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Abstract—We consider the problem of detecting the active
wireless stations among a very large population. This problem is
highly relevant in applications involving passive and active RFID
tags and dense IoT settings. The state of the art mainly utilizes
interference avoiding (e.g., CSMA-based) approaches with the
objective of identifying one station at a time. We first derive
basic limits of the achievable delay with interference avoiding
paradigm. Then, we consider the setting in which each station
is assigned a signature sequence, picked at random from a
specific alphabet and active stations transmit their signatures
simultaneously upon activation. The challenge at the detector is
to detect all active stations from the combined signature signal
with low probability of misdetection and false positives. We show
that, such an interference embracing approach can substantially
reduce the detection delay, at an arbitrarily low probability of
both types of detection errors, as the number of stations scale.
We show that, under a randomized activation 2model the collision
embracing detection scheme achieves @(%) delay while
the expected delay of existing CSMA schemes are Q(log®(n))
for a population of n stations. Finally, we discuss large-scale
implementation issues such as the design of low-complexity
detection schemes and present numerical investigations.

I. INTRODUCTION

Multi-station detection is commonly used in various large
scale tracking tasks such as sensor networks, supply chain
management and stock control. In this problem setting, there
is a large population of stations, a subset of which is present
in the range of a detector at the time and the goal is to
detect this subset with low probability of error. One of the
key challenges of multi-station detection is the multiple access
aspect of the network due to the unique challenges of the
problem. Many applications involve stations that have very
limited energy and computational capabilities, such as mobile
IoT nodes that are powered with very limited batteries. Some
applications even contain passive stations that use backscatter
techniques to communicate, such as passive RFID tags. In
order to be applicable to such cases, multi-station detection
methods address the potentially limited computational capacity
and energy of the stations, as well as ensuring robustness to
the varying station population in detection range, scalability
and the required quick detection rates.
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The existing methods used in practice are dominantly col-
lision avoidance techniques. One approach is to have the de-
tector broadcast messages, based on which the stations decide
whether they would transmit at the time or not. The broadcast
messages are usually based on a tree search algorithm to find
hierarchical subsets that contain active stations [1]. Another
line of work employs random access methods inspired by
slotted Aloha [2], [3], where each station randomly picks
a time-slot within a time-frame of a pre-determined size.
The detector controls the frame-size based on the observed
successes and failures on previous time-frames.

There are also studies that investigate methods for simul-
taneous station detection, that are proposed as extensions
to collision avoidance methods. One of these approaches
is to use multi-antenna decoders as in [4], where multiple
linear combinations of transmitted signals are received at the
antennas and detection is done by solving these linear equa-
tions. Another line of research [S] employs signal processing
inspired techniques to cluster the complex-valued samples of
the received mixture. Later work [6], [7], [8] improve this
method by taking additional information into account, such
as considering the temporal information instead of only using
projection of the samples on the plane. These studies share a
common caveat inherent in the clustering technique; as the
station population increases, the number of clusters grows
exponentially and they become indistinguishable.

In [9], authors design binary codes and propose a scheme
to decode multiple stations at once over a binary-OR channel.
These described simultaneous detection methods work as part
of collision avoidance techniques aim to decode the collided
packets when an undesired collision occurs. Due to this use-
case, these methods expect only a few packets collide.

As an alternative perspective to the established collision
avoidance schemes, we describe a new coding scheme that
embraces collisions. A major goal of this approach is to ensure
scalability to be feasible for applications that involve large
populations of stations. We propose to have all active stations
transmit at once and detect them simultaneously from the
received signal mixture. The work in [10] also embraces col-
lisions to detect stations simultaneously. Despite its practical
appeal this work omits theoretical guarantees and due to its
use of clustering techniques, suffers from the aforementioned
lack of scalability.



In our problem formulation, we propose statistical models
that capture the statistics of stations’ activation. By considering
these, we are able to connect the detection problem with
other fields like compressed sensing. This enables numerous
algorithms to be employed as potential solutions to the large-
scale detection problem.

