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A beam containing a substantial component of both the Jπ = 5+, T1/2 = 162 ns isomeric state

of 18F and its 1+, 109.77-min ground state has been utilized to study members of the ground-
state rotational band in 19F through the neutron transfer reaction (d,p) in inverse kinematics. The
resulting spectroscopic strengths confirm the single-particle nature of the 13/2+ band-terminating
state. The agreement between shell-model calculations, using an interaction constructed within the
sd shell, and our experimental results reinforces the idea of a single-particle/collective duality in the
descriptions of the structure of atomic nuclei.

The duality of the collective and single-particle de-
scriptions of the structure of atomic nuclei has been rec-
ognized for some 60 years. It is perhaps best summarized
by an excerpt from the Nobel lecture of Aage Bohr [1, 2],
“It was quite a dramatic moment when it was realized

that some of the spectra in the light nuclei that had been

successfully analyzed by the shell-model approach could be

given a very simple interpretation in terms of the rota-

tional coupling scheme.” Central to these comments by
Bohr was the “special role” played by the 19F nucleus,
one of the lightest nuclei to exhibit rotational features.
At that time, the 19F spectrum had just been described
by both shell-model calculations assuming only a small
number of valence nucleons [3, 4], as well as by a collec-
tive model assuming rotational structures [5, 6].

Since these pioneering calculations, a great deal of
work has been done aiming to refine the theoretical de-
scription of 19F [7–15], not the least of which involved
identifying the similarities between wave functions gen-
erated from both approaches [16] and the recent acces-
sibility of 19F to ab initio calculations [17]. Within a
collective description, the ground-state rotational band
in 19F exhibits the characteristic staggering, or “signa-
ture splitting,” of a K = 1/2 rotational structure [18]
where a measured static quadrupole moment points to-
wards prolate deformation and the states are linked by
relatively enhanced electric quadrupole transitions. The
band proceeds from its bandhead, with a spin-parity of
Jπ
min=1/2+, to its terminating state, Jπ

max = 13/2+. This
termination is evidence for the importance of shell struc-
ture since this is the maximum spin that can be generated
from three nucleons in the sd-shell outside the 16O core.
The nucleus 18F has a Jπ = 5+ excited state that

consists of two maximally-aligned 0d5/2 nucleons outside

the closed-shell 16O core [19]. This level has a 162(7)-
ns half-life [14], comparable to the flight time of an ion
beam in the tens of MeV/u range over a few meters. By
producing a beam of this isomer (18mF), and bringing it
to a target, states in 19F of J ≥ 5/2, including the 13/2+

terminating state, can be produced by the addition of yet
another 0d5/2 neutron.
In this Letter, we report on the extraction of spec-

troscopic overlaps between initial states in 18mF and fi-
nal states in 19F, including the terminating 13/2+ state
of the K = 1/2 rotational band, via the single-neutron
(d,p) transfer reaction. Combined with a simultaneous
measurement of the (d,p) reaction with a 18F beam in
its Jπ = 1+ ground state (18gF), whereby the lower-spin
members of the band were populated, a determination of
the single-particle character of the 19F ground-state ro-
tational band was obtained for the first time in a single
experiment.
The experiment was performed at the ATLAS facility

at Argonne National Laboratory and utilized the HE-
LIOS spectrometer [20, 21], a device designed for mea-
suring transfer reactions in inverse kinematics. A ra-
dioactive beam of 18F at an energy of 14 MeV/u was
produced with an intensity of ∼ 5 × 105 pps via the in-
flight technique [22, 23]. The 2H(17O,18F)n production
reaction was used with an 17O primary beam (15 MeV/u)
at a typical intensity of 60 pnA. A cryogenically-cooled
deuterium-filled gas cell (∼80 K and 1.4×105 Pa) pro-
vided the production target material. The resulting 18F
beam was comprised of ions in both ground and iso-
meric states. Previous experiments using 18mF beams
include those of Refs. [24–28]. In the present work, the
18mF/18gF ratio has been estimated to be 0.56(8) imme-
diately after production and 0.11(2) after transport to
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the flight time of the beam to the target at the HELIOS
experimental station. There are no experimental data
available for the (d,n) beam-production reaction at the
relevant energies and, therefore, the relative strengths of
the population of the bound states of 18F were taken from
an analogous 17O(3He,d) proton-transfer reaction [19].
The bulk of the relevant reaction yield proceeds to ten
states below the proton separation energy in 18F. The
high-lying states decay by prompt γ-ray emission with
known branching ratios to either 18gF or 18mF [14]. The
2H(17O,18F)n cross sections were calculated with the dis-
torted wave Born approximation (DWBA) utilizing the
Ptolemy code [30]. The DWBA prescription, includ-
ing the choice of optical-model parameters, was vali-
dated through comparisons with available 16O(d,p) cross-
section data at a similar energy (13.15 MeV/u) [31].

