutually inverse equivalences of categories is carried out in steps throughout
Sections 6, 7 and 8. In Section 9 we show that for some blocks of the semi-thick
parabolic category O, the truncation condition is vacuous, which then implies a
stronger equivalence of categories for certain central characters. Finally, in Section
10 we provide an application of our equivalence of categories by proving an estimate
for the global dimension of the truncated category of admissible (g, k)-modules via
a correponding estimate for the truncated semi-thick parabolic category O.

Acknowledgements. The first and second authors acknowledge the hospitality of
the Mittag-Leffler Institute in Djursholm where a significant part of this work was
written up. The first author thanks the DFG for partial support through Priority
Program SPP 1388 and grant PE 980/6-1. The second author acknowledges partial
support from NSF through grant number DMS 1303301, and both the second and
third authors acknowledge the hospitality of Jacobs University Bremen. We thank
three referees for very thoughtful suggestions on improving the quality of the text.
Finally, all three authors acknowledge the hospitality of the American Institute for
Mathematics in San Jose, where the results of the present paper were a subject of
discussion in a SQuaRE.

2. Notations and conventions

The ground field is C. The superscript ∗ indicates dual spaces. By g we will
denote a fixed finite-dimensional semisimple Lie algebra. We fix also an sl(2)-
subalgebra k ⊆ g. By k⊥ we denote the orthogonal (with respect to the Killing
form) complement of k in g. The classification of all possible subalgebras k up to
conjugacy is equivalent to describing all nilpotent orbits in g, and goes back to
Malcev and Dynkin (see [D] and the references therein). By a k-type we mean a
simple finite-dimensional sl(2)-module. A simple finite-dimensional sl(2)-module
with highest weight µ ∈ Z≥0 is denoted by Vk(µ). By SocM (respectively, TopM),
we denote the socle (respectively, the top) of a g-moduleM of finite length. SocM
is the maximal semisimple submodule ofM , and TopM is the maximal semisimple
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quotient of M . By [A : B] we denote the multiplicity as a subquotient of a simple
module B in a module A. Resq stands for the restriction of a module M to a
subalgebra q, and M⊕t stands for the direct sum of t copies of M . The sign ⊃+
denotes the semidirect sum of Lie algebras (the round side of the sign points to
the ideal).

3. Statement of main result

The main result of this paper states that certain categories of g-modules are
equivalent via explicit mutually inverse functors. In this section we define these
categories and functors.

Recall that g is a finite-dimensional semisimple Lie algebra and k is an arbitrary
sl(2)-subalgebra of g. Fix a standard basis

{
e, f, h = [e, f ]

}
of k and note that h

is a semisimple element of g. Let t = Ch be the toral subalgebra of g spanned by
h. For any α ∈ t∗ let gα denote the subspace of g of weight α:

gα = {g ∈ g | [t, g] = α(t)g ∀t ∈ t}.

Observe that if gα ≠ 0 for some α ∈ t∗ then α(h) ∈ Z.
Define the parabolic subalgebra p of g by setting

p := C(t)⊃+
( ⊕

α∈t∗
α(h)>0

gα

)
,

where C(t) is the centralizer of h in g. By p̄ we denote the opposite parabolic
subalgebra

p̄ = C(t)⊃+
( ⊕

α∈t∗
α(h)<0

gα

)
.

We also set
n :=

⊕
α∈t∗
α(h)>0

gα.

Let Cp̄,t be the category of finite-length g-modules which are p̄-locally finite, t-
semisimple, and t-integral (i.e., h acts with integer eigenvalues). Informally, Cp̄,t is
a “semi-thick” (“thick in all directions except the t-direction”) parabolic category
O. By Cp̄,t,n for n ∈ Z≥0, we denote the n-truncated category Cp̄,t, i.e., the full
subcategory of Cp̄,t consisting of objects all t-weights µ of which satisfy µ(h) ≥ n.
We also assign an integer Λ to the pair (g, k): we set Λ = 1

2 (λ1 + λ2), where λ1
(respectively, λ2) is the maximum (resp., submaximum) weight of t in g/k. Here
and below, we identify t-weights with integers via the correspondence µ; µ(h).

Denote by Ck the category of admissible (g, k)-modules of finite length, i.e., the
category of g-modules M of finite length on which k acts locally finitely and such
that dimHomk(L,M) < ∞ for any k-type L. By Ck,n for n ∈ Z≥0, we denote
the full subcategory of Ck consisting of g-modules M such that Homk(L,M) ≠ 0
implies dimL > n.
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We now describe two functors: Γk,t and Bk,t. The functor Γk,t is the functor of
k-finite vectors in a (g, t)-module. That is, if M is a (g, t)-module then

Γk,tM :=
{
m ∈M | dimU(k) ·m <∞

}
,

and Γk,tM is a g-submodule of M . It is well known (and easy to see) that Γk,t is
a left-exact functor. In what follows we set Γ := Γk,t and denote the right derived
functors RiΓk,t by Γi. The functor Γi is known as the i-th Zuckerman functor. By
definition, Γi is a functor from (g, t)-mod to (g, k)-mod. It is proved in [PZ3] that
the restriction of Γi to Cp̄,t,n+2 is a well-defined functor from Cp̄,t,n+2 to Ck,n. We
denote this functor also by Γi.

Next, we define a functor

Bk,t : (g, t)fg-mod Cp̄,t,n+2,

where (g, t)fg-mod stands for the category of finitely generated (g, t)-modules. For
this we need to fix some further notation.

Throughout the rest of the paper, θ : ZU(g) → C denotes a fixed central

character. If M is a g-module, then Mθ stands for the vectors in M on which
z − θ(z) acts locally nilpotently for any z ∈ ZU(g). By ℓ we denote a variable
positive integer. We also fix a Cartan subalgebra h of g such that h ∈ h. Then h
is also a Cartan subalgebra of the reductive subalgebra C(t) of g.

Let Cθ,ℓp̄,t,n+2 be the subcategory of Cp̄,t,n+2 consisting of modules M with M =

Mθ and such that h acts via Jordan blocks of size at most ℓ. We note that Cθ,ℓp̄,t,n+2

is a finite-length category which has an injective cogenerator Iθ,ℓn+2. This fact is
proved in Lemma 6 below. We set

(Bk,t)θ,ℓX := X
/( ∩

φ∈Homg(X, Iθ,ℓn+2)

kerφ

)

for X ∈ (g, t)fg-mod. Lemma 14 below claims that (Bk,t)θ,ℓX ∈ Cθ,ℓp̄,t,n+2, which

shows that (Bk,t)θ,ℓX is the “largest quotient” of X lying in Cθ,ℓp̄,t,n+2.
Next, we notice that there is a canonical surjective homomorphism

(Bk,t)θ,ℓX � (Bk,t)θ,ℓ−1X,

i.e., that
{
(Bk,t)θ,ℓX

}
is an inverse system of p̄-locally finite (g, t)-modules. We

set
(Bk,t)θX := lim

←−
(Bk,t)θ,ℓX.

It is easy to see that (Bk,t)θ is a right-exact functor from (g, t)fg-mod to g-mod,
and we denote by (Bk,t)θj its left derived functors, that is, (Bk,t)θjX = Lj(B

k,t)θX

for X ∈ (g, t)fg-mod.
Let Cθk,n and Cθp̄,t,n+2 be the respective subcategories of Ck,n and Cp̄,t,n+2 consist-

ing of g-modules M with M = Mθ. Corollary 18 below states that in fact (Bk,t)θj
is a well-defined functor from Cθk,n to Cθp̄,t,n+2. As k and t are fixed, in what follows

we set Bθ,ℓ := (Bk,t)θ,ℓ, Bθ := (Bk,t)θ, and Bθj := (Bk,t)θj . By the same letters we

also denote the restrictions of these functors to the category Cθk,n.
The main result of this paper is the following:
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Theorem 1. For X ∈ Ck,n, let BjX :=
⊕
θ

BθjX. Then, for any n ≥ Λ, the

functors

Γ1 : Cp̄,t,n+2  Ck,n

and

B1 : Ck,n  Cp̄,t,n+2

are mutually inverse equivalences of categories.