The contributions of this paper can be summarized as

o We present basic limits of achievable delay by collision
avoidance approaches in multi-station detection.

o We propose a communication scheme for the simulta-
neous station detection and derive bounds for its error
probability and delay performance under the proposed ac-
tivation models. We show that the proposed approach out-
performs collision avoidance methods. More specifically,
we show that under the independent activation model
the delay 2of proposed simultaneous detection scheme

is @(%), while collision avoidance approaches
yield Q(log®(n)) delay scaling.

o We discuss practical issues related to implementing our
scheme and describe a computationally feasible decoding
approach and present numerical investigations.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

Let there be a total of n stations in the system. We call
a station active (state 1) if it is within the reading range of
the detector and passive (state 0) otherwise. We consider two
cases that model the statistics of the distribution of states of
stations.

e Sparse Activation Model: There exists an upper bound
kmaz € Z4 on the number of active stations at a time.
This bound is independent of 7.

o Independent Activation Model: The states of stations are
i.i.d. Bernoulli random variables with some p € [0, 1],
where p is allowed to be a function of n.

The goal of multi-station detection problem is to detect the
set of active stations at a time with as small delay as possible
while achieving low detection error probability. Here, we refer
to the time it takes for a scheme to attempt detecting the set
of active tags in the system as the delay of the scheme. It is
measured in terms of the number of transmitted symbols. We
report this performance metric in the evaluations we present
in the following sections.

For detection of stations, users interact with the central
station using a variety of protocols. These protocols can be
classified as collision embracing or collision avoiding. These
paradigms are presented in Figure 1. As mentioned in the
previous section, the literature on multiple access of multi-
station detection dominantly relies on collision avoidance
approaches that aim to coordinate present stations to transmit
their signatures one at a time. Next, we describe the activation
process in our collision embracing scheme.

We associate unique real-valued sequences, called signature
sequences to each station to distinguish them from each
other. We propose to have all stations transmit their signature
sequences simultaneously and detect the set of present stations
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Figure 1: Perspectives of Collision Avoidance and Collision
Embracing Schemes

from the received mixture of these signals. The aforemen-
tioned collision avoidance approaches yield iterative solutions
to detect stations one at a time, while our approach views this
task as a one-shot problem.

Let m denote the length of the signature sequences of
stations and these sequences be stored in a codebook A, «,, of
real symbols satisfying the power constraint % Z;”:l Afj <
P, Vi € {1,2,...,n} for a given power constraint P € R.
In our analyses and numerical investigations we use random
Gaussian codebooks, entries of which are independent and
identically distributed (i.i.d.) as A;; ~ N(0, P). We use
SNR = ﬁ to denote the signal-to-noise ratio per transmitted
symbol.

Let the states of stations be denoted by the state-vector s €
{0,1}™ and s; denote the state of the i*" station. An active
station transmits its signature sequence to show its presence,
which for station 7 would be {A;;}72,. Letting y denote the
m-dimensional vector received at the detector, we obtain the
following model

y =As+w, €]

where w = {w;}!", is additive white Gaussian noise with
w; ~ N (0, No/2). Using y and the known codebook A, the
detector infers the set of active stations.

Let § denote the recovered state-vector from y by the
detector. Since the simultaneous detection of stations is a one-
shot process, we consider the event {s # §} as a detection
error, denoted by £. On the other hand, in the case of an
erroneous detection a collision avoidance scheme allows the
detector to ask for a re-transmission. Since the proposed
scheme does not allow any re-transmissions, we aim to achieve
the following.

Problem Statement: Our goal is to design a codebook A
that achieves low detection delay and yields a detection error
probability that vanishes with increasing number of stations,
n.

Since the multi station detection problem is commonly used
in large scale applications, the detection method is required to
be applicable to large populations of stations and achieve low
delay scaling to still be feasible. In our analyses, we guarantee
low probability of detection error for large n, which is usually
the case in practice. We provide theoretical guarantees on the



achieved delay and error probabilities by the proposed scheme
in the next sections.

In addition to the mentioned related literature, the informa-
tion theoretic many-user information paradigm presented in
[11] is similar to ours under certain conditions. This paper
aims to characterize the capacity of Gaussian channel. What
distinguishes this work is that they allow the number of
transmitters to grow with the block-size, instead of assuming it
to be constant. The independent activation model we propose
becomes in line with this perspective when p is a function
of n. In Section IV, we consider this case in our analysis
and compare the generality of our results with the related
investigations in [11].