The 18mF/18gF ratio at the production gas cell was
calculated to be 0.56(8). The flight path from the gas
cell to the HELIOS experimental station was 16.3 m, and
at a beam energy of 14 MeV/u, corresponds to a time of
flight of 1.9T1/2 of the isomeric state. Hence, the ratio
at the HELIOS target was 18mF/18gF = 0.11(2).
The relative single-neutron overlaps (spectroscopic fac-

tors) between initial states in 18F and final states in 19F,
S (isospin factor C2 = 1), were extracted from the ra-
tio of measured cross sections to those calculated with
DWBA. In the standard procedure, the depth of the
Woods-Saxon potential was varied to reproduce the bind-
ing energy of each final state. The deuteron wave func-
tion was calculated with the V18 potential [32]. A global
set of optical model parameters [33] was used to calculate
the angular distributions shown in Fig.2. Angular dis-
tributions obtained using a static set of parameters [34]
produced similar results within uncertainties.

The S values resulting from best fits of the DWBA
calculations to the angular distributions (Fig. 2), as well
as upper limits on the S values determined from ratios of
integrated cross sections, are given in Table I while the
spectroscopic strengths, (2Ji +1)/(2Jf +1)S, are shown
in Fig. 3. All S values have been normalized to the 3/2+1 -
18gF transfer spectroscopic factor. Uncertainties on S
are due to the choice of optical-model and bound-state
parameters of the DWBA calculations. Uncertainty in
the deduced 18mF/18gF ratio of the beam also contributes
for levels which were populated by transfer on the isomer.

The data on the population of the 19F K = 1/2+ band
are clearly present in the apparent excitation energy spec-
trum of Fig. 1. As expected from the relatively small
isomeric component in our beam, the dominant features
in our spectrum are similar to those in Fig. 2 of Ref. [35]
and Fig. 5 of Ref. [36], where there was no isomeric
component in the beam. The S values deduced for the
lower-spin members of the K = 1/2+ band populated by
transfer on the 18gF, namely the 1/2+ (0.000 MeV), 5/2+

(0.197 MeV), 3/2+ (1.554 MeV), and 7/2+ (4.378 MeV)
19F states, are consistent with those from Ref. [35] (see

Table I. Relative spectroscopic factors, S, for levels belonging
to the 19F K = 1/2+ band [14]. All S values are normalized
to that of the 1.554-MeV 3/2+1 level. Only S values above
0.01 are shown and (—) signifies the non-observation or inac-
cessibility of a given level.

S

Ef (MeV) Jπ
f Jπ

i ℓ Present Ref. [35] Theorya

0 1/2+1 1+ 0 0.4(2) 0.75(15) 0.64

0.197 5/2+1
1+ 2 0.6(2) 0.40(8) 0.48
5+ 2 <1.0b — 0.54

1.554 3/2+1 1+ 2 1 1 1

2.780 9/2+1 5+
0 <0.4bc — 0.30
2 <1.2bc — 0.57

4.378 7/2+1
1+ 2 0.40(3) 0.5(1) 0.39
5+ 2 < 1.3b — 1.03

4.648 13/2+1 5+ 2 1.8(4)b — 1.72

6.500 11/2+1 5+
0 — — 0.50
2 — — 0.54

a Shell-model calculations using the USDB interaction [15].
b Includes calculated value of 0.11(2) for the 18F isomer to g.s.
ratio in the secondary beam.

c Assumed pure ℓ transfer.

Table I).

For the unresolved lowest-lying 1/2+ and 5/2+ lev-
els, single line shapes with ℓ = 0 and 2 transfers were
assumed, respectively. Due to the limited angular cover-
age, our measurement is not sensitive to the population
of the 0.110-MeV, 1/2−1 level. The angular distributions
of the 3/2+ and 7/2+ states did not require any sizable
contributions (> 5%) from ℓ = 0 neutron transfer.