Remark 1. Let us note that for the Lorentz pair
(
sl(2) ⊕ sl(2), diagonal sl(2)

)
a

description of the category Ck was given by I. Gelfand and V. Ponomarev in [GP]
already in 1967.

4. Preparatory results

We start with two general results.

Proposition 2. Let nk := n ∩ k (dim nk = 1).

a) For any (g, k)-module X there exists a singly graded spectral sequence con-
verging to Hi(n, X) such that its E1-term has the form

E1
i = H0(nk, X)⊗ Λi(n ∩ k⊥)⊕H1(nk, X)⊗ Λi−1(n ∩ k⊥). (1)

b) If X ∈ Ck,n for n ≥ 0, then the n-homology H•(n, X) is finite dimensional.

Proof. a) The statement follows from Proposition 3.1 in [PZ3] and the formula
for the singly graded E1-term right after Proposition 3.1. Formula (1) is a direct
cosequence of the above formula in [PZ3] if one takes into account that in our
case k is isomorphic to sl(2). In fact, the statement holds more generally for any
g-module X but the assumption that X is a (g, k)-module is sufficient for us.

b) This follows from the more general statement of Proposition 3.5 in [PZ3].
�

Let M =
⊕

p∈CMp be an admissible (g, t)-module where Mp is the t-weight
space in M of weight p: by definition, hm = pm for m ∈ Mp. Set M∗t :=⊕

p∈CM
∗
p . Then M

∗
t is a well-defined admissible (g, t)-module. Similarly let X =⊕

µ∈Z≥0
Ṽk(µ) be an admissible (g, k)-module. Here Ṽk(µ) stands for the Vk(µ)-

isotypic component in X. Then X∗k :=
⊕

µ∈Z≥0
Ṽk(µ)

∗ is a well-defined admissible

(g, k)-module. Moreover, (•)∗t and (•)∗k are well-defined contravariant functors (in
fact antiequivalences) on the respective categories of admissible (g, t)-modules and
(g, k)-modules.

In what follows we will use the composition of the functors (•)∗t and (•)∗k with
the twist by the Cartan involution of g which acts as − id on h. The so obtained
new functors are denoted respectively by (·)∨t and (·)∨k . These functors preserve
the respective t- and k-characters of the modules.

A duality theorem proved in [EW] implies the following:
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Proposition 3. For any admissible (g, t)-module M there is a natural isomor-
phism of admissible (g, k)-modules

(ΓiM)∨k ≃ Γ2−i(M∨t ).

In the remainder of the paper E stands for a finite-dimensional simple C(t)-
module on which h acts via a natural number |E|. Often, we consider E as a
p̄-module by setting n̄ · E := 0. In this case we set also

M(E) := U(g) ⊗
U(p̄)

E

and let L(E) be the unique simple quotient of M(E). Then L(E)∨ ≃ L(E), and
M(E)∨ is an indecomposable object of Cp̄,t with Soc M(E)∨ = L(E)∨ ≃ L(E).

The following proposition is a summary of preliminary results concerning the
specific categories we study in this paper.

Proposition 4. Let n ≥ 0. Then

a) Γ1 : Cp̄,t,n+2  Ck,n is a faithful exact functor.
b) Under the assumption that n ≥ Λ, the functor from a) maps a simple object

to a simple object and induces a bijection on the isomorphism classes of
simple objects in Cp̄,t,n+2 and in Ck,n, respectively. Moreover, the simple
(g, k)-module Γ1L(E) has minimal k-type |E| − 2.

c) Under the assumption that n ≥ Λ, Γ1L(E) and TopΓ1M(E) are isomorphic
simple (g, k)-modules with minimal k-type |E| − 2, and the isotypic compo-
nents of the minimal k-types of Γ1M(E) and Γ1L(E) are isomorphic.

Proof. Parts a) and b) follow directly from the results of [PZ3], see Proposition 7.8
and Corollary 6.4. Part c) is a consequence of the above mentioned results and
the fact that the functor Γ1 commutes with (•)∨ according to Proposition 3. �
Remark 2. Since Γ1 preserves central characters, Proposition 4, b) implies in
particular the existence of a bijection between the isomorphism classes of simple
objects in Cθp̄,t,n+2 and Cθk,n for n ≥ Λ. Without the condition n ≥ Λ, no such
bijection exists in general. For instance, if (g, k) is the Lorentz pair and θ is the
central character of a finite-dimensional g-module of the form V � V for a simple
finite-dimensional sl(2)-module V , then Cθp̄,t,2 has 3 pairwise nonisomorphic simple

objects while Cθk,0 has two nonisomorphic simple objects.

The rest of the section is devoted to results on p̄-locally finite modules.
By s we denote the derived subalgebra of the reductive Lie algebra C(t), and

by c the center of C(t). Then c ⊂ h. Let FC(t),t be the category of locally finite

C(t)-modules semisimple over t with integral h-eigenvalues. By Fℓ
C(t),t we denote

the subcategory of FC(t),t consisiting of modules on which c acts via Jordan blocks
of size less than or equal to ℓ. Clearly

FC(t),t = lim
−→

Fℓ
C(t),t.

Note that (•)∨ is also a well-defined functor on the category Fℓ
C(t),t (but not on

FC(t),t).
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Lemma 5. Let S be a simple finite-dimensional s-module and λ ∈ c∗ be a t-
integral weight. Define E as S ⊗Cλ where Cλ is a one-dimensional c-module with
weight λ. Let Iℓλ denote the ideal in S(c) generated by h−λ(h) and (z−λ(z))ℓ for
all z ∈ c. Then

a) Every simple object in FC(t),t is isomorphic to E for some choice of S and
λ. Furthermore, E∨ ≃ E.

b) Eℓ := E⊗ (S(c)/Iℓλ) is a projective cover of E and
(
Eℓ
)∨

is an injective hull
of E in Fℓ

C(t),t.

c) Ē := lim
−→

(
Eℓ
)∨

is an injective hull of E in FC(t),t.

Proof. (a) is obvious. To show (b), note that S is projective in the category of
locally finite s-modules, and that Eℓ is the maximal quotient of the induced module
U(C(t))⊗U(s) S lying in in Fℓ

C(t),t. Then (c) is clearly a corollary of (b). �

Recall that, for any two Lie algebras a′ ⊂ a, the functor

proaa′ : a′-mod a-mod

is defined as
proaa′ K ′ = HomU(a′)

(
U(a),K ′

)
for an a′-module K ′. In addition, if a′′ is an abelian Lie subalgebra of a, we have
the functor

Γa′′ : a-mod a-mod

of a′′-weight vectors defined as

Γa′′K =
⊕

α∈(a′′)∗

Kα,

where K ∈ a-mod and

Kα =
{
k ∈ K | a′′k = α(a′′) k for all a′′ ∈ a′′

}
.

The following generalizes basic results in [BGG].

Lemma 6. For any ℓ > 0 and any n ≥ 0, the abelian category Cθ,ℓp̄,t,n+2 has a

unique, up to isomorphism, minimal injective cogenerator Iθ,ℓn+2. Moreover, the

t-weight spaces of Iθ,ℓn+2 are finite dimensional.

Proof. We denote by Fℓ
p,t the category of p-modules whose restrictions to C(t)

belong to Fℓ
C(t),t, and by Fℓ

p,t,n+2 the subcategory consisting of modules whose t-
weights are bounded from below by n+2. Let E be as in Lemma 5. Endow E with
a p-module structure by letting n act trivially on E, and consider the p-module

Γtpro
p
C(t)

(
(Eℓ)∨

)
= Γt HomU(C(t))

(
U(p), (Eℓ)∨

)
. (2)

Recall that propC(t)(·) preserves injectivity and that the functor of t-weight vectors

Γt is right adjoint to the inclusion of the category of p-modules semisimple over
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t into the category of all p-modules. Therefore Γt also preserves injectivity, and
the p-module (2) is injective in Fℓ

p,t. It is straightforward to verify that this

module is an injective hull of E in Fℓ
p,t. Consequently, the truncated submodule(

Γtpro
p
C(t)

(
(Eℓ)∨

))
≥n+2

of (2), spanned by all t-weight spaces with weights greater

than or equal to n+ 2, is an injective hull of E in Fℓ
p,t,n+2.

