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Abstract

We present a class of spline finite element methods for time-domain wave propagation which are particularly
amenable to explicit time-stepping. The proposed methods utilize a discontinuous Galerkin discretization to
enforce continuity of the solution field across geometric patches in a multi-patch setting, which yields a mass
matrix with convenient block diagonal structure. Over each patch, we show how to accurately and efficiently
invert mass matrices in the presence of curved geometries by using a weight-adjusted approximation of the
mass matrix inverse. This approximation restores a tensor product structure while retaining provable high
order accuracy and semi-discrete energy stability. We also estimate the maximum stable timestep for spline-
based finite elements and show that the use of spline spaces result in less stringent CFL restrictions than
equivalent C0 or discontinuous finite element spaces. Finally, we explore the use of optimal knot vectors based
on L2 n-widths. We show how the use of optimal knot vectors can improve both approximation properties
and the maximum stable timestep, and present a simple heuristic method for approximating optimal knot
positions. Numerical experiments confirm the accuracy and stability of the proposed methods.

1. Introduction

The key concept behind isogeometric analysis is the integration of computer representations of geometry in
design and numerical simulations. This integration aims to address the engineering bottleneck in converting
engineering designs into a form appropriate for analysis [1] by representing solutions of PDEs using the spline
representations underlying geometric parametrizations. While the main advantage of isogeometric analysis is
the elimination of errors in the approximation of curved geometries, it has been observed that discretizations
using high order B-spline and NURBS possess advantages over traditional high order C0 finite element
methods, including greater efficiency per degree of freedom, efficient high order accurate approximations of
eigenvalues and eigenfunctions of continuous differential operators, and larger maximum stable time-step
sizes for explicit dynamics [2, 3, 4].

In [2], NURBS-based discretizations were compared to traditional C0 finite element methods for steady-
state wave propagation problems such as time-harmonic wave propagation and eigenvalue problems in struc-
tural vibrations. The authors noted that, compared to C0 finite element discretizations, B-spline and NURBS
discretizations approximated high frequency modes more accurately relative to the number of degrees of free-
dom. These properties of spline and NURBS were also shown to translate into improved numerical simula-
tions of one-dimensional time-dependent wave propagation in [4]. However, the application of NURBS-based
finite element discretizations to higher dimensional time-dependent wave propagation problems faces several
computational challenges, such as the cost of inverting spline mass matrices and dealing with multi-patch
geometries. The goal of this work is to make the advances of isogeometric analysis simpler to realize through
the use of multi-patch discontinuous Galerkin discretizations of time-dependent wave propagation problems
in two and three dimensions, focusing in particular on explicit time integration.
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We consider geometries which are constructed using multiple geometric “patches”, which are mappings of
a reference patch to physical space. While a single NURBS patch can exactly represent conic sections, geo-
metrically and topologically complex objects require representations in terms of multiple NURBS patches.
We discretize these geometries using a multi-patch discontinuous Galerkin method [5], which imposes conti-
nuity conditions weakly across patch interfaces through a numerical flux [6]. These methods are analogous to
multi-domain spectral methods [7], which combine the accuracy of spectral methods with the use of multiple
domains (patches) for geometric flexibility.

When paired with explicit time integration, multi-patch DG methods require the inversion of a sparse but
large mass matrix over each patch at every timestep. For geometric patches which are affine transformations
of reference patches, the tensor product structure of NURBS bases result in mass matrices which can be
inverted by applying inverses of one-dimensional matrices. However, for curved geometries of practical
engineering interest, the Kronecker structure of the mass matrix inverse is lost. We address the issue of
mass matrix inversion by using a weight-adjusted approximation to the mass matrix, which restores a tensor
product structure to the approximate mass inverse while maintaining provable high order accuracy and
energy stability.

This work also studies timestep restrictions for explicit methods under high order NURBS finite element
discretizations. High order C0 and DG finite element discretizations possess maximum stable timesteps
which scale as O(h/p2), where p is the order of approximation and h is the mesh size [8]. By using special
filters or discretizations involving dual grids, the maximum stable timestep can be made to scale as O(h/p)
instead [8, 9], though these methods can be difficult to generalize to unstructured meshes. In this work,
we derive estimates for the maximum stable timestep based on a modification of arguments in [10]. These
estimates depend on constants in hp inverse and trace inequalities. While explicit values for these constants
are not currently available except in special cases, numerical experiments show that the maximum stable
timestep for multi-patch discontinuous Galerkin discretizations scales like O(h/p) provided the number of
elements per patch is sufficiently large with respect to p.1

Finally, we investigate the use of optimal spline spaces in NURBS discretizations, which are defined
using knot locations at the roots of a specific eigenfunction [12]. These optimal knot positions bear some
resemblance to the nonlinear parametrization used in [13] to eliminate spurious high frequency “outlier”
modes present in isogeometric discretizations with uniform knots. Numerical experiments show that, under
certain circumstances, spline spaces defined using optimal knot vectors are more efficient than splines defined
using uniform knot vectors in terms of degrees of freedom required to reach a certain error. Moreover, for
time-dependent problems, the use of optimal knot vectors increases the maximum stable timestep while
retaining reasonable approximation properties.

The structure of the paper is as follows: Section 2 discusses Galerkin formulations of hyperbolic PDEs on
multi-patch geometries. Section 3 introduces B-spline bases and optimal knot distributions, and introduces
an inexpensive heuristic iteration to approximate optimal knots locations. Section 4 discusses the efficient
solution of the semi-discrete finite element system using explicit time integration, including weight-adjusted
approximations to the inverse mass matrix and estimates for stable timestep restrictions based on constants
in hp inverse and trace inequalities. Finally, Section 5 presents numerical experiments illustrating salient
properties of the proposed methods, and Section 6 concludes with some future directions.

2. Multi-patch discontinuous Galerkin formulations

In this work, we are interested in the solution of the hyperbolic PDEs of acoustic wave propagation and
linear advection over a domain Ω ∈ Rd with boundary ∂Ω. We begin the model problem of time-dependent

1We note that the slow growth of the maximum stable timestep with p appears to be correlated with the use of extended-
support basis functions. For example, finite element discretizations using extended-support C0 continuous piecewise polynomial
bases also possess a maximum stable timestep which scales more slowly in p than traditional high order C0 and DG finite element
methods [11].
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advection of some concentration ϕ (with a divergence-free velocity field β)

∂ϕ

∂t
+∇ · (βϕ) = 0, ∇ · β = 0

ϕ(x, 0) = ϕ0(x).

Since the advection equation will primarily be used to study dispersive and dissipative properties of the
proposed discretizations, periodic boundary conditions will be imposed on the boundary ∂Ω.

We consider also the acoustic wave equation as a first order pressure-velocity system

1

c2
∂p

∂t
+∇ · u = f (1)

∂u

∂t
+∇p = 0.

where p and u represent the pressure and velocity variables, respectively, and c is the wavespeed. This
problem is well-posed when paired with either Dirichlet or Neumann boundary conditions on ∂Ω and initial
conditions

p(x, 0) = p0(x), u(x, 0) = u0(x).

The second order form of the acoustic wave equation can be derived from the first order form. Taking the
derivative in time of the pressure equation and the divergence of the velocity equation and summing the two
equations yields

1

c2
∂2p

∂t2
−∆p = f,

where f is related to, but not necessarily the same as the f in (1). The second order formulation is well
posed for appropriate boundary conditions and initial conditions

p(x, 0) = p0(x),
∂p

∂t
(x, 0) = v0(x).

In practical applications, sufficiently complex geometries are represented using multiple curved geometric
patches. We assume that Ω is decomposed into non-overlapping patches Dk, each of which is the image of
the reference patch D̂ with coordinates x̂ under a geometric mapping x = Φk(x̂), as shown in Figure 1. We
define the mesh Ωh = ∪Dk and the corresponding global approximation space Vh(Ωh) =

⨁
Vh

(
Dk

)
, where

Vh

(
Dk

)
is the local approximation space over a single patch. We further assume that the local approximation

space over Dk is the image of a reference approximation space Vh

(
D̂
)
under Φk, and that trace and inverse

inequalities hold on D̂ such that

∥u∥L2(∂D̂) ≤
√
CT ∥u∥L2(D̂) ,

∇̂u

L2(D̂)

≤ CI ∥u∥L2(D̂) , ∀v ∈ Vh

(
D̂
)
, (2)

where CT , CI are constants which depend on the space Vh

(
D̂
)
. We will describe specific approximation

spaces in more detail in Section 3. We emphasize that the constant CI appears in the inverse inequality in
(2), but the constant

√
CT appears in the corresponding trace inequality. The trace inequality CT in this

work is thus the square of the constant typically presented hp finite element trace and inverse inequalities
[14, 15]. This definition ensures that CT , CI both scale similarly (as shown in Section 4.2.2) and simplifies
expressions for bounds involved in estimating stable timestep restrictions in Section 4.2.

We will discretize the equations of interest based on a discontinuous Galerkin (DG) approach [16, 5],
and will explore first order variational formulations of the acoustic wave equation and linear advection, as
well as second order formulations of acoustic wave propagation. We first introduce the jump and average of
discontinuous functions across patch interfaces. Let Dk,+ denote the neighboring patch sharing a face f of
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Figure 1: An example of a multi-patch geometry.

Dk, and let u+, u− denote the values of u on Dk,+ and Dk, respectively. The jump and average of u across
f is then defined as

JuK = u+ − u−, {{u}} =
u+ + u−

2
.

The jump and average of vector fields are defined component-wise using the jumps and averages of compo-
nents.

We note that all formulations presented in the following sections are constructed to be a-priori energy
stable so long as integrals are explicitly approximated using quadrature (as opposed to quadrature-free
implementations). Additionally, high order accuracy is observed in all numerical experiments where the
quadrature is sufficiently accurate [17]. These formulations are especially important in context of curvilinear
meshes, where exact evaluation integrals is inefficient or impossible due to the high order or rational nature
of the determinant of the mapping Jacobian J .

