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Abstract

Weight-adjusted inner products [1, 2] are easily invertible approximations to weighted L2 inner prod-
ucts. These approximations can be paired with a discontinuous Galerkin (DG) discretization to produce
a time-domain method for wave propagation which is low storage, energy stable, and high order accurate
for arbitrary heterogeneous media and curvilinear meshes. In this work, we extend weight-adjusted DG
(WADG) methods to the case of matrix-valued weights, with the linear elastic wave equation as an ap-
plication. We present a DG formulation of the symmetric form of the linear elastic wave equation, with
upwind-like dissipation incorporated through simple penalty fluxes. A semi-discrete convergence anal-
ysis is given, and numerical results confirm the stability and high order accuracy of WADG for several
problems in elastic wave propagation.

1 Introduction

Efficient and accurate methods for elastic wave propagation form a foundation for a broad range of appli-
cations, from seismic and medical imaging to rupture and earthquake simulation. Finite differences are the
most common choice of method [3]; however, finite element methods have garnered interest due to their low
numerical dispersion and ability to accommodate geometrically flexible unstructured meshes.

Typical methods for time-domain wave propagation utilize explicit time stepping, since the hyperbolic
partial differential equations (PDEs) which govern wave propagation admit a reasonable stable time-step
restriction. However, unless special techniques (such as diagonal mass lumping) are applied, finite element
methods require the inversion of a global mass matrix when paired with explicit time integrators. Spectral
element methods (SEM) sidestep this issue on hexahedral meshes by choosing nodal basis functions which are
discretely orthogonal with respect to an underintegrated L2 inner product, which produces a diagonal mass
matrix [4]. The inversion of a globally coupled matrix can also be avoided through the use of discontinuous
Galerkin (DG) methods, which result in a locally invertible block diagonal mass matrices. Due to difficulties
in extending mass-lumping techniques from hexahedra to tetrahedra, high order DG methods are often
employed for seismic simulations which require the use of simplicial meshes [5, 6, 7, 8, 9, 10]. High order
DG methods also lend themselves well to efficient implementations using Graphics Processing Units (GPUs)
[11, 12, 13, 14].

Most high order DG methods on simplicial meshes assume that models of media and material coefficients
are constant over each element, which allows them to deal with discontinuous wave speeds across element
interfaces. However, if the media is such that material gradients are non-zero in the interior of an element,
piecewise constant approximations can yield inaccurate simulations of wave propagation [15, 16, 17]. This
limitation can be overcome by incorporating sub-element heterogeneities into weighted mass matrices, re-
sulting in a DG method which is both high order accurate and energy stable [16, 17]. On tetrahedral meshes,
this approach necessitates the pre-computation and storage of factorizations or inverses for each local mass
matrix, which greatly increases both storage costs and data transferred at high orders of approximation.
These costs are especially problematic for accelerator architectures such as GPUs, which possess limited
memory.

Storage costs associated with weighted mass matrices can be avoided by approximating weighted L2 inner
products using weight-adjusted inner products, which result in easily invertible approximations to weighted
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mass matrices [1, 2]. For sufficiently regular weights, high order accuracy is also retained. When paired with
an energy stable DG formulation, these approximations result in weight-adjusted DG methods (WADG),
which preserve energy stability and high order accuracy while retaining a low asymptotic storage cost.
Additionally, unlike mass-lumping techniques, WADG methods do not rely on the use of inexact quadrature
rules, and reduce to the exact inversion of mass matrices for constant weights.

Weight-adjusted DG methods have been applied to acoustic wave propagation in heterogeneous media
and on curvilinear meshes [1, 2]. Both of these previous applications have involved scalar weighting functions.
In this work, we extend weight-adjusted inner products to matrix-valued weights. This provides a way to
approximate the inverse of a block system of mass matrices which are coupled together by a spatially varying
matrix-valued weighting function. This approximate inverse involves the application of scalar mass matrix
inverses and the matrix-free application of a system of weighted block mass matrices using quadrature. We
show that this approach reduces storage and computational costs compared to the storage of inverses or
factorizations of the full block mass matrix system, and apply this approximation to derive a stable and high
order accurate method for elastic wave propagation in arbitrary heterogeneous media. This method is based
on an energy stable DG formulation of the symmetric form of the elastic wave equations, with upwind-like
numerical dissipation introduced through simple penalty fluxes [18]. In contrast to the fluxes proposed in
[10], the penalty fluxes used here can be made to be independent of material coefficients.

This work proceeds as follows: Sections 2 and 3 present an energy stable DG formulation with simple
penalty fluxes for the symmetric hyperbolic form of the elastic wave equation, and discuss issues related to
storage and inversion of local mass matrices for material coefficients with sub-element variations. Section 4
extends weight-adjusted approximations to weighted L2 inner products and mass matrices to the case of
matrix-valued weights, and provides interpolation estimates which account for the regularity of the matrix
weight. These results are incorporated into a weight-adjusted DG method for the linear elastic wave equations
in Section 5. Finally, numerical results in Section 6 demonstrate the accuracy of this method for several
problems in linear elasticity.

2 Symmetric form of the elastic wave equation

We begin with the linear elastic wave equation in a domain Ω ∈ Rd. These equations can be written as a
first order velocity-stress system for velocity v and symmetric stress tensor S̃

ρ
∂v

∂t
= ∇ · S̃ + f

∂S̃

∂t
=

1

2
C
(
∇v +∇vT

)
,

where f is the body force per unit volume, ρ is density, and C is the symmetric constitutive stiffness tensor
relating stress and strain. We rewrite these equations as a symmetric hyperbolic system of PDEs [19] using
Voigt notation

ρ
∂v

∂t
=

d∑
i=1

AT
i

∂σ

∂xi
+ f

C−1 ∂σ

∂t
=

d∑
i=1

Ai
∂v

∂xi
, (1)

where C is the symmetric matrix form of the constitutive tensor C and σ is a vector of length Nd = d(d+1)
2 ,

the number of unique entries of the stress tensor S̃ in d dimensions. We note that the matrices Ai are
spatially constant, while ρ,C, and C−1 can vary spatially. Furthermore, we will assume that ρ and C are
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positive-definite and bounded pointwise such that

0 < ρmin ≤ ρ(x) ≤ ρmax < ∞,

0 < cmin ≤ uTC(x)u ≤ cmax < ∞
0 < c̃min ≤ uTC−1(x)u ≤ c̃max < ∞

for all x ∈ Rd and all u ∈ RNd .
In two dimensions, v = (v1,v2)

T and σ = (σxx, σyy, σxy)
T

S̃ =

(
σxx σxy

σxy σyy

)
,

while the matrices Ai are

A1 =

⎛⎝ 1 0
0 0
0 1

⎞⎠ , A2 =

⎛⎝ 0 0
0 1
1 0

⎞⎠ .

In three dimensions, the velocity is v = (v1,v2,v3)
T , while σ = (σxx, σyy, σzz, σyz, σxz, σxy)

T denotes the

unique entries of the stress tensor S̃

S̃ =

⎛⎝ σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

⎞⎠ .

The matrices Ai are then

A1 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ , A2 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0
0 1 0
0 0 0
0 0 1
0 0 0
1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ , A3 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0
0 0 0
0 0 1
0 1 0
1 0 0
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
In general anisotropic media, C is symmetric and positive-definite. For two-dimensional isotropic media,

C and its inverse are given as

C =

⎛⎝ 2µ+ λ λ 0
λ 2µ+ λ 0
0 0 µ

⎞⎠ , C−1 =
1

4µ2 + µλ

⎛⎝ 2µ+ λ −λ 0
−λ 2µ+ λ 0

0 0 4µ2+µλ
µ

⎞⎠ ,

where λ, µ are Lame parameters. For three-dimensional isotropic media, C and its inverse are given instead
by

C =

⎛⎜⎜⎝
2µ+ λ λ λ

λ 2µ+ λ λ
λ λ 2µ+ λ

µI3×3

⎞⎟⎟⎠ , C−1 =
1

2µ+ 3λ

⎛⎜⎜⎝
µ+ λ −λ/2 −λ/2
−λ/2 µ+ λ −λ/2
−λ/2 −λ/2 µ+ λ

2µ+3λ
µ I3×3

⎞⎟⎟⎠
We will consider both spatially varying isotropic and anisotropic media in this work.

3 An energy stable discontinuous Galerkin formulation for elastic
wave propagation

Energy stable discontinuous Galerkin methods have been constructed based on non-symmetric formulations
of the elastodynamics equations [20]. However, it is also straightforward to derive an energy stable discon-
tinuous Galerkin formulation based on the symmetric first order formulation of the elastic wave equations
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(13). We assume that the domain Ω is Lipschitz and exactly triangulated by a mesh Ωh, which consists of

elements Dk. We further assume that each element Dk is the image of a reference element D̂ under the local
elemental mapping

xk = Φkx̂,

where xk =
{
xk, yk

}
for d = 2 and xk =

{
xk, yk, zk

}
for d = 3 denote physical coordinates on Dk and

x̂ = {x̂, ŷ} for d = 2 and x̂ = {x̂, ŷ, ẑ} for d = 3 denote coordinates on the reference element. We denote the
determinant of the Jacobian of Φk as J , and refer to it as the Jacobian for the remainder of this work.

We will approximate solution components over each element Dk from an approximation space Vh

(
Dk
)
,

which we define as the composition of the mapping Φk and a reference approximation space Vh

(
D̂
)

Vh

(
Dk
)
= Φk ◦ Vh

(
D̂
)
.

The global approximation space Vh (Ωh) is then defined as the direct sum of elemental approximation spaces

Vh (Ωh) =
⨁
Dk

Vh

(
Dk
)
.

For the remainder of this work, we will take Vh

(
D̂
)
= PN

(
D̂
)
, where PN

(
D̂
)
is the polynomial space of

total degree N on the reference simplex. In two dimensions, PN on a triangle is

PN
(
D̂
)
=
{
x̂iŷj , 0 ≤ i+ j ≤ N

}
,

and in three dimensions, PN on a tetrahedron is

PN
(
D̂
)
=
{
x̂iŷj ẑk, 0 ≤ i+ j + k ≤ N

}
.

We denote the L2 inner product and norm over Dk by (·, ·)L2(Dk), such that

(g,h)L2(Dk) =

∫
Dk

g · hdx =

∫
D̂

g · hJ dx̂, ∥g∥2L2(Dk) = (g, g)L2(Dk) ,

where g,h are real vector-valued functions. Global L2 inner products and norms are using local L2 inner
products and norms

(g,h)L2(Ω) =
∑

Dk∈Ωh

(g,h)L2(Dk) , ∥g∥2L2(Ω) =
∑

Dk∈Ωh

∥h∥2L2(Dk) .

We define also the L2 inner product and norm over the boundary ∂Dk of an element

⟨u,v⟩L2(∂Dk) =

∫
∂Dk

u · v dx =
∑

f∈∂Dk

∫
f̂

u · vJf dx̂, ∥u∥2L2(∂Dk) = ⟨u,u⟩L2(∂Dk) ,

where Jf is the Jacobian of the mapping from a reference face f̂ to a physical face f of an element.
Let f be a face of an element Dk with neighboring element Dk,+ and unit outward normal n. Let u be a

function which is discontinuous across element interfaces. We define the interior value u− and exterior value
u+ on a face f of Dk such that

u− = u|f∩∂Dk , u+ = u|f∩∂Dk,+ .