III. BASIC LIMITS OF SIMULTANEOUS DETECTION

We present theoretical guarantees for the simultaneous
detection scheme when maximum likelihood (ML) decoding is
used by the detector. We first present a bound on probability of
detection error for finitely many stations, that is independent of
the station activation model. Then, using this result we analyze
the delay of the simultaneous detection scheme, denoted by
Tsp, under both of the proposed activation models.

Lemma 1. The probability of detection error for the proposed
simultaneous detection scheme using maximum likelihood de-
coding satisfies

_m

P(E) < kﬁ:_l (Z) (1 4 iSNR) - @)

Proof. We proceed by following the random coding argument
(as in [12], Chapter 5). Let x(s) = As denote the encoding
function that maps the state-vector s to its corresponding
codeword, where the codebook A = {A;;}nxn consists
of i.id. Gaussian random variables A;; ~ N(0,P). This
codebook asymptotically satisfies the power constraint since
as m — oo, % Z;n:1 Afj — P. That is, the probability of a
codeword not satisfying the power constraint vanishes as the
block-length grows. Let
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This is the probability that an ML-detector confuses the state-
vectors s; and s; with each other under an AWGN channel
[12]. For a given codebook and a particular state-vector s;,
using union bound and the fact that there are 2" possible state-
vectors we obtain the following.
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Let Ny denote the ¢i-norm of a vector v. Then, Njs, g
denotes the number of differing indices between the two state-
vectors s; and s;.
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Let S to denote the decoded state-vector. By the construction
of our codebook, we have |z(s) — 2(8)| = |x(s — §)|. Using
this, we define a new random variable D Nja_s @8
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We rewrite (3) using this and the fact that Q(z) < e” 'z .
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where 2, denotes the chi-squared distribution with m-degrees
of freedom. Hence, this expectation is the evaluation of the
moment generating function of x2, distribution at ¢ = — £
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Plugging this expression in (3) we obtain the following bound.

P(&) < ki_l (Z) (1 + 2’“]};0)

m
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O

This result is independent of the station activation model
since prior probabilities of sets of stations being active decou-
ple from our bound and simply add up to one.

We aim to choose m large enough to make sure that the
probability of detection error vanishes as n — oo, while
achieving as low delay as possible. Using Lemma 1, we first
prove a sufficient condition on m towards this goal and use it
to provide theoretical guarantees for the delay of our scheme
under both of the proposed activation models.

As long as we can guarantee that probability of detection
error vanishes with increasing n, the delay performance of
our scheme converges to m as n — oo since the probability
of correct detection of all stations approaches one. Hence,
the detection task would be completed in one trial with
probability converging one.



1) Sparse Activation Model: In this model, the maximum
number of active stations is bounded by an integer k., that
is independent of n. Note that we do not have any restrictions
on the distribution of station population as long as its support
is bounded by [0, kynaz]-

Theorem 1. Let simultaneous detection scheme be used with
ML-decoding. Suppose that the number of active stations at a
time is bounded by some kpa. € Zy. If m(n) = w(log(n))
then for any SNR > 0, nhﬁn;o P(€) =0.

Proof. See Appendix A.

Corollary 1. For large enough n, the probability of correct
detection for simultaneous detection scheme with ML-decoding
gets arbitrarily close to 1. Therefore, for any SNR > 0 a delay
of
4k oz log(n) — 21og(2kmaz!)

log(1 + kmazSNR)
is achievable with a probability of error that vanishes with
increasing n.

Tsp =

Proof. This result follows from the last step of the proof of
Theorem 1. O

In the proof of this result, we exploit the boundedness
of the number of active stations to obtain a tight bound,
which is not an unrealistic expectation for many practical
applications. For example, sparsity can be guaranteed in
inventory related applications involving RFID tags since
activation of tags require them to be in the limited reading
range of the tag reader. Hence, no matter how large scale
of a tag population the problem has and how densely they
are placed, the range of tag reader might limit the maximum
number of active stations at a time. Another domain that
involves such sparsity is massive Internet of Things (IoT)
applications, where despite the possibly large population of
devices they are likely to be located much more sparsely
compared to an inventory application. Using such structural
properties of the application at hand, one can bound the
maximum possible number of the active stations in the range
of the detector.