Set

Jℓ(E) :=
[
Γtpro

g
p

((
Γtpro

p
C(t)

(
(Eℓ)∨

))
≥n+2

)]θ
.

Then, by a similar argument, Jℓ(E) is injective in Cθ,ℓp̄,t,n+2 and we have an em-

bedding of g-modules L(E) ↪→ Jℓ(E) induced by the embedding of p-modules
E ↪→

(
Γtpro

p
C(t)

(
(Eℓ)∨

))
≥n+2

. The p-module
(
Γtpro

p
C(t)

(
(Eℓ)∨

))
≥n+2

is finite

dimensional. Moreover, it is easy to check that the g-module Jℓ(E) has finite-
dimensional t-weight spaces.

Note that, up to isomorphisms, Cθ,ℓp̄,t,n+2 has finitely many simple objects L(E1),

. . . , L(Er). Each of them has a unique, up to isomorphism, injective hull Iℓ (Ej)

which is a submodule of Jℓ(Ej). Then I
θ,ℓ
n+2 is the direct sum

⊕r
j=1 I

ℓ (Ej). �

Corollary 7. Let Aθ,ℓn+2 := Endg I
θ,ℓ
n+2. Then Cθ,ℓp̄,t,n+2 is equivalent to the category

of finite-dimensional Aθ,ℓn+2-modules.

Let Cθ,indp̄,t,n+2 be the category of inductive limits of objects from Cθ,ℓp̄,t,n+2.

Corollary 8. For any n, the category Cθ,indp̄,t,n+2 has a unique, up to isomorphism,

minimal injective cogenerator Iθn+2. Moreover, Iθn+2 = lim
−→

Iθ,ℓn+2. In particular, the

category Cθ,indp̄,t,n+2 has enough injectives.

In fact, if I is any injective object in Cθ,indp̄,t,n+2, then I is a direct limit, lim
−→

Iℓ,

for injective objects Iℓ ∈ Cθ,ℓp̄,t,n+2.

Recall the definition of Ē from Lemma 5, and let

W (E) := Γtpro
g
p(Ē).

Lemma 9. Let Fp̄,t be the category of locally finite p̄-modules such that their
restrictions to C(t) lie in FC(t),t. Then Resp̄W (E) is an injective hull of E in

Fp̄,t. Moreover, ResC(t)W (E) is isomorphic to a finite direct sum
⊕

α F̄α for
some finite-dimensional irreducible C(t)-modules Fα.

Proof. By the Poincare–Birkhoff–Witt Theorem we have an isomorphism

Resp̄W (E) ≃ Γt HomC(t)(U(p̄), Ē) = Γtpro
p̄
C(t)Ē.

Since Ē is an injective module in FC(t),t, Γtpro
p̄
C(t)Ē is an injective module in Fp̄,t.

Hence Resp̄W (E) is an injective module in Fp̄,t.
Let S(E) be the socle of Resp̄W (E) as a module over C(t). Since ResC(t)W (E)

is locally C(t)-finite, it is an essential extension of S(E), and therefore ResC(t)W(E)
is by definition an injective hull of S(E).
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Let S(E) =
⊕

α Fα for some finite-dimensional irreducible C(t)-modules Fα.
We now prove that ResC(t)W (E) ≃

⊕
α F̄α. For this it is enough to show that

the C(t)-module T (E) :=
⊕

α F̄α is injective as SocT (E) = S(E), T (E) is an
essential extension of S(E), and any two injective hulls of S(E) are isomorphic.
Finally, the injectivity of T (E) follows directly from the left Noetherian property
of U

(
C(t)

)
since any direct sum of injective modules over a left Noetherian algebra

is injective. �
We define an object M ∈ Cind

p̄,t to admit a parabolic co-Verma filtration if there
exists a finite filtration

0 =M0 ⊂M1 ⊂ · · · ⊂Mt =M

whose successive quotients Mi+1/Mi are isomorphic to W (Ei) for simple C(t)-
modules E1, . . . , Et. In what follows we say simply “co-Verma filtration”.

Lemma 10. Let M be an object of Cind
p̄,t . Then M admits a co-Verma filtration if

and only if Resp̄M is injective in Fp̄,t with socle of finite length.

Proof. If M admits a co-Verma filtration, then Resp̄M is a direct sum of modules
of the form W (F ), and by Lemma 9 Resp̄M is injective in Fp̄,t with p̄-socle of
finite length.

To prove the opposite assertion, choose a simple p̄-submodule E ⊂ Resp̄M with
minimal |E|. The existence of E follows from the fact that the socle of Resp̄M
has finite length. Let k be the multiplicity of E in SocResp̄M . Then we have a
surjective morphism φ : RespM → Ē⊕k of p-modules (φ|Ē⊗k being the identity
map) which induces a morphism φ̃ : M → W (E)⊕k of g-modules by Frobenius
reciprocity. Since Resp̄M is injective in Fp̄,t, and since Resp̄ is p̄-locally finite, we
have that Resp̄M is an injective hull of its socle, i.e.,

Resp̄M ≃ Resp̄

(
W (E)⊕k ⊕

⊕
|F |>|E|

W (F )

)

by Lemma 9. Moreover, Homp̄

(
Resp̄W (F ),Resp̄W (E)

)
= 0 if |F | > |E|. There-

fore φ̃
(
Resp̄

(⊕
|F |>|E|W (F )

))
= 0, and

φ̃
∣∣
Resp̄W (E)⊕k : Resp̄W (E)⊕k → Resp̄W (E)⊕k

is an isomorphism of p̄-modules since it is induced by the identity map φ|Ē⊕k :
Ē⊕k → Ē⊕k.

SetQ := ker φ̃. Then Resp̄Q is isomorphic to Resp̄
(⊕

|F |>|E|W (F )
)
, and hence

Q satisfies all conditions of the lemma. So we can finish the proof by induction on
the length of the socle of Resp̄M . �

Corollary 11. Let R = M ⊕N for some M,N ∈ Cθ,indp̄,t . Suppose that R admits
a co-Verma filtration. Then M and N also admit co-Verma filtrations.

Proof. A direct summand of an injective module is injective, so the statement
follows from Lemma 10. �
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Lemma 12. Let I(E) be an injective hull of L(E) in Cθ,indp̄,t,n+2. Then I(E)/W (E)

admits a co-Verma filtration with successive quotients isomorphic to W (D) for
|D| < |E|.

Proof. Let J(E) :=
[
Γtpro

g
p

(
(Γtpro

p
C(t)(Ē))≥n+2

)]θ
. We notice that the p-module

Γt

((
propC(t)(Ē)

)
≥n+2

)
has a finite filtration with successive quotients D̄ such that

|D| ≤ |E|. Moreover, the quotient
(
Γt

(
(propC(t)(Ē))≥n+2

))
/Ē has a filtration with

successive quotients D̄ for |D| < |E|. Therefore J(E)/W (E) admits a co-Verma
filtration with successive quotients W (D) such that |D| < |E|.

Similarly as in the proof of Lemma 6, I(E) is a direct summand of J(E).
Therefore, by Lemma 11, I(E) has a filtration as desired. �

Corollary 13. Iθn+2 admits a co-Verma filtration.

5. Adjointness of B1 and Γ1

In this section, n is an arbitrary nonnegative integer.

Lemma 14. For any ℓ ∈ Z>0, B
θ,ℓ is a right-exact functor from (g, t)fg-mod into

Cθ,ℓp̄,t,n+2 (in particular, Bθ,ℓX has finite length for X ∈ (g, t)fg-mod).

