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Abstract. Let g be a complex finite-dimensional semisimple Lie algebra and £ be
any sl(2)-subalgebra of g. In this paper we prove an earlier conjecture by Penkov and
Zuckerman claiming that the first derived Zuckerman functor provides an equivalence
between a truncation of a thick parabolic category O for g and a truncation of the category
of admissible (g, £)-modules. This latter truncated category consists of admissible (g, £)-
modules with sufficiently large minimal ¢-type. We construct an explicit functor inverse to
the Zuckerman functor in this setting. As a corollary we obtain an estimate for the global
injective dimension of the inductive completion of the truncated category of admissible
(g, £)-modules.

1. Introduction

Let g be a complex finite-dimensional semisimple Lie algebra and ¢ C g be a
reductive in g subalgebra. An admissible (g, €)-module is a g-module on which ¢
acts semisimply, locally finitely, and with finite multiplicities. The study of the
category of admissible (g, £)-modules is a main objective of the theory of generalized
Harish-Chandra modules, see [PZ1].

In the case of a general reductive in g subalgebra ¢, a central result of the
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existing theory of generalized Harish-Chandra modules is the classification of
simple admissible (g, £)-modules with generic minimal ¢-type [PZ1]. Other notable
results for a general ¢ are established in [PSZ], [PS], [PZ2], and [PZ4].

There are three special cases for £ in which more detailed information on
admissible (g, €)-modules is available. First of all, this is the case when ¢ is a
symmetric subalgebra of g, i.e., € coincides with the fixed points of an involution
on g. This case, the theory of Harish-Chandra modules, is in the origin of the
studies of generalized Harish-Chandra modules. There is an extensive literature
on Harish-Chandra modules, see for instance [V], [KV], and references therein. (In
particular, some remarks on the history of Harish-Chandra modules can be found
in [KV].) Another case which has drawn considerable attention is the case when ¢
is a Cartan subalgebra of g, see for instance [BL], [BBL], [F], [Fe], [M], [GS1], [GS2],
and references therein. In both these cases, a classification of simple admissible
(g, €)-modules is available and there has been progress in the study of the category
of admissible (g, £)-modules.

A third natural choice for £ is to let ¢ be isomorphic to sl(2). This case “inter-
polates” between the above two cases and is a natural experimentation ground
when aiming at the case of a general £. For ¢ ~ sl(2), there is no classification of
simple admissible (g, £)-modules for a general g and an arbitrary sl(2)-subalgebra
t C g; however, for £ ~ sl(2) the partial classification of [PZ1] can be carried out
under much less severe restrictions on the minimal ¢-type: the details are explained
in [PZ3] and [PZ4]. Since the £-types are parametrized here simply by nonnegative
integers, one can talk about a truncated category of admissible (g, t)-modules: it
consists of finite-length admissible modules whose minimal ¢-type is larger than
or equal to a bound A depending on the pair (g,€). The simple objects of this
truncated category have been classified in [PZ3] (see also [PZ4]).

The purpose of this paper is to describe the above truncated category of admis-
sible (g, €)-modules for ¢ = sl(2) by proving that it is equivalent to an explicit
full subcategory of a thick parabolic category O for g. In fact, the objects of
the truncated category of (g, )-modules are constructed by simply applying the
Zuckerman (first derived) functor I'! to a subcategory of a thick parabolic category
O. Tt was conjectured in [PZ3] that the functor I'! yields an equivalence of these
categories, and here we prove this conjecture. We construct a left adjoint to
I't defined on all finitely generated admissible (g, £)-modules, and then show that,
when restricted to the truncated category of admissible (g, £)-modules, this functor
is an inverse to the appropriately restricted functor I'!.

The history of (g,sl(?))—modules goes back to the 1940’s: a classical example
here is the Lorentz pair (sl(2) @ sl(2), diagonal s1(2)) studied by Harish-Chandra
[HC], Gelfand—Minlos—Shapiro [GMS], and others. Explaining how exactly the
theorem proved in this paper fits in the 70-year history of the topic is a task so
complex that we do not really attempt to tackle it. Nonetheless, we would like to
mention that in this subject many equivalences of categories have been established;
some relate algebraic categories of g-modules to geometric categories of sheaves,
others relate algebraic categories of g-modules to other algebraic categories of g-
modules. The equivalence we establish is clearly of the second kind and could be
seen as an analogue of Bernstein—Gelfand’s equivalence of a certain subcategory of
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Harish-Chandra bimodules (or (g @ g, diagonal g)-modules) with category O. An
extension of the geometric techniques introduced by Beilinson and Bernstein from
the theory of Harish-Chandra modules to generalized Harish-Chandra modules is
not straightforward (see some results in this direction in [PSZ], [PS], and [Pe]),
and fitting the main result of the present paper into a geometric context is an
open problem. We show, however, that the algebraic methods from the 1970’s
(where, in addition to the third author’s contribution, we would like to mention
the important contributions by Enright—Varadarajan and Enright), together with
the more recent ideas of [PZ1], [PZ3], and [PZ4] (which are building up on Vogan’s
work), are well suited to yield concrete results about the structure of categories of
generalized Harish-Chandra modules.

The paper is structured as follows. We state the main result in Section 3. In
particular, we introduce the functor B; which will then be shown to be inverse to
the functor I'!. In Section 4 we present some results which deal mostly with the
structure of the semi-thick parabolic category O we work with. Section 5 contains
the proof of the adjointness of I'! and B;. The proof of the fact that I'! and B,
are mutually inverse equivalences of categories is carried out in steps throughout
Sections 6, 7 and 8. In Section 9 we show that for some blocks of the semi-thick
parabolic category O, the truncation condition is vacuous, which then implies a
stronger equivalence of categories for certain central characters. Finally, in Section
10 we provide an application of our equivalence of categories by proving an estimate
for the global dimension of the truncated category of admissible (g, £)-modules via
a correponding estimate for the truncated semi-thick parabolic category O.
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Finally, all three authors acknowledge the hospitality of the American Institute for
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2. Notations and conventions

The ground field is C. The superscript * indicates dual spaces. By g we will
denote a fixed finite-dimensional semisimple Lie algebra. We fix also an sl(2)-
subalgebra ¢ C g. By &% we denote the orthogonal (with respect to the Killing
form) complement of € in g. The classification of all possible subalgebras ¢ up to
conjugacy is equivalent to describing all nilpotent orbits in g, and goes back to
Malcev and Dynkin (see [D] and the references therein). By a £-type we mean a
simple finite-dimensional sl(2)-module. A simple finite-dimensional sl(2)-module
with highest weight u € Z>( is denoted by Vi(u). By Soc M (respectively, Top M),
we denote the socle (respectively, the top) of a g-module M of finite length. Soc M
is the maximal semisimple submodule of M, and Top M is the maximal semisimple
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quotient of M. By [A : B] we denote the multiplicity as a subquotient of a simple
module B in a module A. Resq stands for the restriction of a module M to a
subalgebra ¢, and M®¢ stands for the direct sum of ¢ copies of M. The sign 3
denotes the semidirect sum of Lie algebras (the round side of the sign points to
the ideal).

3. Statement of main result

The main result of this paper states that certain categories of g-modules are
equivalent via explicit mutually inverse functors. In this section we define these
categories and functors.