The jump and average of a scalar function u ∈ Vh (Ωh) over f are then defined as

JuK = u+ − u−, {{u}} =
u+ + u−

2
.
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Jumps and averages of vector-valued functions u ∈ Rm and S̃ ∈ Rm×n are then defined component-wise

(JuK)i = JuiK, 1 ≤ i ≤ m,
(
JS̃K
)
ij
= JS̃ijK, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

We can now specify a DG formulation for the linear elastic wave equation (13). Symmetric hyperbolic
systems readily admit a DG formulation based on penalty fluxes [21]. For the linear elastic wave equation
in symmetric first order form, this formulation is given as

∑
Dk∈Ωh

(
ρ
∂v

∂t
,w

)
L2(Dk)

=
∑

Dk∈Ωh

⎛⎝( d∑
i=1

AT
i

∂σ

∂xi
+ f ,w

)
L2(Dk)

+

⟨
1

2
AT

n JσK +
τv
2
AT

nAnJvK,w
⟩

L2(∂Dk)

⎞⎠
∑

Dk∈Ωh

(
C−1 ∂σ

∂t
, q

)
L2(Dk)

=
∑

Dk∈Ωh

⎛⎝( d∑
i=1

Ai
∂v

∂xi
, q

)
L2(Dk)

+

⟨
1

2
AnJvK +

τσ
2
AnA

T
n JσK, q

⟩
L2(∂Dk)

⎞⎠ ,

(2)

for all w, q ∈ Vh (Ωh). Here, An is the normal matrix defined on a face f as An =
∑d

i=1 niAi. In two
dimensions, An is

An =

⎛⎝ nx 0
0 ny

ny nx

⎞⎠ .

while in three dimensions, An is

An =

⎛⎜⎜⎜⎜⎜⎜⎝
nx 0 0
0 ny 0
0 0 nz

0 nz ny

nz 0 nx

ny nx 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

The terms τv, τσ are penalty parameters which are introduced on element interfaces. We assume that
τv, τσ ≥ 0 and that they are piecewise constant over each shared face between two elements. These penalty
parameters can be taken to be zero, which corresponds to a DG method using a non-dissipative central flux
[22, 16]. In Section 3.2, we show that when τv, τσ are positive, they introduce a dissipation of energy in a
manner which is similar to the upwind flux [23, 20]. We note that the stability of the DG formulation is
independent of the magnitude of these parameters; however, as discussed in Section 6.1, naively choosing
the values of these parameters can result in a stiffer semi-discrete system of ODEs and a smaller maximum
stable timestep.

In many applications, f is a point source or Dirac delta, which is not L2 integrable. Thus, (f ,w)L2(Dk)

may not be well-defined. In such cases when f(x) = β(x)δ(x−x0) (for some vector β(x) ∈ Rd), we commit
a variational crime and evaluate its contribution as∑

k

(β(x)δ(x− x0),w)L2(Dk) =

∫
Ω

w · βδ(x− x0) = w(x0) · β(x0).

Finally, we note that, unlike the penalty DG formulation given in [10], material coefficients ρ,C appear
only on the left hand side of (2). Thus, efficient techniques for constant coefficient formulations [24] can be
used to evaluate the right hand side of the formulation, even in the presence of sub-element variations in
ρ,C.

3.1 Boundary conditions

In this work, we assume boundary conditions on velocity and traction of the form

v = vbc, S̃n = tbc
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where vbc and tbc are given values. Traction boundary conditions where tbc = 0 are referred to as free-
surface boundary conditions. We follow [25, 20] and impose boundary conditions on the DG formulation
through exterior values and jumps of the solution. Boundary conditions on the normal component of the
stress can be imposed by noting that the numerical flux contains the term JAT

nσK = JS̃nK.
For a face which lies on a boundary, velocity boundary conditions are imposed by setting

JvK = 2
(
vbc − v−) , JAT

nσK = JS̃nK = 0,

while traction boundary conditions are enforced through

JAT
nσK = JS̃nK = 2

(
tbc − S̃−n

)
= 2

(
tbc −AT

nσ
−) , JvK = 0.

For problems which involve the truncation of infinite or large domains, absorbing boundary conditions are
required. For such cases, we impose simple extrapolation absorbing boundary conditions [25] through jumps

JAT
nσK = JS̃nK = −S̃−n = −AT

nσ
−, JvK = −v−.

We note that more accurate absorbing conditions can be imposed using, for example, perfectly matched
layers [26] or high order absorbing boundary conditions [27, 28].

In all cases, boundary conditions are imposed by computing numerical fluxes using these modified jumps.
This imposition guarantees energy stability for free surface, non-reflective, and homogeneous velocity bound-
ary conditions.

3.2 Energy stability

One can show that the DG formulation is energy stable for zero body load, zero velocity and traction
boundary conditions, and non-reflective boundary conditions. We note that this stability holds for both the
case when τv, τσ are zero (which corresponds to a central flux) and when they are positive (which corresponds
to a penalty flux). Integrating the velocity equations of (2) by parts gives

∑
Dk∈Ωh

(
ρ
∂v

∂t
,w

)
L2(Dk)

=
∑

Dk∈Ωh

−

(
d∑

i=1

σ,Ai
∂w

∂xi

)
L2(Dk)

+
⟨
AT

n {{σ}}+ τv
2
AT

nAnJvK,w
⟩
L2(∂Dk)

∑
Dk∈Ωh

(
C−1 ∂σ

∂t
, q

)
L2(Dk)

=
∑

Dk∈Ωh

(
d∑

i=1

Ai
∂v

∂xi
, q

)
L2(Dk)

+

⟨
1

2
AnJvK +

τσ
2
AnA

T
n JσK, q

⟩
L2(∂Dk)

Taking (w, q) = (v,σ) and adding both equations together yields∑
Dk∈Ωh

1

2

∂

∂t

(
(ρv,v)L2(Dk) +

(
C−1σ,σ

)
L2(Dk)

)
=

∑
Dk∈Ωh

⟨
AT

n {{σ}}+ τv
2
AT

nAnJvK,v
⟩
∂Dk

+

⟨
1

2
AnJvK +

τσ
2
AnA

T
n JσK,σ

⟩
∂Dk

=
∑

Dk∈Ωh

∑
f∈∂Dk

∫
f

(
vTAT

n {{σ}}+ τv
2
vTAT

nAnJvK +
1

2
σTAnJvK +

τσ
2
σTAnA

T
n JσK

)
dx,

where the term ∑
Dk∈Ωh

1

2

(
(ρv,v)L2(Dk) +

(
C−1σ,σ

)
L2(Dk)

)
is the total energy of the system. Let Γh denote the set of unique faces in Ωh, and let Γv,Γσ,Γabc denote
the parts of the boundary where velocity, traction, and non-reflective boundary conditions are imposed,
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respectively. We separate surface terms into contributions from interior shared faces and from boundary
faces. On an interior shared face, we sum contributions from the two adjacent elements to yield∑

f∈Γh\∂Ω

∫
f

(
vTAT

n {{σ}}+ τv
2
vTAT

nAnJvK +
1

2
σTAnJvK +

τσ
2
σTAnA

T
n JσK

)
dx

= −
∑

f∈Γh\∂Ω

∫
f

(τv
2

|AnJvK|2 + τσ
2

⏐⏐AT
n JσK

⏐⏐2) dx.
For faces which lie on the boundary Γv where velocity boundary conditions are imposed, JvK = −2v−,
JAT

nσK = 0, and AT
n {{σ}} = Sn−, implying that∑

f∈Γv

∫
f

(
vTAT

n {{σ}}+ τv
2
vTAT

nAnJvK +
1

2
σTAnJvK +

τσ
2
σTAnA

T
n JσK

)
dx

=
∑
f∈Γv

∫
f

((
v−)T AT

nσ
− −

(
σ−)T Anv

− − τv
⏐⏐Anv

−⏐⏐2)dx = −
∑
f∈Γv

∫
f

(
τv
⏐⏐Anv

−⏐⏐2)dx.
For faces which lie on Γσ, A

T
n JσK = −2AT

nσ
−, AT

n {{σ}} = 0, and JvK = 0, yielding a similar contribution∑
f∈Γσ

∫
f

(
vTAT

n {{σ}}+ τv
2
vTAT

nAnJvK +
1

2
σTAnJvK +

τσ
2
σTAnA

T
n JσK

)
dx = −

∑
f∈Γσ

∫
f

(
τσ
⏐⏐AT

nσ
−⏐⏐2)dx.

Finally, for faces in Γabc we have AT
n {{σ}} = 1

2A
T
nσ

−, AT
n JσK = −AT

nσ
−, and JvK = −v−, yielding∑

f∈Γabc

∫
f

(
vTAT

n {{σ}}+ τv
2
vTAT

nAnJvK +
1

2
σTAnJvK +

τσ
2
σTAnA

T
n JσK

)
dx =

−
∑

f∈Γabc

∫
f

(τv
2

⏐⏐Anv
−⏐⏐2 + τσ

2

⏐⏐AT
nσ

−⏐⏐2)dx.
Combining all face contributions together gives the following result:

Theorem 3.1. The DG formulation (2) is energy stable for τv, τσ ≥ 0, in the sense that∑
Dk∈Ωh

1

2

∂

∂t

(
(ρv,v)L2(Dk) +

(
C−1σ,σ

)
L2(Dk)

)
= −

∑
f∈Γh\∂Ω

∫
f

(τv
2

|AnJvK|2 + τσ
2

⏐⏐AT
n JσK

⏐⏐2)dx
−
∑
f∈Γv

∫
f

(
τv
⏐⏐Anv

−⏐⏐2)dx−
∑
f∈Γσ

∫
f

(
τσ
⏐⏐AT

nσ
−⏐⏐2) dx−

∑
f∈Γabc

∫
f

(τv
2

⏐⏐Anv
−⏐⏐2 + τσ

2

⏐⏐AT
nσ

−⏐⏐2)dx ≤ 0.

(3)

Since ρ and C−1 are positive definite, the left hand side of (3) is an L2-equivalent norm on (v,σ), and
Theorem 3.1 implies that the magnitude of the DG solution (v,σ) is non-increasing in time. This also shows
that dissipation present for positive penalization constants τv, τσ acts on non-conforming components with
non-zero jumps AT

n JvK and AnJσK. In fact, it was shown in [21] that, in the limit as τv, τσ → ∞, the
eigenspaces of DG discretizations split into a conforming part consisting of u,σ which satisfy

AnJuK = 0, AT
n JσK = 0

and an non-conforming part (defined through the L2 orthogonal complement) corresponding to eigenvalues
contain real parts which approach −∞. For the linear elastic wave equations, these conditions are equivalent
to requirements of C0 continuity for u and normal continuity of the stress tensor JS̃Kn = 0.
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3.3 The semi-discrete matrix system for DG

The solution to (2) can be approximated by discretizing in space and using an explicit time integrator, which
requires only evaluations of local contributions over Dk to the DG formulation(

ρ
∂v

∂t
,w

)
L2(Dk)

=

(
d∑

i=1

AT
i

∂σ

∂xi
,w

)
L2(Dk)

+

⟨
1

2
AT

n JσK +
τv
2
AT

nAnJvK,w
⟩

L2(∂Dk)(
C−1 ∂σ

∂t
, q

)
L2(Dk)

=

(
d∑

i=1

Ai
∂v

∂xi
, q

)
L2(Dk)

+

⟨
1

2
AnJvK +

τσ
2
AnA

T
n JσK, q

⟩
L2(∂Dk)

. (4)

Let {ϕi}
Np

i=1 be a basis for PN
(
D̂
)
.1 We define the reference mass matrix M̂ and the physical mass

matrix M for an element Dk as(
M̂
)
ij
=

∫
D̂

ϕjϕi dx̂, (M)ij =

∫
Dk

ϕjϕi dx =

∫
D̂

ϕjϕiJ dx̂.

For affine mappings, J is constant and M = JM̂ . We also define weak differentiation matrices Sk and face
mass matrix Mf such that

(Sk)ij =

∫
Dk

∂ϕj

∂xk
ϕi dx, (Mf )ij =

∫
f

ϕjϕi dx =

∫
f̂

ϕjϕiJ
f dx̂,

where Jf is the Jacobian of the mapping from a reference face f̂ to f . For affinely mapped simplices, Jf is

also constant and Mf = JfM̂f , where the definition of the reference face mass matrix M̂f is analogous to

the definition of the reference mass matrix M̂ .
Finally, we define weighted mass matrices. Let w(x) ∈ R and W (x) ∈ Rm×n. Then, scalar and matrix-

weighted mass matrices Mw and MW are defined through

(Mw)ij =

∫
Dk

w(x)ϕj(x)ϕi(x) dx, MW =

⎛⎜⎝ MW1,1
. . . MW1,n

...
. . .

