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Abstract—Our poster presents a data analytics strategy to 
enable scientists to model patterns of soil moisture data at 
different resolutions across the United States. We build 
upon previous work of Guevara and co-authors with three 
contributions. First, we introduce divisions of soil moisture 
into the climatic regions proposed by the National Ecology 
Observatory Network. Second, we reduce the topological 
parameters used in modeling soil moisture using Principal 
Component Analysis. Third, we present an efficient 
workflow for modeling and visualizing soil moisture data. 
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I. INTRODUCTION 

There is an increasing need for soil moisture information at 
scales relevant for environmental policy. Soil moisture data is 
used in land and resource management applications, for 
example, informing farmers of how much water they need to 
use on their crops. Soil moisture data is also a key factor in 
our understanding of climate change.  The current standard in 
soil moisture data comes from environmental research 
satellites. Satellites provide nearly global coverage of soil 
moisture at a 27 km x 27 km resolution. This source of data 
has two main shortcomings. The first is the coarse resolution 
of the satellites’ sensors. The other is the satellites’ inability to 
measure soil moisture in areas of dense vegetation or snow 
cover, which produces gaps in the data [1].  
To make this source of data more useful to scientists, we need 
a workflow for increasing the resolution of the data set and 
predicting values in areas of missing data.  Guevara and co-
authors addressed the problem by modeling the soil moisture 
data at the lower resolution of 1 km x 1 km supported by a k-
nearest neighbors algorithm (k-NN) and a set of 15 
topographical parameters describing soil lithodiversity, soil 
topodiversity and soil cronodiversity [2]. Specifically, to make 
fine-grain predictions for soil moisture, Guevara utilizes 
separate testing and training data sets. The training data is at a 
coarse grain and contains soil moisture labels. The testing data 
is at a fine grain and is missing soil moisture labels. In order to 
increase the resolution of the data, the scientists assign a soil 
moisture prediction to each point in the testing set that is the 
weighted average of the soil moistures of the nearest 
neighbors in the training set. It optimizes the choice of k (i.e., 
number of neighbors considered) and kernel (i.e., weighting 

function) for each given year over a range of x years (from 
1978 to 2013) using 10-fold cross validation [2]. This work, 
however, still leaves open questions about the use of 
parameters, including how many are necessary to make good 
predictions. Furthermore, additional optimization of kNN may 
improve the predictions.  
We leverage Guevara’s method in three ways. First we split 
the data into climatic regions, controlling for the effects of 
climate. Second, we condense the topographic information 
used as predictors by Guevara et al. using Principle 
Component Analysis. Third, we develop a workflow for 
predicting finer-grained soil moisture at a 1 km x 1 km 
resolution. Specifically, our workflow consists of four steps. 
We divide training and testing data into regions. Then, the 
topographical data undergoes Principal Component Analysis 
(PCA) preprocessing to reduce the set of 15 topographical 
parameters in size to few principal components. Next, we 
assess the effectiveness of two modelling tools such as kNN 
and HYPPO [3] and apply the tools to the training data. kNN 
assigns each point in the testing set a soil moisture that is the 
weighted average of the soil moisture values of its neighbors. 
HYPPO or Hybrid Piecewise Polynomial combines KNN with 
a Surrogate Based Model, a global polynomial model of a 
surface. HYPPO uses a polynomial approximation in each 
neighborhood of k nearest points to predict soil moisture. 
After that we evaluate our model on the testing data. Finally, 
we visualize our predictions. Each step in our workflow is 
described in more detail in the following sections. 
 

 
Figure 1. A satellite collecting pixelated data [4]. 
 

II. INPUT DATA 
The input data we used in our work comes from two main 
sources: satellite soil moisture data and a Digital Elevation 
Model (DEM). The satellite data, made available by the 



European Space Agency as part of its Climate Change 
Initiative, consists of average annual soil moisture values 
across the United States at a 27 km x 27 km resolution. The 
information is collected as pixels covering an area on the 
Earth’s surface, as shown in Figure 1. The data contains many 
gaps, representing areas where factors such as dense 
vegetation or snow cover prevented the satellites from getting 
a good reading. The DEM provided values of several derived 
topographic parameters at both 27 km x 27 km and 1 km x 1 
km resolutions [5].  