Recall that g is a finite-dimensional semisimple Lie algebra and ¢ is an arbitrary
sl(2)-subalgebra of g. Fix a standard basis {e, f,h = [e, f]} of € and note that &
is a semisimple element of g. Let t = Ch be the toral subalgebra of g spanned by
h. For any «a € t* let g® denote the subspace of g of weight «:

g“={g€glltg]l=at)gVtet}.

Observe that if g* # 0 for some o € t* then a(h) € Z.
Define the parabolic subalgebra p of g by setting

pi=Ct)3 ( b g"‘>,

a€et”
a(h)>0

where C(t) is the centralizer of h in g. By p we denote the opposite parabolic

subalgebra
p=Ct)> ( @ ga>.
act®

a(h)<0
We also set

n:= @ g<.

act”
a(h)>0

Let Cg ¢ be the category of finite-length g-modules which are p-locally finite, t-
semisimple, and t-integral (i.e., h acts with integer eigenvalues). Informally, Cp ¢ is
a “semi-thick” (“thick in all directions except the t-direction”) parabolic category
O. By Cp,n for n € Zx>o, we denote the n-truncated category Cp ¢, i.e., the full
subcategory of Cj ¢ consisting of objects all t-weights 1 of which satisfy p(h) > n.
We also assign an integer A to the pair (g,€): we set A = %()\1 + A2), where Ay
(respectively, Az) is the maximum (resp., submaximum) weight of t in g/¢. Here
and below, we identify t-weights with integers via the correspondence p ~» p(h).

Denote by Ce the category of admissible (g, £)-modules of finite length, i.e., the
category of g-modules M of finite length on which ¢ acts locally finitely and such
that dim Hom(L, M) < oo for any &-type L. By Cg, for n € Z>o, we denote
the full subcategory of C¢ consisting of g-modules M such that Hom(L, M) # 0
implies dim L > n.
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We now describe two functors: I'y ¢ and B®t. The functor Iy ¢ is the functor of
t-finite vectors in a (g, t)-module. That is, if M is a (g, t)-module then

DeM :={me M |dimU(t) - m < oo},

and T'y (M is a g-submodule of M. It is well known (and easy to see) that I'g ¢ is
a left-exact functor. In what follows we set I' := I'¢ ¢ and denote the right derived
functors R'Tg ¢ by I'". The functor I'" is known as the i-th Zuckerman functor. By
definition, I'* is a functor from (g, t)-mod to (g, €)-mod. It is proved in [PZ3] that
the restriction of I to Cp.t,n+2 is a well-defined functor from Cj ¢.n12 to Cepn. We
denote this functor also by I'%.

Next, we define a functor

B?)t : (ga t)fg'mOd ~ Cﬁ,t,n+2,

where (g,t)%-mod stands for the category of finitely generated (g, t)-modules. For
this we need to fix some further notation.

Throughout the rest of the paper, 0 : Zy ) — C denotes a fixed central
character. If M is a g-module, then M? stands for the vectors in M on which
z — 0(z) acts locally nilpotently for any z € Zy(g). By £ we denote a variable
positive integer. We also fix a Cartan subalgebra h of g such that h € h. Then b
is also a Cartan subalgebra of the reductive subalgebra C(t) of g.

Let Co¢ be the subcategory of Cj ¢ 2 consisting of modules M with M =

p,t,n+42
M? and such that h acts via Jordan blocks of size at most £. We note that Cgfm 12

is a finite-length category which has an injective cogenerator Ifffz' This fact is
proved in Lemma 6 below. We set

(BEYOLX = X/ ( N kercp)
)

pEHomy (X, szz

for X € (g,t)-mod. Lemma 14 below claims that (B&\)*‘X e 2! which

p,t,n+27
shows that (B%Y)%X is the “largest quotient” of X lying in Cg:f,n+2'

Next, we notice that there is a canonical surjective homomorphism
(Bé,t)G,ZX _y (Bﬁ,t)el—lX

i.e., that {(BE”‘)”X} is an inverse system of p-locally finite (g,t)-modules. We
set
(B*Y’X :=1lim (B%)*'X.
—

It is easy to see that (B%')? is a right-exact functor from (g, t)®8-mod to g-mod,
and we denote by (B%')? its left derived functors, that is, (B®")§X = L;(B%")?X
for X € (g, t)®-mod.

Let an and C’g’t’n+2 be the respective subcategories of C 5, and Cp ¢,n42 consist-
ing of g-modules M with M = M?. Corollary 18 below states that in fact (Be’t)g2

is a well-defined functor from an to Cgmn 1o- As tand t are fixed, in what follows

we set B* .= (B&Y)%f, B? := (B*")?, and BY := (B%")Y. By the same letters we
also denote the restrictions of these functors to the category an.
The main result of this paper is the following:
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Theorem 1. For X € Cg¢,, let B; X = @ B?X. Then, for any n > A, the

0
functors

1.
. Cﬁ,t,n+2 ~ Ck,n

and
Bi : Cen ~ Cpen2

are mutually inverse equivalences of categories.

Remark 1. Let us note that for the Lorentz pair (sl(2) @ sl(2), diagonalsl(2)) a
description of the category C¢ was given by I. Gelfand and V. Ponomarev in [GP)]
already in 1967.

4. Preparatory results
We start with two general results.

Proposition 2. Let ny :=nnN¢t (dimn, = 1).

a) For any (g,t)-module X there exists a singly graded spectral sequence con-
verging to H;(n, X) such that its E'-term has the form

B} = Hy(ng, X) @ A'(n N €)@ Hy(ng, X) @ A1 (nngh). (1)

7

b) If X € C¢y, for n >0, then the n-homology He(n, X) is finite dimensional.

Proof. a) The statement follows from Proposition 3.1 in [PZ3] and the formula
for the singly graded E!-term right after Proposition 3.1. Formula (1) is a direct
cosequence of the above formula in [PZ3] if one takes into account that in our
case t is isomorphic to sl(2). In fact, the statement holds more generally for any
g-module X but the assumption that X is a (g, £)-module is sufficient for us.

b) This follows from the more general statement of Proposition 3.5 in [PZ3].
O

Let M = @,cc Mp be an admissible (g, t)-module where M, is the t-weight
space in M of weight p: by definition, hm = pm for m € M,. Set M :=
@pec M. Then M is a well-defined admissible (g, t)-module. Similarly let X =
D, .cz-, V(i) be an admissible (g, ¢)-module. Here Vi(u) stands for the Vi(u)-
isotypic component in X. Then Xy := €D, 7., Ve(p)* is a well-defined admissible
(g, €)-module. Moreover, (e); and (e); are well-defined contravariant functors (in
fact antiequivalences) on the respective categories of admissible (g, t)-modules and
(g, £)-modules.

In what follows we will use the composition of the functors (e)f and (e); with
the twist by the Cartan involution of g which acts as —id on . The so obtained
new functors are denoted respectively by () and (-)y. These functors preserve
the respective t- and €-characters of the modules.

A duality theorem proved in [EW] implies the following:
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Proposition 3. For any admissible (g,t)-module M there is a natural isomor-
phism of admissible (g, t)-modules

(TPM)Y ~ T2 4 (MY).

In the remainder of the paper E stands for a finite-dimensional simple C'(t)-
module on which h acts via a natural number |E|. Often, we consider E as a
p-module by setting n- E := 0. In this case we set also

M(E)=U(g) ® E
U(p)
and let L(E) be the unique simple quotient of M(E). Then L(E)Y ~ L(E), and
M(E)Y is an indecomposable object of Cp ¢ with Soc M (E)Y = L(E)Y ~ L(E).
The following proposition is a summary of preliminary results concerning the
specific categories we study in this paper.