2.1. Formulation for linear advection

We begin with the advection equation, for which we can construct a discontinuous Galerkin formulation
based on [18]: find ϕ ∈ Vh(Ωh) such that

∑

k

(
∂ϕ

∂t
, v

)

L2(Dk)

+ a(ϕ, v) = 0, ∀v ∈ Vh(Ωh), (3)

a(ϕ, v) = askew(ϕ, v) + asym(ϕ, v)

askew(ϕ, v) =
1

2

∑

k

∫

Ω

(−ϕβ · ∇v + β · ∇ϕv) dx

asym(ϕ, v) =
1

2

∑

Dk

∫

∂Dk

({{β}} · n− τ |{{β}} · n|) JϕKv dx.

where 0 ≤ τ is a parameter which switches between a dissipative flux (τ > 0) and a central flux (τ = 0).
Assuming appropriate boundary conditions (homogeneous or periodic), taking v = ϕ shows the formulation
to be energy stable, such that

∂

∂t

∑

k

(ϕ, ϕ)Dk ≤ 0.

2.2. First order formulation of the acoustic wave equation

We now consider the acoustic wave equation, and follow approaches outlined in [19, 17] to construct an
energy-stable discretization using a skew-symmetric formulation and penalty flux. This formulation is given
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for U = {p,u} , V = {q,v} as follows: find U ∈ Vh(Ωh)× Vh(Ωh)
d such that

∑

k

(
1

c2
∂p

∂t
, q

)

L2(Dk)

+

(
∂u

∂t
,v

)

L2(Dk)

+ a(U, V ) =
∑

k

(f, q)L2(Dk) , V ∈ Vh(Ωh)× Vh(Ωh)
d, (4)

where we define a(U, V ) as

a(U, V ) =
∑

k

(
− (u,∇q)L2(Dk) +

1

2
⟨2 {{u}} · n− τpJpK, q⟩∂Dk

)

+
∑

k

(
(∇p,v)L2(Dk) +

1

2
⟨JpK − τuJuK · n,v · n⟩∂Dk

)
,

where τp, τu are positive penalization parameters, and both the pressure p and each component of the velocity
u are approximated locally from Vh

(
Dk

)
. The variational formulation over each patch can be mapped (or

pulled back) to D̂ as

∫

D̂

∂p

∂t
qJ dx̂+

∫

D̂

∇̂ ·
(
GTu

)
qJ dx̂+

1

2

∫

∂D̂

(2 {{u}} · n− τpJpK) Js =

∫

D̂

fqJ dx̂

∫

D̂

∂u

∂t
vJ dx̂+

∫

D̂

G∇̂pvJ dx̂+
1

2

∫

∂D̂

(JpK − τuJuK · n)v · nJs = 0,

where Gij = ∂x̂i

∂xj
is the inverse of the Jacobian matrix of Φk(x̂) (also referred to as the metric terms [20]

or geometric factors [16]), and J, Js denote the determinants of volume and surface geometric Jacobians,
respectively.

The global formulation results from the summation of local formulations over each patch. For constant
wavespeed c2 and τp, τu = 1, the formulation reduces to the standard upwind DG method. A standard
energy argument gives that the method is dissipative for τp, τu > 0, in the sense that

∂

∂t

∑

k

∫

Dk

(
p2

c2
+ |u|2

)
dx ≤ −

∑

k

∫

∂Dk

(
τpJpK2 + τu |JuK · n|2

)
dx.

The dissipation resulting from the stabilization terms provides a natural way to damp spurious non-conforming
components of the solution in time-domain simulations [21]. Similar energy stable skew-symmetric formula-
tions can be constructed for electromagnetics and elastodynamics [22, 23].

Dirichlet boundary conditions on pressure are enforced in an energy-stable fashion by specifying the jump
of p on boundary faces

JpK = 2(pD − p),

where pD is the prescribed value of p on the boundary. Similarly, Neumann boundary conditions are enforced
by specifying the jump of u on boundary faces

JuK · n = 2(uN − u · n),

where uN is the prescribed value of the normal flux on the boundary.

2.3. Second order formulation of the acoustic wave equation

We use the acoustic wave equation as a prototypical example of a second order formulation. We discretize
the Laplacian using a symmetric interior penalty DG method [24, 5]. The resulting formulation is given as
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follows: find p ∈ Vh(Ωh) such that

∑

k

(
∂2p

∂t2
, v

)

L2(Dk)

+ a(p, v) =
∑

k

(f, v)L2(Dk) , ∀v ∈ Vh(Ωh) (5)

a(p, v) =
∑

k

(∇p,∇v)L2(Dk) − ⟨{{∇p}} · n, v⟩L2(∂Dk) (6)

+
∑

k

⟨JpK,∇v · n⟩L2(∂Dk) − τ ⟨JpK, v⟩L2(∂Dk) .

where τ is a penalization parameter. In contrast with first order systems, the second order system achieves
optimal rates of convergence in the L2 norm and is non-dissipative and energy conserving.

We note that, in order to ensure coercivity and stability, the penalization constant τ must be sufficiently
large with respect to discretization parameters. We follow the approach in [25], where a straightforward
generalization of the proof to curved patches yields the following sufficient global condition for coercivity

τ ≥ max
Dk

CT ∥Js∥L∞(∂Dk)


1

J


L∞(Dk)

.

Here, CT is the trace constant over the reference patch, while J, Js are Jacobian factors for the volume and
surface (face) of a physical patch, respectively.2

3. B-spline bases

We are interested in approximating solutions over each patch Dk from spline spaces, which are piecewise
polynomials of degree p with up to p − 1 continuous global derivatives. The following sections briefly
review the construction of B-spline basis functions, and introduce choices of knot vectors which modify the
approximation properties of the corresponding spline space.

Univariate spline spaces of degree p are constructed given an ordered knot vector Ξ

Ξ = {−1 = ξ1, . . . , ξ2p+K+1 = 1} , ξi ≤ ξi+1.

The unique (i.e. non-repeating) knots in Ξ define K non-overlapping sub-intervals (elements) over which
the spline space is defined. B-spline basis functions can then be constructed recursively as follows

B0
i (x̂) =

{
1, ξi ≤ x̂ ≤ ξi+1

0, otherwise,
Bk

i (x̂) =
x̂− ξi

ξi+p − ξi
Bk−1

i (x̂) +
ξi+p+1 − x̂

ξi+p+1 − ξi+1
Bk−1

i+1 (x̂).

In the case when ξi+p−ξi = 0, the ratio x̂−ξi
ξi+p−ξi

is also set to zero. Similarly, if ξi+p+1−ξi+1 = 0,
ξi+p+1−x̂

ξi+p+1−ξi+1

is also set to zero. The resulting basis functions Bp
i (x̂) have local support and span a piecewise polynomial

space of degree p. In this work, we focus on open knot vectors Ξ, where the first and last knots are repeated
p times

ξ1 = . . . = ξp+1, ξp+1+K = . . . = ξ2p+K+1.

The resulting bases contain p+K basis functions, are interpolatory at the endpoints, and contain the space
of degree p polynomials P p([−1, 1]) as a proper subset. For K = 1, this basis recovers the degree p Bernstein
polynomial basis. Finally, we define the one-dimensional degree p approximation space over the reference
interval Vh([−1, 1]) as the span of B-splines

Vh([−1, 1]) = span {Bp
i (x̂)}

p+K
i=1 .

2One may also define the penalization constant locally over each patch face; this may be useful for local time-stepping, as
the maximum stable timestep is dependent on the magnitude of τ .
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Figure 2: Illustrations of the patch size H, the mesh size h, and the number of elements per side K for a particular patch Dk.
The dashed lines represented the knot lines both on the parametric patch D̂ and the physical patch Dk.

For the remainder of this work, we focus on spline spaces of maximal continuity, such that the resulting
degree p splines possess p − 1 continuous derivatives. Moreover, we focus on uniform knot vectors, that is,
knot vectors with sub-integrals of equal length.

Any function in Vh([−1, 1]) is represented as a linear combination of B-spline basis functions

u(x̂) =

p+K∑

j=1

cjB
p
j (x̂), ∀u ∈ Vh([−1, 1]),

where cj are the coefficients or “control points” of the curve defined by u(x). We note that c1, cp+K interpolate
the values of u(−1) and u(1), respectively. However, since interior basis functions are not interpolatory, the
solution does not necessarily coincide with the value of the interior coefficients/control points.

3.1. Higher dimensional splines and approximation spaces

Given a one-dimensional spline basis, we can extend spline bases to d dimensions through a tensor product
construction. For example, B-spline basis functions Bp

ij(x̂, ŷ) in two dimensions and Bp
ijk(x̂, ŷ, ẑ) in three

dimensions can be constructed as

Bp
ij(x̂, ŷ) = Bp

i (x̂)B
p
j (ŷ), Bp

ijk(x̂, ŷ, ẑ) = Bp
i (x̂)B

p
j (ŷ)B

p
k(ẑ), 1 ≤ i, j, k ≤ p+K.

We can then define the local spline approximation space of order p over the reference patch D̂ as

Vh

(
D̂
)
= span {Bp

i (x̂)}
(p+K)d

i=1 ,

where Bp
i (x̂) denotes the i

th tensor product spline in d dimensions (here, we have switched from a multi-index
ijk to a single index i).

For isotropic spline approximation spaces, we define the patch size H as the diameter (which we take
to mean the longest side) of Dk. We will refer to subdivision of patches into patches of size H/2 as patch
refinement, while mesh refinement will refer to the generation of new knot vectors with 2K elements each.
Finally, we refer to the physical mesh size as the patch size divided by the number of elements h = H/K. We
note that this definition assumes quasi-uniform patches and knot vectors. We have graphically depicted all of
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the aforementioned geometric quantities in Figure 2. Note that when only one element is included per patch,
as is the case with the standard discontinuous Galerkin method using discontinuous piecewise polynomial
approximations, then K = 1 and hence h = H. Thus, the terms element and patch are interchangeable for
this setting. Because the formulations presented in Section 2 are standard Galerkin formulations using spline
basis functions, they are consistent and stable in the finite element sense, and the h-convergence of these
methods on curved geometries can be proven using techniques adapted from [22] and interpolation estimates
and inverse inequalities established in [26, 27].

Finally, we note that in engineering applications, the geometric mapping Φk is often defined using a
rational NURBS mapping. An approach popularized in isogeometric analysis is the use of a NURBS space
(consisting of rational B-splines) as an approximation space as well. For the numerical experiments presented

in this work, we do not utilize NURBS approximation spaces, and instead map B-splines defined on D̂ to
the physical domain using the mapping Φk. However, the extension to NURBS is straightforward, and
Section 4.1.1 briefly describes how to extend the techniques of Section 4.1 to NURBS approximations.

