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First-principles density-functional calculations coupled with the USPEX evolutionary 

phase-search algorithm are employed to calculate the convex hull of the Mo-N binary system. 

Eight Mo1-xNx compound phases are found to be thermodynamically stable: tetragonal β-Mo3N, 

hexagonal δ-Mo3N2, cubic γ-Mo11N8, orthorhombic ε-Mo4N3, cubic γ-Mo14N11, monoclinic σ-

MoN and σ-Mo2N3 and hexagonal δ-MoN2. The convex hull is a straight line for 0 ≤ x ≤ 0.44 such 

that bcc Mo and the five listed compound phases with x ≤ 0.44 are predicted to co-exist in 

thermodynamic equilibrium. Comparing the convex hulls of cubic and hexagonal MoxN1-x 

indicates that cubic structures are preferred for molybdenum rich (x < 0.3) compounds, hexagonal 

phases are favored for nitrogen rich (x > 0.5) compositions, while similar formation enthalpies for 

cubic and hexagonal phases at intermediate x = 0.3 – 0.5 imply that kinetic factors play a crucial 

role in the phase formation. The volume per atom Vo of the thermodynamically stable Mo1-xNx 

phases decreases from 13.17 to 9.56 Å3 as x increases from 0.25 to 0.67, with plateaus at Vo = 

11.59 Å3 for hexagonal and cubic phases and Vo = 10.95 Å3 for orthorhombic and monoclinic 

phases. The plateaus are attributed to changes in the average coordination numbers of molybdenum 

and nitrogen atoms, which increase from 2 to 6 and decrease from 6 to 4, respectively, indicating 

an increasing covalent bonding character with increasing x. The change in bonding character and 

the associated phase change from hexagonal to cubic/orthorhombic to monoclinic cause steep 

increases in the isotropic elastic modulus E = 387 – 487 GPa, the shear modulus G = 150 – 196 

GPa, and the hardness H = 14 – 24 GPa in the relatively narrow composition range x = 0.4 – 0.5. 

This also causes a drop in Poisson’s ratio from 0.29 to 0.24 and an increase in Pugh’s ratio from 

0.49 to 0.64, indicating a ductile-to-brittle transition between x = 0.44 – 0.5.   

Keywords: Molybdenum nitride, ab-initio, convex hull, hardness, stiffness tensor, transition-

metal nitrides 

 

I. Introduction  

Transition metal nitrides are widely studied due to their excellent mechanical properties, 

thermal stability, wear resistant properties, corrosion resistance, varying electrical and magnetic 

properties and their existing and emerging applications as hard wear-resistant coatings, diffusion 

barriers in microelectronics, protective decorative coatings, energy storage and spintronic 

materials.1–17 The best known transition metal nitrides are rock-salt structure group IV B and V B 

nitrides, with TiN being the most studied and having well established properties.8,9,18–21 Increasing 

the valence electron concentration by moving towards the right in the periodic table results in an 

increasing occupation of d-bands which increases the ductility and may therefore result in super-

toughened alloys.22–24 Correspondingly, rock-salt structure molybdenum nitride MoN with 3 
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electrons per formula unit occupying 4d orbitals has the potential to exhibit high ductility and 

toughness, and therefore represents a promising hard coating candidate.  However, the high d-

orbital occupation is expected to also lead to thermodynamic or even mechanical instability of the 

rocksalt phase, similar to what has been reported for tungsten nitride,25–28 which has the same 

number of valence electrons as MoN. Therefore, it is useful to study the phase stability in the Mo-

N binary system, since the structure-composition-property relations of Mo1-xNx are not established, 

yet.   

Molybdenum nitride has been reported to crystallize in a variety of phases depending on 

synthesis conditions including nitrogen partial pressure, temperature, substrate material, and 

energetics of depositing species.29–33 The cubic γ-Mo2N is the most common experimentally 

observed phase of molybdenum nitride,29,30,34–36 while tetragonal β-Mo2N,33,37,38 hexagonal δ-

MoN31,34,39–42 and cubic γ-MoN42–44 have also been reported, as well as a high pressure 

rhombohedral MoN2 phase at 3.5 GPa.45 Theoretical studies based on density functional theory 

(DFT) calculations46–48 predict that the most stable phases of the Mo-N system are hexagonal 

MoN2,
47

 orthorhombic Mo4N3,
47 and hexagonal δ-MoN,46 suggesting a proposed convex hull with 

three compound phases, namely δ-MoN2, ε-Mo4N3, and δ-MoN.47 However, others predict low-

energy cubic structures for MoN0.44 and MoN0.69,
49 such that cubic (or tetragonal) Mo1-xNx phases 

are most stable for x < 0.42 while hexagonal structures are preferred at larger x,50,51 suggesting that 

the convex hull for 0.31 < x < 0.5 is defined by β-MoN0.44 and hexagonal δ-MoN.48 These studies 

illustrate the diversity of possible structures in the Mo-N system, raise the question if other Mo1-xNx  

phases may be thermodynamically stable, and motivate our study on the convex hull of the Mo-N 

system.  

In this paper, we report on the results from our search for the thermodynamically stable 

phases of the Mo-N system, using the evolutionary structure predictor USPEX52–54 in combination 

with DFT calculations. We found eight stable Mo1-xNx compounds including newly discovered 

phases like monoclinic σ-MoN and σ-Mo2N3. Computation of the mechanical properties of the 

stable phases indicates that the elastic modulus increases with increasing nitrogen content. This is 

attributed to an increasingly covalent bonding character, leading to a ductile-to-brittle transition at 

x = 0.44 – 0.5, as determined from Poisson’s and Pugh’s ratios. The previously reported 

experimentally synthesized Mo-N phases at various N/Mo ratios differ significantly from the 

thermodynamically stable phases predicted in this study. This may be due to a preference for 

phases with high symmetry, such as cubic or hexagonal, during a kinetically limited phase 

formation process.  

 

II. Computational Procedure 

Thermodynamically stable phases were identified by employing the evolutionary 

algorithm USPEX52–54 coupled with first principles calculations done with  the  Vienna ab initio 

simulation package (VASP)55,56  at zero temperature and pressure. As a first step, USPEX was 

employed for a variable composition search, using single molybdenum and nitrogen atoms as 

building blocks and varying both the composition and the number of formula units for a given 

composition. For this purpose, a maximum of 16 atoms within the primitive unit cell was used and 

the structure search was carried out until the predicted convex hull remained unchanged for twenty-

five consecutive generations, resulting in a total of 953 distinctly different simulated structures 

with fully relaxed atomic positions as well as relaxed unit cell volumes and shapes. The limit of 

16 atoms per unit cell is required due to the steep increase in computational cost with increasing 

unit cell size, but also limits the possible compositions that are explored with the USPEX variable 
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composition search. Therefore, secondly, a large number of manually created structures were also 

explored by relaxing their unit cell and atomic positions with the same computational parameters 

as is done within the USPEX approach. In particular, (i) 20 structures that have a low energy within 

the W-N system26 were explicitly investigated. (ii) Over 200 cubic structures with various 

compositions were formed by introducing cation and anion vacancies in stoichiometric NaCl 

structure γ-MoN, employing 8 different symmetric and asymmetric super cell sizes with 8 to 32 

atomic sites, following the procedure described in Ref. 43. (iii) Over 100 structures with hexagonal 

symmetry containing 2-25 atoms were formed by stacking close-packed Mo and N planes, varying 

both the sequence of Mo and N planes as well as their stacking positions A, B, and C, while keeping 

the number of atoms per basal plane fixed at one. The purpose of the manually generated structures 

is twofold: They allow discovery of phases and compositions that contain more atoms in the 

primitive unit cell than the maximum number of atoms in the USPEX variable composition search. 

They also bridge a gap between the simulations and the experimentally most commonly observed 

cubic and hexagonal phases. More specifically, (ii) and (iii) allow to determine the cubic and 

hexagonal convex hull that can be directly compared to the overall convex hull, providing both a 

measure of the unfavorability of these phases with respect to the thermodynamically stable phases 

as well as insight into the competition between the hexagonal and cubic phases. 

