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Abstract—Our poster presents a data analytics strategy to
enable scientists to model patterns of soil moisture data at
different resolutions across the United States. We build
upon previous work of Guevara and co-authors with three
contributions. First, we introduce divisions of soil moisture
into the climatic regions proposed by the National Ecology
Observatory Network. Second, we reduce the topological
parameters used in modeling soil moisture using Principal
Component Analysis. Third, we present an efficient
workflow for modeling and visualizing soil moisture data.
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I. INTRODUCTION

There is an increasing need for soil moisture information at
scales relevant for environmental policy. Soil moisture data is
used in land and resource management applications, for
example, informing farmers of how much water they need to
use on their crops. Soil moisture data is also a key factor in
our understanding of climate change. The current standard in
soil moisture data comes from environmental research
satellites. Satellites provide nearly global coverage of soil
moisture at a 27 km x 27 km resolution. This source of data
has two main shortcomings. The first is the coarse resolution
of the satellites’ sensors. The other is the satellites’ inability to
measure soil moisture in areas of dense vegetation or snow
cover, which produces gaps in the data [1].

To make this source of data more useful to scientists, we need
a workflow for increasing the resolution of the data set and
predicting values in areas of missing data. Guevara and co-
authors addressed the problem by modeling the soil moisture
data at the lower resolution of 1 km x 1 km supported by a k-
nearest neighbors algorithm (k-NN) and a set of 15
topographical parameters describing soil lithodiversity, soil
topodiversity and soil cronodiversity [2]. Specifically, to make
fine-grain predictions for soil moisture, Guevara utilizes
separate testing and training data sets. The training data is at a
coarse grain and contains soil moisture labels. The testing data
is at a fine grain and is missing soil moisture labels. In order to
increase the resolution of the data, the scientists assign a soil
moisture prediction to each point in the testing set that is the
weighted average of the soil moistures of the nearest
neighbors in the training set. It optimizes the choice of k (i.e.,
number of neighbors considered) and kernel (i.e., weighting
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function) for each given year over a range of x years (from
1978 to 2013) using 10-fold cross validation [2]. This work,
however, still leaves open questions about the use of
parameters, including how many are necessary to make good
predictions. Furthermore, additional optimization of kNN may
improve the predictions.

We leverage Guevara’s method in three ways. First we split
the data into climatic regions, controlling for the effects of
climate. Second, we condense the topographic information
used as predictors by Guevara et al. using Principle
Component Analysis. Third, we develop a workflow for
predicting finer-grained soil moisture at a 1 km x 1 km
resolution. Specifically, our workflow consists of four steps.
We divide training and testing data into regions. Then, the
topographical data undergoes Principal Component Analysis
(PCA) preprocessing to reduce the set of 15 topographical
parameters in size to few principal components. Next, we
assess the effectiveness of two modelling tools such as kNN
and HYPPO [3] and apply the tools to the training data. kNN
assigns each point in the testing set a soil moisture that is the
weighted average of the soil moisture values of its neighbors.
HYPPO or Hybrid Piecewise Polynomial combines KNN with
a Surrogate Based Model, a global polynomial model of a
surface. HYPPO uses a polynomial approximation in each
neighborhood of k nearest points to predict soil moisture.
After that we evaluate our model on the testing data. Finally,
we visualize our predictions. Each step in our workflow is
described in more detail in the following sections.
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Figure 1. A satellite collecting pixelated data [4].

II. INPUT DATA

The input data we used in our work comes from two main
sources: satellite soil moisture data and a Digital Elevation
Model (DEM). The satellite data, made available by the



European Space Agency as part of its Climate Change
Initiative, consists of average annual soil moisture values
across the United States at a 27 km x 27 km resolution. The
information is collected as pixels covering an areca on the
Earth’s surface, as shown in Figure 1. The data contains many
gaps, representing areas where factors such as dense
vegetation or snow cover prevented the satellites from getting
a good reading. The DEM provided values of several derived
topographic parameters at both 27 km x 27 km and 1 km x 1
km resolutions [5].