3.2. Approximation properties and optimal knot vectors

In this work, we restrict ourselves to open knot vectors, and seek interior knot locations which improve
approximation properties of the underlying spline space. It is clear that the span of B-splines contains
polynomials of degree p over [−1, 1]; however, the relationship between approximation properties and interior
knot locations is more complex. This relationship has been analyzed using sup-infs and n-widths [28, 12, 29,
3]. Let W be a normed linear space, let X ⊂ W , and Xn be some n-dimensional subspace of X; then, the
sup-inf E(X;Xn) of X relative to Xn is defined as follows:

E(X;Xn) = sup
x∈X

inf
y∈Xn

∥x− y∥ ,

and can be interpreted as measuring the worst possible best approximation error in approximating X from
Xn. The n-width of X is then defined to be the infimum of E(X;Xn) over all subspaces Xn with dim (Xn) =
n, and a specific subspace Xn is referred to as an optimal subspace if its sup-inf attains the n-width.

Melkman and Michelli showed in [12] that, for W = L2([−1, 1]) and

X =

{
f ∈ W :

∂rf

∂xr
is absolutely continuous on [−1, 1], ∥f∥L2([−1,1]) ≤ 1

}
,

an optimal subspace Xn is the spline space of degree r with knot locations at the roots of yn+1,r(x), where
yn+1,r(x) is the (n+ 1)st eigenfunction of the boundary value problem

(−1)r
∂2ry

∂x2r
= λy(x),

∂ky

∂xk
(−1) =

∂ky

∂xk
(1) = 0, k = 0, 1, . . . , r − 1. (7)

We note that, for r = 1, this reduces down the standard Laplacian eigenvalue problem with Dirichlet
boundary conditions, whose eigenfunctions yj,1(x) are

yj,1(x) = sin

(
jπ

(
1 + x

2

))
, j = 1, 2, . . . , x ∈ (−1, 1).

Thus, the optimal n-dimensional space for r = 1 consists of piecewise linear splines with n equispaced knots
along [−1, 1], which are simply piecewise linear C0 polynomials on a mesh with K = n elements. Similarly,
for r = 2, (7) reduces to the biharmonic eigenvalue problem with clamped plate conditions [30].

For r > 2, optimal knot locations are not explicitly known. However, following [3], we can approximate
knot locations using a Galerkin approximation of (7) with Cr−1 approximation spaces. Figure 3 shows
approximations of eigenfunctions yn+1,r(x) for various n, r using a fine spline space, with knot locations
overlaid. These knot locations are determined by approximating the roots of eigenfunctions numerically up
to a tolerance of 10−12. We observe that, as r increases, the gap between each of the boundary knots and
the closest interior knot widens due to the presence of the homogeneous boundary conditions on derivatives
up to degree (r − 1).
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(a) r = 2 (b) r = 3 (c) r = 4

Figure 3: Eigenfunctions yr,n(x) and their roots for n = 8 and various r. All eigenfunctions are approximated using a symmetric
Galerkin formulation with degree p = 8 spline spaces of maximal continuity and K = 64 elements.

3.3. Knot smoothing

It is possible to pre-compute and store optimal knot locations for small to moderate r and n for use
in practical applications. However, for large n, optimal knot locations become difficult to approximate due
to the resolution required to accurately resolve yn+1,r(x). For large r, symmetric Galerkin discretizations
of (7) also become ill-conditioned due to the presence of high order derivatives. The ill-conditioning of (7)
for r ≫ 1 may potentially be addressed using a mixed formulation of the eigenvalue problem; however, the
construction of stable and convergent mixed methods for higher order elliptic operators is non-trivial [31].
Thus, we seek a heuristic alternative to approximate optimal knot distributions without the computational
cost and conditioning issues associated with the discretization and solution of (7). We propose an alternative
approach to determining a “good” knot vector based on an iterative redistribution of knot locations based
on the associated Greville abscissae.

The Greville abscissae are a collection of points associated with a B-spline knot vector [32], and are
defined as knot averages

τj =
1

p

p∑

i=1

ξi+j−1, j = 1, . . . , p.

It can also be shown that these points satisfy

p+K∑

j=1

τjB
p
j (x̂) = x̂.

In other words, the Greville abscissae are the coefficients which reproduce the coordinate x̂ under a one-
dimensional B-spline basis. Because the Greville points τj reproduce x̂, the knot locations ξi of a knot vector
satisfy

ξi =

p+K∑

j=1

τjB
p
j (ξi).

For an open knot vector, the distribution of the Greville abscissae clusters near the endpoints of the interval
(similarly to stable polynomial interpolation nodes, such as Chebyshev or Gauss-Lobatto points [7]), as
shown in Figure 4.

In [2], the authors introduce a nonlinear parametrization of the interval [−1, 1], which is defined implicitly
as the mapping which takes Greville abscissae to uniformly spaced points. Numerical experiments showed
that, by using the image of the spline space Vh under this nonlinear mapping in a Galerkin discretization of the
Laplacian, the so-called “outlier frequencies” of spurious high frequency eigenmodes present in isogeometric
discretizations are removed completely. However, under this mapping, the spline approximation space no
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Figure 4: Comparison of Greville abscissae for an p = 3,K = 8 spline space when using uniform knots (shown in blue) and
knot positions ξ̃i defined by equation (8) (shown in red).

longer contains polynomials of degree p, and approximation properties are not immediately clear. Motivated
by the results in [2], we seek instead a heuristic modification of a uniform open knot vector such that
the resulting Greville abscissae are closer to equispaced points. Moreover, we will show that this heuristic
modification results in a reasonable approximation of optimal knot locations.

We wish to define a new knot vector Ξ̃ such that the resulting Greville abscissae more closely resemble
equispaced points. We can introduce new knot positions ξ̃i by defining a linear parametrization where the
Greville abscissae τj are arbitrarily replaced with equispaced points x̂i along [−1, 1]

ξ̃i =

p+K∑

j=1

x̂jB
p
j (ξi). (8)

One can interpret (8) as attempting to reverse-engineer a knot vector for which the Greville abscissae are
equispaced. The goal is to produce new knot locations ξ̃i for which the Greville abscissae are less clustered
towards the endpoints. The positions of the first and last knots produced by (8) remains the same because
the B-spline basis is interpolatory at the endpoints. However, the locations of interior knots and Greville
abscissae are squeezed closer towards the center of the interval, as shown in Figure 4.3

Because the spline basis depends on the knot vector, this process can be repeated

ξ̃k+1
i =

p+K∑

j=1

x̂jB
p
j (ξi; ξ̃

k), ξ̃0i = ξi, (9)

where we have used the notation Bp
j (ξi; ξ̃

k) to emphasize that the spline basis is evaluated at the original

equispaced (i.e. uniform open) knots ξi, but defined using the knot vector ξ̃k.4 Numerical experiments
show that ξ̃k converges to an equilibrium distribution as k → ∞, which can also be determined through the
solution of a nonlinear system of equations. Figure 5 shows the distribution of the knot vectors and Greville
abscissae for each iteration k, along with optimal knot positions overlaid in red at the final iteration. Rather
than squeezing knots further towards the center, taking k → ∞ results in knot locations which are close to
the optimal knot positions.

The results in Figure 5 suggest that this simple knot smoothing produces reasonable approximations to
optimal knot positions. Further numerical experiments show that these approximations do not worsen as K
increases. Let ξ̂i, τ̂i denote knot locations and Greville abscissae for a uniform open knot vector. Figure 6
shows for p = 2, 3, 4 the maximum difference between positions of optimal and smoothed knots and Greville

3We note that one might seek to further redistribute knots to produce Greville abscissae which are equispaced; however,
because Greville abscissae are averages of knot positions and because open knot vectors contain repeating knots at endpoints,
producing equispaced Greville points by simply redistributing knot positions is impossible without violating the assumption
that knot positions ξi must be monotonically increasing.

4 We have also tested a knot smoothing iteration based on

ξ̃k+1
i =

p+K∑
j=1

x̂jB
p
j (ξ̃

k
i ; ξ̃

k), ξ̃0i = ξi, (10)

where splines are evaluated at the iterated knots ξ̃ki instead of equispaced knots ξi. However, we observe that this iteration
produces collapsed knot locations, resulting in spline spaces which are not maximally continuous.
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(a) Knot positions (b) Greville abscissae

Figure 5: Knot locations for iterations k = 0, . . . , 10 for a spline space with p = 3,K = 8. Computed optimal knot positions
and Greville abscissae are overlaid in red.
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(b) Normalized Greville error δGreville

Figure 6: Normalized difference between the locations of smoothed and optimal knots for p = 2, 3, 4 and K = 4, 8, 16, 32, 64.

abscissae

δknot =
max

i

⏐⏐⏐ξ̃i − ξopti

⏐⏐⏐

max
i

⏐⏐⏐ξ̂i − ξopti

⏐⏐⏐
, δGreville =

max
i

⏐⏐τ̃i − τopti

⏐⏐

max
i

⏐⏐τ̂i − τopti

⏐⏐ ,

where we have normalized by the maximum difference between optimal and uniform knot and Greville
positions. The smoothed knot positions are computed by iterating (9) until the change in the knot vectorΞ̃k − Ξ̃k−1


2
is less than 10−8. We observe that the normalized difference between smoothed and optimal

knot positions approaches a fixed value around .1 as K increases, with the asymptotic value depending
irregularly on p. In contrast, the normalized difference between Greville abscissae for smoothed knots and
Greville abscissae for optimal knots approaches a p-dependent value as K increases, with this asymptotic
value decreasing as p increases. These results quantify how much more accurately smoothed knot vectors
approximate optimal knot distributions compared to uniform open knot vectors.

Finally, we note that while the optimal knot positions minimize the n-width of spline spaces over the L2

unit ball of Cr−1 functions, this does not imply that their approximation properties are uniformly better
than those of spline spaces with equispaced knots. Numerical experiments in Section 5.2 illustrate that spline
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spaces with optimal knot positions are slightly less accurate than spline spaces with uniform knot vectors in
approximating non-oscillatory functions, but are more efficient for the approximation of oscillatory functions.
We will also show that optimal knot positions possess additional advantages over uniform open knot vectors
in Section 4.2, such as a larger maximum stable timestep and improved approximation properties in the
presence of non-affine geometric mappings.