The DFT calculations were done using a plane wave basis set, periodic boundary 

conditions, the projector augmented wave method,57 and the Perdew-Burke-Ernzerhof generalized 

gradient approximation exchange correlation functional.58 The computational parameters are 

chosen such that all reported energies are computationally converged to <1 meV/atom. This 

includes a 500 eV energy cut-off for the plane-wave basis set expansion and a k-point mesh that 

varies with unit cell size from a total of 1728 to 8000 k-points, corresponding to a k-point resolution 

of 0.04 Å-1 in reciprocal space.  Mo 4s, 4p, 4d, and 5s electrons are explicitly calculated, that is, 

they are not included in the core of the pseudo potential. This corresponds to a total of 14 valence 

electrons per Mo atom and 5 valence electrons per N atom. For all configurations, atomic positions, 

unit cell volume and shape are relaxed until an energy convergence of 10-5 eV is reached. The 

convex hull is then constructed by identifying phases at different compositions 0 ≤ x ≤ 1 that are 

thermodynamically stable against dissociation into any other Mo1-xNx phase, where x = 0 and 1 

correspond to bcc Mo and molecular N2. The latter was calculated using a 15×15×15 Å3 unit cell 

containing a single relaxed N2 molecule, that is, the x = 1 phase in this study corresponds to vapor 

phase N2 rather than solid nitrogen, which is chosen because of the more direct relevance to actual 

experimental nitride synthesis. Phases with an energy less than 5 meV/atom above the convex hull 

are considered to lie on the convex hull. The crystal structures are visualized using VESTA.59 

The single crystal stiffness matrix is obtained from calculated stress-strain relationships as 

implemented in VASP,60 by straining unit cell vectors by 0.015 Å in each direction required for a 

given crystal symmetry, and calculating the stress-strain matrix. The bulk modulus is obtained 

from the Murnaghan equation of state by fitting the calculated energy vs unit cell volume of the 

structures with a second order polynomial. The isotropic elastic modulus E and the isotropic shear 

modulus G are obtained from the stiffness tensor using Hill’s criterion.61 The isotropic Poisson’s 

ratio ν and Pugh’s ratio k are obtained from the elastic, shear and bulk moduli using the relations 

ν = E/2G -1 and k = G/B.62 Vickers hardness H is calculated using Tian’s model,63 that is Hv = 

0.92k1.137G0.708
. We expect, based on previous studies that evaluate the accuracy of DFT material 

property predictions,64–67 that our calculated atomic volume has an uncertainty of 3%, while the 

coefficients of the elastic tensor as well as E, G, and B have an uncertainty of ~5 % and the 

predicted H may have a ~10 % uncertainty based on the study by Tian.63 Predicting the hardness 

using the hardness models from Refs. 68–70 indicates deviations by up to 15% in comparison to 
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Tian’s model, suggesting an approximately 15% uncertainty in our hardness predictions. The 

mechanical stability of the eight stable compound phases is verified by checking if their elastic 

constants satisfy the Born-Huang criteria for structural stability which are based on the individual 

elastic constants representative of the crystal symmetry.71,72  For example, the Born-Huang criteria 

for hexagonal crystals is C11 > C12;  2C13
2

 < C33(C11+C12); C44 > 0; C66 > 0. The dynamical stability 

of these crystals is analyzed by calculating the phonon frequencies with PHONOPY,73 using 

conventional unit cells and checking for imaginary frequencies along high symmetry crystal 

directions. This approach is based on calculating a force constant matrix and therefore requires 

calculations with large surpercell sizes to achieve reliable phonon dispersion curves. However, the 

computational cost considerably limits the supercell size. For example, the conventional cubic unit 

cell of the γ-Mo14N11 phase already contains 50 atoms. Thus, simply doubling the cell size in three 

dimensions leads to a supercell with 400 atoms, which is already beyond what we can reasonably 

simulate for transition metal nitrides without compromising computational accuracy.  

 

III. Results 

Figure 1 is a plot of calculated zero-temperature formation enthalpies Hf for fully relaxed 

Mo1-xNx compounds, plotted as a function of composition x = 0.20 – 0.68. The Hf values are 

provided with standard states being bcc molybdenum and molecular nitrogen, such that Hf = 0 for 

both x = 0 and x = 1, corresponding to bulk Mo and molecular N2, respectively. The convex hull, 

denoted by the solid line, indicates the lowest energy for a given composition. Thus, any phase 

above the convex hull is thermodynamically unstable while phases on the convex hull, plotted as 

open black circles, are stable against thermodynamic dissociation. However, as mentioned in 

Section II, phases which lie within 5 meV/atom above the convex hull are considered to be 

thermodynamically stable, leading to a total of ten stable Mo1-xNx phases, including metallic Mo 

and molecular nitrogen, at compositions x = 0, 0.25, 0.4, 0.421, 0.429, 0.44, 0.5, 0.6, 0.667 and 1. 

They correspond to bcc-Mo, β-Mo3N, δ-Mo3N2, γ-Mo11N8, ε-Mo4N3, γ-Mo14N11, σ-MoN, σ-

Mo2N3, δ-MoN2, and molecular nitrogen, where β, δ, γ, ε, and σ indicate tetragonal, hexagonal, 

cubic, orthorhombic and monoclinic phases, respectively. There are no stable phases for 

compositions 0 < x < 0.25 and 0.67 < x < 1. Thus, the figure shows the zoomed-in “interesting 

region” with x = 0.2 – 0.68, while a plot of the full convex hull over the entire compositional range 

can be found in the supplementary document. Figure 1 also includes the convex hulls for cubic 

and hexagonal structures indicated by the red and green dashed lines. These curves are defined by 

the red squares and green triangles that denote the calculated Hf of cubic and hexagonal Mo1-xNx 

phases that lie on or near these convex hulls. The end points of the cubic and hexagonal convex 

hulls are set to the enthalpies of fcc and hexagonal Mo at x = 0, respectively, and to molecular 

nitrogen at x = 1. We note that these Hf values are determined by retaining bcc Mo and molecular 

N2 as zero-enthalpy reference states, even though the bcc Mo reference state is not included in the 

cubic and hexagonal hulls since they are limited for cubic structures to vacancy containing rock-

salt MoN and for hexagonal structures to stacking of close-packed Mo and N planes, as described 

in more detail in Section II.  

In the following, we briefly describe and discuss stable and competing Mo1-xNx phases, 

while a discussion of the overall Mo1-xNx convex hull, and the relationship to mechanical properties 

as a function of x will follow in the Discussion Section IV. Figure 2 illustrates the stable phases 

and Table 1 summarizes the key structural parameters. A detailed description of all phases, 

including complete unit cell vector and atomic position information is provided as Supplementary 

Material. 
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β-Mo3N (x = 0.25):   

The Mo3N phase has a tetragonal structure with a conventional unit cell that contains 12 

Mo and 4 N atoms and can be described as three conventional cubic rock-salt structure MoN unit 

cells that are stacked on top of each other and from which 8 nitrogen atoms have been removed, 

as illustrated in Fig. 2(a). Its formation enthalpy of -0.232 eV/atom lies 2 meV/atom above the 

calculated line of the convex hull connecting other phases, namely ε-Mo4N3 and bcc Mo, as shown 

in Fig. 1. Thus, there is no thermodynamic driving force for the formation of Mo3N from ε-Mo4N3 

and bcc Mo. This may explain why there are no reports of the experimental observation of β-

Mo3N, as discussed in more detail in Section IV. A competing cubic phase at this composition (x 

= 0.25) is 23 meV/atom higher than Hf  of the stable β-Mo3N phase. This cubic γ-Mo3N has a 

similar atomic arrangement as the β-Mo3N shown in Fig. 2(a) and is obtained by relaxing both 

atomic positions and the volume of the unit cell, but forcing the c/a ratio to remain 3 so that the 

structure is cubic. This structure defines the cubic convex hull. That is, the line for the cubic convex 

hull plotted in Fig. 1 between x = 0.25 and 0.421 is defined by the calculated Hf of γ-Mo3N and γ-

Mo11N8. The formation enthalpy of the competing hexagonal phase at x = 0.25 is 192 meV above 

Hf  of the stable β-Mo3N phase and is actually higher than the hexagonal convex hull which is 126 

meV above Hf  of β-Mo3N and is defined by a line that connects the calculated formation enthalpies 

of δ-Mo2N at x = 0.333 and hexagonal Mo at x = 0.  