Proof. Fix X ∈ (g, t)fg-mod. Then Homg

(
X, Iθ,ℓn+2

)
is finite dimensional. This

follows from the fact that the t-weight spaces of Iθ,ℓ are finite dimensional. As a
consequence, Bθ,ℓX is isomorphic to a submodule of a finite direct sum of copies
of Iθ,ℓn+2. Since I

θ,ℓ
n+2 has finite length, Bθ,ℓX also has finite length, and is an object

of Cθ,ℓp̄,t,n+2.

The fact that Bθ,ℓ is right-exact follows from the observation that Bθ,ℓ is left
adjoint to the inclusion functor Cθ,ℓp̄,t,n+2  (g, t)fg-mod, i.e.,

HomCθ,ℓp̄,t,n+2

(
Bθ,ℓX,M

)
≃ Homg,t(X,M)

for any X ∈ (g, t)fg-mod and M ∈ Cθ,ℓp̄,t,n+2. Indeed, a left adjoint to a left-exact
functor is right-exact. �

Next we need to recall the Mittag-Leffler principle. LetK• be a complex which is
the limit of an inverse system of morphisms of complexes Kl+1

• → Kl
• for l ∈ Z≥0.

Then for each l and j the images of Hj(K
l+l′

• ) in Hj(K
l
•) for l′ ≥ 1 form a

descending chain of subspaces. The Mittag-Leffler principle asserts that if, for a
fixed j, the filtration in Hj−1(K

l
•) stabilizes for every l, then Hj(K•) is isomorphic

to the inverse limit of Hj(K
l
•), see for example [W, Thm. 3.5.8].

Lemma 15. For any X ∈ (g, t)fg-mod and j ∈ Z≥0, we have

BθjX ≃ lim
←−

Bθ,ℓj X,

where Bθ,ℓj is the j-th left derived functor of Bθ,ℓ.
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Proof. Let P• be a projective resolution of X in the category (g, t)fg-mod. By

definition, Bθ•X is the homology of the complex BθP•, and Bθ,ℓ• X is the homology
of the complex Bθ,ℓP•. Moreover,

BθP• = lim
←−

Bθ,ℓP•.

By Lemma 14, for every ℓ, j and q, Bθ,ℓj Xq has finite length as a g-module. So,
Lemma 15 follows from the Mittag-Leffler Principle. �

If
{
Aℓ
}
is an inverse system of objects from Cθ,ℓp̄,t for variable ℓ→ ∞, we set (by

analogy with the continuous dual of an inverse limit of topological spaces)

Homcont
g

(
lim
←−

Aℓ,M
)
:= lim
−→

Homg

(
Aℓ,M

)
for any g-module M .

Proposition 16. Let I be injective in Cθ,indp̄,t,n+2. Then, for any finitely generated
(g, t)-module X and for any j ∈ Z≥0,

Homcont
g

(
BθjX, I

)
≃ Extjg,t (X, I) .

Proof. Let P• be as in the proof of Lemma 15. Then

Homcont
g

(
BθjX, I

)
= Homcont

g

(
Hj(B

θP•), I
)
= Homcont

g

(
Hj

(
lim
←−

Bθ,ℓP•
)
, I
)
.

Since
Hj

(
lim
←−

Bθ,ℓP•
)
≃ lim
←−

Hj

(
Bθ,ℓP•

)
by the Mittag-Leffler Principle, we have

Homcont
g

(
Hj

(
lim
←−

Bθ,ℓP•
)
, I
)

≃ Homcont
g

(
lim
←−

Hj

(
Bθ,ℓP•

)
, I
)
= lim
−→

Homg

(
Hj

(
Bθ,ℓP•

)
, I
)
.

Next, the injectivity of I in Cθ,indp̄,t,n+2 implies

Homg

(
Hj(B

θ,ℓP•), I
)
≃ Hj

(
Homg(B

θ,ℓP•, I)
)
.

Consequently,

lim
−→

Homg

(
Hj(B

θ,ℓP•), I
)
≃ lim
−→

Hj

(
Homg(B

θ,ℓP•, I)
)
,

and since homology commutes with direct limits,

lim
−→

Hj

(
Homg(B

θ,ℓP•, I)
)
≃ Hj

(
lim
−→

Homg(B
θ,ℓP•, I)

)
. (3)
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Recalling that I = lim
−→

Iℓ, we notice that

Homg

(
Bθ,ℓP•, I

)
= Homg

(
Bθ,ℓP•, I

ℓ
)
= Homg

(
P•, I

ℓ
)
. (4)

Furthermore, since P• is finitely generated,

lim
−→

Homg

(
P•, I

ℓ
)
≃ Homg (P•, I) . (5)

Therefore, (3), (4), and (5) yield

lim
−→

Hj

(
Homg(B

θ,ℓP•, I)
)
≃ Hj

(
Homg(P•, I)

)
.

Since Hj

(
Homg(P•, I)

)
= Extjg,t (X, I), we obtain

Homcont
g

(
BθjX, I

)
≃ Extjg,t (X, I)

as desired. �
Recall that Iθn+2 is an injective cogenerator of the category Cθ,indp̄,t,n+2.

Proposition 17. For any X ∈ Ck,n and any j ≥ 0, Extjg,t
(
X, Iθn+2

)
is finite

dimensional.

Proof. By Lemma 12, it suffices to show that dimExtjg,t
(
X,W (E)

)
< ∞ for any

E with W (E) ∈ Cθ,indp̄,t,n+2. Shapiro’s Lemma yields

Extjg,t
(
X,W (E)

)
= Extjg,t

(
X,Γtpro

g
pĒ
)
≃ Extjp,t

(
X, Ē

)
.

Since by the injectivity of Ē as a C(t)-module we have

Extjp,t
(
X, Ē

)
≃ HomC(t)

(
Hj(n, X), Ē

)
,

we conclude that

Extjg,t
(
X,W (E)

)
≃ HomC(t)

(
Hj(n, X), Ē

)
. (6)

Now the statement follows from the finite-dimensionality of Hj(n, X), see Propo-
sition 2,b). �
Corollary 18. For X ∈ Ck,n and any j ≥ 0, we have BjX ∈ Cp̄,t,n+2.

Proof. By Lemma 14, Homg

(
Bθ,ℓj X, Iθn+2

)
is finite dimensional for any ℓ. By

Propositions 16 and 17, Homcont
g

(
BθjX, I

θ
n+2

)
= lim
−→

Homg

(
Bθ,ℓj X, Iθn+2

)
is finite

dimensional. By the definition of the direct limit functor, we have, for sufficiently
large s,

Homg

(
Bθ,sj X, Iθn+2

)
≃ Homg

(
Bθ,s+1
j X, Iθn+2

)
under the g-module map αs : Bθ,s+1

j X → Bθ,sj X. Since Iθn+2 is an injective

cogenerator for the category Cθ,indp̄,t,n+2, we conclude that the map αs is an isomor-
phism for sufficiently large s.

By Lemma 15 and the definition of an inverse limit of functors, we conclude
that BθjX ≃ Bθ,sj X for large enough s. Since Bθ

′

j X ̸= 0 for only finitely many θ′,
BjX has finite length, or equivalently BjX ∈ Cp̄,t,n+2. �
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Corollary 19. For any X ∈ Ck,n and any injective object I ∈ Cθ,indp̄,t,n+2,

Homcont
g

(
BθjX, I

)
= Homg

(
BθjX, I

)
.

Proof. This follows from the isomorphism BθjX ≃ Bθ,sj X for large enough s. �
Proposition 20. For any X ∈ Ck,n and M ∈ Cp̄,t,n+2,

Homg (B1X,M) ≃ Homg

(
X,Γ1M

)
, (7)

so B1 : Ck,n  Cp̄,t,n+2 and Γ1 : Cp̄,t,n+2  Ck,n are adjoint functors.