4. Method of lines discretization in time

In this section, we introduce the semi-discrete system which results from a finite element discretization
of time-dependent variational formulations such as (3), (4), and (6). Let U ,V denote vectors of degrees of
freedom for U, V , and define the global mass and finite element matrices Mh,Sh such that

V TMhU = (U, V )L2(Ω) , V TShU = a(U, V ),

where U, V are understood to represent either scalar or group variables whose components lie in Vh. Under
a method of lines discretization, a PDE is transformed to a system of ordinary differential equations (ODEs)

dU

dt
= AhU , Ah = −M−1

h Sh (11)

for first-order (in time) formulations and

d2U

dt2
= AhU , Ah = −M−1

h Sh (12)

for second-order formulations by discretizing in space. The resulting ODE system can then be solved with
explicit time stepping for some step size ∆t.

The following sections discuss efficient strategies for solving (11), focusing on the inversion of M−1
h and

the choice of timestep ∆t. Efficient implementations of method of lines solvers typically apply Ah in a
matrix-free fashion. However, this requires the computation of M−1

h for each application of Ah. We discuss
in Section 4.1 the efficient inversion of M−1

h using a weight-adjusted approximation to the mass matrix.
Under explicit time stepping, ∆t must also be chosen such that the eigenvalues of ∆tAh lie within the
stability region of the chosen scheme. We discuss this condition further in Section 4.2.

4.1. Efficient inversion of mass matrices

Recall that Φk : D̂ → Dk denotes the mapping from the reference patch D̂ to the physical patch Dk,
such that Φk(x̂) = x ∈ Dk. Then, because solutions are approximated independently over each patch, the
global mass matrix Mh is block diagonal, with each block corresponding to a patch mass matrix. The entries
of each patch mass matrix are then

(M)ij =

∫

Ω

Bp
i (Φ

−1
k (x))Bp

j (Φ
−1
k (x)) dx =

∫

D̂

Bp
i (x̂)B

p
j (x̂)J dx̂.

If Φk is affine, then J (the determinant of the Jacobian of the mapping) is constant, and (assuming a tensor
product basis) the mass matrix satisfies

M = M̂J = J
(
M̂1D ⊗ . . .⊗ M̂1D

)

(
M̂1D

)
ij
=

∫ 1

−1

Bp
i (x̂)B

p
j (x̂) dx̂.

Thus, for affine transformations, the inverse of the mass matrix possesses a Kronecker product structure

M−1 =
(
M̂J

)−1

=
1

J

(
M̂−1

1D ⊗ . . .⊗ M̂−1
1D

)
,
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which greatly reduces the cost of application in higher dimensions. However, for non-affine mappings, J is
not constant, and the Kronecker product structure of the inverse mass matrix is lost.

Several approaches have been proposed to address this difficulty in the inversion of NURBS mass matrices.
Spline collocation methods for explicit dynamics circumvent the construction of weighted L2 mass matrices
over each patch [33]. These formulations discretize the underlying PDE in its strong form, and require only
the inversion of an un-weighted generalized Vandermonde matrix, which always admits a Kronecker product
structure. However, in contrast to methods based the Galerkin framework, it can be difficult to prove energy
stability of the resulting discretizations.

Another approach is to replace the exact inversion of the mass matrix with an iterative solver, using
a preconditioner possessing a tensor product structure [34]. However, this adds significant complexity and
computational cost to solvers based on explicit timestepping, and the convergence of the iteration can depend
on the specific geometry. A more subtle concern associated with preconditioned iterative solvers is energy
stability. The use of an exact mass matrix induces a semi-discrete L2 energy stability, and replacing the
mass matrix with a symmetric positive-definite approximation maintains energy stability but changes the
norm in which energy is measured. As noted in [35], Krylov methods result in a non-linear approximation
of the mass matrix inverse, which depends on the initial guess and right hand side vector. Consequentially,
a discrete energy stability no longer holds, as an iterative scheme effectively inverts a slightly different mass
matrix each time-step.

A related iterative approach is the combination of lumped spline mass matrices with predictor multi-
corrector iterations [33]. C0 finite element discretizations can employ “lumped” diagonal approximations
to the mass matrix, giving rise to the spectral element method when lumping is performed through collo-
cation at Gauss-Lobatto quadrature nodes [36]. However, the extension of mass lumping to NURBS is not
straightforward, as collocation nodes (Greville abscissae) can not be used to construct a sufficiently accu-
rate quadrature for spline spaces, and alternative row-sum mass lumping techniques have been observed to
reduce accuracy to second order [13]. However, high order accuracy can be restored at the cost of additional
corrector iterations [33]. These predictor-multicorrector iterations were recently shown to be equivalent to a
linear operator, thus avoiding problems of non-linearity present for Krylov iterations [37].

We seek an alternative approach to restoring the Kronecker product structure by replacing the weighted
L2 mass matrix with a weight-adjusted approximation. Let Bp

i (x̂) denote a basis for the d-dimensional spline
space over the reference patch. Then, the mass matrix may be approximated by a weight-adjusted mass
matrix

M ≈ M̂M−1
1/JM̂ ,

(
M1/J

)
ij
=

∫

D̂

Bp
j (x̂)B

p
i (x̂)

1

J
dx̂,

such that the inverse of the weight-adjusted mass matrix is

M−1 ≈ M̂−1M1/JM̂
−1.

This approximation requires only the application of a weighted mass matrix M1/J and the inversion of

reference mass matrices M̂−1. Assuming a fixed geometry, the matrix M1/J is constant in time, and can
thus be pre-computed and reused at each time-step. Alternatively, the application ofM1/J can be performed
efficiently in a matrix-free fashion using quadrature and the tensor-product structure of the spline space,

while the inversion of M̂ can be made efficient by taking advantage of the Kronecker structure present on
the reference patch

M̂−1 = M̂−1
1D ⊗ . . .M̂−1

1D .

The computational cost of this approach can be further reduced by fusing products of reference element
matrices to yield an implementation in terms of “projection” and “interpolation” matrices, as described
[19, 17].

For sufficiently regular J , this approximation is high order accurate [19, 17]. Additionally, since the
weight-adjusted approximation is symmetric-positive definite, it preserves the energy stability of the un-
derlying Galerkin formulation. Moreover, the weighed and weight-adjusted mass matrices induce discrete
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L2-equivalent norms with the same equivalence constants [19]. As a result, the substitution of the weight
adjusted mass matrix does not decrease the maximum stable time-step.

The matrix-free application of the weight-adjusted mass matrix inverse also requires the specification of
a sufficiently accurate quadrature. In this work, we have used a (p+1) point Gaussian quadrature over each
knot interval, resulting in composite quadrature rules with a relatively large number of points. Future work
will investigate optimal and reduced quadrature rules tailored to splines [38, 39, 40, 41], which greatly reduce
the number of quadrature points relative to the number of degrees of freedom in a single patch. Another
method to reduce costs is the use of “weighted quadrature” methods for applying NURBS mass matrices
[42]. However, we note that energy stability can be lost under this approach, since the curvilinear mass
matrices computed using weighted quadrature are not necessarily symmetric.

Finally, we note that, while the efficient computational implementation of the proposed methods is
outside of the scope of this work, different computational implementations may be preferable depending
on computational parameters. For example, the inverse mass matrix may be pre-multiplied into derivative
matrices, resulting in dense size p+K operators in each dimension. This approach may be useful ifK = O(p),
and is trivially parallelizable down to individual degrees of freedom. However, for K ≫ p, the matrices Si

and M possess a sparse banded structure, which can be exploited to improve computational efficiency on
some architectures. A Cholesky factorization may be used to apply M−1 in linear complexity with respect
to the size of M , though the constant will depend on p through the matrix bandwidth. A disadvantage of
this approach is that the triangular solve necessary in Cholesky is largely sequential over each patch.5

4.1.1. NURBS basis functions and mass matrices

The use of rational NURBS basis functions has been popularized in isogeometric analysis [1]. While the
approximate weight-adjusted mass matrix inverse described in Section 4.1 is formulated for mapped B-spline
basis functions, it is straightforward to extend the approach to approximate the inverse of NURBS mass
matrices.

NURBS basis functions are rational B-splines, defined as follows

Rp
i (x̂) =

Bp
i (x̂)wi∑p+K

j=1 Bp
j (x̂)wj

=
Bp

i (x̂)wi

wR(x̂)
,

where we have introduced the rational weight wR(x̂) =
∑p+K

j=1 Bp
j (x̂)wj . We note that the weight wR varies

from patch to patch. The NURBS mass matrix MR for a curvilinear geometric patch Dk is computed by
mapping/pulling back to the reference element

(MR)ij =

∫

D̂

Rp
i (x̂)R

p
j (x̂)J dx̂ =

∫

D̂

Bp
i (x̂)B

p
j (x̂)

J

w2
R

dx̂.

Thus, the NURBS mass matrix MR can be interpreted as a weighted B-spline mass matrix with weight
J/w2

R, and can be approximated by a weight-adjusted mass matrix inverse

M−1
R ≈ M̂−1Mw2

R/JM̂
−1,

(
Mw2

R/J

)
ij
=

∫

D̂

Bp
i (x̂)B

p
j (x̂)

w2
R

J
dx̂.

Approximation results in [26, 27] imply that the weight-adjusted approximation to the NURBS mass matrix
will be high order accurate if w2

R/J is sufficiently regular. For example, the weight-adjusted approximation
of M−1

R is expected to maintain high order accuracy if J,wR vary smoothly and wR is bounded away from
zero.

5We note that, in higher dimensions, applying M̂−1 in a Kronecker product fashion involves multiple one-dimensional mass
matrix inversions. It is possible to offset the sequential nature of the Cholesky backsolve by parallelizing over each of these
one-dimensional mass inversions. However, this approach also requires significantly more storage, which can be problematic on
many-core architectures such as Graphics Processing Units [23].
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4.2. Stable timestep restrictions

For first-order systems, a rough estimate of the maximum stable timestep is that it is inversely propor-
tional to the spectral radius ρ(Ah), which can be estimated by bounding the real and imaginary parts of
eigenvalues of Ah. The real and imaginary parts of the spectra of Ah can be estimated using the symmetric
and skew-symmetric parts of Ah and theorems from Bendixson and Hirsch [43], as is done in [10].

max
j

|Re (λj)| ≤ ρ

(
Ah +AT

h

2

)
, max

j
|Im (λj)| ≤ ρ

(
Ah −AT

h

2

)

We estimate the spectral radius of the symmetric part of Ah through a generalized Rayleigh quotient

max
j

|Re (λj)| ≤ sup
u∈Vh

|asym(u, u)|
∥u∥2L2(Ω)

, asym(u, v) =
a(u, v) + a(v, u)

2
.