III. PREDICTIVE WORKFLOW

We build a workflow for prediction that includes four steps:
(1) we split the data into 20 Eco-climatic regions; (2) we apply
Principal Component Analysis (PCA) to the data; (3) we test
soil moisture prediction of k-NN and HYPPO algorithms; and
(4) we visualize the actual soil moisture data and the
differences from ground truth produced by k-NN and HYPPO.
We use the data described in Section II. The training data
consists of a series of vectors, one for each pixel in the
satellite data. Each pixel is represented by a vector consisting
of the latitude and longitude of the centroid of the pixel in the
satellite data, the average soil moisture values of each year
from 1978 to 2013 for that pixel, and the values of 15
topographic parameters from the DEM evaluated at the
centroid. The testing data consists of a series of vectors
representing 1 km x 1 km pixels from the DEM. Each vector
consists of the centroid of the pixel in the DEM and the values
of the 15 topographic parameters describing soil lithodiversity,
soil topodiversity, and soil cronodiversity at that location [2].
There are two stages to our preprocessing: splitting the data
into regions and compressing it using PCA. These are
performed identically on both the training and testing data.
The division into regions is motivated by our understanding
that climate is the primary factor influencing soil moisture and
topography is the second most important factor [2]. By
dividing our data into the 20 Eco-climatic proposed by the
National Ecological Observatory Network, we are able to
consider regions in which the climate does not vary
considerably. Thus, we are able to isolate the effects of
climate and move into a scale where the effects of topography
dominate and evaluate our topographically-based models at
that level. This partition of the data is followed by a reduction
of the number of predictors under consideration, using PCA.
This is intended to minimize the number of additional features
for modeling introduced by the addition of the topographic
parameters from the DEM. This transformation replaces the
topographic parameters with a set of derived components,
with no impact on either the (x,y) coordinates or soil moisture
values. The final product of the preprocessing stage is a
separate set of training and testing data for each region under
consideration. The models described below can be run on
either the raw data, i.e. that used as the starting point for PCA,
the processed version output by PCA, or a minimal version of
the data, in which only longitude and latitude are available as
predictors.

In generating models for the training data, we considered two
algorithms: k Nearest Neighbors (kNN) and Hybrid Piecewise

Polynomial (HYPPO). kNN assigns each point in the testing
set a soil moisture that is the weighted average of the soil
moisture values of the closest points to it in the training data.
In our work, we use Johnston et. al.’s implementation of KNN
in Python and Guevara et. al.’s implementation of kNN in R.
The difference in kNN in Python versus kNN in R is
explained by choice of k, choice of kernel, and the fact that the
Python implementation uses a random sampling of points in
the training set as opposed to the full set [2,3]. We use
Johnston et. al.’s implementation of HYPPO in Python as our
second model. HYPPO attempts to improve upon kNN by
using polynomial approximations in each neighborhood of k
nearest points [3]. This is different from the concept of kernel
weighting used in kNN since it differentiates between the
various features in the data and provides a more complex
model.
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Figure 2. Output from our basic plotting tool (a) and our
comparison tool (b).

We create two tools for visualization of our results. The first is
plotting tool for soil moisture data. Our plotting tool displays
soil moisture using a colormap, as in Figure 2 (a). On this
scale 1.0 represents complete saturation of the soil and 0.0
represents the complete absence of water in the soil. The
second is a model comparison tool. This software works on
two models, evaluated at the same resolution, displaying
points at which the models’ predictions are within 5 percent of
each other as green, within 10 percent as yellow, and more
than 10 percent apart as red, as seen in Figure 2 (b). We utilize
ArcGIS to generate maps for our poster [6].



IV. RESULTS

We ran our tools to model and visualize our data using a
commodity desktop with an Intel i5 processor and 8 GB of
memory. We used the original data sets used in the work of
Guevara et. al. described in Section II and the methodology
outlined in Section III to produce our results. Additionally, we
selected an arbitrary year, in this case 1996, from which to
draw all soil moisture values from the training data.

To visually assess the output of our workflow, we select the
Northern Plains as a region of interest. We choose this region
because it has a range of soil moisture values that captures the
variation in the data and because it contains a large number of
training points to sample from. Figure 3 shows the soil
moisture for the Northern Plains region with the satellite
resolution of 27 km x 27 km (a) and the soil moisture
predictions with our workflow supported by the HYPPO
model (b). Our poster presents further prediction and
comparisons Guevara and co-authors’ method.
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Figure 3. Comparison of 27 km x 27 km soil moisture data
measured with satellites (a) and 1km x 1 km soil moisture
data predicted with our workflow (b).

We present visualization of our soil moisture predictions for
the continental US. We selected Guevara et. al’s
implementation of kNN with PCA preprocessing to see the
effect of our refinements within the context of the state of the
art practice. Figure 4 displays a visual comparison between the
original training data (a) and our selected model (b). By
implementing our model with PCA preprocessing, we are able
to make fine mesh predictions of soil moisture on all the
points in the testing set. A similar result could be produced
from our other models.

V. CONCLUSIONS
We provide a workflow to the process of modeling soil
moisture based on satellite data that takes into account the

effects of climate on soil moisture by dividing the modeled
area into climate regions and uses Principal Component
Analysis to condense the topographic parameters with
minimal loss of information. We contribute in the
development of tools for scientists to use to analyze soil
moisture data and visualize results. In the future, we will
develop a means for validating our models and explore the use
of other modeling techniques to make our soil moisture
predictions. We envision that our tools can be scaled up to
make real-time predictions of soil moisture in areas of missing
data. To accomplish this, we eventually plan to parallelize and
automate certain components of our workflow.
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Figure 4. Comparison of 27 km x 27 km soil moisture data
measured with satellites (a) and 1 km x 1 km soil moisture
data predicted with our workflow (b).
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