Proof. It clearly suffices to prove (7) for X ∈ Cθk,n and M ∈ Cθp̄,t,n+2. By Proposi-
tion 7.9 in [PZ3],

Homg

(
X,Γ1I

)
≃ Ext1g,t(X, I) (8)

for any injective object I ∈ Cθ,indp̄,t,n+2. By Proposition 16 and Corollary 19,

Ext1g,t(X, I) ≃ Homg (B1X, I) . (9)

Consider a part of an injective resolution of M in Cθ,indp̄,t , 0 → M → I0 → I1.

Since Γ1 is an exact functor (Proposition 4), the following sequence is also exact:
0 → Γ1M → Γ1I0 → Γ1I1. Next, applying Homg(X, •), we obtain an exact
sequence

0 → Homg

(
X,Γ1M

)
→ Homg

(
X,Γ1I0

)
→ Homg

(
X,Γ1I1

)
.

By (8) and (9), we have a diagram

0 // Homg(X,Γ
1M) // Homg(X,Γ

1I0)
φ //

≃
��

Homg(X,Γ
1I1)

≃
��

Homg(B1X, I0)
ψ // Homg(B1X, I1)

which is commutative as the identifications

Homg

(
X,Γ1I

)
≃ Ext1g,t(X, I) = Homg (B1X, I)

are functorial in I. Since Homg (B1X, •) is left-exact, we conclude that

kerψ ≃ Homg (B1X,M) .

Finally, kerφ ≃ kerψ, and we are done. �
Corollary 21. B1 : Ck,n  Cp̄,t,n+2 is a right-exact functor.

Proof. This is a direct consequence of the fact that B1 is a left adjoint functor.
�
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6. B1 is a bijection on isomorphism classes of
simple modules in Ck,n and Cp̄,t,n+2.

As stated in Proposition 4, for n ≥ Λ the functor Γ1 induces a bijection between
the sets of isomorphism classes of simple objects in the categories Cp̄,t,n+2 and Ck,n.
The main result of this section is:

Proposition 22. For n ≥ Λ, the functor B1 induces a bijection of sets of isomor-
phism classes of simple objects of Ck,n and Cp̄,t,n+2, inverse to the bijection induced
by Γ1.

In the rest of the paper we assume that n ≥ Λ. Recall that E is a finite-
dimensional simple p̄-module (in particular, n̄ · E = 0) on which h acts via a
natural number |E|. We set X(E) := Γ1L(E) for L(E) ∈ Cθp̄,t,n+2. Then X(E) is
a simple object of Ck,n, and all simple objects in Ck,n are of this form for appropriate
simple C(t)-modules.

Lemma 23. Let X ∈ Cθk,n have the property that the isotypic component of the
minimal k-type of X is isomorphic to the isotypic component of the minimal k-type
of X(E) ∈ Cθk,n. Then

[
Bθ1X : L(F )

]
=

{
0 for |F | < |E|,
≤ 1 for |F | = |E|.

Proof. Observe first that the t-weights of H0 (nk, X) are less than or equal to
−
(
|E|−2

)
. Therefore the t-weights of H0 (nk, X)⊗

(
nk ∩ k⊥

)
are less than or equal

to −|E| + 2 + λ1. This shows that
(
H0 (nk, X) ⊗

(
nk ∩ k⊥

))
p
= 0 for n + 2 ≤

p < |E|. Indeed, the inequalities n + 2 ≤ p < |E| and p ≤ −|E| + 2 + λ1
yield |E| ≤ λ1/2 − λ2/2 ≤ λ1/2, which contradicts our assumption that |E| ≥
2 + (λ1 + λ2)/2 ≥ 2 + λ1/2.

Next, note that Kostant’s Theorem applied to k gives

H1 (nk, X)p =

{
0 for p < |E|,
C for p = |E|.

Therefore the spectral sequence (1) of Proposition 2 implies

(E1
1)p =

{
0 for n+ 2 ≤ p < |E|
C for p = |E|

, (E1
0)|E| = (E1

2)|E| = 0.

Hence,

H1 (n, X)p =

{
0 for n+ 2 ≤ p < |E|,
C for p = |E|.

Furthermore, for any D

dimExt1g,t
(
X,W (D)

)
= dimHomC(t)

(
H1(n, X), D̄

)
≤ dimH1(n, X)|D|

477



I. PENKOV, V. SERGANOVA, G. ZUCKERMAN

by (6). This yields

dimExt1g,t
(
X,W (D)

)
=

{
0 for |D| < |E|,
≤ 1 for |D| = |E|.

Consequently, since the injective hull I(F ) of L(F ) in Cθ,indp̄,t,n+2 admits a co-Verma

filtration with successive quotients isomorphic to W (D) for |D| ≤ |F |, and W (E)
enters I(E) with multiplicity 1, we have

dimExt1g,t
(
X, I(F )

)
=

{
0 for |F | < |E|,
≤ 1 for |F | = |E|.

Finally,

dimExt1g,t
(
X, I(F )

)
= dimHomg

(
Bθ1X, I(F )

)
=
[
Bθ1X : L(F )

]
,

and the lemma is proved. �
Corollary 24. Set Y (E) := Γ1M(E) under the assumption thatM(E) ∈ Cθp̄,t,n+2.
Then

[B1Y (E) : L(F )] = [B1X(E) : L(F )] =

{
0 for |F | < |E|,
1 for F ≃ E.

Proof. For |F | < |E|, the statement follows directly from Lemma 23 as the isotypic
components of the minimal k-types of Y (E) and X(E) are isomorphic by Proposi-
tion 4, c). If F ≃ E, then

Homg (B1X(E), L(E)) ≃ Homg

(
X(E), X(E)

)
,

so the identity homomorphism X(E) → X(E) provides a nonzero homomorphism
B1X(E) → L(E). Since Γ1 is exact and B1 is right-exact, this homomorphism is
in fact a composition of surjections B1Y (E) → B1X(E) → L(E), in particular,
[B1Y (E) : L(E)] ≥ 1 and [B1X(E) : L(E)] ≥ 1. On the other hand, we have
[B1Y (E) : L(E)] ≤ 1 by Lemma 23; hence,

[B1Y (E) : L(E)] = [B1X(E) : L(E)] = 1. �

Corollary 25. B1Y (E) ≃M(E).

Proof. By the adjointness of B1 and Γ1, we have a canonical nonzero homomor-
phism

φ : B1Y (E) →M(E)

induced by the identity homomorphism Y (E) → Y (E). Note that TopY (E) is
isomorphic to X(E) by Proposition 4, c). Next (again by the adjointness of B1

and Γ1),
Homg (B1Y (E), L(F )) ≃ Homg

(
Y (E), X(F )

)
.
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Since Homg

(
Y (E), X(F )

)
̸= 0 only for F ≃ E by Corollary 24, we see that

TopB1Y (E) ≃ L(E).

As φ ̸= 0, φ induces an isomorphism

TopB1Y (E) ≃ L(E) = TopM(E). (10)

Consequently, φ is surjective.
Let N = kerφ. The isomorphism (10) shows that the exact sequence

0 → N → B1Y (E) →M(E) → 0

does not split. Therefore, the assumption N ≠ 0 leads to the conclusion that
Ext1g(M(E), L(F )) ≠ 0 for some simple subquotient L(F ) of N . However, the

condition Ext1g(M(E), L(F )) ≠ 0 implies |F | < |E|, while [B1Y (E) : L(F )] = 0 for
|F | < |E| by Corollary 24. This contradiction shows that N = 0, i.e., that φ is an
isomorphism. �
Corollary 26. Top(Γ1B1X(E)) ≃ X(E).

Proof. B1 is right-exact, hence the surjective homomorphism Y (E) → X(E) yields
a surjective homomorphism M(E) ≃ B1Y (E) → B1X(E). By applying Γ1 we
obtain a surjective homomorphism Y (E) → Γ1B1X(E), hence Top(Γ1B1X(E)) ≃
TopY (E) ≃ X(E). �
Corollary 27. B1X(E) ≃ L(E).