Proposition 4. Let n > 0. Then

a) I't : Cp,tnt2 ~ Cep @5 a faithful exact functor.

b) Under the assumption that n > A, the functor from a) maps a simple object
to a simple object and induces a bijection on the isomorphism classes of
simple objects in Cg i nt2 and in Ce,, respectively. Moreover, the simple
(g, 8)-module T L(E) has minimal €-type |E| — 2.

c) Under the assumption that n > A, T*L(E) and Top ' M (E) are isomorphic
simple (g, t)-modules with minimal t-type |E| — 2, and the isotypic compo-
nents of the minimal €-types of T*M(E) and T'L(E) are isomorphic.

Proof. Parts a) and b) follow directly from the results of [PZ3], see Proposition 7.8
and Corollary 6.4. Part c) is a consequence of the above mentioned results and
the fact that the functor I'! commutes with ()Y according to Proposition 3. [

Remark 2. Since T'' preserves central characters, Proposition 4, b) implies in
particular the existence of a bijection between the isomorphism classes of simple
objects in C’gﬁt’nJr2 and an for n > A. Without the condition n > A, no such
bijection exists in general. For instance, if (g, ¢) is the Lorentz pair and 6 is the
central character of a finite-dimensional g-module of the form V XV for a simple
finite-dimensional sl(2)-module V, then C{  , has 3 pairwise nonisomorphic simple
objects while Cf’o has two nonisomorphic simple objects.

The rest of the section is devoted to results on p-locally finite modules.

By s we denote the derived subalgebra of the reductive Lie algebra C(t), and
by ¢ the center of C(t). Then ¢ C h. Let Fe(y),¢ be the category of locally finite
C(t)-modules semisimple over t with integral h elgenvalues By fc(t) . we denote
the subcategory of F¢ (y),¢ consisiting of modules on which ¢ acts via Jordan blocks
of size less than or equal to ¢. Clearly

_1; L
Fowe = @FC(t),t-

Note that ()Y is also a well-defined functor on the category }—é(t),t (but not on
Fe,0)-
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Lemma 5. Let S be a simple finite-dimensional s-module and A € ¢* be a t-
integral weight. Define E as S ® Cy where Cy is a one-dimensional c-module with
weight \. Let I¥ denote the ideal in S(c) generated by h — \(h) and (z — \(2))* for
all z € c. Then

a) Bvery simple object in Fc ()¢ is isomorphic to E for some choice of S and
. Furthermore, EV ~ E.

b) Ef:= E®(S(c)/I) is a projective cover of E and (Ee)v is an injective hull
of E in ]-'é(t)

c) E:=lim (EK)V is an injective hull of E in Fc ()
—

v

Proof. (a) is obvious. To show (b), note that S is projective in the category of
locally finite s-modules, and that E* is the maximal quotient of the induced module
U(C(1)) ®u(s) S lying in in fé(t),t' Then (c) is clearly a corollary of (b). O

Recall that, for any two Lie algebras a’ C a, the functor
prof, : a’-mod ~~ a-mod

is defined as
pI‘Og/ K/ = HomU(u/) (U(a), K/)

for an a’-module K’. In addition, if a” is an abelian Lie subalgebra of a, we have
the functor
Ty : a-mod ~» a-mod

of a”’-weight vectors defined as
rvK= @ K°,
ac(a)*
where K € a-mod and

K*={keK|ad"k=a(d")kfor all " € a"}.

The following generalizes basic results in [BGG].

0,0
p,t,n+2

. . . L. . 0.0
unique, up to isomorphism, minimal injective cogenerator I ,. Moreover, the

Lemma 6. For any { > 0 and any n > 0, the abelian category C has a

t-weight spaces of I:’fQ are finite dimensional.

Proof. We denote by fét the category of p-modules whose restrictions to C(t)

belong to Fé(t) ¢« and by -Fg,t,n+2 the subcategory consisting of modules whose t-
weights are bounded from below by n+2. Let F be as in Lemma 5. Endow E with
a p-module structure by letting n act trivially on E, and consider the p-module

Ffpropc(t)((Ee)v) = 't Homy oy (U(P)7 (EE)V)~ (2)

Recall that prog( B (+) preserves injectivity and that the functor of t-weight vectors
T'¢ is right adjoint to the inclusion of the category of p-modules semisimple over
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t into the category of all p-modules. Therefore I'y also preserves injectivity, and
the p-module (2) is injective in —Fg,v It is straightforward to verify that this
module is an injective hull of F in ff,t. Consequently, the truncated submodule
(Ftprog(t) ((EZ)V))Zn+2 of (2), spanned by all t-weight spaces with weights greater
than or equal to n + 2, is an injective hull of E in f£7t7n+2.

Set
0

JHE) = [Ftprog ((Ftproé(t)((Ee)v))zn”)}

Then, by a similar argument, J*(E) is injective in Cg”f’n 4o and we have an em-

bedding of g-modules L(E) < J*(E) induced by the embedding of p-modules
E < (Ftprog(t)((Ee)v))ZnH. The p-module (1"tpr0g({)((EZ)V))ZHJr2 is finite
dimensional. Moreover, it is easy to check that the g-module J*(E) has finite-
dimensional t-weight spaces.
Note that, up to isomorphisms, Cg:f,n+2 has finitely many simple objects L(F1),
.., L(E,). Each of them has a unique, up to isomorphism, injective hull I* (Ej)

which is a submodule of J*(E;). Then sz2 is the direct sum @;_, I*(E;). O

Corollary 7. Let AZ’f_Q = End, IZ’_fQ. Then Cg:f’nJrQ is equivalent to the category

of finite-dimensional Af1ﬁ2 -modules.

Let Cg:i?fw be the category of inductive limits of objects from Cg:fm”.

Corollary 8. For any n, the category Cg:i?fw has a unique, up to isomorphism,

. o Y -
minimal injective cogenerator Iz+2. Moreover, IfH_Q =lim I, 5. In particular, the
—

6,ind .o .
category Cﬁ7t7n+2 has enough injectives.

6,ind

In fact, if I is any injective object in Cg’y , o,

then I is a direct limit, lim I¢,
—

for injective objects I* € Cg_:f,n+2'
Recall the definition of F from Lemma 5, and let

W(E) :=T'pro}(E).

Lemma 9. Let Fj ¢ be the category of locally finite p-modules such that their
restrictions to C(t) lie in Foy,. Then Resg W(E) is an injective hull of E in
Fpt. Moreover, Rescy W(E) is isomorphic to a finite direct sum D, E, for

some finite-dimensional irreducible C(t)-modules Fy,.

Proof. By the Poincare—Birkhoff~Witt Theorem we have an isomorphism

Resy W(E) = T'Home(y (U(p), E) = T'prof,  E.

Since E is arinjective module in Fey,, Ftproﬁc(t)E is an injective module in Fp ;.