...
MWm,1

. . . MWm,n

⎞⎟⎠ ,

where MWi,j is the scalar weighted mass matrix weighted by the (i, j) entry of W .
Local contributions to the DG variational form may then be evaluated in a quadrature-free manner using

these matrices. Let Σi,Vi denote vectors containing degrees of freedom for solution components σi,vi such
that

σi(x, t) =

Np∑
j=1

(Σi(t))j ϕj(x), 1 ≤ i ≤ Nd

vi(x, t) =

Np∑
j=1

(Vi(t))j ϕj(x), 1 ≤ i ≤ d.

Then, the local DG formulation can be written as a block system of ordinary differential equations (ODEs)

1In our implementations, we use nodal basis functions at Warp and Blend interpolation points [29]. These basis functions are
defined implicitly using an orthogonal polynomial basis on the reference simplex [23]. However, we note that the implementation
and formulation are independent of the specific choice of polynomial basis.
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by concatenating Σi,Vi into single vectors Σ,V and using the Kronecker product ⊗

MρI
∂V

∂t
=

d∑
i=1

(
AT

i ⊗ Si

)
Σ+

∑
f∈∂Dk

(I ⊗Mf )Fv

MC−1

∂Σ

∂t
=

d∑
i=1

(Ai ⊗ Si)V +
∑

f∈∂Dk

(I ⊗Mf )Fσ. (5)

where Fv and Fσ denote degrees of freedom for velocity and stress numerical fluxes.
In order to apply standard time integration methods, we must invert MρI and MC−1 to isolate ∂v

∂t

and ∂σ
∂t on the left hand side. While the inversion of MρI and MC−1 can be parallelized from element to

element, doing so typically requires either the precomputation and storage of large dense matrix inverses
or the on-the-fly construction and solution of a large dense matrix system at every time-step. The former
option requires a large amount of storage, while the latter option is computationally expensive and difficult
to parallelize. This cost can be overcome for ρ,C which are constant over an element Dk, in which case
MρI is block diagonal with identical blocks Mρ = ρM , while MC−1 reduces to

MC−1 =

⎛⎜⎝ C−1
1,1M . . . C−1

1,Nd
M

...
. . .

...
C−1

Nd,1
M . . . C−1

Nd,Nd
M

⎞⎟⎠ =
(
C−1 ⊗M

)
.

Then, M−1
ρ = 1

ρM
−1 = 1

JρM̂
−1, and M−1

C−1 = C ⊗M−1 = C ⊗
(

1
J M̂

−1
)
, and each matrix inverse can be

applied using the inverse of the reference mass matrix M̂−1 and the values of ρ,C, and J over each element.
Applying this observation to (5) then yields the following local system of ODEs

∂V

∂t
=

d∑
i=1

(
1

ρ
AT

i ⊗Di

)
Σ+

∑
f∈∂Dk

(
1

ρ
I ⊗Lf

)
Fv

∂Σ

∂t
=

d∑
i=1

(CAi ⊗Di)V +
∑

f∈∂Dk

(C ⊗Lf )Fσ,

where we have introduced the differentiation matrix Di = M−1Si and lift matrix Lf = M−1Mf . For
affine elements, both derivative and lift matrices may be applied using only geometric factors and reference
derivative and lift matrices.

Unfortunately, if ρ and C vary spatially within an element, the above approach can no longer be used
to invert Mρ and MC−1 in an efficient and low-storage manner. For isotropic media, one way to address
sub-element variations in material parameters is to diagonalize the matrix C through a change of variables
[30]. This results in a local system of ODEs with only scalar weighted mass matrices [16], which can be
treated using scalar weight-adjusted approximations. We take a different approach in addressing these issues
and approximate the matrix-weighted L2 inner product (and corresponding matrix-weighted mass matrix
MC−1) using a weight-adjusted approximation which is low storage, simple to invert, energy stable, and
provably high order accurate for spatially varying weights ρ,C with sufficiently regularity.

4 Weight-adjusted inner products for matrix-valued weights

Weight-adjusted inner products are high order accurate approximations of weighted L2 inner products.
These can be interpreted as generalizations of mass lumping techniques, reducing to mass lumping when
integrals are evaluated with appropriate quadrature rules. These weight-adjusted inner products result in
weight-adjusted mass matrices, whose inverses approximate the inverse of a weighted L2 mass matrix.

9



We wish to apply weight-adjusted approximations to avoid the inversion of Mρ and MC−1 . Approxi-
mating the inverse of Mρ can be done using weight-adjusted approximations for scalar weights [1, 2], which
we review in Section 4.1. We then extend scalar weight-adjusted approximations to matrix-valued weights
in Section 4 to approximate the inverse of MC−1 .

4.1 Scalar weight adjusted inner products

We introduce standard Lebesgue Lp norms and their associated Lp spaces over a general domain Ω

∥u∥Lp(Ω) =

(∫
Ω

up dx

)1/p

, Lp (Ω) =
{
u : Ω → R, ∥u∥Lp(Ω) < ∞

}
for 1 ≤ p < ∞. For p = ∞, these are defined as

∥u∥L∞(Ω) = inf {C ≥ 0 : |u (x)| ≤ C ∀x ∈ Ω} , L∞ (Ω) =
{
u : Ω → R, ∥u∥L∞(Ω) < ∞

}
.

These induce Lp Sobolev seminorms and norms of degree s

|u|W s,p(Ω) =

⎛⎝∑
|α|=s

∥Dαu∥pLp(Ω)

⎞⎠1/p

, |u|W s,∞(Ω) = max
|α|=s

∥Dαu∥L∞(Ω)

∥u∥W s,p(Ω) =

⎛⎝∑
|α|≤s

∥Dαu∥pLp(Ω)

⎞⎠1/p

, ∥u∥W s,∞(Ω) = max
|α|≤s

∥Dαu∥L∞(Ω) .

where α = {α1, . . . , αd} is a multi-index such that

Dαu =
∂α1

∂xα1

∂α2

∂yα2
u, d = 2

Dαu =
∂α1

∂xα1

∂α2

∂yα2

∂α3

∂zα3
u, d = 3.

Let ΠN denote the L2 projection on the element Dk. For affine elements where J is constant such that

(wu, v)L2(Dk) = (wu, vJ)D̂ = J (wu, v)D̂ ,

ΠN is equivalent to the L2 projection on the reference element D̂. We define two operators Tw : L2
(
Dk
)
→

PN
(
Dk
)
and T−1

w : L2
(
Dk
)
→ PN

(
Dk
)
such that

Twu = ΠN (wu)(
wT−1

w u, v
)
L2(Dk)

= (u, v)L2(Dk) , ∀v ∈ PN
(
Dk
)
.

A weighted L2 inner product (wu, v)L2(Dk) can be approximated by a weight-adjusted inner product

(wu, v)L2(Dk) = (Twu, v)L2(Dk) ≈
(
T−1
1/wu, v

)
L2(Dk)

.

based on the observation that T−1
1/wu ≈ uw. The intuition behind this approximation is that, by the definition

of T−1
1/w, (

1

w
T−1
1/wu− u, v

)
L2(Dk)

= 0, ∀v ∈ PN
(
Dk
)
.

This shows that 1
wT−1

1/wu − u is orthogonal to all polynomials of degree N , implying that 1
wT−1

1/wu − u ≈ 0

and T−1
1/wu ≈ wu (for w(x), u(x) which are smooth and well-represented by polynomials).

This approximation is made precise by the following estimates for approximations of the product uw and
weighted moments on affinely mapped elements:

10



Theorem 4.1 (Theorem 5 in [1]). Let Dk be quasi-regular with representative size h = diam
(
Dk
)
. For

N ≥ 0, w ∈ WN+1,∞ (Dk
)
, and u ∈ WN+1,2

(
Dk
)
,

∥uw − Twu∥L2(Dk) ≤ Cwh
N+1 ∥u∥WN+1,2(Dk) , (6)uw − T−1

1/wu

L2(Dk)

≤ Cwh
N+1 ∥u∥WN+1,2(Dk) . (7)

where Cw = C ∥w∥L∞(Dk)

 1
w


L∞(Dk)

∥w∥WN+1,∞(Dk).

These results rely on a scalar weighted interpolation estimate derived in [18, 2] for a general non-affine
element Dk.

Theorem 4.2 (Theorem 1 in [2].). Let Dk be a quasi-regular element with representative size h = diam
(
Dk
)
.

For N ≥ 0, w ∈ WN+1,∞ (Dk
)
, and u ∈ WN+1,2

(
Dk
)
,u− 1

w
ΠN (wu)


L2(Dk)

≤ ChN+1

 1√
J


L∞(Dk)


√
J

w


L∞(Dk)

∥w∥WN+1,∞(Dk) ∥u∥WN+1,2(Dk) .

4.2 Extension to matrix weights

We now generalize weight-adjusted inner products to the case of matrix-valued weights. We first define appro-
priate generalizations of norms used in Section 4.1 to vector-valued functions. Let Dαv denote component-
wise differentiation of v with respect to a d-dimensional multi-index α. Then, vector Lp Sobolev norms for
v(x) ∈ Rm can be defined as

|v|pWk,p =

m∑
i=1

|vi|pWk,p , ∥v∥pWk,p =

m∑
i=1

∥vi∥pWk,p 1 ≤ p < ∞,

|v|Wk,∞ = max
i

|vi|Wk,∞ , ∥v∥Wk,∞ = max
i

∥vi∥Wk,∞ .

The corresponding Sobolev spaces W k,p and W k,∞ are defined similarly to the scalar case.
Let W (x) be a matrix-valued weight function which is pointwise symmetric positive-definite

0 < wmin ≤ ∥W (x)∥2 ≤ wmax < ∞, 0 < w̃min ≤
W−1(x)


2
≤ w̃max < ∞, ∀x ∈ Ω.

We define a kth order Sobolev norm for W (x) in terms of the induced p-norm

∥W (x)∥pk,p,∞ =
∑

|α|≤k

sup
x

∥DαW (x)∥pp

where DαW (x) again denotes component-wise differentiation. While this norm is not sub-multiplicative,
the following bound holds

∥Wv∥pWk,p =
∑
|α|≤k

∥Dα (Wv)∥pLp ≤ CN

∫ ∑
|α|≤k

∑
|β|≤|α|

(DβW
) (

Dα−βv
)p

p
dx

≤ CN

∫ ⎛⎝∑
|α|≤k

∥(DαW )∥p

⎞⎠p⎛⎝∑
|α|≤k

∥Dαv∥p

⎞⎠p

dx

≤ CN ∥W ∥pk,p,∞ ∥v∥pk,p ,

where we have used Leibniz’s rule, Cauchy-Schwarz, and the arithmetic-geometric mean inequality.
The following theorem extends Theorem 4.2 to matrix weights by computing weighted interpolation

estimates for the quantity W−1ΠN (Wv).
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Theorem 4.3. Let Dk be a quasi-regular element with representative size h = diam
(
Dk
)
. For N ≥ 0,

W ∈
(
WN+1,∞ (Dk

))d×d
, and v ∈

(
WN+1,2

(
Dk
))d

,

v −W−1ΠN (Wv)

L2(Dk)

≤ ChN+1
√J


L∞(Dk)

 1√
J


L∞(Dk)

w̃max ∥W ∥N+1,2,∞ ∥v∥WN+1,2(Dk)

Proof. The proof is similar to the scalar case. Using vector-valued versions of Bramble-Hilbert and a scaling
argument for quasi-regular elements yieldsv −W−1ΠN (Wv)


L2(Dk)

≤ C1

√J

L∞(Dk)

sup
x

W−1

2
∥Wv −ΠN (Wv)∥L2(D̂)

≤ C1

√J

L∞(Dk)

sup
x

W−1

2
|Wv|WN+1,2(D̂)

≤ C2h
N+1

√J

L∞(Dk)

 1√
J


L∞(Dk)

sup
x

W−1

2
∥Wv∥WN+1,2(Dk)

≤ C3h
N+1

√J

L∞(Dk)

 1√
J


L∞(Dk)

w̃max ∥W ∥N+1,2,∞ ∥v∥WN+1,2(Dk) .