Proof. By Corollary 24, B1X(E) ̸= 0. The adjointness of B1 and Γ1 yields an
isomorphism

Homg

(
X(E),Γ1B1X(E)

)
≃ Homg (B1X(E),B1X(E)) .

Hence, there is a nonzero (and therefore injective) homomorphism

α : X(E) → Γ1B1X(E)

corresponding to the identity homomorphism B1X(E) → B1X(E).
Once again, Corollary 24 implies [B1X(E) : L(E)] = 1. Since Γ1 is exact and

is a bijection on isomorphism classes of simple modules, we have[
Γ1B1X(E) : X(E)

]
= 1. (11)

By Corollary 26, there is a surjective homomorphism

β : Γ1B1X(E) → X(E).

Equation (11) now implies that βα ≠ 0 and αβ ̸= 0. Thus, X(E) is a direct
summand of Γ1B1X(E). But Corollary 26 shows that Γ1B1X(E) is indecompos-
able. We conclude that

Γ1B1X(E) ≃ X(E) = Γ1L(E).

As before, Γ1 is exact and is a bijection on isomorphism classes of simple modules.
So, B1X(E) is a simple g-module, and B1X(E) ≃ L(E). �
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7. Exactness of B1

The goal of this section is to prove the following:

Proposition 28. B1 : Ck,n  Cp̄,t,n+2 is an exact functor.

Our main effort will go into proving the following lemma:

Lemma 29. B2Y (E) = 0 for X(E) ∈ Ck,n.

Note that it suffices to show that H2

(
n, Y (E)

)
|F | = 0 for all X(E), X(F ) ∈ Ck,n.

Indeed, the implication(
H2

(
n, Y (E)

)
|F | = 0 for allX(E), X(F ) ∈ Ck,n

)
=⇒ (B2Y (E) = 0 for allX(E) ∈ Ck,n)

follows from the following three facts:

(1) Ext2g,t
(
Y (E), I(F )

)
≃ Homg (B2Y (E), I(F ));

(2) I(F )/W (F ) has a co-Verma filtration with factors isomorphic to W (F ′) for
|F ′| < |F | (Lemma 12);

(3) dimExt2g,t
(
Y (E),W (F )

)
= dimHomC(t)

(
H2

(
n, Y (E)

)
, F̄
)

≤ dimH2

(
n, Y (E)

)
|F |, see (6).

To prove that H2

(
n, Y (E)

)
|F | = 0 for all X(E), X(F ) ∈ Ck,n, we give another

construction of the functor Γ1 : Cp̄,t,n+2 → Ck,n. Denote by Ue(g) the enveloping
algebra U(g) localized by the multiplicative set {en}n∈Z≥1

. The localized algebra

Ue(k) is a subalgebra of Ue(g). For any g-module (resp., k-module) M , set

Dg
e (M) := Ue(g)⊗U(g) M, Dk

e(M) := Ue(k)⊗U(k) M.

Lemma 30. If M is a g-module on which e acts injectively, we have an isomor-
phism of k-modules

ReskDg
e (M) ≃ Dk

e(M).

Proof. There is an embedding ψ : M ↪→ Dg
e (M). By Frobenius reciprocity, ψ

induces a morphism ψ̃ : Dk
e(M) → Dg

e (M). As Ue(g) = Ue(k)S(k
⊥), the morphism

ψ̃ is surjective. Let us show that ψ̃ is also injective. Since e acts injectively on
M , we see that Dg

e (M) is an essential extension of M . Therefore, the fact that
ker ψ̃ ∩M = 0 suffices to conclude that ψ̃ is injective. �

Suppose that a g-module M is free over C[e] and locally finite over C[f ]. Then
we have an embedding

M ↪→ ΓCfDg
e (M)

where ΓCf is the functor of Cf -finite vectors. Set

EM := (ΓCfDg
e (M))/M,

cf. [E]. Since M ∈ Cp̄,t,n+2 satisfies the above assumptions, we have constructed a
new functor

E : Cp̄,t,n+2  Ck,n.
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Lemma 31. If M ∈ Cp̄,t,n+2, n ≥ 0, then for some γ(µ) ∈ Z≥0

ReskM ≃
⊕

µ≥n+2

Mk(µ)
⊕γ(µ)

and
Resk(EM) ≃

⊕
µ≥n+2

Vk(µ− 2)⊕γ(µ),

where Mk(µ) := U(k)⊗U(k∩p̄) Cµ for an integral t-weight µ.

Proof. Any t-weight of M is not less than n + 2. Therefore M is free over Ce,
which implies that ReskM has a filtration with quotients isomorphic to Verma
modules Mk(µ) for µ ≥ n + 2. Recall that if µ′ and µ′′ are positive then the
central characters of Mk(µ

′) and Mk(µ
′′) coincide only if µ′ = µ′′, and there is

no non-trivial t-semisimple self-extension of a Verma module of k. This implies
Ext1k,t(Mk(µ

′),Mk(µ
′′)) = 0 for positive µ′ and µ′′, therefore ReskM is isomorphic

to a direct sum of Verma modules. The first assertion follows.
Let us prove the second assertion. Recall that Dk

e (Mk(µ)) = Ue(k)⊗U(k)Mk(µ).
By Lemma 30 it suffices to check that for any µ ≥ 2

ΓCfDk
e (Mk(µ)) /Mk(µ) ≃ Vk(µ− 2). (12)

First, we show that Dk
e(Mk(µ)) is an indecomposable multiplicity-free weight

sl(2)-module with socle filtration

Mk(µ) ⊂Mk(2− µ) ⊂ Dk
e(Mk(µ)).

Indeed, let v ∈ Mk(µ) be a nonzero vector annihilated by f (v is unique up to
proportionality). Then {ekv | k ∈ Z≥0} is a basis of h-eigenvectors in Mk(µ). In
the localized algebra Ue(k) we have the relations

[h, e−1]=−2e−1, [f, e−1]=e−1he−1=e−2(h− 2), [f, e−k]=e−k−1k(h− (k+1)).

Therefore Dk
e(Mk(µ)) has a basis {ekv | k ∈ Z} and the action of h and f is defined

by the above relations. In particular, w = e1−µv is annihilated by f and generates
a submoduleMk(2−µ) ⊂ Dk

e(Mk(µ)). The quotientMk(2−µ)/Mk(µ) is isomorphic
to the finite-dimensional module Vk(µ−2), and the quotient Dk

e(Mk(µ))/Mk(2−µ)
is isomorphic to the Verma module with respect to k ∩ p with highest weight −µ.
Since the latter quotient is free over f , (12) follows. �
Corollary 32. If M ∈ Cp̄,t,n+2, n ≥ 0, then

Resk(EM) ≃ Resk
(
Γ1M

)
.

Corollary 33. The functor E : Cp̄,t,n+2  Ck,n is exact.

Proof. The exactness of Γ1, together with Corollary 32, shows that the functor
Resk ◦E is exact. Therefore E is also exact. �
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Proposition 34. The functors E : Cp̄,t,n+2  Ck,n and Γ1 : Cp̄,t,n+2  Ck,n are
isomorphic.

Proof. Let us start with the construction of a morphism of functors φ : E  Γ1.
Let M ∈ Cp̄,t,n+2. Then the exact sequence

0 →M → ΓCfDe
g(M)

πM−→ EM → 0

does not split over k, and therefore does not split over g. Set

Ri(M) := Γt HomC
(
U(g)⊗U(t) Λ

i(g/t),M
)

and let
0 →M

∂0−→ R0(M)
∂1−→ R1(M)

∂2−→ R2(M)
∂3−→ . . .

be the Koszul resolution of M as introduced in Lemma 2.2 of [Z].
The complex R•(M) is functorial with respect to M and yields an injective

resolution of M in the category of (g, t)-modules. Hence, we have a commutative
diagram

0 / /

� �

M / /

idM

� �

ΓCfDe
g(M) / /

ηM

� �

EM / /

φM

� �

0

��
0 / / M

∂0 / / R0(M)
∂1 / / R1(M)

∂2 / / R2(M)

for some morphisms ηM and φM , unique up to homotopy. We recall from [PZ3]
that ΓM = 0. By construction, Γ

(
ΓCfDe

g(M)
)
= 0 and ΓEM = EM . By applying

Γ to the above diagram, we obtain a new commutative diagram

0 / /

� �

0 / /

� �

0 / /

� �

EM / /

ΓφM

� �

0

� �
0 / / 0 / / ΓR0(M)

Γ∂1 / / ΓR1(M)
Γ∂2 / / ΓR2(M)

.