The spectral radius of the skew-symmetric part ρ
(

Ah−AT
h

2

)
can be bounded using properties of normal

matrices [10]; however, it is more straightforward to estimate this term by noting that i
2

(
Ah −AT

h

)
is

Hermitian and using the generalized Rayleigh quotient.
For illustration, we will derive these bounds for scalar advection. We define the skew-symmetric part

askew(u, v) to be sesquilinear such that

askew(u, v) =
1

2

∫

Ω

(
−uβ · ∇v + β · ∇uv

)
dx, askew(u, vi) = V T i

2
(Ah −Ah)U = askew(v, ui).

Then, the Bendixson-Hirsch theorems give that

max
j

|Im (λj)| ≤ sup
u∈Vh

|askew(u, ui)|
∥u∥2L2(Ω)

, |askew(u, ui)| =
∫

Ω

(uβ · ∇u) dx ≤ ∥β∥L∞ ∥u∥L2(Ω) ∥∇u∥L2(Ω) .

Mapping the formulation for advection to and from the reference patch D̂ and applying inverse and trace
inequalities then yields

|asym(u, u)| ≤ max
k

(
∥β∥L∞

2
CT ∥Js∥L∞

J−1

L∞ ∥u∥2L2(Dk)

)

|askew(u, u)| ≤ max
k

(
∥β∥L∞CI ∥JG∥L∞

J−1

L∞ ∥u∥2L2(Dk)

)
.

These bounds together imply that

ρ (Ah) ≤ max
k

(
∥β∥L∞ max

{
1

2
CT ∥Js∥L∞ , CI ∥JG∥L∞

}J−1

L∞

)
.

In one dimension, on a uniform domain subdivided into patches of size H, this reduces to the expression

ρ (Ah) ≤ max
k

(
∥β∥L∞

H
Cp

)
, Cp = max

{
1

2
CT , CI

}
,

which can be used to determine a stable timestep by setting ∆t = 1/ρ (Ah).
For the acoustic wave equation, a similar argument can be applied to bound the spectral radius via

ρ (Ah) ≤ max
k

(
∥c∥L∞

H
Cp

)
,

where c is the wavespeed. Setting ∆t = O(1/ρ (Ah)) then yields an estimate of the maximum stable timestep

∆t ≤ Ct
H

Cp ∥c∥L∞
,

15



where Ct is some constant which depends on the stability region of the explicit time-stepper. Thus, for
high order finite element discretizations, the stable timestep is determined not only by the patch size H and
maximum wavespeed (∥β∥L∞ or ∥c∥L∞ , but also by trace and inverse inequality constants CT , CI which
depend on the number of elements K per patch and the order p.

For second-order systems, a rough estimate of the maximum stable timestep is that it is inversely pro-
portional to the square root of the spectral radius ρ(Ah). For the second-order order formulation of the
acoustic wave equation, the spectral radius ρ(Ah) is equivalent to the Rayleigh quotient

ρ(Ah) = sup
u∈Vh

a(u, u)

∥u∥2L2(Ω)

provided the constant τ is sufficiently large to guarantee positive-definiteness of Ah. If τ scales linearly with
the trace constant CT , then an application of inverse and trace inequalities yields

ρ(Ah) ≤ Cτ

(
C2

T + C2
I

)
∥c∥2L∞

H2

where Cτ is a constant of proportionality between τ and CT . Thus, we arrive at a maximum stable timestep
estimate of

∆t ≤ CtCτ
H√

C2
T + C2

I ∥c∥L∞

,

where again Ct is some constant which depends on the stability region of the explicit time-stepper.

4.2.1. Constants in trace and inverse inequalities for spline spaces

It is possible to derive explicit formulas for the constants in trace inequalities for polynomials [15, 44, 45].
While one can repeat this process for inverse inequalities or spline spaces, it is more difficult to derive tight,
explicit expressions for such constants in terms of p. However, because these constants are given as extrema
of generalized Rayleigh quotients, one can also compute constants in trace or inverse inequality through the
solution of a generalized eigenvalue problem over the reference patch. In one dimension, these problems are
given as

M̂fu = λTM̂u, K̂u = λIM̂u, (13)

where M̂f is the reference boundary mass matrix
(
M̂f

)
ij
= Bp

i (−1)Bp
j (−1) +Bp

i (1)B
p
j (1),

and K̂ is the reference stiffness matrix

(
K̂

)
ij
=

∫ 1

−1

∂Bp
i

∂x̂

∂Bp
j

∂x̂
dx̂.

Then, the constant CT is the largest generalized eigenvalue of the boundary mass matrix, and the constant
CI is the square root of the largest generalized eigenvalue of the stiffness matrix.

Assuming a tensor product construction of Vh, constants in higher dimensional trace inequalities can be
determined in terms of the constants in one-dimensional trace inequalities. For example, in two dimensions,
the mass, face mass, and stiffness matrices are given as

M̂ = M̂1D ⊗ M̂1D, M̂f = M̂1D ⊗ M̂f
1D

K̂ = M̂1D ⊗ K̂1D + K̂1D ⊗ M̂1D.

Substituting these relations into the generalized eigenvalue problem (13) for the trace constant and reducing
gives

I ⊗ M̂f
1Du = λT

(
I ⊗ M̂

)
u.
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Because the spectra of I ⊗ M̂f
1D consists only of multiples of one-dimensional eigenvalues λT , constants in

higher dimensional trace inequalities are identical to the constants in one spatial dimension.
In comparison, constants in d-dimensional inverse inequalities scale with

√
d, which can be seen by

diagonalizing (13). Let W1D denote the coefficient matrix for eigenvectors of (13) in one dimension, such

that W ∗
1DK̂1DW1D = Λ1D and W ∗

1DM̂1DW1D = I. Then, the change of basis W1D ⊗ W1D reduces the
eigenvalue problem for constants in the two-dimensional inverse inequality to

(I1D ⊗Λ1D +Λ1D ⊗ I1D)u = λu,

Let µj denote one-dimensional generalized eigenvalues for the stiffness matrix, and let the two dimensional
eigenvalues be indexed by ij. Then, λij = µi + µj and maxij λij = 2maxj µj . Assuming a indexing by
i1, . . . , id in d dimensions, the result generalizes to higher dimensions as maxi1,...,id λi1,...,id = dmaxj µj .

For polynomials, it can be shown that the constants CI , CT depend quadratically on the degree of
approximation p (see, for example [15, 46, 44]). For standard C0-continuous and discontinuous Galerkin
discretizations of the advection equation using a polynomial approximation over each patch, it follows that
ρ(Ah) = O(p2/h) since H = h. In contrast, for spline spaces of maximal smoothness, numerical experiments
in the following sections and analytic results for special cases [47] suggest that the constants CI , CT grow
as O(pK) when the number elements K in a patch is sufficiently large with respect to p, and thus ρ(Ah)
grows as O(p/h). In the special case of periodic splines, the stronger result can be shown that CI , CT are
independent of p [47].

4.2.2. Numerically computed constants

We consider spline bases with uniform, optimal, and smoothed knot vectors, though we limit our experi-
ments using optimal knot vectors to p ≤ 5 due to issues of numerical stability in the computation of optimal
knot locations. For each basis, we compute constants CI , CT in trace and inverse inequalities through the
solution of a generalized eigenvalue problem. The number of elements is increased with p as K = ⌈p/2⌉, p, 2p.

Figures 7 and 8 show the growth of CI/K,CT /K for one dimensional spline bases, where we have scaled
the computed trace and inverse inequality constants by 1/K to isolate the growth of CI , CT with respect
to p. We observe that, for K ≥ p, the growth of CI , CT for all spline spaces is roughly linear in both p
and K. Additionally, while knot smoothing does not decrease the asymptotic rate of growth of CI , CT , we
observe that it results in noticeable reductions in each constant. Moreover, the reduction in CI , CT from
knot smoothing increases the larger K is relative to p.

For a uniform open knot vector, the distribution of the Greville abscissae clusters near the endpoints
of the interval. Because knot smoothing reduces the clustering of Greville abscissae near the boundaries,
the reduction in CI , CT is to be expected. For example, the clustering of stable interpolation points has
been identified as contributing to the O(1/p2) CFL condition in high order pseudospectral methods: for
Gauss-Legendre-Lobatto or Chebyshev nodes, the minimum spacing between nodes decreases as O(1/p2).
Kosloff and Tal-Ezer proposed a mapping of the spatial domain [48] to address this timestep limitation, and
showed that the mapping improved the CFL condition from O(1/p2) to O(1/p). However, this mapping also
reduces accuracy (especially at lower degrees of approximation [49]). By contrast, knot smoothing does not
significantly decrease accuracy. In fact, the approximation power of spline spaces under knot smoothing is
actually improved for certain functions.

Finally, we examine the difference between CI , CT for smoothed and optimal knot vectors. Table 1
shows constants CI , CT in inverse and trace inequalities for smoothed and optimal spline spaces of degree
p = 2, . . . , 5 with K = p, 2p elements. We observe that the values of CI , CT do not differ greatly between
smoothed and optimal knot vectors.

4.3. On the CFL restriction for piecewise polynomial and spline finite elements: h vs p methods

As mentioned previously, C0 and discontinuous finite element methods result in a stable timestep re-
striction of O(h/p2) for a given h and p. Assuming an O(pK) scaling of inverse and trace constants CI , CT

for spline approximations, spline discretizations yield a stable time-step restriction of O(h/p). This O(h/p)
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Figure 7: Scaled constants in inverse inequalities for splines with various choices of K, along with corresponding constants for
polynomials.
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Figure 8: Scaled constants in trace inequalities for splines with various choices of K, along with corresponding constants for
polynomials.

p = 2 p = 3 p = 4 p = 5

K = p (smoothed knots) 2.8364 3.6403 4.5420 5.5117
K = p (optimal knots) 2.8364 3.6604 4.5303 5.4323

K = 2p (smoothed knots) 2.3202 2.9916 3.7727 4.6100
K = 2p (optimal knots) 2.3215 3.0011 3.7515 4.5251

(a) Scaled trace constants CT /K

p = 2 p = 3 p = 4 p = 5

K = p (smoothed knots) 4.0000 5.3499 6.8709 8.4592
K = p (optimal knots) 4.0000 5.3907 6.8514 8.3260

K = 2p (smoothed knots) 3.1536 4.4102 5.7279 7.0910
K = 2p (optimal knots) 3.1768 4.4311 5.6895 6.9474

(b) Scaled inverse inequality constants CI/K

Table 1: Comparison of constants in spline trace and inverse inequalities using smoothed and optimal knot vectors.
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stable timestep restriction for splines applies when interpreting spline finite elements as h-methods, where
h,K are assumed to be independent of p with K ≫ p.