Hence Ress W(E) is an injective module in Fj . o
Let S(E) be the socle of Res; W (E) as a module over C(t). Since RescyW(E)

is locally C'(t)-finite, it is an essential extension of S(F), and therefore Res¢ ) W(E)
is by definition an injective hull of S(FE).
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Let S(E) = @, F. for some finite-dimensional irreducible C(t)-modules F,.
We now prove that Resc(y) W(E) ~ D, F,,. For this it is enough to show that
the C(t)-module T'(E) := @, Fa is injective as SocT(E) = S(E), T(E) is an
essential extension of S(F), and any two injective hulls of S(E) are isomorphic.
Finally, the injectivity of T'(E) follows directly from the left Noetherian property
of U(C (t)) since any direct sum of injective modules over a left Noetherian algebra
is injective. O

We define an object M € Cli—;}f to admit a parabolic co-Verma filtration if there
exists a finite filtration

O=MyCcMyC---CMy=M

whose successive quotients M;,1/M; are isomorphic to W (E;) for simple C(t)-
modules F1, ..., E;. In what follows we say simply “co-Verma filtration”.

Lemma 10. Let M be an object of Cmd Then M admits a co-Verma filtration if
and only if Resg M is injective in ]-"p7t wzth socle of finite length.

Proof. If M admits a co-Verma filtration, then Resg M is a direct sum of modules
of the form W (F), and by Lemma 9 Ress M is injective in Fj ¢ with p-socle of
finite length.

To prove the opposite assertion, choose a simple p-submodule ' C Ress M with
minimal |E|. The existence of E follows from the fact that the socle of Res; M
has finite length. Let & be the multiplicity of E in Soc Resz M. Then we have a
surjective morphism ¢ : Res, M — E®* of p-modules (¢|zer being the identity
map) which induces a morphism ¢ : M — W(E)®* of g-modules by Frobenius
reciprocity. Since Resy M is injective in Fj ¢, and since Resg is p-locally finite, we
have that Resy M is an injective hull of its socle, i.e.,

Ress M ~ Res; (W(E)®k v P W(F))

|F[>|E]|

by Lemma 9. Moreover, Homj (Resy W (F), Ress W(E)) = 0 if |[F| > |E|. There-
fore @(Resﬁ (@‘F|>‘E‘ W(F))) =0, and

¢|Resg W(E)ek - Ress W(E)®* — Res; W(E)®*

is an isomorphism of p-modules since it is induced by the identity map ¢|ger :
E%k — ROk,

Set @ := ker ¢. Then Resp @Q is isomorphic to Resp ( D r> 5 W (F)), and hence
@ satisfies all conditions of the lemma. So we can finish the proof by induction on
the length of the socle of Res; M. [

Corollary 11. Let R= M @& N for some M,N € CG ind - Suppose that R admits
a co-Verma filtration. Then M and N also admit co- Verma filtrations.

Proof. A direct summand of an injective module is injective, so the statement
follows from Lemma 10. [
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Lemma 12. Let I(E) be an injective hull of L(E) in Cg”,i:lfﬁ. Then I(E)/W (E)
admits a co-Verma filtration with successive quotients isomorphic to W (D) for
D[ < |E].

Proof. Let JEE) := [[¢prop ((Ftproé(t)(E))ZnH)]a. We notice that thfe p-module
I'¢ ((prog(t)(E))zn +2) has a finite filtration withﬁsuccessive quotients D such that
|D| < |E|. Moreover, the quotient (I'((prog(E))>n+2))/E has a filtration with
successive quotients D for |D| < |E|. Therefore J(E)/W (E) admits a co-Verma
filtration with successive quotients W (D) such that |D| < |E|.

Similarly as in the proof of Lemma 6, I(F) is a direct summand of J(FE).
Therefore, by Lemma 11, I(E) has a filtration as desired. O

Corollary 13. Iz+2 admits a co-Verma filtration.

5. Adjointness of B; and I'!
In this section, n is an arbitrary nonnegative integer.

Lemma 14. For any { € Z~g, B®* is a right-ezact functor from (g, t)®-mod into
Cg:f,n+2 (in particular, B®*X has finite length for X € (g,t)®-mod).

Proof. Fix X € (g,t)®-mod. Then Homy, (X, IZ’_fQ) is finite dimensional. This
follows from the fact that the t-weight spaces of I? are finite dimensional. As a
consequence, B?* X is isomorphic to a submodule of a finite direct sum of copies
of IZ’_&. Since IS’_& has finite length, B?*X also has finite length, and is an object

0,0
of CE it
The fact that B%* is right-exact follows from the observation that B is left

adjoint to the inclusion functor Cg:f,nw ~ (g,t)B-mod, i.e.,

Hom,o.. (B%*X, M) ~ Homg (X, M)

p.tnt+2

for any X € (g,t)®®-mod and M € Cg:f,n+2~ Indeed, a left adjoint to a left-exact
functor is right-exact. [

Next we need to recall the Mittag-Leffler principle. Let K, be a complex which is
the limit of an inverse system of morphisms of complexes K\t — K for | € Z>y.
Then for each I and j the images of H;(K:™) in H;(Kl) for I > 1 form a
descending chain of subspaces. The Mittag-Lefler principle asserts that if, for a
fixed j, the filtration in H;_;(K}) stabilizes for every [, then H;(K,) is isomorphic
to the inverse limit of H;(K]), see for example [W, Thm. 3.5.8].

Lemma 15. For any X € (g,t)®®-mod and j € Z>0, we have

BYX ~ lim BY“X,
—

where B?’Z is the j-th left derived functor of B%¢.



474 I. PENKOV, V. SERGANOVA, G. ZUCKERMAN

Proof. Let P, be a projective resolution of X in the category (g,t)®®-mod. By
definition, B¢ X is the homology of the complex B?P,, and BY*X is the homology
of the complex B?*P,. Moreover,

B?P, = lim B P,.
—

By Lemma 14, for every ¢, j and g, B?’ZXq has finite length as a g-module. So,
Lemma 15 follows from the Mittag-Leffler Principle. [

If {A[ } is an inverse system of objects from Cg’ Z for variable £ — oo, we set (by
analogy with the continuous dual of an inverse hnnt of topological spaces)

Homgont(ljin AZ,M) — h_n} Hom, (AE,M>

for any g-module M.

6,ind

Proposition 16. Let I be injective in Cp 2

(g,t)-module X and for any j € Z>o,

Then, for any finitely generated

Hom{™™ (BYX,I) ~ Ext (X,I).

Proof. Let P, be as in the proof of Lemma 15. Then
Homg®™" (B}X, I) = Homg™" (H;(B"P,), I) = Homg™ (H,(lim B"P, ), T).

Since
Hj(lim B™*P,) ~ lim H; (B"“P,)

by the Mittag-Leffler Principle, we have
con : 6,0
Homg t(Hj(h£1 B P.),I)

~ cont (1: . 0.4 — 1 . 0,0

~ Hom,3 (h£1 H](B P.),I) hj)l Hom, (HJ(B P.),I).
Next, the injectivity of I in C’|O 1n+2 implies

Homyg (H;(B*'P,), I) ~ H;( Homg(B*“P,, I)).
Consequently,
lim Homyg (H;(B"P,), 1) ~ lim H;(Homg(B** Py, 1)),

and since homology commutes with direct limits,

: . 6,0 ~ Nar 0,0
lim H; (Homg(B"* P, 1)) = H, (lim Homg(B"* P, 1)). (3)
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Recalling that I = lim I, we notice that
—

Homg (B%‘P,,I) = Homg (B*‘P,, I) = Homy (P, 1) . (4)
Furthermore, since P, is finitely generated,

. YA ~
lim Homy (Ps, I*) = Homg (Ps, ). (5)
Therefore, (3), (4), and (5) yield
1 . 0,¢ ~ .
h;n H;(Homg(B"*P,,I)) ~ H;(Homg(P,,I)).
Since H;(Homg(P,, 1)) = Exté’t (X, I), we obtain
Hom{™" (BYX,I) ~ Ext] , (X, I)
as desired. O

Recall that 19 |2 is an injective cogenerator of the category Cg,’iff Lo

Proposition 17. For any X € C¢, and any j > 0, Extéyt (X, Iz+2) is finite
dimenstonal.
Proof. By Lemma 12, it suffices to show that dim Exté’{ (X,W(E)) < oo for any

E with W(E) € Cg:itffﬁ. Shapiro’s Lemma yields

Exté"t (X,W(E)) = Ext;t (X7 FtprogE) ~ EXt‘;)t (X, E) )

Since by the injectivity of £ as a C(t)-module we have
Ext] (X, E) ~ Home(y (H;(n, X), E),
we conclude that
Ext! (X, W(E)) ~ Homc(y) (H;(n, X), E). (6)

Now the statement follows from the finite-dimensionality of H;(n, X), see Propo-
sition 2,b). O
Corollary 18. For X € C¢,, and any j > 0, we have B; X € Cj ¢ nyo.