2) Independent Activation Model: In this model, the states
of stations are i.i.d. Bernoulli random variables with parameter
p, which is allowed to scale with n. For our analysis, we
set p(n) = @, where f(n) is a monotonically increasing
function of n. This choice is due to the proof technique we are
using, where under the restriction of p(n) = w(1/n) we bound
the probability of the population of active stations deviating

from the expected population.

Theorem 2. Let simultaneous detection scheme be used with
ML-decoding. Suppose that the states of stations are i.i.d.
Bernoulli random variables with p(n) = @, where f(n)
is a monotonically increasing function of n. If

then for any SNR > 0, lim,,_,., P(£) = 0.

Proof. See Appendix B.
The full expression of the condition for m(n) can be found
at the last step of the proof.

Corollary 2. For large enough n, the probability of correct
detection for simultaneous detection scheme with ML-decoding
gets arbitrarily close to 1. Therefore, for p(n) = @ and any
SNR > 0 a delay of

_ 4f(n)log(n) — 2log([2f(n) — 1]!)

Tsp
log (1+ £52SNR)

is achievable with a probability of error that vanishes with
increasing n.

Proof. This follows from the last step of the proof of
Theorem 2. O

The independent activation model is more challenging than
the sparse model. Although many current applications can be
modeled using the sparse activation model as discussed, the
independent setting is still of interest as it demonstrates the
robustness of the scheme to the variations in the active number
of stations. Moreover, the availability of such theoretical
guarantees might expand the possible applications of multi-
station detection and make new use-cases feasible. Despite
the expected number of active stations is unbounded under
this model, the proposed scheme achieves a desirable delay
performance.

Corollary 3. As a special case of the previous result, for
p(n) = 61%(”) for some ¢ € Ry and any SNR > 0 a delay of

4clog?(n) — 2log ([2¢log(n) — 17!)
log (1+ <5 SNR)

is achievable with a probability of error that vanishes with
increasing n.

As mentioned in Section I, part of the work presented in
[11] is similar to our scheme under the independent activation
model when p scales with n. In that study, minimum user
identification cost is reported as a measure, which is analogous
to m in our formulation. It is defined as the minimum signature
length for detection of the set of active transmitters, which
guarantees a vanishing error probability as n — oo. Using our
notation, the main result for this part of this study (Theorem
2 in [11]) requires the following hypothesis for p(n) = f),

n

lim ne % =0 for all § > 0,

n—oo
which is not satisfied by our benchmark setting of f(n) =
clog(n), since for 6 = 1/c this limit yields 1. This condition
is equivalent to requiring f(n) = w(log(n)). Therefore, while
our result is applicable for any f(n), the similar theorem in
[11] requires f(n) to be w(log(n)).



IV. BASIC DELAY LIMITS OF COLLISION AVOIDANCE
SCHEMES

In this section, we present the fundamental limits of the
delay performance of collision avoidance schemes. We first
derive a bound for a genie-aided scheme assuming perfect
coordination. Despite being unachievable, the scaling of this
optimistic delay bound is outperformed by the proposed si-
multaneous detection scheme. We then derive a bound for a
RFID tag detection method used in practice, called QueryTree
[1], as a special case of our previous analysis. Finally, we use
dynamic programming to present a fundamental limit for any
CSMA scheme that detects stations one at a time.

A. Genie-Aided Collision Avoidance Scheme with Perfect Co-
ordination

Regardless of how they schedule their transmissions, all
collision avoidance schemes try to coordinate the stations to
maximize the ratio of time-slots at which there is exactly
one transmission. Hence, the optimal situation for a collision
avoidance scheme is to achieve perfect coordination and have
exactly one station transmit at each time-slot. We now analyze
this optimistic case by considering a scheme, where we assume
that there is a genie that assigns each station a time-slot to
achieve perfect coordination without any overhead. We denote
the delay of this scheme by Tenie-

Lemma 2. Suppose that the states of stations are i.i.d.
Bernoulli random variables with p(n) = Cl%(n), for some
¢ € Ry. The delay of genie-aided scheme with perfect

coordination satisfies

2¢log?(n)

EfTGenie] 2 log(2)log (1 + SNR)

Proof. Under the independent activation model with p(n) =
CI%("), the expected number of active stations at a time is
log(n). Therefore, even if there is exactly one transmitter at
a time at all time-slots without any errors due to channel
impairments, the expected number of time-slots needed is at
least log(n). Since there are n stations in the system, the binary
signature length of each station must be at least log,(n).