δ-Mo3N2 (x = 0.4):  

The hexagonal δ-Mo3N2 phase consists of hexagonally close-packed Mo and N planes, 

which are stacked along the z-direction as illustrated in Fig. 2(b) and described in more detail in 

the supplementary document. Its formation enthalpy Hf  = -0.371 eV per atom is 3 meV/atom above 

the convex hull. Therefore, δ-Mo3N2 is considered to be stable within our 5 meV tolerance 

criterion. The competing cubic γ-Mo3N2 phase has a formation enthalpy that is just 7 meV per 

atom larger than Hf of the hexagonal δ-Mo3N2. This cubic phase is formed by introducing 6% and 

37% of cation and anion vacancies in rock-salt structure MoN, respectively, suggesting 

stabilization of the cubic phase by vacancies.43 The small ΔHf = 7 meV between the cubic and 

hexagonal Mo3N2 structures may explain why the majority of experimental studies report a cubic 

γ-phase at this composition, as discussed in more detail in Section IV. 

γ-Mo11N8 (x = 0.421): 

The cubic Mo11N8 phase has a primitive unit cell that contains 11 Mo and 8 N atoms and is derived 

from rock-salt structure stoichiometric MoN by removing one Mo and three N atoms from a 

supercell with 12 cation and 12 anion lattice sites, defined by the lattice vectors [ 1 1 1], [ 011 ] and 

[ 110 ] as illustrated in Fig. 2(c). Its formation enthalpy of Hf = -0.390 eV per atom is 4 meV/atom 

above the convex hull defined by ε-Mo4N3 and bcc Mo. The competing hexagonal phase at the 

same composition x = 0.421 has a formation enthalpy that is 6 meV per atom larger than that of 

the cubic phase, indicating that the cubic phase is thermodynamically more stable. This is in 

contrast to x = 0.4, as discussed above, where the hexagonal phase is 7 meV per atom more stable 

than the cubic phase. Thus, there is a predicted hexagonal-to-cubic transition at x = 0.41, as 

indicated by the cross-over of the red and green curves in Fig. 1.  

ε-Mo4N3 (x = 0.429):  

The body-centered orthorhombic ε-Mo4N3 phase is illustrated in Fig. 2(d). It defines, 

together with bcc Mo, the line of the convex hull for x = 0 – 0.429. Correspondingly, in the absence 

of any kinetic barriers, all MoxN1-x compounds with 0 < x < 0.429 should in principle phase 
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segregate into bcc Mo and ε-Mo4N3, if following purely thermodynamic arguments at zero 

temperature and assuming zero uncertainty in our calculations. The convex hulls of competing 

cubic and hexagonal phases at x = 0.429 exhibit formation enthalpies that are 3 and 15 meV/atom 

higher than Hf of ε-Mo4N3. That is, the enthalpy of a cubic phase with x = 0.429 is very close to 

the overall convex hull and is therefore expected to have a considerable chance to be synthesized, 

while hexagonal phases are less likely to develop at x = 0.429.  

γ-Mo14N11 (x = 0.44): 

Fig. 2(e) illustrates the cubic γ-Mo14N11 phase which is formed by removing Mo and N atoms from 

stoichiometric rock-salt structure MoN, similar to the γ-Mo11N8 phase discussed above. This cubic 

phase is 16 meV/atom more stable than the competing hexagonal phase, continuing the trend of 

an increasing thermodynamic preference of cubic over hexagonal Mo1-xNx structures with 

increasing x in the compositional range 0.4 – 0.45, as evident in Fig. 1. We note that the γ-Mo14N11 

and the γ-Mo11N8 phases have similar lattice constants (0.5% difference) and are both derived from 

the same rock-salt MoN structure by the introduction of vacancies. Thus, we expect that cubic 

Mo1-xNx phases with any composition between these two phases (i.e. 0.421 < x < 0.44) can be 

formed without phase separation into γ-Mo14N11 and γ-Mo11N8. That is, the red-dashed line in Fig. 

1 that connects the calculated Hf of γ-Mo14N11 and γ-Mo11N8 does not just represent the formation 

enthalpy of a phase separated (two cubic phases) compound, but is an estimate of Hf of a single γ-

phase with a specific composition x. For example, at x = 0.429, this line indicates an Hf = -0.398 

eV, which is just 3 meV/atom above Hf of the competing ε-Mo4N3 at the same composition, as 

discussed above. In fact, all calculated cubic structures for which Hf is plotted in Fig. 1 are derived 

with the same approach as the γ-Mo14N11 and γ-Mo11N8 phases. Thus, the entire cubic convex hull 

plotted as red dash-dotted line in Fig. 1 can be considered a continuous single phase field, as 

discussed in more detail in section IV. 

σ-MoN (x = 0.5): 

The σ-MoN monoclinic phase illustrated in Fig. 2(f) is the most stable phase at a 

stoichiometric 1:1 composition ratio. The competing hexagonal and cubic phases for 

stoichiometric MoN have formation enthalpies that are 7 and 36 meV per atom higher than Hf for 

σ-MoN. The hexagonal phase has a four-atom unit cell where alternating close-packed Mo and N 

planes form a ABAC stacking, such that the Mo sublattice forms a simple hexagonal lattice and 

the N sublattice a close-packed hexagonal lattice which is shifted relative to the Mo sublattice to 

be also close-packed relative to the Mo lattice. The cubic MoN phase exhibits the NbO structure 

with 3 Mo and 3 N atoms per unit cell with a lattice constant of 4.11 Å. In contrast to our results, 

previous studies have predicted the hexagonal phase to be the most stable stoichiometric MoN 

phase.47,50,51
 We attribute this disagreement to the monoclinic σ-MoN phase exhibiting a relatively 

uncommon structure and the energy difference to the hexagonal phase to be relatively small, such 

that σ-MoN is not easily “discovered”. Also, we are not aware of any experimental study that has 

reported σ-MoN. As discussed in Section IV, this may be related to the relatively small enthalpy 

differences to the hexagonal or cubic phases which have higher symmetry and correspondingly 

may be easier to synthesize.  We note here that stoichiometric MoN in the rocksalt structure has a 

formation enthalpy which is 387 meV/atom higher than the monoclinic phase and is expected to 

be mechanically unstable, similar to WN in the rocksalt phase,26,27 and is thus very unlikely to 

form.   

σ-Mo2N3 (x = 0.6): 
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σ-Mo2N3 shown in Fig. 2(g) is a base centered monoclinic phase. It is similar to what has 

been reported for W2N3.
26 The competing hexagonal δ-Mo2N3 phase has a formation enthalpy that 

is 48 meV/atom higher than Hf of the monoclinc σ-Mo2N3 phase, while the cubic hull at x = 0.6 is 

even higher, 102 meV/atom above σ-Mo2N3. That is, the monoclinic phase is considerably more 

stable than hexagonal or cubic structures. Nevertheless, we are not aware of any experimental 

study reporting σ-Mo2N3, but multiple studies suggesting that x > 0.5 leads to hexagonal 

structures,31,45,47,50,51 as also discussed further in Section IV.  