Proof. By Lemma 14, Hom, (B?’KX, Iz+2) is finite dimensional for any ¢. By

Propositions 16 and 17, Hom{™ (BYX, I7,,) = lim Hom, (B?’ZX, I8 ,,) is finite
—

dimensional. By the definition of the direct limit functor, we have, for sufficiently
large s,
Homg (BY® X, 10,,) ~ Hom, (B X, 10,,)

under the g-module map o : BE’SHX — B?’SX. Since If_ ., is an injective
cogenerator for the category Cg:zf o9, we conclude that the map o® is an isomor-
phism for sufficiently large s.

By Lemma 15 and the definition of an inverse limit of functors, we conclude
that B?X ~ B?’SX for large enough s. Since Bg,X # 0 for only finitely many 6’,
B; X has finite length, or equivalently B; X € Cg ¢.n+2. U
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,ind

Corollary 19. For any X € Cy,, and any injective object I € C;th,

Hom{™™ (BYX,I) = Homg (BJX,I).

Proof. This follows from the isomorphism B?X ~ B?’SX for large enough s. O
Proposition 20. For any X € C¢,, and M € Cp ¢ nt2,

Homg (B1.X, M) ~ Homg (X, "' M), (7)

50 By : Ce.p ~ Cpnt2 and It Ci.t,n+2 ~ Cen are adjoint functors.

Proof. Tt clearly suffices to prove (7) for X € an and M € Cg,t,n+2~ By Proposi-
tion 7.9 in [PZ3],
Homg (X,T') ~ Exty (X, 1) (8)

for any injective object I € Cg:iffw. By Proposition 16 and Corollary 19,

Ext} (X,I) ~ Homg (B1 X, I). (9)
R0 Mo Iy — 1.
Since I'! is an exact functor (Proposition 4), the following sequence is also exact:
0 - I'"M — I''ly — I''I;. Next, applying Homy(X,e), we obtain an exact
sequence

Consider a part of an injective resolution of M in C

0 — Homg (X,I'"M) — Homyg (X,T"1) — Homg (X,I''11).

By (8) and (9), we have a diagram

0 — Homgy (X, ' M) — Homg(X, " Iy) —> Homg (X, 1)

Nl lN

Homyg(B1 X, Io) —> Homg (By X, I1)
which is commutative as the identifications
Hom, (X,T'I) ~ Ext} (X, ) = Homg (B1 X, I)
are functorial in 1. Since Homg (B1 X, o) is left-exact, we conclude that
ker¢ ~ Homgy (B1 X, M) .

Finally, ker ¢ ~ ker 1, and we are done. [J
Corollary 21. By : C¢p ~ Cpt,nt2 95 a right-exzact functor.

Proof. This is a direct consequence of the fact that By is a left adjoint functor.
O
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6. B1 is a bijection on isomorphism classes of
simple modules in C¢, and Cp ¢ ni2-

As stated in Proposition 4, for n > A the functor I'" induces a bijection between
the sets of isomorphism classes of simple objects in the categories Cy ¢,n+2 and Cy .
The main result of this section is:

Proposition 22. Forn > A, the functor By induces a bijection of sets of isomor-

phism classes of simple objects of Ce,p, and Cp ¢ ny2, inverse to the bijection induced
by I't.

In the rest of the paper we assume that n > A. Recall that F is a finite-
dimensional simple p-module (in particular, n - E = 0) on which h acts via a
natural number |E|. We set X (E) := T'L(E) for L(E) € C¢ .- Then X(E) is
a simple object of C¢ ,, and all simple objects in Cy 5, are of this form for appropriate

simple C(t)-modules.

Lemma 23. Let X € Cf)n have the property that the isotypic component of the
minimal t-type of X is isomorphic to the isotypic component of the minimal €-type
of X(E) €C{,. Then

. B 0 fO’I“ |F‘ < ‘E|a
[B?XL(F)] = {S 1 for |F‘ = ‘E|

Proof. Observe first that the t-weights of Hp (ng, X) are less than or equal to
—(|E|—2). Therefore the t-weights of Hy (ne, X)® (ne N €+) are less than or equal
to —|E| + 2+ A This shows that (Ho (ne, X) ® (neNth)) =0 forn+2 <
p < |E|. Indeed, the inequalities n +2 < p < |E] and p < —|E|+2+ X\
vield |E| < A1/2 — A2/2 < A1/2, which contradicts our assumption that |E| >
24+ (A1 +A2)/22>24 N /2.

Next, note that Kostant’s Theorem applied to £ gives

_f0 forp< |E|
Hl (nE,X)p{(C forp:|E|

Therefore the spectral sequence (1) of Proposition 2 implies

L (EY)s = (ED)yg = 0.

0 forn+2<p<|E]|
(Ell)p: _
C forp=|E|

Hence,

O forn+2<p<|E|
Hl(n7X)p{C fOl“p:|E|.

Furthermore, for any D

dimExty ( (X, W(D)) = dim Homc g (H1(n, X), D) < dim Hy(n, X)|p|
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by (6). This yields

. X o {0 for |[D| < |E|,
dlmEth’t (X7W(‘D)) - {S 1 for ‘DI = ‘E|

Consequently, since the injective hull I(F) of L(F) in Cg:if’s o admits a co-Verma

filtration with successive quotients isomorphic to W (D) for |D| < |F|, and W (E)
enters I(E) with multiplicity 1, we have

. X _fo for |[F| < |E],
dlmEth7t <X7I(F))_{<1 for |F|:|E|

Finally,
dim Exty (X, I(F)) = dimHomy (B{X,I(F)) = [B{X : L(F)],

and the lemma is proved. [

Corollary 24. SetY (E) :=I'"M(E) under the assumption that M (E) € Cg,t,n+2-
Then
0 for|F| < |,

[B1Y(E) : L(F)] = [B1X(E) : L(F)] = {1 for F~ E.

Proof. For |F| < |E|, the statement follows directly from Lemma 23 as the isotypic
components of the minimal ¢-types of Y(F) and X (F) are isomorphic by Proposi-
tion 4,c). If F ~ E, then

Hom, (B1 X (E), L(E)) ~ Hom, (X(E), X (E)),

so the identity homomorphism X (E) — X (F) provides a nonzero homomorphism
B1X(E) — L(E). Since I'! is exact and B; is right-exact, this homomorphism is
in fact a composition of surjections B1Y(E) — B1X(E) — L(E), in particular,
[B1Y(E): L(E)] > 1 and [B;X(E): L(E)] > 1. On the other hand, we have
[B1Y(E) : L(E)] <1 by Lemma 23; hence,

B,Y(E): L(E)] = [ByX(E): L(E)] =1. O

Corollary 25. B Y (F) ~ M(E).