By Theorem 9.1.1 of [13], the capacity of a Gaussian
channel with power constraint P and noise variance Nj/2
is

“4)

1
C= 3 log (1 + SNR) bits/real symbol. 5)

Therefore, if the stations use capacity achieving channel
coding, a binary string of length log,(n) would be transmitted
by % symbols. O

B. Query Tree Protocol

QueryTree protocol [1] converts the multiple access of RFID
tag identification to a tree-search problem. The tag reader has
a hierarchical tree of the set of tags in the system and traverses
it in a depth-first manner. At the beginning of each time-slot,
the reader broadcasts the prefix of the current node of the tree
and the tags whose signatures start with the prefix respond.

If the reader observes collision, it keeps traversing down the
branch. Otherwise records the response (or no response) and
trims the sub-tree below the current node and backtracks to
the next unresolved node in the tree.

Similar to the previous result, we let the expected number
of active tags be clog(n) and let m = logy(n) bits, which
is the lower bound on m due to the population of n tags in
the system. By Equation (1) of [1], for n > 54 the expected
number of queries sent by the reader for identifying clog(n)
tags, denoted by ¢, is bounded as E[g] > 2.881clog(n) — 1.
We assume that the time-slots are of a fixed length of log,(n),
which is the minimum due to the signature length. Let N,
denote the total number of bits exchanged for identifying
clog(n) tags. Since we are omitting the broadcasted queries
from the reader in IV, we obtain the following bound.

E[Np] > (2.881clog(n) — 1) logy(n)

By (5), using a capacity achieving channel coding scheme,
Ny, bits can be transmitted in % symbols. Hence, the expected
delay of QueryTree, denoted by Tp7, satisfies

5.762clog?(n) — log(n)
log(2) log (1 + SNR)

C. Fundamental Delay Limit of CSMA Schemes

Consider a CSMA scheme, where the number of active
stations, denoted by k, is known at the detector and the frame-
size is chosen optimally to minimize the detection delay. Since
any other CSMA scheme without centralized coordination
would achieve a delay at least as much as this scheme,
the delay obtained by this optimal algorithm serves as a
fundamental limit on CSMA approaches.

We formulate this scheme using dynamic programming. We
use the expected delay of the scheme as the objective function
J(k, q) with the control parameter ¢, which denotes the choice
of the number of time-slots. At the end of each frame, the size
of the next frame is chosen optimally based on the number of
undetected active stations. We use ¢* (k) and J*(k) to denote
the optimal frame-size and corresponding minimum expected
delay.

E[Tor] > (6)

J* (k) =mind g+ S Pk = 1)) (1) b,
(k) = min q q Z;( lg)7*(1)

where P(k — [|q) denotes the probability of detecting (k — 1)
stations and reducing the number of remaining stations from
k to [. The scheme would then choose ¢ accordingly to incur
the expected delay of J*(I). Finally, by adding the size of
the current frame we obtain the equation above. One caveat
of this formulation is that the channel is implicitly assumed
to be error-free and the only source of error is collision of
multiple packets.