The morphism ΓφM induces a unique morphism ψM : EM → Γ1M , by the
definition of Γ1. Since our diagram is functorial in M , we obtain a morphism
of functors ψ : E  Γ1.

It remains to show that ψM is an isomorphism for all M ∈ Cp̄,t,n+2. Since both
functors E and Γ1 are exact, it is sufficient to check this for simpleM as the general
case follows by an easy induction on the length of M .

Suppose that M is simple and ψM is nonzero. Then we have a surjective
morphism ψM : EM → Γ1M , since Γ1M is also simple. But then, by Corollary 32,
ψM is an isomorphism. Now, suppose ψM = 0. Recall that ψM : EM → Γ1M =
ker Γ∂2/ imΓ∂1. Therefore the equality ψM = 0 defines a non-zero morphism
EM → imΓ∂1, or equivalently a nonzero morphism κM : EM → R0(M) such
that ∂1κM = φM . Moreover, im κM ≃ im ηM . Because ΓCfDe

g(M) is an essential

extension of M , ηM is an injection, and hence Γ im ηM = ηMΓ
(
ΓCfDe

g(M)
)
= 0.

On the other hand,
Γ imκM = imΓκM = imκM ̸= 0,

a contradiction. Hence ψM ≠ 0, and the proposition is proved. �
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Corollary 35. There is an isomorphism of g-modules

Y (E) ≃ EM(E).

We are now ready to give a proof of Lemma 29.

Proof of Lemma 29. Set

D(E) := Dg
eM(E), C(E) := ΓCfD(E).

From the explicit form of D(E) as a k-module it is easy to verify that

H0(nk, D(E)) = H1(nk, D(E)) = 0.

By the spectral sequence of Proposition 2 this implies

Hi

(
n, D(E)

)
= 0 for all i.

The exact sequence

0 → C(E) → D(E) → F (E) → 0,

where F (E) := D(E)/C(E), yields H2

(
n, C(E)

)
|F | = H3

(
n, F (E)

)
|F |. It is easy

to check that H0 (nk, F (E)) = 0, hence the input into H3

(
n, F (E)

)
in the spectral

sequence (1) comes from

H1 (nk, F (E))⊗ Λ2
(
n ∩ k⊥

)
. (13)

The maximum possible t-weight of H1 (nk, F (E)) is 2 − |E|, hence the maximum
possible t-weight of (13) is 2 − |E| + λ1 + λ2. However, for any F such that
X(F ) ∈ Ck,n, we have 2 − |E| + λ1 + λ2 < |F | as |E|, |F | ≥ (λ1 + λ2)/2 + 2. We
obtain H2

(
n, C(E)

)
|F | = 0.

Next, we note that Corollary 35 shows the existence of an exact sequence

0 →M(E) → C(E) → Y (E) → 0

as Y (E) ≃ EM(E). Since M(E) is free as an n-module, H1

(
n,M(E)

)
= 0.

Together with H2

(
n, C(E)

)
|F | = 0, this yields

H2

(
n, Y (E)

)
|F | ≃ H1

(
n,M(E)

)
|F | = 0

as M(E) is free as an n-module. The proof of Lemma 29 is complete. �

To prove Proposition 28, it now suffices to establish the following.

Lemma 36. B2X(E) = 0 for any X(E) ∈ Ck,n.
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Proof. Fix a Borel subalgebra b of g such that h ⊂ b ⊂ p and e ∈ b. We will prove
the statement by induction on the Bruhat height of the b-lowest weight of L(E).

If λ is b-dominant (i.e., b̄−antidominant), then Y (E) = X(E) and we are done.
For an arbitrary λ, we consider the exact sequences

0 → N(E)
ν−→M(E)

µ−→ L(E) → 0 (14)

and
0 → Γ1N(E) → Y (E) → X(E) → 0. (15)

The long exact sequence corresponding to (15) is the top row of the following
commutative diagram

· · · / / B2Y (E) / / B2X(E) / / B1Γ
1N(E) / /

˜

B1Γ
1M(E) / /

˜

B1X(E) / /

˜

0

· · · / / 0 / / B2X(E) / / N(E)
ν / / M(E)

µ / / L(E) / / 0

.

The vertical isomorphisms are explained as follows:

B2Y (E) = 0 by Lemma 29,

B1Γ
1N(E) ≃ N(E) by the induction assumption,

B1Γ
1M(E) ≃M(E) by Corollary 25,

and
B1(X) ≃ L(E) by Proposition 22.

The exactness of the bottom row of the diagram yields B2X(E) = 0, and Lemma 36
is proved. Proposition 28 now follows. �

8. End of proof of Theorem 1

The results of Sections 5–7 imply that, under the assumption n ≥ Λ, the functors

Γ1 : Cp̄,t,n+2  Ck,n
and

B1 : Ck,n  Cp̄,t,n+2

are exact functors between finite-length abelian categories which induce mutually
inverse bijections on isomorphism classes of simple objects.

The isomorphisms

Homg

(
B1Γ

1M,M
)
≃ Homg

(
Γ1M,Γ1M

)
and

Homg (B1X,B1X) ≃ Homg

(
X,Γ1B1X

)
,

for X ∈ Ck,n and M ∈ Cp̄,t,n+2, induce morphisms of functors

∆ : B1 ◦ Γ1  idCp̄,t,n+2

and
∇ : Γ1 ◦B1  idCk,n .

As in the proof of Proposition 34, it suffices to show that ∆ and ∇ are isomorphisms
on simple objects as all functors involved are exact functors on finite-length abelian
categories. Finally, for simple objects the claim follows from Proposition 22.
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9. Discussion and examples

It is interesting to see when the functor B1 establishes an equivalence of the
category Cθk,Λ with the entire category Cθp̄,t. This is equivalent to the question: for

which central characters θ does the equality Cθp̄,t,Λ+2 = Cθp̄,t hold?
Consider in more detail the case when g is simple and k is a principal sl(2)-

subalgebra of g. Here h is a regular element of g and p = b is a Borel subalgebra.
Let the simple roots of b be α1, . . . , αr ∈ h∗, and β be the highest root. Then
β = m1α1 + · · · + mrαr for some positive integers m1, . . . ,mr. Moreover, Λ =
β(h) − 1. We would like to find central characters θ such that Cθ

b̄,t,Λ+2
= Cθ

b̄,t
.

For a weight ν ∈ h∗ denote by θν the central character of the Verma module
M(ν) = U(g)⊗U(b̄) Cν . The equality θν = θη holds if and only if ν − ρ and η − ρ
belong to the same orbit of the Weyl group, where ρ is the half-sum of roots of b.
Consider the set C of all weights λ ∈ h∗ such that Re(λ, α) ≤ 0 for all positive roots
α. The orbit W (ν−ρ) contains at least one weight γ−ρ lying in C. Moreover, for
any other η = w(γ − ρ) + ρ on the Weyl group orbit we have Re(γ, α) ≤ Re(η, α)
for all positive roots α. Hence Re γ(h) ≤ Re η(h). Thus, it suffices to find γ such
that γ − ρ ∈ C and Re γ(h) ≥ β(h) + 1.