However, when interpreting spline discretizations as p-methods [50], resolution is achieved by increasing
the order rather than by mesh refinement, and the assumption K ≫ p may not be appropriate. Consider
then the case of a single patch of size H = O(1) with K = O(p). Since h = O(1/K) and CI , CT scale
like O(pK) when K = O(p), we have that the stable timestep restriction for splines on a single patch is
O(h/p) = O(1/p2). This analysis shows spline discretizations with K = O(p) exhibit stable timestep sizes
with the same asymptotic dependence on p as those of C0 and discontinuous finite element methods. However,
we note that this does not account for the fact that for the same stable timestep, spline discretizations achieve
an extra factor O(1/K) = O(1/p) of additional mesh resolution compared to a polynomial discretization.
Thus splines can achieve the same stable timestep restriction as C0 finite elements while providing a higher
resolution.

An alternative way to compare the stable timestep restriction for splines and C0 finite elements is in
terms of degrees of freedom. Up to this point, our discussion has related the time-step size to the mesh size h
and the polynomial degree p, but for the same mesh size h and polynomial degree p, a piecewise polynomial
finite element basis has a larger number of degrees of freedom Ndofs than a corresponding spline basis. Thus,
it may seem appropriate instead to examine the maximum stable timestep in terms of the number of degrees
of freedom. In this direction, we note that Ndofs ∼ p/h for C0 or discontinuous piecewise polynomial finite
elements in the one-dimensional setting, so the maximum stable timestep scales like 1/(pNdofs). For one-
dimensional spline finite elements, Ndofs ∼ 1/h, so the maximum stable timestep also scales like 1/(pNdofs).
This analysis seems to suggest spline finite elements do not exhibit any improvement over C0 or discontinuous
piecewise polynomial finite elements, at least with respect to timestep size. However, for the same polynomial
degree p and number of degrees of freedom Ndofs, a spline basis is generally more accurate than a piecewise
polynomial finite element basis [3]. Thus, to attain the same level of accuracy for a fixed p, one can utilize
a larger timestep size with splines than with C0 or discontinuous finite elements.

5. Numerical experiments

In the following sections, we present numerical experiments which verify properties of the proposed
approximation spaces and discretizations. All computations use Gaussian quadratures of degree p over
each knot interval, and all time-dependent simulations use a 4th order 5-stage low-storage Runge-Kutta
method for time integration [51] (with the second order formulation rewritten as a first order system). All
experiments use first or second order multi-patch DG formulations for the acoustic wave equation, except for
the computation of discrete dispersion relations (which use the multi-patch DG formulation for the advection
equation).

5.1. One dimensional experiments

First, we compute convergence rates of L2 errors under mesh refinement. We begin with the acoustic
wave equation in 1D, using the exact solution p(x, t) = cos

(
3πx
2

)
cos

(
3πt
2

)
evaluated at final time T = 1/2..

Figure 9 shows the convergence of one-dimensional multi-patch discretizations. Optimal O(hp+1) rates of
convergence are observed under both mesh refinement (knot insertion) and patch refinement (subdivision of
patches) for first and second order formulations. We also observe that, while optimal rates are still observed,
L2 errors for knot insertion are larger than L2 errors for patch refinement, and that this effect grows as
the degree p increases. However, we will demonstrate that, as suggested in the previous section, spline
spaces achieve a lower L2 error per degree of freedom. We also observe that L2 errors are larger when using
smoothed knots, though (as indicated by previous experiments) this may be due to the fact that the solution
is relatively smooth and non-oscillatory.

We now compare per-dof efficiency between uniform/smoothed knot vectors and mesh/patch refinement.
Figure 10 shows the convergence of L2 errors for uniform and smoothed knots at various orders of approxi-
mation. For uniform knots, mesh refinement is more efficient than patch refinement in terms of the number
of degrees of freedom required to reach a certain L2 error. The same behavior is observed for smoothed knots
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Figure 9: One-dimensional convergence of multi-patch DG methods under knot insertion and patch refinement. Uniform knots
are used for all experiments. Results for refinement by knot insertion are denoted by circles, while results for patch refinement
are denoted by squares.

at higher orders (p > 3), though mesh refinement becomes less efficient than patch refinement at lower orders
(p = 2) for the first order formulation of DG. This is consistent with observations in Section 5.2 that (in
one dimension) smoothed knots provide an advantage over uniform knot vectors only in the pre-asymptotic
under-resolved regime. For both the first and second order formulations, L2 errors are slightly higher when
using smoothed knots, though the difference between uniform and smoothed knot vectors becomes smaller
as the number of patches increases.

5.2. Approximation of oscillatory functions using uniform, optimal, and smoothed knot vectors

We now compare the approximation properties of splines under uniform, optimal, and smoothed knot
vectors. Recall that optimal knot vectors are defined such that the corresponding spline space minimizes
the “worst best approximation error” in the sense of n-widths. This implies that optimal knot vectors (and
their approximations using smoothed knot vectors) will be less accurate than spline spaces using uniform
knot vectors for certain functions.

Figure 11 shows L2 errors in approximating cos
(

(2k−1)πx
2

)
for various k under uniform, optimal, and

smoothed knots over a single patch. Here, we approximate the function using an L2 projection, using a
composite Gaussian quadrature rule which is exact for the product of two degree p B-splines. The number of
wavelengths is taken to be k = 1/Ndofs, . . . , Ndofs/2 (where Ndofs denotes the dimension of the spline space).
We observe that, while L2 errors grow with k for all knot distributions, this growth of error is delayed
until a slightly higher k when using optimal and smoothed knot distributions (compared to uniform knot
distributions). These results also indicate that smoothed and optimal knot distributions behave similarly to
uniform knots for smaller values of k.

Finally, we compare DG solution errors for both uniform and smoothed knot vectors. We use the exact
pressure solution p(x, t) = cos

(
2k−1

2 πx
)
cos

(
2k−1

2 πt
)
at final time T = 1/2, and compute L2 errors on a

single patch domain. Errors are computed for various wavenumbers k but for a fixed order p and number
of elements K. The L2 errors (shown in Figure 12) show qualitatively similarity to the approximation
results of Figure 11, with uniform knots performing better at small k. Smoothed knots result in lower
errors for higher k, though this effect is more pronounced for first order formulations of the acoustic wave
equation and less noticeable for the second order formulation. However, in all cases, the L2 errors for both
uniform and smoothed knots are roughly of the same order of magnitude. We note that the value of k at
which smoothed knots deliver lower error than uniform knots depends on p and K; however, we observe

20



101 102
10−10

10−7

10−4

10−1

Number of degrees of freedom

L
2
er
ro
r

p = 2

p = 3

p = 4

p = 5

(a) First order formulation, uniform knots

101 102
10−10

10−7

10−4

10−1

Number of degrees of freedom

L
2
er
ro
r

p = 2

p = 3

p = 4

p = 5

(b) First order formulation, smoothed knots
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Figure 10: Convergence under mesh refinement (knot insertion) of first and second order formulations of the 1D acoustic wave
equation using multi-patch DG for p = 2, . . . , 5. Different markers correspond to patches refinement: two patches (circle), four
patches (square), eight patches (triangle).

in numerical experiments that this “crossover point” grows roughly proportionally to K but depends only
weakly on p.

5.3. Two-dimensional experiments

In higher spatial dimensions, we observe similar approximation behavior as reported in Figure 11. We
consider the curvilinear mapping (x̃, ỹ) of a bi-unit square [−1, 1]2 shown in Figure 13a and defined by

x̃ = x+ α cos

(
3πy

2

)
cos

(πx
2

)
, ỹ = y + α sin

(
3πx

2

)
cos

(πy
2

)
.

We begin by verifying that the weight-adjusted approximation to the mass matrix inverse is sufficiently ac-

curate approximation. Figure 13 shows L2 errors in approximating the smooth function cos
(
kπx
2

)
cos

(
kπy
2

)

from a uniform p = 4 spline space. The errors for the L2 projection computed using the true inverse mass
matrix and using the weight-adjusted mass matrix inverse are nearly identical, and are indistinguishable

21



(a) L2 error vs wavelengths (k) per dof (b) Semi-log scale

Figure 11: L2 error in approximating u(x) = cos
(

(2k−1)πx
2

)
at various k with p = 4,K = 16.
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Figure 12: Comparison of L2 errors for uniform and smooth knots as a function of wavenumber k using p = 3,K = 8 splines.

visually for both k = 1 (corresponding to a smooth function) and for k = 10 (corresponding to an oscillatory
function).

We refer to the L2 projection computed using the weight adjusted mass matrix inverse as a weight-
adjusted projection. igure 13 also shows the difference between the L2 and weight-adjusted projections,
which we observe to be at least one order of magnitude smaller than the approximation error for both k = 1
and k = 10. Additionally, this difference appears to converge more rapidly than the error under mesh
refinement.

Theory in [19] suggests that the weight-adjusted approximation becomes less accurate as the geometric
mapping becomes less regular. We test this by considering a more aggressively warped mapping with α = .28.
This value is chosen to maximize the irregularity of J without losing invertibility of the geometric mapping
(for a slightly larger α = .285, negative values of J are detected, indicating that the mapping becomes
non-invertible). Figure 14 shows a visualization of the warped mesh, along with L2 errors for both the L2

and weight-adjusted projections and the L2 difference between the L2 and weight-adjusted projection.
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Figure 13: Errors for L2 and weight-adjusted projection when approximating cos
(

kπx
2

)
cos

(
kπy
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)
on a warped curvilinear

mesh with p = 4 splines for k = 1 and k = 10.