4.2.1 Weight-adjusted approximations with matrix weights

Let ΠNu be defined as the L2 projection applied to each component of the vector-valued function u. We
then define the operator TW analogously to the scalar case

TW v = ΠN (Wv) .

The inverse operator T−1
W is defined implicitly via(
WT−1

W v, δv
)
L2(Dk)

= (v, δv)L2(Dk) , ∀δv ∈
(
PN

(
Dk
))m

.

This definition is a straightforward generalization of T−1
w to matrix-valued weights W . Conveniently, all

properties of Tw, T
−1
w for scalar w(x) [1] carry over to matrix weights W (x) as well.

Lemma 4.4. Let ΠN denote the component-wise L2 projection, and let W ∈ (L∞)
m×m

. Then, TW satisfies
the following properties:

1. T−1
W TW = ΠN

2. ΠNT−1
W = T−1

W ΠN = T−1
W

3.
T−1

W


L2(Dk)

≤ w̃max.

4.
(
T−1
W v,w

)
L2(Dk)

forms an inner product on
(
PN
)m ×

(
PN
)m

, which is equivalent to the L2 inner

product with equivalence constants C1 = w̃min, C2 = w̃max.

Proof. The proofs of properties 1 and 2 are consequences of the definition of TW , and are identical to proofs
for the scalar case. Property 3 is a straightforward extension from the scalar case. Let v ∈

(
PN
)m

. Then,(
T−1
W v,v

)
L2(Dk)

=
(
W−1WT−1

W v,v
)
L2(Dk)

≤ sup
x

W−1(x)
 (WT−1

W v,v
)
L2(Dk)

= w̃max ∥v∥2L2(Dk) .
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Property 4 then simply requires the lower bound(
T−1
W v,v

)
L2(Dk)

=
(
W−1WT−1

W v,v
)
L2(Dk)

≥ inf
x

W−1(x)
 ∥v∥2L2(Dk) = w̃min ∥v∥2L2(Dk) .

Using Theorem 4.3, we may also show that the matrix-valued weight-adjusted inner product is also high
order accurate for sufficiently regular W .

Theorem 4.5. Let Dk be a quasi-regular element with representative size h = diam
(
Dk
)
. For N > 0Wv − T−1

W−1v

L2(Dk)

≤ CW hN+1 ∥v∥WN+1,2(Dk)

with constant CW depending on W and N

CW = CN

√J

L∞(Dk)

 1√
J


L∞(Dk)

w̃maxwmax ∥W ∥N+1,2,∞ .

Proof. The proof follows the scalar case. The triangle inequality givesWv − T−1
W−1v


L2(Dk)

≤ ∥Wv −ΠN (Wv)∥L2(Dk) +
ΠN (Wv)− T−1

W−1v

L2(Dk)

.

The former term is bounded by interpolation estimates and by arguments used in the proof of Theorem 4.3.
The latter term is boundedΠN (Wv)− T−1

W−1v

L2(Dk)

=
T−1

W−1ΠN (TW−1ΠN (Wv))− T−1
W−1ΠNv


L2(Dk)

≤ CN

T−1
W−1

 ∥TW−1ΠN (Wv)−ΠNv∥L2(Dk)

≤ CN

T−1
W−1

ΠN

(
W−1ΠN (Wv)

)
−ΠNv


L2(Dk)

≤ CNwmax

W−1ΠN (Wv)− v

L2(Dk)

.

where we have used
T−1

W−1

 ≤ wmax (Lemma 4.4) and ∥ΠN∥L2(Dk) = 1. An application of Theorem 4.3 to

bound
W−1ΠN (Wv)− v


L2(Dk)

completes the proof.

We note that these estimates are tight, in the sense that estimates for scalar weight-adjusted inner
products are recovered when the matrix weight is taken to be W = wI.

4.2.2 Approximation of weighted mass matrix inverses

The advantage of using weight-adjusted inner products is that the corresponding weight-adjusted mass
matrices are straightforward to invert. For scalar weights, the weight-adjusted mass matrix approximates
the weighted L2 mass matrix and its inverse by

Mw ≈ MM−1
1/wM , M−1

w ≈ M−1M1/wM
−1.

By evaluatingM1/w in a matrix-free fashion, the inverse of the weight-adjusted mass matrixM−1M1/wM
−1

yields a low storage implementation using a sufficiently accurate quadrature rule. Let x̂i, ŵi denote quadra-
ture points and weights on the reference element, and let Vq denote the matrix

(Vq)ij = ϕj(x̂i).
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whose columns correspond to evaluations of basis functions at quadrature points. Then, for affine elements,

M = JM̂ = JV T
q diag(ŵi)Vq, where M̂ is the reference mass matrix and J is the determinant of the

Jacobian of the reference-to-physical mapping, which is constant for affine mappings. Additionally,

M1/w = JV T
q diag(ŵi/w(x̂i))Vq,

where w(x̂i) denotes the evaluation of the weight function w(x) at quadrature points. Thus, for a vector u,
the inverse of the weight-adjusted mass matrix can be applied as follows

M−1M1/wM
−1u = M−1V T

q diag(ŵi)diag

(
1

w(xi)

)
VqM

−1u = Pqdiag

(
1

w(x̂i)

)
Vq

1

J
M̂−1u,

where we have introduced the quadrature-based L2 projection operator on the reference element Pq =

M̂−1V T
q diag(ŵi).

In the context of DG using explicit time-stepping, the factor of M̂−1 can be premultiplied into the right
hand side (i.e. the evaluation of the spatial discretization). Then, applying the weight-adjusted mass matrix
requires only storage of two reference matrices Vq and Pq and the values of the weight function at quadrature
points w(x̂i). We assume that the number of quadrature points is O(N3), which is true for most simplicial
quadratures [31, 32].

The overall storage cost of applying the weight-adjusted mass matrix using the above implementation is
O(N3) per element, while the pre-computation and storage of DG operators involving inverses of weighted
mass matrices requires O(N6) storage per element. However, we note that unlike the aforementioned
quadrature-based implementation of WADG, the strategy of precomputation and storage used by Mer-
cerat and Glinsky in [16] can accomodate arbitrarily high accuracy quadrature rules without any increase in
computational cost.

Finally, we note that the computational impact of storage costs vary from architecture to architecture. As
pointed out in [18, 1, 2], the limited storage of accelerator architectures such as GPUs limits the maximum
feasible problem size, and decreasing storage costs with respect to the degree N allows one to run higher
order simulations on larger meshes before running out of memory. However, for distributed parallelism
implementations of DG on large supercomputing clusters, storage limitations may be less of an issue. We
limit our focus to GPU computations in this work, and present results comparing the computational cost of
WADG to several alternatives in Section 6.4.

For weight-adjusted inner products with matrix-valued weights, the corresponding weight-adjusted mass
matrices approximate weighted L2 mass matrices and inverses in a similar fashion

MW ≈ (I ⊗M)M−1
W−1 (I ⊗M)

M−1
W ≈

(
I ⊗M−1

)
MW−1

(
I ⊗M−1

)
. (8)

We note that, when W is constant over Dk, MW reduces to the Kronecker product of the inverse stiffness
tensor and the local mass matrix

MW = W ⊗M , M−1
W = W−1 ⊗M−1.

In this case, we also have MW−1 = W−1⊗M , and substituting this explicit inverse into the weight adjusted
mass matrix inverse

(
I ⊗M−1

)
MW−1

(
I ⊗M−1

)
in (8) recovers the exact inversion of MW .
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5 An energy stable weight-adjusted discontinuous Galerkin for-
mulation for elastic wave propagation

We construct a weight-adjusted DG method by simply replacing the weighted L2 inner products appearing
in the left hand side of the local DG formulation (4) with weight-adjusted approximations(

T−1
1/ρ

∂v

∂t
,w

)
L2(Dk)

=

(
d∑

i=1

AT
i

∂σ

∂xi
,w

)
L2(Dk)

+

⟨
1

2
AT

n JσK +
τv
2
AnA

T
n JvK,w

⟩
L2(∂Dk)(

T−1
C

∂σ

∂t
, q

)
L2(Dk)

=

(
d∑

i=1

Ai
∂v

∂xi
, q

)
L2(Dk)

+

⟨
1

2
AnJvK +

τσ
2
AT

nAnJσK, q
⟩

L2(∂Dk)

.

Since the right hand side of the WADG formulation is identical to the right hand side of the DG formulation
(2), WADG preserves a variant of the energy stability in Theorem 3.1∑
Dk∈Ωh

1

2

∂

∂t

((
T−1
1/ρv,v

)
L2(Dk)

+
(
T−1
C σ,σ

)
L2(Dk)

)
≤ −

∑
f∈Γh\∂Ω

∫
f

(τv
2

|AnJvK|2 + τσ
2

⏐⏐AT
n JσK

⏐⏐2)dx
−
∑
f∈Γv

∫
f

(
τv
⏐⏐Anv

−⏐⏐2)dx−
∑
f∈Γσ

∫
f

(
τσ
⏐⏐AT

nσ
−⏐⏐2)dx−

∑
f∈Γabc

∫
f

(τv
2

⏐⏐Anv
−⏐⏐2 + τσ

2

⏐⏐AT
nσ

−⏐⏐2)dx ≤ 0.

The use of weight-adjusted inner products replaces the weighted L2 mass matrices in (5) by their weight-
adjusted approximations. Inverting these weight-adjusted mass matrices yields the following local system of
ODEs for V ,Σ

∂V

∂t
=
(
I ⊗M−1

)
M(ρ−1I)

⎛⎝ d∑
i=1

(
AT

i ⊗Di

)
Σ+

∑
f∈∂Dk

(I ⊗Lf )Fv

⎞⎠
∂Σ

∂t
=
(
I ⊗M−1

)
MC

⎛⎝ d∑
i=1

(Ai ⊗Di)V +
∑

f∈∂Dk

(I ⊗Lf )Fσ

⎞⎠ .

In practice, the matrices
(
I ⊗M−1

)
M(ρ−1I) and

(
I ⊗M−1

)
MC are applied in a matrix-free fashion using

reference element matrices and values of ρ,C at quadrature points. After fusing operations together, this
procedure can be boiled down to multiplication by two rectangular matrices [2].

One drawback of the analysis presented in this work is that accuracy of the weight-adjusted approximation
is not guaranteed in the incompressible limit µ/λ → 0. In this case, the stiffness matrix C becomes
singular, and the constant w̃max in the upper bound on

C−1
 blows up. However, numerical experiments

in Section 6.2.3 suggest that, while taking µ/λ ≈ 0 (or C nearly singular) results in larger relative errors
for σ, the accuracy of the WADG solution for v does not degrade as significantly for near-incompressible
materials.