Proof. By the adjointness of By and I'!, we have a canonical nonzero homomor-
phism
v:B1Y(E) = M(E)

induced by the identity homomorphism Y (E) — Y (E). Note that Top Y (E) is
isomorphic to X (FE) by Proposition 4,c). Next (again by the adjointness of B
and I'!),

Homg (B1Y (E), L(F)) ~ Homg (Y (E), X (F)).



ADMISSIBLE (g,s1(2))-MODULES 479

Since Homg (Y (E), X (F)) # 0 only for F ~ E by Corollary 24, we see that
TopB.Y (E) ~ L(E).
As ¢ # 0, ¢ induces an isomorphism
TopB1Y(E) ~ L(E) = Top M(E). (10)

Consequently, ¢ is surjective.
Let N = ker . The isomorphism (10) shows that the exact sequence

0—-N-—->BY(E)—> M(E)—0

does not split. Therefore, the assumption N # 0 leads to the conclusion that
Exté(M(E),L(F)) # 0 for some simple subquotient L(F') of N. However, the
condition Exté(M(E),L(F)) # 0 implies |F'| < |E|, while [B1Y (E) : L(F')] = 0 for
|F| < |E| by Corollary 24. This contradiction shows that N =0, i.e., that ¢ is an
isomorphism. [

Corollary 26. Top(I''B; X(E)) ~ X (E).

Proof. By is right-exact, hence the surjective homomorphism Y (E) — X (F) yields
a surjective homomorphism M (E) ~ B;Y (E) — B;X(F). By applying I'" we
obtain a surjective homomorphism Y (E) — I''B; X (E), hence Top(I''B; X (E)) ~
TopY(E)~ X(E). O

Corollary 27. B1 X (F) ~ L(E).

Proof. By Corollary 24, B1X(E) # 0. The adjointness of B; and I'! yields an
isomorphism

Hom, (X(E),I'"'B1X(E)) ~ Homg (B1 X (E),B1 X(E)).
Hence, there is a nonzero (and therefore injective) homomorphism
a: X(E) = T'B1X(E)

corresponding to the identity homomorphism B; X (E) — B1 X (F).
Once again, Corollary 24 implies [B; X(E) : L(E)] = 1. Since I'! is exact and
is a bijection on isomorphism classes of simple modules, we have

[T'BiX(E): X(BE)] =1. (11)
By Corollary 26, there is a surjective homomorphism
B:T'BiX(F) - X(E).

Equation (11) now implies that Sa # 0 and «f # 0. Thus, X(FE) is a direct
summand of I''B; X (F). But Corollary 26 shows that I''B; X (E) is indecompos-
able. We conclude that

I'B1X(F)~ X(E)=T'L(E).

As before, I'! is exact and is a bijection on isomorphism classes of simple modules.
So, B1 X (F) is a simple g-module, and B; X (F) ~ L(E). O
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7. Exactness of B4
The goal of this section is to prove the following:
Proposition 28. By : C¢,, ~ Cj i nt2 15 an exact functor.
Our main effort will go into proving the following lemma:
Lemma 29. ByY(E) =0 for X(E) € Ce -

Note that it suffices to show that Ha(n,Y (E))
Indeed, the implication

p = 0 for all X (E), X (F) € Ce,n.

(H, (n,Y(E))‘F‘ = Ofor all X (E), X(F) € Cen)
= (B2Y(E) = Ofor all X (E) € C¢,)

follows from the following three facts:
(1) Ext?  (Y(E),I(F)) ~ Homg (ByY(E), I(F));
(2) I(F)/W(F) has a co-Verma filtration with factors isomorphic to W (F’) for
|F'| < \F\ (Lemma 12)
(3) dlmExt (Y F)) = dimHome(y (Hz (n, Y (E)), F)
< dim Hs (n, Y(E))IFl, see (6).

To prove that Ho (n’Y(E))m =0 for all X(E), X (F) € C¢n, we give another

construction of the functor I'' : Cp ¢ 42 — Cepn. Denote by U.(g) the enveloping
algebra U(g) localized by the multiplicative set {e"}, ., . The localized algebra

U, (&) is a subalgebra of U, (g). For any g-module (resp., -module) M, set
DE(M) :=U.(9) @u(g) M, Dg(M) := U, (t) @y M.

Lemma 30. If M is a g-module on which e acts injectively, we have an isomor-
phism of €&-modules
Res¢D8(M) ~ DY (M).

Proof. There is an embedding ¢ : M — D$%(M). By Frobenius reciprocity, ¢
induces a morphism ¢ : D¥(M) — D3(M). As Ue(g) = Ue(£)S(¢+), the morphism
@Z is surjective. Let us show that 77/; is also injective. Since e acts injectively on
M, we see that D¢(M) is an essential extension of M. Therefore, the fact that
kemﬁ N M = 0 suffices to conclude that 15 is injective. 0

Suppose that a g-module M is free over Cle] and locally finite over C[f]. Then
we have an embedding
M — F(Cfpg (M)

where I'cy is the functor of Cf-finite vectors. Set
EM i= (T DI(M)) /M,

cf. [E]. Since M € Cj 42 satisfies the above assumptions, we have constructed a
new functor
E:Cint2 ~ Cen-



ADMISSIBLE (g, 51(2))—MODULES 481

Lemma 31. If M € Cp ¢ nt2, n > 0, then for some y(n) € Z>o

Rese M ~ @ Me(p) @)
u>n+2

and
Rese(EM) ~ @ Ve(n—2)%®),
pn>n+2

where Me(p) := U(€) ®uenpy Cp for an integral t-weight p.

Proof. Any t-weight of M is not less than n + 2. Therefore M is free over Ce,
which implies that Resg M has a filtration with quotients isomorphic to Verma
modules M(p) for p > n + 2. Recall that if p/ and p” are positive then the
central characters of Me(u') and Me(p') coincide only if p/ = u”, and there is
no non-trivial t-semisimple self-extension of a Verma module of €. This implies
Ext;t(Mg(,u’), Me(p'")) = 0 for positive ' and p”’, therefore Rese M is isomorphic
to a direct sum of Verma modules. The first assertion follows.

Let us prove the second assertion. Recall that DE (Me(u)) = Ue(8) @u(ey Me(1).
By Lemma 30 it suffices to check that for any p > 2

Py De (Me(p)) /Me(p) = Vel — 2). (12)

First, we show that Df(M;(u)) is an indecomposable multiplicity-free weight
s1(2)-module with socle filtration

Me(p) C Me(2 — p) C DE(Me(p)).

Indeed, let v € Mg(u) be a nonzero vector annihilated by f (v is unique up to
proportionality). Then {e*v |k € Z>o} is a basis of h-eigenvectors in M (u). In
the localized algebra U, (£) we have the relations

e ==2e71, [fie Y =ethe t=e2(h—2), [f,e ¥]=e " 1k(h—(k+1)).

Therefore D (Me(u)) has a basis {e¥v |k € Z} and the action of h and f is defined
by the above relations. In particular, w = e “#v is annihilated by f and generates
a submodule M (2—pu) C DE(Me(p)). The quotient M (2—pu)/Me(p) is isomorphic
to the finite-dimensional module V(1 —2), and the quotient DY (Mg (u))/Me(2 — 1)
is isomorphic to the Verma module with respect to £ N p with highest weight —pu.
Since the latter quotient is free over f, (12) follows. O

Corollary 32. If M € Cp ¢ nt2, n >0, then
Resg(EM) ~ Resg (I'"' M) .