δ-MoN2 (x = 0.667):  

The hexagonal close packed δ-MoN2 phase is shown in Fig. 2(h). Its formation enthalpy is 

4 meV/atom above the line of the convex hull, which is defined at x = 0.667 by the enthalpies of 

σ-Mo2N3 and molecular nitrogen. The δ-MoN2 forms N-Mo-N units similar to the S-Mo-S layers 

in MoS2. However, contrary to the weak Van der Waals bonding between neighboring S-Mo-S 

layers with a resulting large S-S distance of 3.1 Å,74 the N-N bonds in δ-MoN2 are covalent, strong, 

and only 1.38 Å long, which is just 25% larger than the 1.10 Å bond length in molecular nitrogen, 

thereby yielding a predicted high mechanical strength as previously reported47 and discussed in 

more detail below. A competing hexagonal phase with a simpler ABBABB stacking47 has a 14 

meV/atom higher formation enthalpy, while the competing cubic structure at x = 0.667 has a 

formation enthalpy that is 95 meV/atom higher than that of the hexagonal δ-MoN2 phase, 

consistent with the trend shown in Fig. 1, indicating that increasing x beyond 0.5 leads to an 

increasing thermodynamic stability of the hexagonal over the cubic Mo1-xNx phases. Another 

metastable structure with x = 0.667 is a rhombohedral structure that has been experimentally 

synthesized at a high pressure of 3.5 GPa.45 Its formation enthalpy is 0.241 eV above that for 

hexagonal δ-MoN2, which is more stable than the rhombohedral phase at all pressures, as 

previously reported.47 Therefore, we attribute the need for high pressure for the synthesis of 

rhombohedral MoN2 primarily to the reduction in the nitrogen chemical potential to favor nitride 

formation over molecular N2. 

 Figure 3 shows plots of the average atomic volume Vo and coordination numbers CMo and 

CN of Mo and N atoms in stable Mo1-xNx compounds as a function of composition x. The atomic 

volume is obtained by dividing the relaxed unit cell volume by the total number of atoms per unit 

cell, irrespective of their type (Mo or N), and is plotted in Fig. 3(a) as well as provided in Table 1. 

It decreases from Vo = 13.17 Å3 for β-Mo3N to a plateau with Vo = 11.59±0.03 Å3 for hexagonal 

δ-Mo3N2 and cubic γ-Mo11N8 and γ-Mo14N11, to a second plateau with Vo = 10.95±0.02 Å3 for 

orthorhombic ε-Mo4N3 and monoclinic σ-MoN and σ-Mo2N3, and drops to Vo = 9.56 Å3 for δ-

MoN2. The data clearly shows an overall trend of a decreasing atomic volume with increasing x, 

which can be attributed to the considerably smaller covalent radius of 0.75 Å for N in comparison 

to 1.45 Å for Mo. However, interestingly, the Vo vs x data does not show a continuous trend but 

resembles a step function. The first plateau is defined by hexagonal and cubic structures with x = 

0.4 – 0.44 and has a 5.8% larger atomic volume than the second plateau defined by orthorhombic 

ε- and monoclinic σ-phases with x = 0.429 – 0.6. Particularly interesting is that the composition 

ranges of these two plateaus overlap. More specifically, the composition of the orthorhombic ε-

Mo4N3 is between the composition of the cubic γ-Mo11N8 and γ-Mo14N11 phases, suggesting that 

the lower Vo of ε-Mo4N3 is associated with the higher and more uniform number of nearest 

neighbors (CN = 6) that allows for a denser atomic packing in ε-Mo4N3, while the cubic phases in 

the vicinity of this orthorhombic phase are created by the introduction of vacancies, leading to a 

reduction in the number of nearest neighbors and correspondingly a higher Vo. Similarly, the fact 

that Vo remains constant between σ-MoN and σ-Mo2N3 despite the relatively large increase in x is 

attributed to a decrease in the coordination number of N atoms. This is because a decrease in CN 
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(and conversely also an increase in CMo) results in a more covalent bonding character and an 

increase in bond-directionality, leading to more open structures. That is, the general trend of a 

decreasing Vo with increasing x is counteracted by a transition to a more open structure, leading to 

the observed plateau as also discussed in Section IV.  

 Figure 3(b) is a plot of the average coordination number CMo and CN of molybdenum and 

nitrogen atoms in the stable Mo1-xNx phases. For all MoxN1-x compounds with the exception of the 

most nitrogen rich δ-MoN2, the nearest neighbors are always of opposite kind, that is the nearest 

neighbors for Mo atoms are nitrogen atoms and vice versa, as evident from the interatomic distance 

data in Table 1.  The most nitrogen rich δ-MoN2 phase represents a special case, because it exhibits 

N2 dimers with a 1.38 Å bond length. Thus, we define CN for this compound separately, counting 

both the N-neighbor as well as the three Mo atoms as nearest neighbors, yielding CN = 4. 

 The plotted number of nearest neighbors of nitrogen atoms is 6 for x ≤ 0.4 (β-Mo3N and δ-

Mo3N2), as well as for ε-Mo4N3. Figure 3(b) is a plot of the average coordination number CMo and 

CN of molybdenum and nitrogen atoms in the stable Mo1-xNx phases. For all MoxN1-x compounds 

with the exception of the most nitrogen rich δ-MoN2, the nearest neighbors are always of opposite 

kind. The most nitrogen rich δ-MoN2 phase represents a special case, because it exhibits N2 dimers 

with a 1.38 Å bond length. Thus, we define CN for this compound separately, counting both the N-

neighbor as well as the three Mo atoms as nearest neighbors, yielding CN = 4. The plotted number 

of nearest neighbors of nitrogen atoms is 6 for x ≤ 0.4, for β-Mo3N and δ-Mo3N2, as well as for ε-

Mo4N3. CN decreases steeply with the transition to cubic structures above x = 0.4, to CN = 5.25 and 

4.9 for γ-Mo11N8 and γ-Mo14N11, remains nearly constant between x = 0.44 – 0.5 and decreases 

further from CN = 5 for σ-MoN to CN = 4 for σ-Mo2N3 and δ-MoN2. Conversely, the average 

coordination number of molybdenum atoms increases from 2 for β-Mo3N, to approximately 4 for 

δ-Mo3N2, γ-Mo11N8 and γ-Mo14N11, 4.5 for ε-Mo4N3, 5 for σ-MoN, and 6 for σ-Mo2N3 and δ-

MoN2. That is, the CMo increases approximately linearly with increasing x, which is a direct 

consequence of the increasing N-to-Mo ratio. Correspondingly, CN decreases with increasing x. 

However, this decrease is not linear but follows an approximate step-function with CN decreasing 

from 6 to 5 around x = 0.43 and from CN = 5 to 4 for x between 0.5 – 0.6. These variations in CMo 

and CN are responsible for the plateaus and variations in Vo, as presented above, and also cause a 

transition from ductile to brittle with an associated increase in the predicted hardness, as presented 

below and discussed in section IV. We note that the C vs x data do not show a perfectly monotonic 

trend, particularly, for x = 0.4 – 0.44. This is due to the competition between the cubic γ-Mo11N8 

and γ-Mo14N11 and the orthorhombic ε-Mo4N3 phases. These cubic phases exhibit vacancy-

containing NaCl structures and therefore have considerably smaller coordination numbers than the 

orthorhombic phase. The latter has a perfect CN = 6 while the cubic phases have CN = 5.25 and 4.9 

and, similarly, CMo = 4.5 for ε-Mo4N3 is nearly one neighbor larger than CMo = 3.81 and 3.85 for 

γ-Mo11N8 and γ-Mo14N11. The smaller number of nearest neighbors is a direct consequence of the 

vacancies which also result in the larger atomic volume presented above.  