Let h1, . . . , hr denote the simple coroots. Then h = n1h1 + · · ·+ nrhr for some
positive integers n1, . . . , nr. We set γi := γ(hi). Since ρ(hi) = 1 for all i = 1, . . . , r,
the condition that γ − ρ ∈ C can be written in the form

Re γi ≤ 1 for all i = 1, . . . r. (16)

The equality αi(h) = 2 shows that β(h) = 2
∑r
i=1mi. Hence, the condition

γ(h) ≥ β(h) + 1 is equivalent to

Re

r∑
i=1

niγi ≥ 1 + 2

r∑
i=1

mi. (17)

Let Σ(g) denote the set of weights satisfying conditions (16) and (17). Clearly
Σ(g) is not empty as soon as

r∑
i=1

ni ≥ 1 + 2
r∑
i=1

mi.

The latter inequality can be rewritten as

ρ(h) ≥ 1 + β(h). (18)

For example, let g = sl(r + 1). Then m1 = · · · = mr = 1, hence β(h) = 1 + 2r
and ρ(h) = r(r + 1)(r + 2)/6. Therefore (18) holds for r ≥ 3.

Proposition 37. Let g be a simple Lie algebra not isomorphic to sl(2) or sl(3).
Then Σ(g) is not empty. If in addition g is not isomorphic to sp(4), then Σ(g) is
infinite.
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Proof. Σ(g) is infinite as soon as the inequality (17) is strict. We can further
rewrite (18) as

1
2

∑
α∈∆+\β

α(h) ≥ 1 + 1
2β(h). (19)

If β(h) ≥ 8, the inequality (19) is strict, as in this case the sum of positive non-
highest t-weights in the k-submodule generated by the highest root vector is greater
than the highest t-weight. Therefore, the statement holds for all g of rank greater
than 2 and for g = G2. For g = B2 we have ρ(h) = 7, β(h) = 6, and hence Σ(g)
consists of one element: Σ(g) = {ρ}. For g = A2 we have Σ(g) = ∅. �

Note that the set of integral weights lying in Σ(g) is always finite since Σ(g) is
compact. Moreover, the cardinality of this finite set grows with rank.

Using translation functors we can strengthen Theorem 1 for certain central
characters. Let us call a central character θ k-adapted if Cθ

b̄,t,Λ+2
= Cθ

b̄,t
. A

central character θ̃ is weakly k-adapted if there exists a k-adapted character θ and
a translation functor T establishing an equivalence between the categories of g-
modules admitting respective generalized central characters θ and θ̃. Recall that,
if θ̃ = θη for some η such that η− ρ ∈ C and θ = θγ for some γ ∈ Σ(g), then γ− η
must be integral and the stabilizers of γ−ρ and η−ρ in the Weyl group of g must
be the same [BG].

Corollary 38. Assume that θ̃ is weakly k-adapted. Then

(a) Γ1L is simple for any simple module L ∈ C θ̃
b̄,t

.

(b) Let Γ1C θ̃
b̄,t

denote the full subcategory of C θ̃k,Λ consisting of modules whose

simple constituents are of the form Γ1L for simple modules L ∈ C θ̃
b̄,t

. Then

the functor B1 : Γ1C θ̃
b̄,t
 Cθ

b̄,t
is an equivalence of categories, and is inverse

to Γ1.

Proof. Both assertions follow from the following commutative diagram of functors

C θ̃
b̄,t

Γ1
/ //o/o/o/o/o

T2

��
�O
�O
�O
�O
�O

Γ1C θ̃
b̄,tB1

oo o/ o/ o/ o/ o/

T2

� �
�O
�O
�O
�O
�O

Cθ
b̄,t

Γ1
///o/o/o/o/o/o

T1

O O
O�
O�
O�
O�
O�

Cθk,Λ
B1

oo o/ o/ o/ o/ o/ o/

T1

OO
O�
O�
O�
O�
O�

,

where T1, T2 are appropriate translation functors. The commutativity of the
diagram is a consequence of Theorem 1 and of the fact that the Zuckerman functor
commutes with translation functors. This latter fact is essentially a reformulation
of Proposition 2.6 and Corollary 2.8 in [Z]. �
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10. An application

In this section k is an arbitrary sl(2)-subalgebra of g and n ≥ Λ. By Cind
k,n

(respectively, Cind
p̄,t,n+2) we denote the category of inductive limits of objects from

Ck,n (respectively, Cℓp̄,t,n+2). Theorem 1 implies the following:

Corollary 39. The functors Γ1 and B1 induce mutually inverse equivalences of
the categories Cind

k,n and Cind
p̄,t,n+2.

Recall that if an abelian category C has enough injectives, then the global
dimension gdim C can be defined as

gdim C = supM,N∈C
{
i ∈ Z≥0

∣∣ ExtiC(M,N) ≠ 0
}
.

Corollary 8 implies that Cind
p̄,t,n+2 (and consequently also Cind

k,n by Theorem 1) has
enough injectives. The goal of this section is to prove the following proposition.

Proposition 40. We have

gdim Cind
k,n = gdim Cind

p̄,t,n+2 ≤ 2 dim n+ dim c− 1

(n and c are subalgebras of g depending on the pair g, k only).

Lemma 41. For every simple C(t)-module E such that |E| ≥ n + 2, the module
W (E) has an injective resolution in Cind

p̄,t,n+2 of length not greater than dim n.

Hence ExtiCp̄,t,n+2
(M,W (E)) = 0 for any M ∈ C ind

p̄,t,n+2 and any i > dim n.

Proof. Consider the category of locally finite p-modules which are semisimple over
t and whose t-weights are at least n+2. Then Ē is an object of this category and
has an injective resolution in it with terms

Zi(E) :=
(
Γt HomC(U(p)⊗C(t) Λ

i(p/C(t)), Ē)
)
≥n+2

.

Furthermore, Γtpro
g
pZ

i(E) provides an injective resolution for W (E) in Cind
p̄,t,n+2 of

length at most dim n. �
Lemma 42. For every simple C(t)-module E, let W (E) :=M(E)∨ = Γtpro

g
p(E).

Then there exists an acyclic complex

0 →W (E) → S0 → · · · → Sdim c−1 → 0

such that all Si admit co-Verma filtrations.

Proof. Let
Qi(E) = HomC

(
S•(c/t)⊗ Λi(c/t), E

)
.

Consider the exact complex of C(t)-modules 0 → E → Q0(E) → Q1(E) → . . .
with usual Koszul differentials and set Si := Γtpro

g
pT

i(E). �

Corollary 43. ExtiCp̄,t,n+2
(M,W (E)) = 0 for any M ∈ Cind

p̄,t,n+2 and i > dim n +
dim c− 1.
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Proof. We note that, by Lemma 41, Extip̄,t,n+2(M,N) = 0 for i > dim n and N

admitting a co-Verma filtration. In particular, ExtiCp̄,t,n+2
(M,Sj) = 0 for i > dim n

and j = 0, . . . , dim c− 1. Hence the statement. �
Lemma 44. For every E, L(E) has a right resolution of length not greater than
dim n by modules which admit finite filtrations with succesive quotients isomorphic
to W (F ).

Proof. This is a standard fact about parabolic category O. Indeed let V i :=
Γtpro

g
pΛ

i(g/p)∗. Then V i ≃ S•((g/p)∗)⊗ Λi(g/p)∗. Consider the Koszul complex

0 → V 0 → V 1 → · · · → V dim n → 0

as the complex of polynomial differential forms on the open orbit of P̄ on G/P ,
where G, P and P̄ are appropriate connected algebraic groups with respective Lie
algebras g, p and p̄. It gives a resolution of the trivial module by modules which
admit finite filtrations with succesive quotients isomorphic to W (F ). To obtain a
similar resolution for L(E), we tensor the above resolution with L(E) and project
to the subcategory of modules with the central character of L(E). �
Corollary 45. ExtiCp̄,t,n+2

(M,L(E)) = 0 for any M,L(E) ∈ Cind
p̄,t,n+2, and i >

2 dim n+ dim c− 1.

Proposition 40 follows from the last corollary since Extip̄,t,n+2(M,N) ̸= 0 implies

ExtiCp̄,t,n+2
(M,N ′) ≠ 0 for some submodule N ′ ⊂ N of finite length.
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