Corollary 33. The functor £ : Cg ¢, nt+2 ~ Ce.pn 15 ezact.

Proof. The exactness of I'!, together with Corollary 32, shows that the functor
Resg of is exact. Therefore £ is also exact. [
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Proposition 34. The functors £ : C5 ¢ ny2 ~ Cepn and rt. Cp,t,nt2 ~ Cen are
isomorphic.

Proof. Let us start with the construction of a morphism of functors ¢ : £ ~» T'L.
Let M € Cp,¢,n+2. Then the exact sequence

0— M — IeyDy(M) =5 EM — 0
does not split over ¢, and therefore does not split over g. Set
R'(M) :=T'\Homc (U(g) ®u ) A'(g/t), M)

and let 5 5 5 5
0— M= ROM) Z RY (M) = RA (M) = ...
be the Koszul resolution of M as introduced in Lemma 2.2 of [Z].
The complex R®*(M) is functorial with respect to M and yields an injective
resolution of M in the category of (g, t)-modules. Hence, we have a commutative

diagram

0 — M —= Ty D5(M) M 0
l idj\/ji nMi Lp}\/li
do 0 o1 1 02 2
0 M RO(M) RY(M) —2> R2(M)

for some morphisms 75 and ¢js, unique up to homotopy. We recall from [PZ3]
that 'M = 0. By construction, I' (FchS(M)) =0and 'éEM = EM. By applying
I" to the above diagram, we obtain a new commutative diagram

0 0 0 EM 0

e

0— >0 ——>TR(M) 2 TRY (M) 2= TR (M)

The morphism T'¢,; induces a unique morphism vy, : EM — T''M, by the
definition of I''. Since our diagram is functorial in M, we obtain a morphism
of functors 1 : €& ~» ',

It remains to show that s is an isomorphism for all M € Cj ¢ n42. Since both
functors £ and I'! are exact, it is sufficient to check this for simple M as the general
case follows by an easy induction on the length of M.

Suppose that M is simple and s is nonzero. Then we have a surjective
morphism ¢y : EM — T'' M, since I'' M is also simple. But then, by Corollary 32,
s is an isomorphism. Now, suppose 15; = 0. Recall that ¢y, : EM — I''M =
kerI'dy/imI'0y. Therefore the equality 1y = 0 defines a non-zero morphism
EM — imT;, or equivalently a nonzero morphism sy : EM — R°(M) such
that A1k = wpr. Moreover, im k) ~ imn),. Because F(chg(M) is an essential
extension of M, mys is an injection, and hence I'imny; = ny T (FCfD;(M)) =0.
On the other hand,

Fimky =imTky =imky # 0,

a contradiction. Hence 1p; # 0, and the proposition is proved. [
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Corollary 35. There is an isomorphism of g-modules
Y(E) ~EM(E).

We are now ready to give a proof of Lemma 29.

Proof of Lemma 29. Set
D(E):=DIM(E), C(E):=TcsD(E).

From the explicit form of D(F) as a t-module it is easy to verify that

Ho(ne, D(E)) = Hi(ne, D(E)) = 0.
By the spectral sequence of Proposition 2 this implies

H; (n7 D(E)) =0 for all 1.

The exact sequence

0— C(E)— D(F)— F(E) — 0,

where F(E) := D(E)/C(E), yields Ho (n,c(E))IF| = H; (n,F(E))‘FI. It is easy
to check that Hy (ng, F(E)) = 0, hence the input into Hs(n, F(E)) in the spectral
sequence (1) comes from

Hy(ng, F(E)) ® A% (nneth). (13)

The maximum possible t-weight of Hy (ng, FI(E)) is 2 — |E|, hence the maximum
possible t-weight of (13) is 2 — |E| + A1 + A2. However, for any F' such that
X(F) € Cen, we have 2 — |E| + A1 + X2 < |F| as |E|,|F| > (M + A2)/2+ 2. We
obtain Hy (n,C(E))‘F| =0.

Next, we note that Corollary 35 shows the existence of an exact sequence

0—-M(E)—CE)—Y(E)—0

as Y(E) ~ EM(E). Since M(E) is free as an n-module, H;(n, M(E)) = 0.
Together with Hs (n, C(E))|F\ = 0, this yields

Hy(n,Y(E)), ~ Hi(n, M(E)) 0

|F 7|

as M(F) is free as an n-module. The proof of Lemma 29 is complete. [
To prove Proposition 28, it now suffices to establish the following.

Lemma 36. BoX(E) =0 for any X(E) € Cg .
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Proof. Fix a Borel subalgebra b of g such that h C b C p and e € b. We will prove
the statement by induction on the Bruhat height of the b-lowest weight of L(E).

If \ is b-dominant (i.e., b—antidominant), then Y (E) = X (FE) and we are done.
For an arbitrary A, we consider the exact sequences

0— N(E) % M(E) % L(E) =0 (14)
and

0—T'N(E) = Y(E) = X(E) — 0. (15)
The long exact sequence corresponding to (15) is the top row of the following
commutative diagram

-+ —>ByY(E) — ByX(E) — B I''N(E) — B, "' M(E) — B, X(E) —0

| .

)
E) N(E) —Y— M(E) —*— L(E) 0
The vertical isomorphisms are explained as follows:
B2Y (E) = 0 by Lemma 29,
BiI''N(E) ~ N(E) by the induction assumption,
BT M(E) ~ M(E) by Corollary 25,

(
>0 —> By X(

and
By (X) ~ L(FE) by Proposition 22.

The exactness of the bottom row of the diagram yields B, X (F) = 0, and Lemma 36
is proved. Proposition 28 now follows. [

8. End of proof of Theorem 1

The results of Sections 5—7 imply that, under the assumption n > A, the functors
I Csini2 ~ Cen
and
Bl : CE,n ~ Cfv,t,n-‘rQ
are exact functors between finite-length abelian categories which induce mutually
inverse bijections on isomorphism classes of simple objects.
The isomorphisms
Homg (B1I'"'M, M) ~ Homg (I M, T' M)
and
Homg (B1X,B1.X) ~ Hom, (X, I'B1X),
for X € C¢, and M € Cj ¢ n42, induce morphisms of functors
A:Byol' wide, .
and
V:I'oB; ~ide,,.
As in the proof of Proposition 34, it suffices to show that A and V are isomorphisms

on simple objects as all functors involved are exact functors on finite-length abelian
categories. Finally, for simple objects the claim follows from Proposition 22.
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9. Discussion and examples

It is interesting to see when the functor By establishes an equivalence of the
category Cy y with the entire category Cg . This is equivalent to the question: for
which central characters 6 does the equality Cgm At2 = Cg’{ hold?