Figure 4 is a plot of the calculated mechanical properties of the eight stable Mo1-xNx 

compounds as a function of composition x, including bcc Mo (x = 0) but excluding molecular 

nitrogen (x = 1). This data is also listed in Table 2. The calculated bulk modulus B = 264 GPa for 

pure Mo (x = 0) is in agreement with the previously measured 262 – 265 GPa for bcc Mo.75–77 B 

increases approximately linearly with x to 293 GPa for β-Mo3N and 347 GPa for δ-MoN2, resulting 

in an overall increase of 18% in the composition range x = 0.25 – 0.667. We attribute the increase 

in B primarily to the decreasing atomic volume, which decreases by 27% over the same 

composition range.  
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The isotropic shear modulus G is determined from the calculated elastic tensor, as 

described in Section II. It increases monotonically with x, from 126 GPa for bcc Mo to 212 GPa 

for MoN2. This corresponds to a 68% overall relative increase, which is considerably larger than 

the increase in B. We attribute this difference to the fact that the bulk modulus is controlled by the 

bond density (and strength) while the shear modulus is determined by the directionality of the 

bonds.78 We also note that the largest increase in G occurs at x = 0.41, which corresponds to the 

transition between hexagonal δ-Mo3N2 and cubic γ-Mo11N8 and is associated with a steep drop in 

CN from 6 to 5. That is, the hexagonal to cubic transition leads to a reduction in the number of 

nearest neighbors which causes more directional covalent bonds and a corresponding increase in 

G of 22%. For the same transition, B increases only by 4% since Vo remains nearly constant (0.5% 

increase). We note that the G for the ε-Mo4N3 remains nearly as high (2% drop) as for γ-Mo11N8, 

even though CN = 6 for the orthorhombic ε-Mo4N3. We attribute this to the 6% lower atomic 

volume of the particularly dense orthorhombic structure, which also results in a 7% higher B, as 

evidenced by an outlier in the plot of B in Fig. 4(a) at x = 0.429. The isotropic elastic modulus E 

increases by an overall 62% from 327 GPa for Mo to 530 GPa for δ-MoN2. Similar to G, the elastic 

modulus exhibits the steepest increase at x = 0.41, which corresponds to the transition from 

hexagonal Mo3N2 to cubic Mo11N8, and is attributed to an increase in the covalent character of the 

Mo-N bonds.  

Figure 4(a) also includes the hardness H, determined from the calculated B and G using 

Tian’s model,63 as described in Section II. It increases gently from 12 GPa for bcc Mo to 14 GPa 

for δ-Mo3N2, exhibits a steep increase to 20 GPa for γ-Mo11N8 and 24 GPa for σ-MoN and σ-

Mo2N3, and finally reaches 26 GPa for δ-MoN2. The overall H vs x data resembles the composition 

dependence of E, showing a steep increase at the hexagonal-to-cubic transition at x = 0.41, 

followed by a second increase as the structure transitions from cubic to monoclinic between x = 

0.44 and 0.5.  The steep increase at x = 0.41, is primarily attributed to the decrease in CN and the 

corresponding increase in bond directionality, as presented above.  The second steep increase at x 

= 0.44 – 0.5 is attributed to an increase in CMo from 3.85 to 5, while CN remains constant. This 

results in an increasingly densely packed structure and a higher density of Mo-N bonds, leading to 

a higher shear modulus and hardness and transition from ductile to brittle, as discussed below.  

Figure 4(b) is a plot of Poisson’s ratio ν and Pugh’s ratio k for Mo1-xNx alloys with 0 ≤ x ≤ 

0.67. The values are directly determined from the data in Fig. 4(a) using ν = E/2G -1 and k = G/B. 

The calculated Poisson’s ratio remains approximately constant at ν = 0.29±0.01 for x = 0-0.4, 

which includes metallic Mo as well as tetragonal β-Mo3N and hexagonal δ-Mo3N2. However, it 

then drops to ν = 0.27±0.01 for the cubic γ-Mo11N8 and γ-Mo14N11 and orthorhombic ε-Mo4N3 

phases, and to ν = 0.23±0.01 for the monoclinic σ-MoN and σ-Mo2N3 phases, before increasing 

again to 0.25 for δ-MoN2. The latter value is in agreement with ν = 0.25 from a previous 

computational study. 47 We use the Poisson’s ratio as an indicator of bond character and ductility. 

More specifically, a material can be classified as brittle if ν < 0.25, and conversely as ductile if ν 

> 0.25.62 In addition, a decreasing Poisson’s ratio suggests an increasing resistance against changes 

in bond angles, indicating an increasing covalent bonding character. Correspondingly, the steep 

decrease from ν = 0.29 for δ-Mo3N2 to ν = 0.24 for σ-MoN indicates an increasing tendency for 

brittle fracture associated with a transition to an increasingly covalent bonding character at x = 0.4 

– 0.5. Thus, Mo1-xNx is predicted to exhibit a ductile-to-brittle transition at x = 0.44 – 0.5, as the 

lowest energy phase transitions from cubic γ-Mo14N11 to monoclinic σ-MoN. This transition is also 

evident from the steep increase in shear and elastic moduli at x = 0.4 – 0.5, presented above. 

Another indicator for a ductile-to-brittle transition is Pugh’s ratio k, where k < 0.6 is typically used 

as a condition for ductility while k > 0.6 leads to a brittle material.62 Pugh’s ratio is plotted in Fig. 
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4(b). It remains approximately constant at k = 0.48 – 0.51 for x = 0 – 0.4, increases steeply to k = 

0.64 for σ-MoN and finally decreases slightly to 0.61 for δ-MoN2. That is, Pugh’s ratio exhibits a 

composition dependence that is approximately inverse to that of the Poisson’s ratio. The steep 

increase in Pugh’s ratio at x = 0.4 – 0.5 indicates an increase in the covalent bonding character 

with increasing x, which is also reflected by the steep increase in the elastic modulus from 387 

GPa for δ-Mo3N2 to 487 GPa for σ-MoN, and in the shear modulus from 150 GPa for δ-Mo3N2 to 

196 GPa for σ-MoN. Using the above k < 0.6 criterion for ductility suggests a ductile-to-brittle 

transition between x = 0.44 and 0.5, in perfect agreement with the Poisson’s ratio argument. Thus, 

in summary, the stable phases of Mo1-xNx are predicted to be ductile for 0 ≤ x ≤ 0.44 and brittle for 

x ≥ 0.5, with a ductile-to-brittle transition between the cubic γ-Mo14N11 and the monoclinic σ-MoN 

phases at x = 0.44 – 0.5.  

The calculated stiffnes tensors are also used to confirm mechanical stability of the Mo1-xNx 

phases that are on or near (within 5 meV) the convex hull. All eight compound phases satisfy all 

Born-Huang mechanical stability criteria.71,72 That is, as expected for phases that are 

thermodynamically stable, the presented Mo1-xNx compound phases exhibit mechanical stability. 

In addition, the dynamical stability has been explored by calculating the phonon dispersion curves 

and checking for imaginary frequencies. These calculations indicate that four phases, namely δ-

Mo3N2, ε-Mo4N3, σ-MoN, and δ-MoN2 exhibit real frequencies throughout the entire Brillouin 

zone, while the remaining four structures β-Mo3N, γ-Mo11N8, γ-Mo14N11 and σ-Mo2N3 show 

imaginary frequencies in small fractions of their Brillouin zone. An example is given in the 

supplementary document. These imaginary frequencies may indicate dynamical instability which 

may be associated with slightly more stable structures that, however, could not be found with the 

performed phase-search due to the limited number of atoms. However, more likely, the few 

imaginary frequencies are a computational artifact associated with the limited size of the supercells 

used for these phonon calculations, that is, they are due to limited accuracies caused by the large 

computational cost of calculating the phonon dispersion curves of these relatively asymmetric 

structures, as also discussed in Section II. 