5.1 Energy stability on curvilinear meshes

We have shown the energy stability of the DG formulation (2) on meshes of affine elements by assuming
exact integration of all terms. However, energy stability can still be guaranteed if integrals are evaluated
inexactly using quadrature. Instead of discretizing the “strong” DG formulation (2), we discretize the “skew-
symmetric” formulation, where the right hand side of the velocity equations is integrated by parts,2 resulting

2The choice of which equation to integrate by parts is arbitrary, since integrating the stress equations by parts also results
in an energy stable formulation.
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in the (local) formulation∫
D̂

T−1
(ρJ)−1

∂v

∂t
w dx̂ =

∫
D̂

(
d∑

i=1

AT
i

∂σ

∂xi
,w

)
J dx̂+

∑
f∈∂Dk

∫
f̂

(
1

2
AT

n JσK +
τv
2
AT

nAnJvK
)
wJf dx̂

∫
D̂

T−1
(J−1C)

∂σ

∂t
q dx̂ = −

∫
D̂

(
d∑

i=1

v,AT
i

∂q

∂xi

)
J dx̂+

∑
f∈∂Dk

∫
f̂

(
1

2
An {{v}}+

τσ
2
AnA

T
n JσK

)
qJf dx̂

where we have incorporated spatial variations of J into the definition of the weights on the left hand side.
The proof of energy stability in Theorem 3.1 follows [2], requiring only algebraic manipulations of this

formulation. The proof does not require that integration-by-parts holds discretely. This implies that a
discrete version of energy stability is still guaranteed in the presence of inexact quadrature, where integrals
in Theorem 3.1 are replaced with quadrature approximations. This is especially important for discretizations
on curvilinear meshes, where the exact integration of spatially varying geometric factors and Jacobians can
be either prohibitively expensive for high order curvilinear mappings or impossible for rational mappings
[33, 34].

We note that, to ensure energy stability on curved and non-affine elements, the “skew-symmetric” formu-
lation must be evaluated explicitly using quadrature, which is typically more expensive than quadrature-free
evaluations used to evaluate the “strong” DG formulation (2). These costs can be slightly reduced for most
curvilinear meshes by evaluating the DG formulation using the “skew-symmetric” formulation on curvilinear
elements and the more efficient “strong” DG formulation on affine elements [2].

5.2 Convergence analysis

Using estimates from Section 4.2.1, we can extend the semi-discrete convergence analysis in [35, 18, 1] to
linear elastic wave propagation on meshes of affine elements. Techniques in [18] can be used to extend this
analysis to curvilinear elements.

Let U ,Uh denote the exact and discrete WADG solutions, respectively. We will assume that U , ∂U
∂t are

sufficiently regular such that

∥U∥WN+1,2(Ωh)
< ∞,

∂U∂t

WN+1,2(Ωh)

< ∞,

where we define ∥U∥2WN+1,2(Ωh)
=
∑

k ∥U∥2WN+1,2(Dk).

In terms of group variables U = (v,σ) and V = (w, q) ∈ (Vh (Ωh))
d × (Vh (Ωh))

Nd , the WADG formu-
lation can be written as(

T−1

A−1
0

∂U

∂t
,V

)
L2(Ω)

+ a(U ,V ) + b(U ,V ) = (f ,V )

a(U ,V ) =
∑

Dk∈Ωh

⎛⎝−

(
d∑

i=1

σ,Ai
∂w

∂xi

)
L2(Dk)

+

(
d∑

i=1

Ai
∂v

∂xi
, q

)
L2(Dk)

⎞⎠
b(U ,V ) =

∑
Dk∈Ωh

(⟨
AT

n {{σ}}+ τv
2
AT

nAnJvK,w
⟩
L2(∂Dk)

+

⟨
1

2
AnJvK +

τσ
2
AnA

T
n JσK, q

⟩
L2(∂Dk)

)
,

where A0(x) = diag
(
ρ(x)Id×d,C−1(x)

)
. Energy stability implies that

b(U ,U) =
∑

Dk∈Ωh

(τv
2

∥JAnvK∥2L2(∂Dk) +
τσ
2

JAT
nσK

2
L2(∂Dk)

)
(
T−1

A−1
0

∂U

∂t
,U

)
L2(Ω)

+ b(U ,U) = (f ,U).
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Since the DG formulation (2) is consistent, these solutions satisfy(
A0

∂U

∂t
,V

)
L2(Ω)

+ a(U ,V ) + b(U ,V ) = (f ,V )(
T−1

A−1
0

∂Uh

∂t
,V

)
L2(Ω)

+ a(Uh,V ) + b(Uh,V ) = (f ,V ) (9)

for all V ∈ (Vh (Ωh))
d × (Vh (Ωh))

Nd . We decompose the error U − Uh into a projection error ϵ and
discretization error η.

U −Uh = (ΠNU −Uh)− (ΠNU −U) = η − ϵ.

We assume that Uh(x, 0) is the L2 projection of the exact initial condition, such that η|t=0 = 0. We also
introduce a consistency error δ = A0U − T−1

A−1
0

U resulting from the approximation of A0U by a weight-

adjusted inner product

A0
∂U

∂t
− T−1

A−1
0

∂Uh

∂t
=

∂

∂t

(
A0U − T−1

A−1
0

U
)
+

∂

∂t
T−1

A−1
0

(ΠNU −Uh) =
∂δ

∂t
+

∂

∂t

(
T−1

A−1
0

η
)

where we have used that T−1

A−1
0

= T−1

A−1
0

ΠN . Subtracting the DG and WADG formulations in (9) and setting

V = η then yields

1

2

∂

∂t

(
T−1

A−1
0

η,η
)
L2(Ω)

+ b(η,η) =

(
−∂δ

∂t
,η

)
L2(Ω)

+ a(ϵ,η) + b(ϵ,η), (10)

where we have used that a(η,η) = 0 by skew symmetry.
We bound a(ϵ,η)+b(ϵ,η) on the right hand side by integrating by parts the stress equation and using the

component-wise L2 orthogonality of ϵ to derivatives of η. This reduces the term a(ϵ,η) + b(v,η) to surface
contributions over each element, which can be combined with contributions from neighboring elements to
yield∑
Dk∈Ωh

(⟨
AT

n {{ϵσ}}+
τv
2
AT

nAnJϵvK,ηv

⟩
L2(∂Dk)

+
⟨
An {{ϵv}}+

τσ
2
AnA

T
n JϵσK,ησ

⟩
L2(∂Dk)

)

=
1

2

∑
Dk∈Ωh

(⟨
{{ϵσ}} −

τv
2
AnJϵvK,AnJηvK

⟩
L2(∂Dk)

+
⟨
{{ϵv}} −

τσ
2
AT

n JϵσK,AT
n JησK

⟩
L2(∂Dk)

)
≤ 1

2

∑
Dk∈Ωh

{{ϵσ}} − τv
2
AnJϵvK


L2(∂Dk)

∥AnJηvK∥L2(∂Dk) +
{{ϵv}} − τσ

2
AT

n JϵσK

L2(∂Dk)

AT
n JησK


L2(∂Dk)

≤ Cτ

∑
Dk∈Ωh

∥ϵ∥L2(∂Dk)

(τv
2

∥AnJηvK∥2L2(∂Dk) +
τσ
2

AT
n JησK

2
L2(∂Dk)

)1/2
where Cτ is proportional to max (τv, τσ). Using Young’s inequality with α = Cτ/2 yields the following bound

|a(ϵ,η) + b(ϵ,η)| ≤ b(η,η) +
C2

τ

4

∑
Dk∈Ωh

∥ϵ∥2L2(∂Dk) .

Applying this to (10) and using Cauchy-Schwarz on
(
∂δ
∂t ,η

)
L2(Ω)

then yields

1

2

∂

∂t

(
T−1

A−1
0

η,η
)
L2(Ω)

+ b(η,η) ≤
∂δ∂t


L2(Ω)

∥η∥L2(Ω) + b(η,η) +
∑

Dk∈Ωh

C2
τ

4
∥ϵ∥2L2(∂Dk) .

17



We eliminate factors of b(η,η) on both sides and bound right hand side terms. The trace term is bounded
using a standard hp trace inequality [36] and an interpolation estimate∑

Dk∈Ωh

∥ϵ∥2L2(∂Dk) ≤
∑

Dk∈Ωh

Ch−1 ∥ϵ∥2L2(Dk) = Ch−1 ∥ϵ∥2L2(Ω) ≤ Ch2N+1 ∥U∥2WN+1,2 .

Since A0 is independent of t, Theorem 4.5 gives∂δ∂t

L2(Ω)

=

A0
∂U

∂t
− T−1

A−1
0

∂U

∂t


L2(Ω)

≤ ChN+1Amax ∥A0∥WN+1,∞(Ωh)

∂U∂t

L2(Ω)

,

where Amax = max
(

ρmax

ρmin
, cmaxc̃max

)
. Then, integrating from [0, T ] and using Lemma 4.4 yields

Amin ∥η∥2L2(Ω) ≤ C

∫ T

0

hN+1Amax ∥A0∥WN+1,∞(Ωh)

∂U∂t

L2(Ω)

∥η∥L2(Ω) + h2N+1 ∥U∥2WN+1,2(Ω) dt, (11)

where Amin = min (ρmin, c̃min). Applying the modified Gronwall’s inequality (Lemma 1.10 in [37]; see also
[1]) to (11) then yields

∥η∥L2(Ω) ≤
1

Amin

∫ T

0

CAmaxh
N+1 ∥A0∥WN+1,∞(Ωh)

∂U∂t

L2(Ω)

dt+ sup
t∈[0,T ]

√∫ T

0

Ch2N+1 ∥U∥2WN+1,2(Ω) dt

≤ CThN+1/2

Amin
sup

t∈[0,T ]

(
h1/2Amax ∥A0∥WN+1,∞(Ωh)

∂U∂t

L2(Ω)

+ ∥U∥WN+1,2(Ωh)

)
.

The triangle inequality gives the final estimate

∥U −Uh∥ ≤ (C1 + C2T )h
N+1/2 sup

t∈[0,T ]

(
h1/2 ∥A0∥WN+1,∞(Ωh)

∂U∂t

WN+1,2(Ωh)

+ ∥U∥WN+1,2(Ωh)

)
,

where C2 depends on Amin, Amax. From this estimate, we expect L2 errors to decrease proportionally to
O(hN+1/2) under mesh refinement, which mirrors theoretical results given in [18, 1]. Optimal rates of
O(hN+1) are often observed in practice. However, we do also observe O(hN+1/2) rates of convergence for
N = 1, . . . , 5 for certain problems, which suggests that the theoretical estimate is tight.

6 Numerical experiments

The following sections present several numerical experiments validating the stability and accuracy of the
proposed method in two and three dimensions. The energy stability of the method is also confirmed for
examples with sub-cell variations in heterogeneous media and curvilinear meshes. The convergence of the
new DG formulation in piecewise constant isotropic media is confirmed using analytic solutions, while the
convergence of the method for high order approximations of heterogeneous media is confirmed using a fine
grid reference solution. Finally, the method is applied to problems with anisotropy and stiffness matrices C
with sub-element variations.

In all experiments, we follow [1] and compute application of weight-adjusted mass matrices using a
quadrature exact for polynomials of degree (2N+1) [31]. Time integration is performed using the low-storage
4th order five-stage Runge-Kutta scheme of Carpenter and Kennedy [38], and the time-step is chosen based
on the global estimate

dt = min
k

CCFL

supx∈Ω ∥C(x)∥2 CN ∥Jf∥L∞(∂Dk) ∥J−1∥L∞(Dk)

, (12)
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(a) τv = τσ = 0 (b) τv = τσ = 1

Figure 1: Spectra for N = 4 and h = 1/4, using randomly chosen C(x) with eigenvalues between [dmin, 1]
at each quadrature point. For both τv = τσ = 0 and τv = τσ = 1, the largest real part of the spectra is
O(10−14).

where CN = O(N2) is the order-dependent constant in the surface polynomial trace inequality [14] and CCFL

is a tunable global CFL constant. This estimate is derived by bounding the eigenvalues of the spatial DG
discretization matrix appearing in the semi-discrete system of ODEs. We note that the usual factor of h
arises through the term

1

∥Jf∥L∞(∂Dk) ∥J−1∥L∞(Dk)

= O(h)

due to the fact that
J−1


L∞(Dk)

= O(h−d) and
Jf


L∞(Dk)

= O(hd−1) in d dimensions.

Finally, in all following experiments, we use τv = τσ = 1 and CCFL = 1 unless specified otherwise. We
have arbitrarily chosen these parameters for simplicity, though a more nuanced choice of penalty parameters
and CFL constant may improve numerical and computational performance for certain problems. We note
that because dt is derived through an upper bound on the spectral radius of the discretization matrix, this
estimate of the timestep is rather conservative, and we have observed that it is possible to take CCFL > 1
without losing stability under our choice of timestepping scheme.