(a) Warped mesh, α = .28
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Figure 14: Errors for L2 and weight-adjusted projection when approximating cos
(

kπx
2

)
cos

(
kπy
2

)
on a more aggressively

warped curvilinear mesh with p = 4 splines for k = 1 and k = 10.

We consider again the function cos
(
kπx
2

)
cos

(
kπy
2

)
for k = 1 and k = 10. For k = 10, the approximated

function is oscillatory and less well-resolved, and we do not observe any significant differences between the L2

and weight-adjusted projections. However, for k = 1, the approximated function is smooth, and we observe
a noticeable difference between the L2 error for the weight-adjusted and L2 projections on the coarsest mesh.
This confirms the fact that the weight-adjusted projection becomes less accurate as the geometric mapping
approaches non-invertibility. However, even for this more irregular mapping, the difference between the
weight-adjusted and L2 projection decreases rapidly under mesh refinement.

Finally, we note that it was shown in [17] that computing the weight-adjusted projection of some function
u is equivalent to computing

Π̂h

(
1

J
Π̂h (uJ)

)
,

where Π̂h denotes the L2 projection operator onto Vh

(
D̂
)
. This suggests that the weight-adjusted inverse

mass matrix is a highly accurate approximation to the inverse curvilinear mass matrix, so long as the geo-
metric mapping is sufficiently well-resolved approximated by the spline approximation space on the reference
element.
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Figure 15: L2 best approximation errors for cos
(

kπx
2

)
cos
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kπy
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)
, k = 1 under different mesh warpings and degree refinement

p = 2, . . . , 8. All results assume that spline spaces contain K = p elements, except for the “Polynomial” curve, which assumes
degree p = 2, . . . , 12 polynomial approximations over a single element.

5.3.1. Approximation errors under degree refinement

We now investigate approximation errors under degree refinement on curved meshes. These experiments
suggest that splines under optimal and smoothed knot vectors possess some advantages over uniform knot
distributions in the presence of non-affine mappings. Figure 15 shows computed L2 errors in approximating
cos

(
3πx
2

)
cos

(
3πy
2

)
on a curvilinear mesh. We examine errors under degree refinement for both tensor-product

polynomial and spline spaces (where we fix the number of elements K = p). We compute approximations us-
ing quadrature-based weight-adjusted projection, where the inverse curvilinear mass matrix is approximated
using a weight-adjusted approximation.

In contrast to the affine case, we observe that both polynomials and spline spaces with uniform knot
vectors produce L2 errors of similar magnitude per degree of freedom, even for low values of α (lightly
warped curvilinear meshes). We also observe that splines spaces using optimal and smoothed knot vectors
produce lower L2 errors than both polynomials and uniform splines. These numerical results suggest that L2

approximation errors under spline spaces are comparable to polynomials not only for oscillatory functions
(as was observed in 1D), but also for curvilinear mappings. Additionally, spline spaces with optimal or
smoothed knot vectors produce better approximations for both oscillatory functions and curved mappings.

5.3.2. L2 errors for multi-patch DG solutions

Next, we examine the behavior of multi-patch DG methods for the acoustic wave equation in two di-
mensions using both uniform and smoothed knot vectors. We compute L2 errors for the exact solution

p(x, y, t) = cos
(
3πx
2

)
cos

(
3πy
2

)
cos

(
3
√
2πt
2

)
at T = 1/2. For affine patches, the convergence of L2 errors is

similar to the 1D case; thus, we consider a curved interior warping of a square (Figure 15) in order to account
for the effect of geometric mappings.

We first compare L2 pressure errors when using the curvilinear mass matrix inverse and the weight
adjusted mass matrix inverse. In both cases, uniform splines of degree p = 4 are used. Figure 16 shows L2

errors for both first and second order formulations for both a lightly warped curvilinear mesh (α = 1/8) and
a heavily warped curvilinear mesh (α = .28). We observe that the L2 errors are visually indistinguishable,
and that the L2 difference between the two solutions is several orders of magnitude smaller than the L2

discretization error. This mirrors the qualitative behavior observed in Figures 13 and 14; however, the L2

difference between the solutions obtained using the curvilinear and weight-adjusted mass matrix inverses is
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(b) Second order formulation, α = 1/8
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(c) First order formulation, α = .28
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(d) Second order formulation, α = .28

Figure 16: L2 errors for the acoustic wave equation when inverting the curvilinear mass matrix and the weight-adjusted mass
matrix. Uniform p = 4 splines are used, and the meshes are the two warped curvilinear meshes shown in Figures 13 and 14.

significantly smaller than the difference between L2 and weight-adjusted projections. L2 errors are shown
in Figure 17, where, for clarity, we show results only for p = 2 and p = 5.

For first order DG formulations, we observe that L2 errors for uniform and smoothed knot vectors are
closer than in the one-dimensional case, which appears to be due to the presence of the non-affine (curvilinear)
geometric mapping. This suggests that the use of smoothed knots instead of uniform knots can improve
solver efficiency, since it is possible to take a larger maximum stable timestep without reducing accuracy. A
more rigorous study of this claim is still required. Under the second order DG formulation, L2 errors for
smoothed knot vectors behave less consistently. As with the first order formulation, the use of smoothed knot
vectors reduces errors in the pre-asymptotic range for the second order formulation with p > 2. However, in
contrast with the first order formulation, L2 errors for smoothed knots become larger than errors for uniform
knot vectors under continued patch or mesh refinement.6

Finally, examine the effect of mesh warping on multi-patch DG solutions using both uniform and smoothed
knot vectors. We use the mapping shown in Figure 15, and compute L2 errors as the warping factor α
increases from 0 to 1/4. We fix K = 8 and compute errors for p = 3, 4, 5 on a single patch domain. For

6Smoothed knot vectors tend to offer less of an advantage over uniform knot vectors for second order formulations. This may
be due to the fact that smoothed knot vectors are constructed to optimize the L2 sup-inf in which first order DG formulations
are more naturally convergent [22, 19], while second order DG formulations converge in a stronger energy norm. However, the
precise reasons for this difference are not immediately clear, and will be investigated in future work.
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Figure 17: Convergence under mesh refinement (knot insertion) of first and second order formulations of the 2D acoustic wave
equation using multi-patch DG for p = 2 and p = 5 on a warped curved square domain with α = 1/8. Different markers
correspond to patches refinement: two patches (circle), four patches (square), eight patches (triangle).

both first and second order formulations of the acoustic wave equation, smooth knots deliver slightly lower
L2 errors than uniform knots. As with experiments in Figure 12, increasing K increases the value of α (the
“crossover point”) at which smoothed knots become more accurate than uniform knots.

5.4. Spectral properties of spline discretizations of the advection and first-order acoustic wave equation

In the next few sections, we examine the spectral properties of the DG discretization matrix Ah for the
one-dimensional advection equation, such as the spectral radius (which can be used to estimate a maximum
stable timestep) and discrete dispersion relations.

5.4.1. Spectral radius of the discretization matrix

We begin by verifying that the growth of the spectral radius of the DG discretization matrix ρ (Ah) is
O(p/h). Figure 19 shows the growth of the spectral radius for the advection equation (with weakly enforced
periodic boundary conditions) using τ = 1/2 and both uniform and smoothed knots. We observe that the
growth of the spectral radius matches very closely with O(p/h), and constants are estimated in Table 2. The
use of smoothed knots reduces this growth by a factor slightly less than two. The growth of ρ (Ah) for the
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Figure 18: Comparison of L2 errors for uniform and smooth knots as a function of the warping parameter α using p = 3,K = 8
splines on a single patch.
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Figure 19: Growth of ρ (Ah) for the advection equation using τ = .5 and spline spaces of degree p = 2, . . . , 5.

acoustic wave equation is virtually identical, and we do not show it. Similarly, the growth of ρ (Ah) for the
non-dissipative case when τ = 0 is very similar, and is also not shown.

p = 2 p = 3 p = 4 p = 5

Uniform knots 2.0756 3.1824 4.4218 5.7692
Smoothed knots 1.7092 2.3019 2.9255 3.5739

Table 2: Estimated rate of growth of ρ (Ah) for the advection equation with respect to 1/h.

The case when τ = 1 is special. When taking a uniform wavespeed and τ = 1, the penalty flux is
identical to the upwind flux derived from Riemann problems [16]. For first order formulations using an exact
upwind flux, the dependence of ρ (Ah) on h changes significantly for h small and p ≤ 5. Figure 20 shows
the growth of the spectral radius with the number of elements on a single patch for uniform knot vectors
and p = 2, . . . , 7. The rate of growth of ρ (Ah) with 1/h does not change significantly for p ≤ 5, increasing
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Figure 20: Growth of ρ (Ah) for the advection equation using an exact upwind flux (τ = 1) and spline spaces of degree
p = 2, . . . , 8.

at the expected rate of O(p/h) only as p > 5. If smoothed knots are used in lieu of uniform knot vectors
when τ = 1, we observe that ρ (Ah) is significantly smaller in the pre-asymptotic range of 1/h and slightly
larger in the asymptotic range of 1/h → ∞, though the rate of growth of the spectral radius is unchanged
for 1/h sufficiently large. When using smoothed knots and exact upwind fluxes, we also observe that the
rate of growth ρ (Ah) with 1/h is slower than the estimated O(p/h) rate up to degree 8.

This phenomena appears to be restricted to the specific case of τ = 1, where the penalty flux coincides
with the upwind flux, and the growth of ρ (Ah) returns to O(p/h) when the penalty parameter deviates
by more than O(1%) from τ = 1. However, numerical experiments also indicate that this phenomena is
present for the acoustic wave equation, and persists when using multiple patches. Future work will study
whether this phenomena is present for more complex settings (such as curvilinear meshes and discontinuous
wavespeeds).

A closer examination of the spectra of Ah offers some insight into the growth of ρ(Ah) and its dependence
on τ and knot smoothing. We note that the distribution of the spectra can also impact the maximum stable
timestep, which depends on the choice of time-stepping method and its corresponding region of stability.
Figure 21 shows various spectra for the advection equation for a p = 7, K = 32 spline space. It can be
observed that ρ(Ah) is much larger for τ = 0, .5 than for τ = 1 due to the presence of two outlying eigenvalues
with large imaginary part. For τ = 1, these extremal eigenvalues fall into a tight semi-circular distribution
in the left half plane, resulting in a significant reduction in the spectral radius. When knot smoothing is
applied, the eigenvalues contract into a semi-circular distribution of slightly smaller radius.