Consider in more detail the case when g is simple and ¢ is a principal sl(2)-
subalgebra of g. Here h is a regular element of g and p = b is a Borel subalgebra.
Let the simple roots of b be ay,...,a, € h*, and 8 be the highest root. Then

B = miay + - -+ + mya, for some positive integers myq, ..., m,. Moreover, A =
B(h) — 1. We would like to find central characters 6 such that CgtA+2 = Cg -

For a weight v € h* denote by 6, the central character of the Verma module
M(v) = U(g) ®@y(s) Cv- The equality 6, = 6, holds if and only if v — p and n — p
belong to the same orbit of the Weyl group, where p is the half-sum of roots of b.
Consider the set C of all weights A € h* such that Re(\, ) < 0 for all positive roots
a. The orbit W (v — p) contains at least one weight v — p lying in C. Moreover, for
any other n = w(y — p) + p on the Weyl group orbit we have Re(v, ) < Re(n, @)
for all positive roots «. Hence Re~y(h) < Ren(h). Thus, it suffices to find v such
that v — p € C and Re~(h) > B(h) + 1.

Let hq,..., h, denote the simple coroots. Then h = nihy + - - - + n,.h, for some
positive integers nq,...,n,. Weset ~y; := ~y(h;). Since p(h;) = 1foralli=1,...,r,
the condition that v — p € C can be written in the form

Rey, <lforalli=1,...r (16)
The equality a;(h) = 2 shows that S(h) = 23 ;_, m;. Hence, the condition
~v(h) > B(h) + 1 is equivalent to

Reini% >1+ Qimi. (17)
i=1 =1

Let 3(g) denote the set of weights satistying conditions (16) and (17). Clearly
3(g) is not empty as soon as

T T
doni=14+2) my
i=1 i=1

The latter inequality can be rewritten as

p(h) = 1+ B(h). (18)

For example, let g = sl(r + 1). Then my = --- = m, = 1, hence g(h) =1+ 2r
and p(h) = r(r + 1)(r +2)/6. Therefore (18) holds for r > 3.

Proposition 37. Let g be a simple Lie algebra not isomorphic to s1(2) or sl(3).
Then 3(g) is not empty. If in addition g is not isomorphic to sp(4), then X(g) is
infinite.
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Proof. ¥(g) is infinite as soon as the inequality (17) is strict. We can further
rewrite (18) as

3> ah) =1+ 1B(h). (19)

acAT\B

If 5(h) > 8, the inequality (19) is strict, as in this case the sum of positive non-
highest t-weights in the £-submodule generated by the highest root vector is greater
than the highest t-weight. Therefore, the statement holds for all g of rank greater
than 2 and for g = Go. For g = B2 we have p(h) = 7, S(h) = 6, and hence X(g)
consists of one element: ¥(g) = {p}. For g = Ay we have X(g) =@. O

Note that the set of integral weights lying in ¥(g) is always finite since X(g) is
compact. Moreover, the cardinality of this finite set grows with rank.
Using translation functors we can strengthen Theorem 1 for certain central

characters. Let us call a central character 6 t-adapted if CgtA+2 = Cg‘t. A

central character 6 is weakly -adapted if there exists a £-adapted character 6§ and
a translation functor T establishing an equivalence between the categories of g-
modules admitting respective generalized central characters ¢ and 6. Recall that,
if = 0,, for some 71 such that n— p € C and 0 = 6, for some v € ¥(g), then v —n
must be integral and the stabilizers of v — p and 1 — p in the Weyl group of g must
be the same [BG].

Corollary 38. Assume that 0 is weakly €-adapted. Then
(a) TLL is simple for any simple module L € Cgt.
(b) Let Flcgit denote the full subcategory of Ceé,A consisting of modules whose

simple constituents are of the form T''L for simple modules L € Cg i« Then

the functor By : Flcg ¢ Cg . s an equivalence of categories, and is inverse
to T

Proof. Both assertions follow from the following commutative diagram of functors

~ I ~
CQ e FlcQ
<
b,t B: b,t

T1 T2 Tl T2 9

Cl =Y
b,t B, €A

)

where 17,7, are appropriate translation functors. The commutativity of the
diagram is a consequence of Theorem 1 and of the fact that the Zuckerman functor
commutes with translation functors. This latter fact is essentially a reformulation
of Proposition 2.6 and Corollary 2.8 in [Z]. O
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10. An application

In this section ¢ is an arbitrary sl(2)-subalgebra of g and n > A. By Céflf:
(respectively, C%‘}gn 4o) we denote the category of inductive limits of objects from
Cen, (respectively, Cé,t,n 42)- Theorem 1 implies the following:

Corollary 39. The functors I'' and By induce mutually inverse equivalences of

the categories Cé‘f and C;{‘Sn oy

Recall that if an abelian category C has enough injectives, then the global
dimension gdim C can be defined as

gdimC = sup; yee {i € Zso | Exto (M, N) #0} .

Corollary 8 implies that C;—f,‘gn 4o (and consequently also Céf‘;} by Theorem 1) has
enough injectives. The goal of this section is to prove the following proposition.

Proposition 40. We have

gdim Gy’ = gdim C*Y,, ., < 2dimn + dim¢ — 1

(n and ¢ are subalgebras of g depending on the pair g, only).

Lemma 41. For every simple C(t)-module E such that |E| > n + 2, the module
W(E) has an injective resolution in C:{’td,nJrQ of length not greater than dimn.
Hence Extéﬁ’t‘wr2 (M,W(E)) =0 for any M € C%?SRH and any ¢ > dimn.

Proof. Consider the category of locally finite p-modules which are semisimple over
t and whose t-weights are at least n + 2. Then F is an object of this category and
has an injective resolution in it with terms

Z’(E) = (Ft Homc (U(p) () Ai(p/C(’t)), E))2n+2 :

Furthermore, I'iproj Z*(E) provides an injective resolution for W(E) in C;-;?gn 4o Of
length at most dimn. [

Lemma 42. For every simple C(t)-module E, let W(E) := M(E)" = T'yprog(E).
Then there exists an acyclic complex

0— W(E) = 8% — ... 5 gdime=l

such that all S admit co-Verma filtrations.

Proof. Let ‘ A
Q'(E) = Homg (S*(c/t) @ A*(c/t), E) .

Consider the exact complex of C(t)-modules 0 — E — Q°(E) — QY(E) — ...
with usual Koszul differentials and set S* := I'ipropT*(E). O

Corollary 43. Extéw’wr2 (M, W(E)) =0 for any M € C;{‘Snw and ¢ > dimn +
dime—1.
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Proof. We note that, by Lemma 41, Ext%’t’nH(M, N) =0 for ¢ > dimn and N
admitting a co-Verma filtration. In particular, Extfj5 R (M,S7) =0fori>dimn
and j =0,...,dimc— 1. Hence the statement. O

Lemma 44. For every E, L(E) has a right resolution of length not greater than
dimn by modules which admit finite filtrations with succesive quotients isomorphic

to W(F).

Proof. This is a standard fact about parabolic category O. Indeed let V* :=
D¢progA’(g/p)*. Then V' ~ S*((g/p)*) @ A’(g/p)*. Consider the Koszul complex

0Vl sVl ... s ydimn

as the complex of polynomial differential forms on the open orbit of P on G/P,
where G, P and P are appropriate connected algebraic groups with respective Lie
algebras g, p and p. It gives a resolution of the trivial module by modules which
admit finite filtrations with succesive quotients isomorphic to W(F'). To obtain a
similar resolution for L(E), we tensor the above resolution with L(E) and project
to the subcategory of modules with the central character of L(E). O

Corollary 45. Exte, . (M,L(E)) = 0 for any M,L(E) € CI*!, .5, and i >
2dimn + dime— 1.

Proposition 40 follows from the last corollary since Ext%mn 4o(M, N) # 0 implies
Extéﬁ cnya (M, N") # 0 for some submodule N C N of finite length.
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