There are structures in the spectrum of Fig. 1, no-
ticeable between 3-3.8 MeV, a featureless region in the
18gF transfer spectra of Refs [35, 36]. Accounting for
the -1.07-MeV shift in apparent excitation energy for the
(d,p) reaction on 18mF, there are three previously known
levels in this region that are accessible via ℓ = 0 or 2 neu-
tron transfer: the 7/2+1 (4.378 MeV), 5/2+2 (4.550 MeV),
and 13/2+1 (4.648 MeV) states [14]. Indeed, in the appar-
ent energy spectrum of Fig. 1, lines corresponding to the
population of the 13/2+ and 7/2+ levels are observed in
the 3-3.8 MeV range, identifying neutron transfer onto
the isomeric 5+ level of 18F for the first time. Of the five
other known levels also open to population through trans-
fer on 18mF in the energy region covered, upper limits on
yields for the 5/2+1 (-0.873 MeV), 9/2+1 (1.710 MeV), and
5/2+3 (4.037 MeV) states could be determined. The an-
gular distribution for the 13/2+ state, and the resulting
DWBA fit [Fig. 2(d)], identify it as a strong ℓ = 2 neu-
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Figure 3. The information on relative strengths of states in
19F is plotted as a function of their spin, separately for the
18gF(d,p) (a) and 18mF(d,p) reaction (b). The limit on the
9/2+ state is obtained assuming ℓ = 2. Shell-model calcula-
tions using the USDB interaction are represented by bars for
ℓ = 0 (striped), 2 (open), or 0 & 2 (hatched) strengths.

tron transfer, solidifying its population from 18F in its
5+ isomeric state.
Accessibility to an in-flight beam of 18F in both its

ground 1+ and fully stretched 5+ states has enabled the
extraction of (or setting limits on) the relative spectro-
scopic overlaps of the 1/2+, 3/2+, 5/2+, 7/2+, 9/2+ and
13/2+ members of the ground-state rotational band of
19F (Table I and Fig. 3). The extracted S value for
the 13/2+ state, and its spectroscopic strength exceed
those of all other states in the rotational band. This
observation confirms the dominant single-particle config-
uration in this band-terminating state as corresponding
to the maximally-aligned state with a π(0d5/2)

1
J=5/2 ⊗

ν(0d5/2)
2
J=4 configuration. This is the first direct mea-

surement of the single-particle nature of a high-spin ter-
minating state. This result, together with the strengths
of the levels populated from 18gF, and the upper limits on
the strengths of states populated from 18mF, describe the
evolution of the single-particle strength of the states in
the rotational band as a function of spin, from inception
to termination (see Fig 3).
Comparisons between the extracted S values and

strengths of the present work to those calculated by the
sd-confined USDB interaction [15] are also given in Ta-

ble I and Fig. 3. The calculations are consistent with the
experimental values, or limits, even though these incor-
porate only three valence particles (one proton and two
neutrons) and three active orbitals for each nucleon.

The present results highlight the single-particle char-
acter of the highest-spin state (13/2+) in the rotational
band of 19F by confirming that the associated configura-
tion corresponds to the maximally-aligned, terminating
state. Furthermore, we have found that the spectroscopic
factors from shell-model calculations are consistent with
our experimental values (and limits) for the 19F states
members of the ground-state rotational band. Hence,
some 40 years after his seminal statements [1, 2], A.
Bohr’s dual interpretation of the 19F sequence in terms of
a collective and/or a single-particle excitation has been
reinforced.

In summary, the single-particle character of members
belonging to the ground-state rotational band in 19F, in-
cluding the terminating 13/2+ state, have been probed
in a single measurement via the (d,p) reaction. The
relatively large spectroscopic strength observed for the
13/2+ level confirms the wave function purity expected
in a maximally-aligned, terminating state. Agreement
between shell-model calculation and the experimentally
determined spectroscopic factors for the inspected rota-
tional states strengthens the notion of a collective and
single-particle duality in the descriptions of the structure
of atomic nuclei. The present measurement was possible
only through the production of a beam of 18F whereby
a significant fraction of ions resided in their short-lived
isomeric state.
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