5.4.2. Discrete dispersion relations

We compute numerical dissipation and dispersion relations for the periodic advection equation using an
upwind flux (τ = 1).7 Assuming a discrete solution of the form uh(x, t) = ei(kx−ωht), we seek a relation
between the discrete frequency k and wavenumber ω. Inserting this ansatz in the semi-discrete variational
formulation for advection over a single patch yields a generalized eigenvalue problem, which can be solved
for ωh [16]. While the exact relation between frequency and wavenumber is ω = k, the discrete wavenumber
ωh will differ due to discretization errors. Figure 22 compares Re(ωh) (which corresponds to numerically

7For τ = 0 (which corresponds to a central flux), dispersion errors are similar to the τ = 1 case for a small number of
wavelengths per degree of freedom. For a larger number of wavelengths per degree of freedom, dispersion errors are larger
for τ = 0 than for τ = 1. The qualitative behavior of the discrete dispersion relation is similar to that of polynomial DG
discretizations [52].
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(a) Uniform knots, τ = 0, .5, 1 (b) Uniform vs smoothed knots, τ = 1

Figure 21: Spectra for the advection equation using a spline space with p = 7, K = 32.

introduced dispersion) with the exact relation ω = k.
We note that increasing p improves the rate of convergence of the dispersion error with the number of

wavelengths per degree of freedom, while increasing K mainly shifts the dispersion error curve by a constant
number of wavelengths per degree of freedom. The dispersion error converges at a rate of (2p+3) for p even
((2p + 2) for p odd) with respect to the number of wavelengths per degree of freedom [52]. As expected,
since spline spaces contain polynomials of degree p, we observe this rate for both uniform and smoothed
knots. Both uniform and smoothed knot vectors result in comparable dispersion errors, though smoothed
knot vectors result in slightly decreased dispersion errors at a higher number of wavelengths per degree of
freedom. We note that these observations are in line with the approximation results of Figure 11.

5.5. Spectral properties of spline discretizations of the second-order acoustic wave equation

We now turn our attention to the second order formulation of the acoustic wave equation. Recall that the
stable timestep restriction for the second order formulation is estimated by the square root of the spectral
radius

√
ρ (Ah). Figure 23 shows the value of

√
ρ (Ah) for various p and K, and it can be seen that the

values of
√
ρ (Ah) for the second order formulation are slightly larger than the values of ρ (Ah) observed for

the first order formulation in Figure 19. Table 3 also plots the estimated slope of the growth of
√

ρ (Ah)
with respect to 1/h. The slopes are roughly O(p), though the values of the estimated slopes are also slightly
higher than those shown in Table 2 for the first order formulation.

p = 2 p = 3 p = 4 p = 5

Uniform knots 2.7632 4.3353 6.0859 7.9831
Smoothed knots 2.2217 3.0655 3.9419 4.8429

Table 3: Estimated rate of growth of
√

ρ (Ah) for the second order wave equation with respect to 1/h.

We next examine eigenvalue and eigenvector errors for spline discretizations of the following one-dimensional
generalized eigenproblem:

−d2pk
dx2

= λkpk

over the unit interval (0, 1) subject to the boundary conditions pk(0) = pk(1) = 0. The above eigenproblem
admits an infinite number of eigenvalue and eigenvector solutions (λk, pk(x)) =

(
k2π2, sin(kπx)

)
for k ∈ N.
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(a) Uniform knots (b) Smoothed knots

(c) Dispersion errors (uniform knots) (d) Dispersion errors (smoothed knots)

Figure 22: Numerical dispersion relations and dispersion error |Re(ω)− Re(ωh)| for spline spaces with p = 4,K = 1, 4, 8, 16
and τ = 1. The exact dispersion relation is given as a black dotted line in Figure 22a, and the theoretical rate of convergence
of the dispersion error (for p = 4, this is O(h11)) is plotted as a black dotted line in Figure 22b.

A finite number of discrete eigenvalues and eigenvectors (λh,k, uh,k(x)) with 0 < λh,1 ≤ λh,2 ≤ . . . ≤ λh,Ndofs

are attained from a standard Galerkin discretization on a single patch. Homogeneous Dirichlet boundary
conditions are imposed in a strong fashion as to allow for a more direct comparison to earlier works in the
literature [2, 4]. We have also examined the impact of obtaining boundary conditions in a weak manner and
found that this did not significantly affect solution quality. In prior work, it has been established that the
error associated with a standard Galerkin discretization of the second order wave equation is directly tied
to the eigenvalue and eigenvector errors associated with the above generalized eigenproblem [4], inspiring us
to examine the errors associated with each of the eigenvalues and eigenvectors for a given discretization.

Figure 24 shows errors in eigenvalues |λk − λh,k| and eigenfunctions |uk − uh,k| using splines with both
uniform and smoothed knots for the specific case of p = 4 and K = 32. We observe that smoothed knots are
slightly less accurate for low k and slightly more accurate for high k. Note furthermore that the last two
eigenvalues are poorly approximated using uniform knots. This is due to the fact that the last two discrete
eigenvalues correspond to outlier frequencies [2]. The last two eigenvalues are slightly better approximated
and smaller in magnitude for smoothed knots, and are the reason why the maximum stable timestep is larger
with smoothed knots than with uniform knots.

30



0 100 200 300

0

500

1,000

1,500

2,000

Number of elements K

√ ρ
(A

h
)

p = 2

p = 3

p = 4

p = 5

(a) Uniform knots

0 100 200 300

0

500

1,000

1,500

2,000

Number of elements K

√ ρ
(A

h
)

p = 2

p = 3

p = 4

p = 5

(b) Smoothed knots

Figure 23: Growth of
√

ρ (Ah) for the second order wave equation using spline spaces of degree p = 2, . . . , 5.

(a) Eigenvalue errors (b) Eigenvector errors

Figure 24: Eigenvalue errors
⏐⏐λk − λh,k

⏐⏐ and eigenvector errors
pk − ph,k

2
L2 for an p = 4,K = 32 spline space using uniform

and smoothed knots.

5.6. A three-dimensional problem on a multi-patch geometry

Finally, we show solutions to a model wave propagation problem using a non-trivial geometry. Figure 25
shows a multi-patch discretization of a three-dimensional pipe elbow, constructed using 12 different patches,
as well as a first order DG simulation of acoustic wave propagation through the pipe. We assume c = 1 and
a zero initial condition, and impose a pulse velocity boundary condition at x = 2

u(x, 0) =

{
1− cos(2πt/t0), t < t0

0, otherwise

where u is the velocity in the x-direction, and we take t0 = 2. We impose zero Neumann boundary conditions
at all other boundary faces.

We discretize each patch using a degree p = 6 spline basis (using a smoothed knot vector) and K = 16
elements in each coordinate direction. We note that, due to the stretched nature of some of the patches,
additional efficiency might be gained by using an anisotropic discretization with a varying number of elements
in each coordinate direction, which we will explore in a future manuscript.
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(a) Multi-patch model (b) Pressure (c) Pressure (cut view)

Figure 25: A multi-patch model of a 3D pipe elbow, and pressure solution at time T = 4.

6. Conclusions

This work presents a strategy for applying NURBS-based finite element discretizations to transient hy-
perbolic problems using explicit time-stepping. We utilize a multi-patch DG discretization, and apply a
weight-adjusted approximation to the mass matrix inverse over each patch. Additionally, the approximation
is efficient to invert, involving only one-dimensional operations due to the tensor product structure in ap-
proximation of the mass matrix inverse. The resulting methods are energy stable and high order accurate
under assumptions on the regularity of the geometric mapping, and numerical experiments show that the
approximate weight-adjusted mass matrix inverse delivers L2 errors which are virtually identical to those
using the full mass matrix inverse.

We also investigate the timestep restriction associated with NURBS-based discretizations, and show
numerically that (for patches where h is sufficiently small with respect to p) the maximum stable timestep
decreases as O(h/p) instead of the O(h/p2) associated with C0 and DG finite element discretizations. Finally,
we investigate the use of smoothed knot vectors (which approximate n-width optimal knot vectors) in spline
discretizations. Numerical experiments show that spline spaces under smoothed knot vectors are slightly
more accurate than splines with uniform knot vectors for approximations involving oscillatory functions or
warped geometric mappings. We remark that, while the use of smoothed knots does not result in drastic
decreases in L2 error for high frequencies or curved mappings, their improved accuracy and larger stable
time-step make their use attractive for time-domain solvers based on explicit time integration.

We note that several areas related to this work remain to be explored. For example, it is not immediately
clear when splines can achieve a computational advantage over very high order polynomials. Numerical
experiments suggest that in certain situations (for example, on curved domains or approximating highly
oscillatory functions) splines yield lower L2 errors than polynomials for a similar number of degrees of
freedom. Additionally, for the same resolution, splines can take larger time steps than an equivalent finite
element p-method, making it possible to achieve the same level of error with a reduced number of time steps,
assuming a sufficiently accurate time stepping scheme. However, these advantages must be balanced with
the fact that, in order to integrate spline spaces to sufficient accuracy, the number of quadrature points
per degree of freedom is larger for splines than for polynomials. This additional cost can be significantly
reduced through the use of optimal and near-optimal spline quadrature rules [38, 39] or by specialized
techniques for the assembly and application of spline finite element matrices [42]. Finally, we will explore
ways to fully remove any inverse scaling of the maximum stable timestep by p. It may be advantageous to
combine the nonlinear mapping used in [2] with optimal or smoothed knot vectors. Additionally, preliminary
results in this work suggest that, when using smoothed knot vectors, a first order formulation combined with
an appropriately chosen dissipative flux result in discretization matrices whose spectral radius is nearly
independent of p for K sufficiently large.
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The conformity requirements of multi-patch DG methods also remain to be explored. In this work, all
solution components are approximated using the same spline space; however, it is well-known that such a
choice of approximation space can introduce problems such as locking or spurious modes to finite element
discretizations of problems such as Maxwell’s equations [53, 54]. DG methods sidestep these issues by using
numerical fluxes to penalize or dissipate away non-conforming components of the solution [55, 21]. However,
for multi-patch DG methods, it may also be necessary to utilize locally conforming approximation spaces
within each patch, which we will consider in future work.
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