6.1 Spectra and choice of penalty parameter

We first verify the energy stability of the WADGmethod for arbitrary heterogeneous media. We use a stiffness
matrix constructed using similarity transforms, such that at every quadrature point, C(x) = UDUT , where
D is a diagonal matrix with random positive entries dmin ≤ Dii ≤ dmax and U is a random unitary matrix.
Let Ah denote the matrix induced by the global semi-discrete DG formulation, such that the time evolution
of the solution v,σ is governed by

∂Q

∂t
= AhQ,

with Q denotes a vector of degrees of freedom for (v,σ). Figure 1 shows computed eigenvalues of Ah for
[dmin, dmax] = [1/10, 1] and [10−5, 1], τv = τσ = 0 and τv = τσ = 1 under discretization parameters N = 4
and h = 1/4. In both cases, the largest real part of any eigenvalue is O(10−14), verifying the energy stability
of the WADG discretization for arbitrary media.

For practical simulations, the choice of τv, τσ remains to be specified. Taking τv, τσ > 0 results in
damping of under-resolved spurious components of the solution [21]; however, a naive selection of these
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penalty parameters can result in an overly restrictive time-step restriction for stability. We wish to choose
τv, τσ as large as possible without increasing the value of ∥Ah∥ when using a central flux (i.e. τv = τσ = 0).
For example, in Figure 1, we observe that the value of ∥Ah∥ for a central flux is roughly half as large as the
value of ∥Ah∥ when taking τv = τσ = 1. We note that the growth in ∥Ah∥ when τv = τσ = 1 is due to the
large negative real part of the extremal eigenvalues of Ah, which mirrors observations in [21] that a subset
of the eigenvalues of Ah approach −∞ as the penalty parameter increases.

Initial numerical experiments suggest that varying the penalty parameters spatially and scaling τv and τσ
independently of each other can offset the artificial stiffness induced by a naive choice of penalty parameters.
For example, material coefficients can be taken into account by scaling the penalty parameters such that
flux terms are dimensionally consistent. One example of such a scaling is

τv = γv sup
x∈f

√
∥{{C(x)}}∥ {{ρ(x)}}, τσ = γσ sup

x∈f

1√
∥{{C(x)}}∥ {{ρ(x)}}

,

where the supremum is taken locally over each face and γv, γσ are dimensionless constants. We note that the
optimal choice of scaling is outside of the scope of this current paper, and will be explored in future work.

6.2 Analytic solutions

Next, we study the accuracy and convergence of weight-adjusted DG method for several analytical solutions
in linear elasticity. In all cases, the solution is expressed in terms of the displacement vector u(x, t) =
(u1, . . . , ud). Initial conditions for velocity and stress are computed through

v(x, t) =
∂u

∂t
, σ = C

1

2

(
∇u+∇uT

)
.

Unless otherwise stated, we report relative L2 errors for all components of the solution U = (v,σ)

∥U −Uh∥L2(Ω)

∥U∥L2(Ω)

=

(∑m
i=1 ∥Ui −Ui,h∥2L2(Ω)

)1/2
(∑m

i=1 ∥Ui∥2L2(Ω)

)1/2 .

6.2.1 Harmonic oscillation of a square

We first examine convergence on a unit square domain with λ = µ = ρ = 1. The components of the
displacement vector are given by

u1(x, y, t) = cos(ωπt) cos(πx) sin(πy)

u2(x, y, t) = − cos(ωπt) sin(πx) cos(πy),

where ω =
√
2µ. Zero traction boundary conditions are imposed. Figure 2 shows L2 errors computed at time

T = 5, using uniform triangular meshes constructed by bisecting a uniform mesh of quadrilaterals along the
diagonal.

For N = 1, . . . , 5, O(hN+1) rates of convergence are observed when using the penalty flux with τv = τσ =
1. When using a central flux (with τv = τσ = 0), we observe a so-called “even-odd” pattern [23, 16], where
the convergence rate is O(hN ) for N odd and between O(hN+1/2) and O(hN+1) for N even. This behavior
improves upon the theoretical estimate derived in [9], which is O(hN ) for a sufficiently small time-step size.

For quasi-uniform meshes, the optimal rate of convergence of spatial L2 errors under uniform mesh
refinement is O(hN+1) [23], which is greater than the O(hN+1/2) rate of convergence which can be proven
for dissipative DG discretizations on general meshes [39] (though optimal rates of convergence are often
observed in numerical experiments). We note that for N = 4 and N = 5, we observe results for both fluxes
which are better than the 4th order accuracy of our time-stepping scheme. This is most likely due to the
benign nature of the solution and the choice of timestep (12), which scales as O(h/N2). For N = 4, 5, the
results of Figure 2 suggest that the resulting timestep is small enough such that temporal errors of O(dt4)
are small relative to spatial discretization errors of O(hN+1).
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Figure 2: Convergence of L2 errors for harmonic oscillation.

6.2.2 Rayleigh and Lamb waves

Next, we examine the convergence of WADG for Rayleigh and Lamb waves, both of which test the imposition
of traction-free boundary conditions.

Rayleigh waves are elastic surface waves which decay exponentially away from the surface. These waves
are given by the displacement vector

u (x, y, t) = e−ωx
√

1−ξ2
(

cos(ω(y + crt))√
1− ξ2 sin(ω(y + crt))

)
+

(
ξ2

2
− 1

)
e−ωx

√
1− ξ2µ

2µ+λ

(
cos(ω(y + crt))

sin(ω(y + crt))/
√
1− ξ2µ

2µ+λ

)
,

where ω is the wavespeed, cr is the Rayleigh phase velocity cr = ξ
√
µ, and ξ satisfies

√
1− ξ2

√
1− ξ2µ

2µ+ λ
−
(
ξ2

2
− 1

)2

= 0.

In our computations, we use ρ = µ = λ = 1, ξ = 0.949554083888034, and ω = 2π [20]. We solve on
the domain [0, 2]× [0, 1] using a sequence of uniform triangular meshes, and enforce traction-free boundary
conditions at x = 0 and exact Dirichlet boundary conditions at x = 2. Periodic boundary conditions are
applied at y = 0 and y = 1.

Lamb waves are supported by elastic waveguides with traction-free (free surface) boundary conditions at
the top and bottom of the domain. The displacement of these waves is given by

u1 (x, y, t) = (−kB1 cos(py)− qB2 cos(qy)) sin(kx− ωt)

u2 (x, y, t) = (−pB1 sin(py) + kB2 sin(qy)) cos(kx− ωt)

where k is the wavenumber and ω is the frequency, and the constants p and q are defined as

p2 =
ω2

2µ+ λ
− k2, q2 =

ω2

µ
− k2.
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Figure 3: Convergence of L2 errors for the Rayleigh wave solution.

The wavenumber k and frequency ω are related through a dispersion relation. The ratio of the amplitudes
B1/B2 can be determined using other parameters, implying that B1, B2 are unique up to a scaling constant.
In our experiments, we use ρ = µ = 1, λ = 2, k = 2π. For these values, ω = 13.137063197233, B1 =
126.1992721468 and B2 = 53.88807700007 [20]. We solve on the domain [−1, 1]× [−1/2, 1/2], with traction-
free boundary conditions at y = ±1/2 and periodic boundary conditions at x = ±1.

Figures 3 and 4 show L2 errors for Rayleigh and Lamb waves at time T = 5, respectively. As with
the harmonic oscillation solution, both central and penalty fluxes are considered. For penalty fluxes, the
computed convergence rates fall between the optimal rate of O(hN+1) and theoretical rate of O(hN+1/2)
[40]. For central fluxes, we observe the odd-even pattern for Lamb waves. However, for Rayleigh waves, we
observe the theoretical O(hN ) rate of convergence.

As with the harmonic oscillation problem, the accuracy of the numerical method is theoretically limited
by the 4th order accuracy of the time-stepping scheme. The observed higher order accuracy for N = 4
and N = 5 again suggests that the solution is smooth in time and the time-step is small enough to render
temporal discretization errors small relative to spatial discretization errors.

6.2.3 Rayleigh waves in near-incompressible materials

As noted in Section 5, error estimates for isotropic elasticity no longer hold in the incompressible limit
µ/λ → 0 due to the fact that C becomes singular. We use the propagation of Rayleigh waves to examine
the behavior of WADG for near-incompressible materials. We follow [41, 42] and fix λ = 1 and set µ =
1, .1, .01, .001, .0001. Since the Rayleigh wave propagates with speed proportional to

√
µ, we compute L2

errors at the final time 1/(4
√
µ) to ensure a fair comparison between solutions at different values of µ.

Table 1 shows relative errors for v, σ at different orders and mesh sizes using the penalty flux. The relative
errors for σ grow as µ/λ → 0. This is not surprising, as the constant in the error estimates of Section 4.2.1
depends on ∥C∥, which blows up in the incompressible limit. However, because the magnitude of σ also
decreases as µ/λ → 0, relative errors for v remain roughly the same magnitude for near-incompressible
materials. Decreasing µ by four orders of magnitude results in up to a ten-fold increase in relative error for
σ, but less than a two-fold increase in error for v.
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Figure 4: Convergence of L2 errors for the Lamb wave solution.

µ = 1 µ = .1 µ = .01 µ = .001 µ = .0001

N = 2, h = 1/4 3.1063e-02 2.6972e-02 3.0858e-02 4.0103e-02 5.6835e-02
N = 3, h = 1/4 3.1677e-03 2.6848e-03 2.9854e-03 3.6960e-03 4.9362e-03
N = 4, h = 1/4 2.8726e-04 2.4990e-04 2.9142e-04 3.9774e-04 5.2469e-04

N = 2, h = 1/8 3.1819e-03 2.5476e-03 2.8877e-03 3.5608e-03 4.7010e-03
N = 3, h = 1/8 1.8867e-04 1.6925e-04 1.8509e-04 2.2520e-04 2.8301e-04
N = 4, h = 1/8 8.4999e-06 7.5750e-06 8.1094e-06 1.0760e-05 1.4886e-05

(a) Relative error in v

µ = 1 µ = .1 µ = .01 µ = .001 µ = .0001

N = 2, h = 1/4 6.8250e-02 7.4130e-02 1.2104e-01 2.1333e-01 4.1451e-01
N = 3, h = 1/4 9.2980e-03 1.0685e-02 1.8109e-02 3.2046e-02 5.7612e-02
N = 4, h = 1/4 9.7251e-04 1.1687e-03 2.1941e-03 4.1378e-03 6.8404e-03

N = 2, h = 1/8 9.8138e-03 1.1429e-02 2.0331e-02 3.7889e-02 7.6516e-02
N = 3, h = 1/8 6.6596e-04 7.8157e-04 1.5353e-03 3.1239e-03 5.6341e-03
N = 4, h = 1/8 3.4272e-05 4.2639e-05 8.8393e-05 1.9764e-04 3.6052e-04

(b) Relative error in σ

Table 1: Behavior of WADG for linear elastic wave propagation in the incompressible limit as µ/λ → 0.
Errors are shown for various orders and mesh resolutions using the penalty flux.
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6.2.4 Stoneley waves

A Stoneley wave is supported along the interface between two solids [43]. Like Rayleigh waves, Stoneley
waves decay exponentially away from the interface, and test the effectiveness of numerical fluxes across
interfaces. We follow [20, 42] and use discontinuous media defined by

(ρ, λ, µ) =

{
(10, 3, 3) y > 0

(1, 1, 1) y < 0.
.

The displacement vector for a Stoneley wave is then given by

u1(x, y, t) =

{
Re
((
ikB1e

−kb1py + kb1sB2e
−kb1sy

)
ei(ky−ωt)

)
, y > 0

Re
((
−kb1pB1e

−kb1py + ikB2e
−kb1sy

)
ei(kx−ωt)

)
, y < 0

u2(x, y, t) =

{
Re
((
ikB3e

kb2py − kb2sB4e
kb2sy

)
ei(kx−ωt)

)
, y > 0

Re
((
kb2pB3e

kb2py + ikB4e
kb2sy

)
ei(kx−ωt)

)
, y < 0

,

where cst is the Stoneley wave speed, and

k = ω/cst, bjp =

√
1− c2st

(2µj + λj)/ρj
, bjs =

√
1− c2st

(µj)/ρj
, j = 1, 2.