  

IV. Discussion 

 The calculated Mo1-xNx convex hull presented in Fig. 1 indicates a diverse set of stable 

compound phases, and well defined structural transitions with increasing N content from bcc Mo 

for x = 0 to tetragonal β-Mo3N for x = 0.25, hexagonal δ-Mo3N2 for x = 0.4, cubic and orthorhombic 

phases for x = 0.421 – 0.44, monoclinic σ-phases for x = 0.5 – 0.6, and hexagonal MoN2 for x = 

0.667.  As a first discussion point, we note that the calculated convex hull for 0 ≤ x ≤ 0.429 is a 

straight line which, within uncertainty, even remains straight to γ-Mo14N11. That is, the convex 

hull is not particularly “convex,” which means that the six listed phases for x ≤ 0.44 effectively 

can co-exist in thermodynamic equilibrium, assuming contributions from the entropy to the free 

energy are negligible. Consequently, there is a negligible driving force for, for example, a mixture 

of bcc Mo and ε-Mo4N3 to form a β-Mo3N or a δ-Mo3N2 compound, and similarly, these latter 

compounds also have a negligible driving force for dissociation into neighboring compounds with 

higher and lower N-concentrations. As a consequence, a Mo1-xNx compound with 0 ≤ x ≤ 0.44 can 

exhibit multiple phases and/or spatial composition variations without increasing its enthalpy. This 

suggests, that kinetic considerations during synthesis will determine the developing structure as 

well as the composition of Mo1-xNx. That prediction is consistent with the diverse structures that 

have been reported from studies of Mo1-xNx thin film growth as well as prior theoretical 

investigations, as summarized in Section I.  
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 The region of the convex hull between x = 0 and 0.4 exhibits only one phase: tetragonal β-

Mo3N at x = 0.25. This phase has an Hf that is just 2 meV above the line connecting bcc Mo at x = 

0 and ε-Mo4N3 at x = 0.429 and is therefore considered to lie on the convex hull, however, without 

a thermodynamic driving force for its formation from bcc Mo and ε-Mo4N3. Previous experimental 

reports indicate that compositions with x = 0 – 0.33 lead to phase separation into bcc Mo and β-

Mo2N
33,37,38,79 or γ-Mo2N

29,30,34–36 with the γ-Mo2N being more commonly observed, while 

computational reports indicate variants of tetragonal β-Mo2N with nitrogen vacancies50 and a low-

enthalpy orthorhombic ε-Mo2N.47 Our calculations of these phases with x = 0.33 show, however, 

that both ε-Mo2N with Hf = -0.304 eV and β-Mo2N with Hf = -0.293 eV are 7 and 18 meV/atom 

above the convex hull, as also indicated in Fig. 1, suggesting that they are not stable against 

dissociation into ε-Mo4N3 and bcc Mo or β-Mo3N. Nevertheless, we are not aware of any 

experimental report on the synthesis of β-Mo3N, which may be due to (i) the relatively low 

symmetry of this phase which limits its nucleation, (ii) the competing phase transition directly to 

bcc Mo and ε-Mo4N3, or (iii) some experimental ambiguity in the phase determination, as different 

cubic, tetragonal, and orthorhombic phases or phase mixtures exhibit similar diffraction pattern 

signatures. The predicted β-Mo3N phase exhibits a primarily metallic bonding character, which 

results in a relatively high Poisson’s ratio ν = 0.28 and a low Pugh’s ratios k = 0.51. It has a volume 

per atom Vo = 13.17 Å3 which is high in comparison to other Mo1-xNx phases and is attributed to 

the high Mo-to-N ratio that also results in the high nitrogen and low molybdenum coordination 

numbers of CN = 6 and CMo = 2, respectively. The hexagonal and cubic convex hulls, indicated by 

the green and red curves in Fig.1 suggest formation enthalpies at x = 0.25 that are 23 and 126 

meV/atom higher than the tetragonal β-Mo3N phase, respectively. These convex hulls are 18 and 

60 meV/atom above the total convex hull for at x = 0.3, respectively. The relatively high formation 

enthalpies of cubic and hexagonal phases in this composition region along with the negligible 

thermodynamic driving force for the formation of β-Mo3N from ε-Mo4N3 and bcc Mo may explain 

the lack of experimental observations of molybdenum rich MoxN1-x with x = 0 – 0.33. In contrast, 

experimental studies report either tetragonal β-Mo2N
33,37,38,79 or cubic γ-Mo2N.29,30,34,36–38 

For 0.33 < x < 0.4, both the cubic and hexagonal hulls approach the overall stable hull with 

increasing x. More specifically, the cubic hull is 14 meV above the convex hull for x = 0.33, and 

this difference decreases to 9 and 6 meV for x = 0.375 and x = 0.4. Similarly, the Hf of calculated 

hexagonal phases decreases from 15 meV above the convex hull at x = 0.333 to 8 and 3 meV above 

the convex hull for x = 0.375 and x = 0.4. This indicates that both cubic and hexagonal phases are 

expected to have an increasing likelihood for formation with increasing x in this composition 

range, because of the decreasing enthalpy difference ΔHf for forming these phases instead of the 

stable phase defined by the overall convex hull. Comparing the cubic and hexagonal hulls shows 

that cubic phases are clearly preferred over the hexagonal phases for x < 0.3, while hexagonal and 

cubic phases have similar enthalpies for x = 0.3 – 0.4. The difference in Hf is less than 7 meV for 

x = 0.33 – 0.4, such that the competition between hexagonal and cubic phases for x = 0.33 – 0.4 is 

likely determined by kinetic factors. The transition from β-Mo3N with x = 0.25 to δ-Mo3N2 with x 

= 0.4 leads to a denser packed structure with a 12% lower atomic volume and an increase in CMo 

from 2 for β-Mo3N to 4 for δ-Mo3N2 which results in a more covalent bonding character. 

Experimental studies have reported variants of γ-Mo2N
29,32,80 and β-Mo2N

33,35,37,81 for this 

composition range. However, both of these phases have calculated Hf values that are higher than 

that of orthorhombic ε-Mo2N which in itself lies above the convex hull, as indicated in Fig. 1 for 

x = 0.33. In spite of the hexagonal δ-Mo2N phase having a formation enthalpy that is just 1 meV 

higher than the cubic γ-Mo2N, we are not aware of any experimental reports for the synthesis of δ-

Mo2N. This further illustrates the fact that kinetic constraints strongly affect Mo1-xNx synthesis. 

We note that particularly the orthorhombic ε-Mo2N and ε-Mo4N3 phases have lower symmetries 
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than the experimentally observed tetragonal β-Mo2N, which may suppress nucleation of the ε-

phases, leading to metastable β-Mo2N or even less stable (but more symmetric) cubic γ-Mo2N.  

The elastic modulus and hardness moderately increase with x in the compositional range x 

= 0 – 0.4, with E increasing from 327 GPa for bcc Mo to 385 and 387 GPa for β-Mo3N and δ-

Mo3N2, while H increases from 12 GPa for bcc Mo to 15 and 14 GPa for β-Mo3N and δ-Mo3N2. 

These values are consistent with the experimentally reported mechanical properties in this 

composition range which are, however, not from the equilibrium β-Mo3N and δ-Mo3N2 phases but 

instead from β-Mo2N and γ-Mo2N, exhibiting a wide range of measured values with E = 130 – 420 

GPa,36,50,80–82 and H = 6 – 33 GPa.36,50,80–82 These wide ranges can be attributed to a variety of 

reasons including residual stress in thin films and variations in composition, density and grain size.  