III. PREDICTIVE WORKFLOW 
We build a workflow for prediction that includes four steps: 
(1) we split the data into 20 Eco-climatic regions; (2) we apply 
Principal Component Analysis (PCA) to the data; (3) we test 
soil moisture prediction of k-NN and HYPPO algorithms; and 
(4) we visualize the actual soil moisture data and the 
differences from ground truth produced by k-NN and HYPPO. 
We use the data described in Section II. The training data 
consists of a series of vectors, one for each pixel in the 
satellite data. Each pixel is represented by a vector consisting 
of the latitude and longitude of the centroid of the pixel in the 
satellite data, the average soil moisture values of each year 
from 1978 to 2013 for that pixel, and the values of 15 
topographic parameters from the DEM evaluated at the 
centroid. The testing data consists of a series of vectors 
representing 1 km x 1 km pixels from the DEM. Each vector 
consists of the centroid of the pixel in the DEM and the values 
of the 15 topographic parameters describing soil lithodiversity, 
soil topodiversity, and soil cronodiversity at that location [2]. 
There are two stages to our preprocessing: splitting the data 
into regions and compressing it using PCA. These are 
performed identically on both the training and testing data. 
The division into regions is motivated by our understanding 
that climate is the primary factor influencing soil moisture and 
topography is the second most important factor [2]. By 
dividing our data into the 20 Eco-climatic proposed by the 
National Ecological Observatory Network, we are able to 
consider regions in which the climate does not vary 
considerably. Thus, we are able to isolate the effects of 
climate and move into a scale where the effects of topography 
dominate and evaluate our topographically-based models at 
that level.  This partition of the data is followed by a reduction 
of the number of predictors under consideration, using PCA. 
This is intended to minimize the number of additional features 
for modeling introduced by the addition of the topographic 
parameters from the DEM. This transformation replaces the 
topographic parameters with a set of derived components, 
with no impact on either the (x,y) coordinates or soil moisture 
values. The final product of the preprocessing stage is a 
separate set of training and testing data for each region under 
consideration. The models described below can be run on 
either the raw data, i.e. that used as the starting point for PCA, 
the processed version output by PCA, or a minimal version of 
the data, in which only longitude and latitude are available as 
predictors. 
In generating models for the training data, we considered two 
algorithms: k Nearest Neighbors (kNN) and Hybrid Piecewise 

Polynomial (HYPPO). kNN assigns each point in the testing 
set a soil moisture that is the weighted average of the soil 
moisture values of the closest points to it in the training data. 
In our work, we use Johnston et. al.’s implementation of kNN 
in Python and Guevara et. al.’s implementation of kNN in R. 
The difference in kNN in Python versus kNN in R is 
explained by choice of k, choice of kernel, and the fact that the 
Python implementation uses a random sampling of points in 
the training set as opposed to the full set [2,3]. We use 
Johnston et. al.’s implementation of HYPPO in Python as our 
second model. HYPPO attempts to improve upon kNN by 
using polynomial approximations in each neighborhood of k 
nearest points [3]. This is different from the concept of kernel 
weighting used in kNN since it differentiates between the 
various features in the data and provides a more complex 
model. 
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Figure 2. Output from our basic plotting tool (a) and our 
comparison tool (b). 
 
We create two tools for visualization of our results. The first is 
plotting tool for soil moisture data. Our plotting tool displays 
soil moisture using a colormap, as in Figure 2 (a). On this 
scale 1.0 represents complete saturation of the soil and 0.0 
represents the complete absence of water in the soil. The 
second is a model comparison tool. This software works on 
two models, evaluated at the same resolution, displaying 
points at which the models’ predictions are within 5 percent of 
each other as green, within 10 percent as yellow, and more 
than 10 percent apart as red, as seen in Figure 2 (b). We utilize 
ArcGIS to generate maps for our poster [6].  



IV. RESULTS 
We ran our tools to model and visualize our data using a 
commodity desktop with an Intel i5 processor and 8 GB of 
memory. We used the original data sets used in the work of 
Guevara et. al. described in Section II and the methodology 
outlined in Section III to produce our results. Additionally, we 
selected an arbitrary year, in this case 1996, from which to 
draw all soil moisture values from the training data. 

To visually assess the output of our workflow, we select the 
Northern Plains as a region of interest. We choose this region 
because it has a range of soil moisture values that captures the 
variation in the data and because it contains a large number of 
training points to sample from. Figure 3 shows the soil 
moisture for the Northern Plains region with the satellite 
resolution of 27 km x 27 km (a) and the soil moisture 
predictions with our workflow supported by the HYPPO 
model (b). Our poster presents further prediction and 
comparisons Guevara and co-authors’ method. 
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Figure 3. Comparison of 27 km x 27 km soil moisture data 
measured with satellites (a) and 1km x 1 km soil moisture 
data predicted with our workflow (b). 
 
We present visualization of our soil moisture predictions for 
the continental US. We selected Guevara et. al.’s 
implementation of kNN with PCA preprocessing to see the 
effect of our refinements within the context of the state of the 
art practice. Figure 4 displays a visual comparison between the 
original training data (a) and our selected model (b). By 
implementing our model with PCA preprocessing, we are able 
to make fine mesh predictions of soil moisture on all the 
points in the testing set. A similar result could be produced 
from our other models.  

V. CONCLUSIONS 
We provide a workflow to the process of modeling soil 
moisture based on satellite data that takes into account the 

effects of climate on soil moisture by dividing the modeled 
area into climate regions and uses Principal Component 
Analysis to condense the topographic parameters with 
minimal loss of information. We contribute in the 
development of tools for scientists to use to analyze soil 
moisture data and visualize results. In the future, we will 
develop a means for validating our models and explore the use 
of other modeling techniques to make our soil moisture 
predictions. We envision that our tools can be scaled up to 
make real-time predictions of soil moisture in areas of missing 
data. To accomplish this, we eventually plan to parallelize and 
automate certain components of our workflow.  
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Figure 4. Comparison of 27 km x 27 km soil moisture data 
measured with satellites (a) and 1 km x 1 km soil moisture 
data predicted with our workflow (b). 
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