The Stoneley wave speed cst can be determined based material parameters and interface conditions, and the
amplitudes B1, B2, B3, B4 are determined from cst up to scaling by a constant. For the parameters used
in this study, we take cst = 0.546981324213884, B1 = i0.2952173626624, B2 = −0.6798795208473, B3 =
i0.5220044931212, and B4 = −0.9339639688697 [20]. We assume k = 1, which gives ω = cst.

We solve on the domain [−1, 1]×[−5, 5], and enforce Dirichlet boundary conditions at all boundaries using
the exact solution. Figure 5 shows L2 errors for two uniform meshes of triangles constructed by bisecting a
quadrilateral mesh of K1D × 5K1D elements. Figure 5b shows errors at time T = 5 when K1D is even and
the mesh is fitted to the interface at y = 0, while Figure 5d shows errors when K1D is odd and the interface
cuts through element interiors.

When the mesh is fitted to the interface, computed convergence rates using penalty fluxes match the
theoretical O(hN+1/2) rate. When using central fluxes, we observe O(hN ) rates of convergence. This
matches the behavior observed when using central fluxes for the Rayleigh wave problem, instead of the
odd-even pattern of convergence observed when using central fluxes for the harmonic oscillation and Lamb
wave solutions.

When the mesh is not fitted to the interface exactly, we compute the application of the weight-adjusted
mass matrix inverse using a quadrature rule from Xiao and Gimbutas [31] which is exact for degree 2N + 1
polynomials. Since the values of ρ, µ, and λ are positive at all quadrature points, the method is energy
stable. However, since the exact solution is discontinuous, the error in elements cut by the interface is O(1),
resulting in L2 errors which converge at rate O(h1/2) for both penalty and central fluxes. We have also
computed errors on a sequence of unfitted unstructured uniform meshes, as well as on a sequence of uniform
meshes with randomly perturbed vertex positions. In both cases, similar O(h1/2) rates of convergence were
observed. We note that, when using piecewise constant approximations of µ and λ, we observe the same
O(h1/2) convergence rate, though errors are roughly twice as large in magnitude.

6.2.5 Convergence to manufactured and reference solutions

To check the accuracy of the method for problems with smoothly varying heterogeneous media, we follow
[16] and consider a manufactured solution. We assume isotropic media, and incorporate variations into the
stiffness matrix C by taking λ such that

λ(x, y) = λ0 + λ̃(x, y),
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(b) Penalty fluxes, fitted interface
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Figure 5: Convergence of WADG for a Stoneley wave using a fitted mesh aligned with the interface (Figures 5a
and 5b) and a non-fitted mesh where the interface does not lie exactly on an element boundary (Figure 5c
and 5d).

where λ0 is a constant. We assume the displacement solution u is given as a plane wave

u1(x, y, t) = cos (k(x− cP t)) , u2(x, y, t) = cos (k(x− cSt)) ,

where cP =
√
(2µ+ λ0)/ρ and cS =

√
µ/ρ are the P- and S-wave velocities corresponding to Lame param-

eters µ, λ0.
This plane wave is the solution of the homogeneous elastic wave equations with λ̃(x, y) = 0. However,

this is not true if λ̃(x, y) ̸= 0 varies spatially. In order to test the convergence of our method when C contains
smoothly varying coefficients, we modify our equations by adding source terms fσ such that the plane wave

25



10−1 100

10−8

10−6

10−4

10−2

100

1.33
1

2.97
1

1
2.89

5.05
1

1
4.95

Mesh size h

L
2
er
ro
rs

N = 1

N = 2

N = 3

N = 4

N = 5

(a) Central flux

10−1 100

10−8

10−6

10−4

10−2

100

2.77
1

3.01
1

3.74
1

4.76

1

5.84

1

Mesh size h

L
2
er
ro
rs

N = 1

N = 2

N = 3

N = 4

N = 5

(b) Penalty flux

Figure 6: Convergence of WADG under mesh refinement to a manufactured solution with smoothly varying
heterogeneous media for N = 1, . . . , 5.

solution satisfies

ρ
∂v

∂t
=

d∑
i=1

AT
i

∂σ

∂xi

C−1 ∂σ

∂t
=

d∑
i=1

Ai
∂v

∂xi
+ fσ. (13)

Using the fact that the plane wave is the solution to the homogeneous equations, it is straightforward to
show that the source terms are

fσ = −λ̃∇ · v

⎛⎝ 1
1
0

⎞⎠ ,

where v = ∂u
∂t is the velocity of the exact plane wave solution. These source terms are computed using the

same quadrature rule used for WADG.
Figure 6 shows the convergence of L2 errors for a plane wave manufactured solution with k = π. We

set ρ = 1, µ = 1, λ0 = 2, and λ̃(x, y) = 1
2 sin(2πx) sin(2πy), and compute errors at final time T = 5 for

N = 1, . . . , 5. We observe that the L2 errors convergence at a rate between the theoretical O(hN+1/2) and
optimal O(hN+1) rates for the penalty flux with τv = τσ = 1. For central fluxes, we observe an even-odd
pattern of convergence, with rates near O(hN ) for N odd and O(hN+1) for N even.

We also examine the accuracy of the WADG method for smoothly varying heterogeneous media by
comparing against a reference spectral element method solution of degree N = 50 on a unit square [−1, 1]2.
Zero traction boundary conditions are enforced weakly through numerical fluxes [20]. We use a heterogeneous
isotropic medium with ρ, λ, µ set to

ρ(x) = 1, λ(x) = 1 + .25 sin(πx) sin(πy), µ(x) = 1 + .25 cos(πx) cos(πy).

Initial stresses are set to zero, while the initial velocity is set to

v1(x, 0) = cos(πx) sin(πy), v2(x, 0) = − sin(πx) cos(πy).
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Figure 7: Convergence of WADG under mesh refinement to a reference N = 50 spectral method solution
with smoothly varying heterogeneous media for N = 1, . . . , 5 using a penalty flux.

Figure 7 shows L2 errors with respect to the reference solution at time T = 1/2 for different mesh sizes
and orders of approximation. Computed convergence rates fall between the optimal O(hN+1) and predicted
O(hN+1/2) when using the penalty flux with penalty parameters set to 1.

6.2.6 Curvilinear meshes

We now present numerical experiments verifying the stability and accuracy of the formulation presented in
Section 5.1 for curvilinear meshes. We use isoparametric mappings in the following experiments, where the
mapping from the reference element to each physical element is a polynomial of degree N . We construct
these mappings by following [23]. Starting from a uniform triangular mesh on the Lamb wave problem
domain Ω = [0, 2] × [0, 1], we place high order Warp and Blend interpolation nodes on each element [29].
The physical locations (xi, yi) (for i = 1, . . . , NpK) of these nodes are then perturbed to produce new nodal
positions (x̃i, ỹi) where

x̃i = xi +
1

10
cos
(π
2
x
)
cos (3πy) , ỹi = yi +

1

20
sin(πx) cos(3πy).

These new nodal positions (x̃i, ỹi) now define a coordinate mapping from the reference element to a curved
physical element, producing the warped mesh in Figure 8. This mesh warping is constructed such that the x
and y deformations of each element are of roughly the same magnitude, while leaving the positions of nodes
on the boundary unchanged.

Figure 8 shows eigenvalues of the DG discretization matrix for N = 3 for both a uniform (affine) mesh
and a warped curvilinear mesh. We use the quadrature-based skew-symmetric formulation introduced in
Section 5.1, and consider both central and penalty fluxes (with penalty parameters set uniformly to 1).
We observe that for both the central and penalty fluxes, all eigenvalues contain non-positive real parts (up
to machine precision), indicating that the semi-discrete system is energy stable. The introduction of the
curvilinear warping appears to result in a magnification of the real and imaginary parts of larger magnitude
eigenvalues.

We also compute L2 errors on a sequence of refined curvilinear meshes for N = 2, . . . , 5, skipping N = 1
as it reduces to the affine case. These curvilinear meshes are constructed using the warping procedure
described previously. Errors for both central and penalty fluxes are shown in Figure 9. We observe rates of
convergence of L2 errors which are consistent with the rates observed for affine meshes in Section 6.2.2.
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(a) τv = τσ = 0 (central flux) (b) τv = τσ = 1 (penalty flux)

(c) Warped mesh

Figure 8: Spectra of the DG discretization matrix for central and penalty fluxes on a warped curvilinear
mesh of degree N = 3.
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Figure 9: Convergence of WADG for the Lamb wave problem on curvilinear meshes.
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(a) |σxx + σyy | (b) |σxy |

Figure 10: Values of different solution fields at T = .4 for the stiff inclusion problem of Leveque [25] with
order of approximation N = 5.

6.3 Application examples

We next demonstrate the accuracy and flexibility of WADG for several application-based problems in linear
elasticity with heterogeneity and anisotropy. All computations are done using penalty parameters τv = τσ =
1 unless specified otherwise.

6.3.1 Stiff inclusion

The stiff inclusion problem is a common test of methods for linear elastic wave propagation [25, 5, 42], where
an inclusion with higher wavespeed is embedded within a non-stiff region. Waves which reach this region
of high wavespeed are transmitted through the inclusion, bouncing back and forth within the region. This
vibration then produces waves which propagate outward from the inclusion.

We solve on a domain [−1, 1]× [−.5, .5] with a rectangular inclusion located at [−.5, .5]× [−.1, .1]. Outside
of the inclusion, material parameters are taken to be

ρ = 1, µ = 1, λ = 2.

Within the inclusion, material parameters are taken to be

ρ = 1, µ = 100, λ = 200,

such that the wave speed in the rectangular inclusion is ten times that of the wave speed outside. A pulse
is generated through velocity boundary conditions at x = −1

v1(x, y, t) =

{
sin(πt/t0), t < t0

0, t ≥ t0
, v2(x, y, t) = 0.

In our experiments, we take t0 = .025. Traction free boundary conditions are enforced at all other domain
boundaries.

We construct a uniform triangular mesh by dividing each element of a quadrilateral meshes along the
diagonal to produce triangular meshes, using 100 × 50 quadrilateral elements in the x and y coordinates,
respectively. This is the same mesh resolution and polynomial degree used by Käser and Dumbser in [5],
and provides roughly the same number of degrees of freedom in the x and y directions as the numerical
setup used by [42]. Figure 10 shows values of |σxx + σyy| at final time T = .4. Following the approach
taken in the literature [25, 5, 42], a nonlinear color scale is used in order to distinguish small-amplitude
waves and produce a schlieren-style image.. The results show qualitatively good agreement with results in
the literature.
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6.3.2 Heterogeneous anisotropic material

We next examine a model wave propagation problem in heterogeneous anisotropy media [44, 45, 7]. The
density ρ = 7100 is constant over the domain, while the entries of the stiffness matrix C are taken to be

C11 = .165, C12 = .05, C22 = .062, C33 = .0396, x < 0

C11 = .165, C12 = .0858, C22 = .165, C33 = .0396, x > 0,

with the remaining entries determined by symmetry or set to zero if unspecified. For x < 0, this corresponds
to an anisotropic material, while for x > 0, this corresponds to an isotropic material with µ = .0396, λ =
.0858.