 In the compositional range x = 0.4 – 0.5, cubic and hexagonal Mo1-xNx phases are in close 

competition, as evident from the nearly overlapping cubic and hexagonal convex hulls shown in 

Fig. 1. The cubic convex hull has its minimum of Hf = -0.416 eV at x = 0.48, while the minimum 

of the hexagonal hull of Hf = -0.422 eV is at x = 0.5. However, at this stoichiometric composition, 

the monoclinic σ-MoN phase is even slightly (7 meV) more stable than the hexagonal δ-MoN. In 

addition, the orthorhombic ε-Mo4N3 phase has an Hf that is slightly (3 meV) below the cubic hull 

defined by γ-Mo11N8 and γ-Mo14N11 phases. That is, while hexagonal and cubic phases dominate 

the interesting composition range x = 0.4 – 0.5, lower symmetry ε-Mo4N3 and σ-MoN phases at x 

= 0.429 and 0.5 contribute to the possible phase diversity. Based on the plotted cubic and 

hexagonal convex hulls, compositions between x = 0.4 and 0.421 should in principle phase 

segregate into hexagonal δ-Mo3N2 and cubic γ-Mo11N8. However, the small enthalpy difference of 

the competing δ and γ phases suggests that a single phase, either δ or γ should be expected, while 

the complete convex hull would even suggest the unlikely phase segregation into bcc Mo and 

orthorhombic ε-Mo4N3. A similar argument can be made for the x = 0.44 – 0.5 range, for which 

Mo1-xNx in principle should segregate into γ-Mo14N11 and σ-MoN. However, the enthalpies of the 

cubic phases are so close to the convex hull, for example, just 6 meV above the calculated hull for 

x = 0.48, such that we expect cubic phases to dominate at x = 0.44-0.49, while x = 0.5 may lead to 

the monoclinic or hexagonal phase since Hf of the cubic phase increases steeply with increasing x 

≥ 0.48. More generally, Hf of both δ and γ phases are so close (0-16 and 0-7 meV, respectively) to 

the overall convex hull for the entire range x = 0.4 – 0.49, that we expect kinetic barriers during 

compound formation to determine which phase will ultimately form. This is consistent with reports 

from experimental studies, indicating primarily δ-MoN32,34,42,79 and γ-MoN in the vicinity of x = 

0.5.32,43,83,84 Our results refine previous theoretical predictions which report a region of γ-phases 

for x = 0.375 – 0.44,50 and a region of δ-phases for x = 0.44 – 0.5.46,50,85 We attribute the different 

results in our study primarily to the much more extensive phase search, both in compositional and 

symmetry space, as the cubic and hexagonal phases that define the convex hull have relatively 

large unit cell sizes while the ε-Mo4N3 and σ-MoN phases that also contribute to the convex hull 

have low symmetries and are correspondingly difficult to discover.  

The composition range x = 0.4 – 0.5 is also interesting with regards to changes in bond 

character and mechanical properties. The atomic volume remains roughly constant with Vo = 11.59 

± 0.03 Å3 for δ-Mo3N2, γ-Mo11N8 and γ-Mo14N11 but decreases to 10.97 ± 0.02 Å3 for ε-Mo4N3 

and σ-MoN. This steep decrease is explained by the molybdenum coordination number which 

remains nearly constant at approximately 4 for δ-Mo3N2, γ-Mo11N8 and γ-Mo14N11, but increases 

to CMo = 4.5 and 5 for ε-Mo4N3 and σ-MoN, leading to more densely packed structures. A slight 

increase in x from 0.4 for δ-Mo3N2 to 0.421 for γ-Mo11N8 leads to steep increases in the elastic and 

shear moduli from 387 – 462 GPa and 150 – 183 GPa, respectively. These increases occur despite 
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Vo remaining constant and are attributed to the decrease in CN from 6 to 5.25 which promotes a 

more covalent character and more directional bonding. A second increase in the stiffness of 

MoxN1-x is predicted between x = 0.44 and 0.5, corresponding to the transition from the γ-Mo14N11 

to the σ-MoN phase. This is facilitated by an increase in CMo from 3.81 to 5 which suggests an 

increasingly covalent bonding character, since an increase in (covalent) bonds to nearest neighbor 

nitrogen atoms replaces the strength of metallic 2nd-nearest-neighbor Mo-Mo bonds, leading to a 

drop in Poisson’s ratio from 0.27 to 0.24 and an increase in Pugh’s ratio from 0.55 to 0.64. These 

changes suggest a ductile-to-brittle transition at x = 0.44 – 0.5, which is accompanied by a 10% 

increase in the elastic modulus and 33% increase in calculated hardness. In total, E increases by 

26% and H increases by 71% over the compositional range x = 0.4 – 0.5.  

For x = 0.5, experimental studies report the formation of δ-MoN32,34,42,79 and the γ-MoN32,43,83,84 

phases. Our calculations of the δ-MoN and γ-MoN (in the NbO phase) phases indicate formation 

enthalpies which are 7 and 36 meV higher than the most stable σ-MoN phase. These enthalpy 

differences are small, suggesting that kinetic barriers likely play an important role in determining 

the stable phase at x = 0.5, which might lead to the synthesis of a more symmetric hexagonal 

structure over a relatively uncommon monoclinic structure.  We are not aware of any experimental 

observation of the σ-MoN phase, which may be attributed to its low symmetry that makes synthesis 

challenging and also to kinetic barriers associated with the significant atomic rearrangements 

required for the transition from symmetric γ-MoxN1-x at x = 0.44 to σ-MoN at x = 0.5, such that a 

more symmetric δ-MoN phase is experimentally synthesized.34,79,82,86  The reported mechanical 

properties of the experimentally synthesized δ-MoN phase and its variants exhibit a wide range, 

with E =  270 – 420 GPa80,82 and H = 15 – 27 GPa,80,82 in reasonable agreement with our predicted 

E = 487 GPa and H = 24 GPa.  

  The compositional range x = 0.5 – 0.6 of the MoxN1-x convex hull is populated by the 

monoclinic σ-MoN and σ-Mo2N3 phases. The atomic volume remains constant between x = 0.5 – 

0.6, which is attributed to competing effects from CMo which increases from 5 to 6 and from CN 

which decreases from 5 to 4. Similarly, the mechanical properties including moduli and Pugh’s 

and Poisson’s ratios are nearly identical for σ-MoN and σ-Mo2N3. Previous studies report 

hexagonal phases for 0.5 < x < 0.6, including the experimental synthesis of δ-Mo5N6 with x = 

0.54,31 and theoretical predictions of a hexagonal symmetry.47 This is in direct contradiction to our 

results which show that cubic and hexagonal convex hulls deviate significantly from the convex 

hull of the stable σ-phases in this region, indicating that the monoclinic phases are clearly more 

stable. In particular, the cubic convex hull is ΔHf = 36 meV above the overall convex hull at x = 

0.5 and this difference increases to 109 meV for x = 0.6. Similarly, ΔHf for the hexagonal hull 

increases from 7 meV at x = 0.5 to 45 meV at x = 0.6. Therefore, increasing x from 0.5 to 0.6 

results in an increasing preference of the monoclinic phases over hexagonal and (even more so) 

cubic phases, such that σ-Mo2N3 is thermodynamically much more stable than δ-Mo2N3, while a 

hypothetical cubic γ-Mo2N3 would be even less stable than the hexagonal phase. However, we are 

not aware of any experimental reports of the σ-Mo2N3 phase yet, which may again be due to kinetic 

barriers which favor the more symmetric hexagonal phase over the monoclinic phase.  

The most nitrogen-rich compound of the Mo1-xNx convex hull is hexagonal δ-MoN2. Our 

search algorithm could not find any other thermodynamically stable phases with higher nitrogen 

content, i.e., with 0.67 < x < 1. The δ-MoN2 phase is rather different from the other phases 

predicted for x = 0 – 0.6, as it includes a relatively short 1.38 Å nearest neighbor bond between 

two nitrogen atoms, while the nearest neighbor atoms for all other structures (x ≤ 0.6) are always 

of opposite type. The nitrogen atoms form dumbbells which also result in a dense structure as 

evident from the 13% decrease in Vo during the transition from σ-Mo2N3 with x = 0.6 to δ-MoN2 
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with x = 0.667. These two phases have the same coordination numbers CMo = 6 and CN = 4, where 

the Mo atoms in both phases form 6 bonds with nearest neighbor nitrogen atoms, while the bonding 

environment of the N atoms changes from four Mo neighbors for σ-Mo2N3 to three Mo and one N 

neighbors for δ-MoN2. The shear modulus G = 212 GPa and hardness H = 26 GPa of hexagonal 

δ-MoN2 is approximately 8% above the values for σ-Mo2N3, which we attribute to the N2 

dumbbells as well as possibly the 13% smaller atomic volume. Similar transition metal di-nitrides 

such as WN2,
87 TiN2

88 and CrN2
16 have previously been predicted to exhibit high mechanical 

strength. In contrast, experimental studies for Mo1-xNx with x > 0.6 report phases with hexagonal 

symmetry such as rhombohedral MoN2, which is different from the predicted hexagonal symmetry 

of MoN2,
47 WN2,

87 TiN2
88

 and CrN2,
16  at x = 0.667.45 We calculate a formation enthalpy for this 

rhombohedral phase that is 241 meV higher than that predicted for δ-MoN2, in good agreement 

with previously reported calculations that predict a 221 meV difference.47 This large energy 

difference raises the question why the rhombohedral instead of the δ-MoN2 phase forms. We 

speculate that this is likely associated with kinetic barriers for the inclusion of the N2 dumbbells 

within close-packed Mo planes, or conversely, the expected low kinetic barrier for an N2 dumbbell 

to detach and desorb into the vapor phase, providing a considerable entropy benefit at finite 

temperatures, consistent with the reported tendency for a decreasing N-to-metal ratio in transition 

metal nitrides with increasing synthesis temperatures, including TiN,89 HfN,90 TaN,91 WN,25 

MoN,43 CrN,92 NbN4 and  Ti1-xAlxN.93   

V. Conclusions   

In summary, the convex hull of MoxN1-x contains ten stable phases which are bcc-Mo, β-

Mo3N, δ-Mo3N2, γ-Mo11N8, ε-Mo4N3, γ-Mo14N11, σ-MoN, σ-Mo2N3, δ-MoN2, and molecular 

nitrogen. The convex hull is a straight line for 0 ≤ x ≤ 0.44, such that the first six phases in the 

above list can effectively co-exist in thermodynamic equilibrium, which may explain why some 

of these phases have never been synthesized yet. The calculations also predict new unexplored 

monoclinic σ-MoN and σ-Mo2N3 phases for x = 0.5 – 0.6, and confirm the previous theoretical 

prediction of a hexagonal phase with N2 dumbbells for x = 0.667. In addition, we report the convex 

hull of cubic and hexagonal structures of MoxN1-x, since these high symmetry structures are often 

preferred in experimental growth conditions. The calculated formation enthalpies indicate that the 

cubic structures are clearly preferred over hexagonal structures in the molybdenum rich region (x 

= 0 – 0.3) and hexagonal structures are clearly preferred in the nitrogen rich region (x > 0.5), while 

the cubic and hexagonal structures compete with each other closely in the range x = 0.3 – 0.5 where 

their difference in enthalpy is less than 16 meV/atom, which implies that kinetic barriers during 

synthesis play an important role in the formation of either the hexagonal or cubic phase.   

The average coordination number of nitrogen atoms CN for the stable structures in the 

convex hull decreases from 6 to 4, while the average coordination number of molybdenum atoms 

CMo increases from 2 to 6 as x increases from 0.25 to 0.667, leading to an increasing covalent 

bonding character with increasing x. The elastic modulus of the stable phases of MoxN1-x increases 

from 327 to 530 GPa and the shear modulus increases from 126 to 212 GPa as x increases from 0 

to 0.667. Particularly steep increases in the moduli are predicted for x = 0.4 – 0.5, which correspond 

to the composition range where phase transitions from hexagonal to cubic to monoclinic structures. 

The predicted hardness increases over the same composition range from 14 to 24 GPa, while a 

drop in Poisson’s ratio and an increase in Pugh’s ratio indicate a ductile to brittle transition between 

x = 0.44 and 0.5.  

 

Supplementary Material 
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 See supplementary material for (1) a figure of the complete Mo1-xNx convex hull, (2) detailed 

descriptions of the structure of the eight stable compound phases including lattice vectors and atomic 

positions, and (3) example phonon dispersion curves. 
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Figures: 

 

Figure 1: Calculated formation enthalpy Hf per atom of Mo1-xNx compounds vs composition x. 

The labeled circles denote stable phases and the solid black line shows the convex hull. Open red 

squares and green triangles indicate enthalpies of cubic γ- and hexagonal δ-phases, respectively, 

while the red and green dashed lines show the corresponding convex hulls. The plot also includes 

tetragonal β-Mo2N and orthorhombic ε-Mo2N. A plot of the complete hull for x = 0 – 1 is provided 

as supplementary document. 
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Figure 2: Schematics of (a) β-Mo3N, (b) δ-Mo2N3,  (c) γ-Mo11N8 phase, (d) ε-Mo4N3, (e)  γ-

Mo14N11, (f) σ-MoN, (g) σ-Mo2N3  and (h) δ-MoN2  phases. The green and red spheres indicate Mo 

and N atoms, respectively. A complete list of the corresponding unit cells including lattice vectors 

and atomic positions can be found in the Supplementary Material. 
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Figure 3: (a) Equilibrium volume per atom Vo and (b) the average coordination numbers CMo and 

CN of Mo and N atoms in stable Mo1-xNx compounds as a function of composition x. 
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Figure 4: (a) Bulk modulus B, isotropic elastic modulus E, isotropic shear modulus G, (b) hardness 

H, and (c) Poisson’s ratio ν and Pugh’s ratio k vs composition x of stable Mo1-xNx phases, as 

determined from first-principles calculations.    
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Phase x Hf 

(eV) 

a, b, c 

(Å) 

α, β, γ 

(deg.) 

dMo–N 

(Å) 

dMo – Mo 

(Å) 

dN – N 

(Å) 

CMo CN 

β-Mo3N 0.25 -0.232 4.20, 4.20, 11.90 90, 90, 90 2.11 2.92 2.84 2 6 

δ-Mo3N2 0.4 -0.371 2.90, 2.90, 15.92 90, 90, 120 2.18 2.78 2.80 4 6 

γ-Mo11N8 0.421 -0.390 7.26, 5.93, 5.93 60, 90, 90 2.11 2.97 2.97 3.72 5.25 

ε-Mo4N3 0.429 -0.401 2.87, 7.12, 7.52 90, 90, 90 2.17 2.77 2.81 4.5 6 

γ-Mo14N11 0.44 -0.409 7.22, 7.22, 7.22 109, 109, 109 2.10 2.80 2.89 3.9 4.9 

σ-MoN 0.5 -0.429 7.10, 4.26, 2.94 90, 90, 102 2.14 2.79 2.64 5 5 

σ-Mo2N3 0.6 -0.423 5.01, 5.33, 8.63 90, 90, 108 2.08 2.74 2.54 6 4 

δ-MoN2 0.667 -0.348 2.92, 2.92, 7.75 90, 90, 120 2.37 2.93 1.38 6 4 

 

Table 1:  Composition x, formation enthalpy per atom Hf, lattice constants a, b, c, angles between 

lattice vectors α, β, γ, average nearest-neighbor molybdenum–nitrogen bond length dMo-N, average 

molybdenum–molybdenum and nitrogen-nitrogen interatomic distances dMo-Mo and dN-N, 

molybdenum and nitrogen coordination numbers CMo and CN, of the stable Mo1-xNx phases.  

 

Phase  Vo (Å3)  B (GPa) E (GPa) G (GPa) H (GPa) ν k 

Bcc Mo 15.77 264 327 126 12 0.29 0.48 

β-Mo3N 13.17 293 385 150 15 0.28 0.51 

δ-Mo3N2 11.56 305 387 150 14 0.29 0.49 

γ-Mo11N8 11.62 316 462 183 20 0.26 0.58 

ε-Mo4N3 10.97 338 456 179 18 0.27 0.52 

γ-Mo14N11 11.60 318 443 174 18 0.27 0.55 

σ-MoN 10.94 310 487 196 24 0.24 0.64 

σ-Mo2N3 10.95 324 491 199 24 0.23 0.64 

δ-MoN2 9.56 347 530 212 26 0.25 0.61 

 

Table 2: Predicted atomic volume Vo, bulk modulus B, isotropic elastic modulus E, isotropic shear 

modulus G, hardness H, Poisson’s ratio ν, and Pugh’s ratio k of stable Mo1-xNx phases. 

 