The computational domain is taken to be [−.32, .32]2, and we use N = 5 and a triangular mesh of 32768
elements constructed by subdividing a grid of 128 × 128 uniform quadrilaterals. In order to provide a fair
comparison to results in the literature, the degree N and the mesh size are chosen based on the numerical
setups used in [45, 7]. Komatitsch, Barnes and Tromp use a 130×130 grid of uniform quadrilateral elements
of degree N = 5 in [45]. The authors of [7] use an unstructured mesh of 37944 elements of degree N = 5,
where the average triangle edge length matches the edge length of the triangles in our mesh. Forcing is
applied to the y-component of the velocity by a Ricker wavelet point source

f(x, t) =
(
1− 2(πf0(t− t0))

2
)
e−(πf0(t−t0))

2

δ(x− x0),

where x0 = −.02, f0 = .17, and t0 = 1/f0.
3

We take the penalty parameters to be τv = τσ = 1/2. While there is little visual difference between
taking the penalty parameters to be 1 instead of 1/2, we observe that taking a smaller penalty parameter
makes it possible to use a larger timestep (CCFL = 10) without blowing up. Reducing the penalty parameter
further does not appear to allow a significant increase in the maximum stable timestep. This suggests that
the naive choice of τv = τσ = 1 is not optimal with respect to the maximum stable timestep and stiffness of
the semi-discrete system, as discussed in Section 6.1.

Figure 11 shows the y-component of velocity v2 at times T = 30µs (zoomed in) and T = 60µs. Both
results show qualitative agreement with reference results from [44, 45, 7].

6.4 A three-dimensional example and computational results

We now present a three-dimensional example of elastic wave propagation in heterogeneous media with sub-
element variations and a discontinuity across an interface. We consider isotropic elastic wave propagation
on the cube [−.5, .5]3 with a discontinuity in material coefficients across z = 0

ρ = 1, µ(x) =

{
2 + w(x), z < 0

1 + w(x), z > 0
, λ(x) =

{
2, z < 0

1, z > 0

where w(x) = .5 cos(3πx) cos(3πy) cos(3πz). Forcing is applied to the x-component of velocity through a
smoothed point source and Ricker wavelet

f(x, t) =
(
1− 2(πf0(t− t0))

2
)
e−(πf0(t−t0))

2

e−(a∥x−x0∥)2

where x0 = (0, 0, .1)T , a = 100, f0 = 10, and t0 = 1/f0. Figure 12 shows the x-velocity of the computed
solution at T = .5, and Figure 12a shows the unstructured mesh of 222824 tetrahedral elements of degree
N = 5 used to compute both solutions. In order to capture the discontinuity in material parameters, the
elements of this mesh are made to conform to the z = 0 plane. The mesh resolution and degree are chosen
to resolve the spatial variation of the smoothed point source present in the forcing function. For piecewise
constant coefficients (using the average of each coefficient over an element), spurious reflections are observed

3All values and units are adapted from [45, 7], and correspond to units of meters, kg, and microseconds.
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(a) T = 30µs (zoomed in) (b) T = 60µs

Figure 11: An example of wave propagation in heterogeneous anisotropic media. The vertical component of
the velocity v2 is shown at T = 30 and T = 60 microseconds.

(a) Computational mesh (b) Piecewise constant coefficients (c) Smooth coefficients

Figure 12: Mesh and xz, xy slices of v1 at T = .5. The order of approximation is taken to be N = 5.

in the solution. When smoothly varying coefficients are resolved within an element using WADG, these
spurious reflections disappear.

These computations are performed on an Nvidia GTX 980 GPU, following the implementation of GPU-
accelerated DG methods outlined in [11]. This approach breaks the computational work for each time-step
into volume and surface kernels (for the evaluation of the DG formulation) and an update kernel (for the
application of a time integration method). In this implementation, we apply the weight-adjusted mass
matrix inverse within the update kernel as well. Strategies for volume and surface kernels follow [11], while
computational approaches for WADG are outlined in [2].

Non-invasive GPU-accelerated implementations of WADG are described in [2], where kernels for the
acoustic wave equation in isotropic media are re-used. We re-write high order DG methods based on explicit
inversion of weighted mass matrices (as done in [16, 17]) into a similar non-invasive form with equivalent
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Batch size Nbatch 1 2 3 4 5 6

N = 1 2.21 1.18 0.84 0.70 0.65 0.61
N = 2 3.13 2.77 2.76 2.78 2.81 2.83
N = 3 9.95 10.11 10.18 10.11 10.13 10.22
N = 4 29.34 29.74 29.93 29.94 30.15 30.48
N = 5 74.07 74.29 73.88 73.68 73.79 74.23
N = 6 173.06 174.18 174.83 170.75 169.97 172.15
N = 7 329.45 330.04 329.75 331.01 329.71

(a) Weighted projection matrix Pw

Batch size Nbatch 1 2 3 4 5 6

N = 1 2.88 1.52 1.06 0.82 0.69 0.59
N = 2 3.60 1.94 1.81 1.71 1.44 1.70
N = 3 6.13 5.49 5.46 4.30 4.50 4.96
N = 4 19.29 14.77 14.64 15.78 13.90 14.09
N = 5 44.79 48.31 44.53 45.16 43.02 44.27
N = 6 172.89 112.16 107.83 108.40 111.05 122.59
N = 7 337.38 331.97 280.81 227.72 288.14

(b) Weight-adjusted projection M−1M1/w

Table 2: Runtimes (nanoseconds) for weighted and weight-adjusted projections as a function of batch size
Nbatch. The lowest runtimes are highlighted in bold.

storage. The semi-discrete form of standard DG yields a system of ODEs over each element

Mw
dU

dt
= AhU ,

where AhU denotes the evaluation of the DG right hand side for some local vector U . Multiplying by an
un-weighted mass matrix on both sides gives

M−1Mw
dU

dt
= M−1AhU ,

The right hand side is the same as the right hand side for the case when the weighting function is w(x) = 1,
and can re-use DG kernels for isotropic wave propagation. The influence of the spatially varying coefficient

is incorporated by inverting the weighted projection matrix Pw =
(
M−1Mw

)−1
= M−1

w M and applying it
to the right hand side. Since the weight w is spatially varying and distinct from element-to-element, we pre-
compute and store Pw explicitly over each element prior to time-stepping. The weight-adjusted DG method
is equivalent to replacing the matrices M−1

w M with the weight-adjusted projection matrix M−1M1/w,
which can be applied in a matrix-free fashion as described in Section 4.2.2.

We now examine computational costs associated with the use of the weight-adjusted DG method. Com-
putational statistics are computed using the Nvidia profiler nvprof. We consider first the costs associated
with the use of weight-adjusted approximations to scalar weighted mass matrices. While WADG clearly re-
duces storage costs associated with high order DG methods, it is less clear how WADG affects computational
runtime on accelerator and many-core architectures.

We compare the application of pre-computed and stored weighted projection matrices Pw with a matrix-
free application of the weight-adjusted matrix M−1M1/w using a GPU-accelerated implementation. As
described in [11, 2], we batch process Nbatch ≥ 1 elements within a single kernel workgroup. Table 2 displays
the average runtime per element for the weighted and weight-adjusted projection kernels as a function of
batch size Nbatch when using a quadrature which is exact for polynomials of degree 2N . When processing
only a single element per batch, WADG is less efficient than weighted projection up to order N = 7. However,
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Nbatch = 1 Nbatch = 3 Nbatch = 5

Weighted projection Pw 135.81 156.23 153.13
Weight adjusted projection M−1M1/w 23.029 45.551 57.097

(a) dram read throughput (GB/s)

Nbatch = 1 Nbatch = 3 Nbatch = 5

Weighted projection Pw 353.10 411.87 410.95
Weight adjusted projection M−1M1/w 691.61 1e+03 1e+03

(b) gld throughput (GB/s)

Table 3: Reported Global Load Throughput (gld throughput) and Device Memory Read Throughput
(dram read throughput) in GB/s for N = 2 and various Nbatch.

the cost of WADG goes down rapidly with the number of elements per batch. After optimizing over the
batch size, weight-adjusted projection is faster than weighted projection up to N = 7, achieving between a
1.5− 2.3× speedup for N > 1.

We can take a closer look at these results using the Nvidia profiler nvprof, looking in particular at the
metrics gld load throughput and dram read throughput. Both metrics track data throughput; however,
the former includes data fetched from cache, while the latter does not. We fix N = 2, increase the batch
size, and record the output given by nvprof for the weighted projection and weight-adjusted kernels.

Table 3 shows that the value of dram read throughput for the weighted projection kernel is higher than
that of the weight-adjusted kernel, implying that more data is streamed through the kernel. However, the
value of gld load throughput for the weight-adjusted kernel is higher than that of the weighted projection
kernel. This indicates that, while the loading of pre-computed and stored weighted projection matrices
exploits the high bandwidth available to GPUs, it does not take advantage of cache locality due to the
fact that the projection matrices must be loaded separately over each element. In contrast, the matrix-free
implementation of the weight-adjusted projection allows the matrices Vq,Pq to be re-used over multiple
elements once loaded into cache.

For Nbatch = 1, the cache efficiency of the weight-adjusted kernel is offset by the increased compu-
tational cost of quadrature-based interpolation and projection, as evidenced by the low reported value
of dram read throughput. However, increasing Nbatch to three elements increases both the values of
gld load throughput and dram read throughput, resulting in a roughly 40% speedup in runtime for the
weight-adjusted kernel. Increasing the batch size to five elements does not increase the global load throughput
further (implying cache saturation), but it does result in an additional increase in DRAM read throughput.
These results show that the low-storage nature of the weight-adjusted kernel frees up bandwidth in exchange
for increased computational work, while taking advantage of data locality.

Finally, we compute the GFLOPS per second and bandwidth (GB/s) achieved by each of the kernels for
elastic wave propagation in our implementation. The results are shown in Figure 13, and are qualitatively
similar to the results reported in [13] for the volume and surface kernels for elasticity. The GFLOPS/s and
bandwidth for the update kernel fall between the reported values for the volume and surface kernel. The
run-time of the update kernel for elastic wave propagation (in which the weight-adjusted projection matrix
is applied) constitutes between 40% and 50% of the total run-time for N = 1, . . . , 7. In comparison, the
update kernel for piecewise constant material properties takes 35% of the run-time at N = 1 and 10% of
the total run-time at N = 7, due to the fact that no additional matrix multiplications are necessary in the
update kernel if material properties are assumed to be constant within an element.

7 Conclusions

This work presents a weight-adjusted discontinuous Galerkin (WADG) method for the linear elastic wave
equations with arbitrary heterogeneous media. The method is energy stable and high order accurate for
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Figure 13: Profiled GFLOPS/s and bandwidth (GB/s) for volume, surface, and update kernels. Results are
presented for an Nvidia GTX 980 GPU, on a mesh of 9918 elements.

arbitrary stiffness matrices, and a slight modification results in an energy stable method for curvilinear
meshes as well. The penalty numerical fluxes for this formulation are simple to derive and implement, and
their lack of dependence on the stiffness matrix allows for a unified treatment of isotropic and anisotropic
media. Numerical examples confirm the accuracy of this method for analytic solutions of the elastic wave
equations, as well as its high order accuracy with respect to a reference solution for smoothly varying
heterogeneous media. Results obtained using this method also show good agreement with existing results in
the literature for both problems involving both isotropic and anisotropic heterogeneous media. Finally, we
provide computational results demonstrating the performance of the proposed methods on a single GPU.

We note that the implementation of this method reduces to the application of the weight-adjusted mass
matrix inverse and the evaluation of constant-coefficient terms in the DG formulation. The cost of the latter
step can be reduced (especially at high orders of approximation) by using fast methods based on Bernstein-
Bezier bases for the application of derivative and lift matrices for constant-coefficient terms [24]. Future
work will also involve a more careful study of discretization parameters (such as the penalty parameters and
the points per wavelength required for accuracy), as well as the application of the proposed method to more
realistic geophysical settings.
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[42] Daniel Appelö and Thomas Hagstrom. An energy-based discontinuous Galerkin discretization of the
elastic wave equation in second order form. 2015. Submitted to CMAME.

[43] Robert Stoneley. Elastic waves at the surface of separation of two solids. Proceedings of the Royal Society
of London. Series A, Containing Papers of a Mathematical and Physical Character, 106(738):416–428,
1924.
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