The main challenge of this problem is to compute P(k —
llg) terms in the sum. We use the fact that the decision of
a station on whether to use a particular time-slot or not is
conditionally independent from its decisions for the rest of



time-slots. Let X (k,q) be the random variable that denotes
the number of successful decoding in ¢ time-slots and in the
presence of k stations and let p;(k,q) denote the probability
of exactly ¢ stations choosing a fixed time-slot. Then,

X(k,q—1),  w.p.po(k,q)
X(k,q) = § X(k—1,9¢—1), wp. pi(k,q)
X(k—1i,q—1), wp.pi(k,q), k>1>2
where

- ()Y (-2)”

Since P(k — l|lqg) = P(X(k,q) = (k — 1)), we use the
random variable X to compute the probabilities iteratively.
+pi(k,g)P(X(k—1,g—1)=i—1)

k
+ 2 pi(k P(X(k — g~ 1) =)

We numerically computed J*(k) and ¢*(k) for k£ < 300
and obtained the optimal frame-size to be ¢*(k) = k for all
k. Moreover, the optimal expected delay turned out to be an
approximately linear curve with its slope rapidly converging
to e as shown in Figure 2. Based on these observations, we
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Figure 2: The slope of J*(k) converges to e with growing

number of active stations.

present the following conjecture and use that expression in the
following discussions.

Conjecture 1. The expected delay of the CSMA scheme that
chooses the frame-size optimally satisfies the following, where
k denotes the number of active stations.

lim [J* (k) — ek| = 0 (7
k—o0

Since we are interested in the scaling of this expression and
the convergence is observed to occur rapidly, we approximate
the expected delay cost of this scheme as J*(k) ~ ek. Finally,
we plug in E[k] = log(n) and as we did in QueryTree analysis,
we lower bound the duration of each time-slot with log,(n).
Letting T g4 denote the delay of this optimal scheme, we
obtain a symbol-level expected delay as the following using
capacity achieving channel coding.

elog®(n)
log(2) log(1 + SNR)"

®)

E[T¢saal =

D. Discussion

Due to the common use of multi-station detection in large-
scale applications, the scaling of delay performance with the
station population plays an important role in the evaluation
of multi-access schemes. Observe that the detection times of
existing collision avoidance schemes scale with Q(log?(n)),
while the proposed scheme achieves @(logz(@g_(}gg((g)(")w)
with probability approaching 1 as n — oo under the indepen-
dent activation model with p(n) = %. To demonstrate the
differences between these delay orders, we plot the derived
expressions in Figure 3 for SNR = —15 dB.
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Figure 3: Presented expressions for delay performances for
SNR=-15 dB

V. IMPLEMENTATION OF SIMULTANEOUS DETECTION &
NUMERICAL RESULTS

Despite its value for our theoretical work, ML-decoding
is not feasible for practical implementations due to its com-
putational complexity growing exponentially with n. In this
section, we focus on more applicable decoding methods.

Estimating the number of active stations has been studied
extensively in the literature, especially in the context of RFID
tag detection. For high SNR levels, even simpler methods like
power detection can be used to accurately estimate k. For the
sake of brevity, throughout this section we assume that the
decoder employs such a method and the number of active
stations, denoted by k, is known.

A. Multi-User Decoding Methods

The decoding methods proposed for multi-user decoding
can be used for our scheme as feasible alternatives to ML-
decoding. A line of work that fits our setting is the multiple-
input multiple-output (MIMO) model. One can interpret each
stream in a MIMO channel as the transmission of a station,
where the channel gain coefficients in the original problem
setting are replaced with the signature sequences of stations.
Using this analogy, various MIMO decoding methods become
feasible candidates for replacing ML-decoding for our scheme.
Other decoding methods like minimum mean squared error



decoding, decorrelator, matched filter [14], semidefinite relax-
ation and sphere decoding [15] can be adapted to be used in
place of ML-decoding for simultaneous detection scheme. We
omit the details of particular decoding methods as they fall
outside the scope of this paper.

B. Decoding with Orthogonal Matching Pursuit

Another alternative is to consider compressed sensing meth-
ods for decoding under the sparse activation model. In this
model, the state-vector s is sparse and the decoding process
aims to recover it from the vector y, which falls in the
framework of compressed sensing and methods like orthogonal
matching pursuit (OMP) [16] can be used for decoding.

OMP is an influential iterative compressed sensing algo-
rithm that greedily detects the set of non-zero indices of a
sparse vector s, denoted by .S, from a noisy observation as in
our model y = As + w under the sparse activation model.
OMP keeps a residue variable r; and takes an input parameter
7 for its stopping rule of ||r||z < 7. Let A(S) denote the
submatrix of A obtained by only keeping the set of columns of
A in the index set S. At each iteration, the algorithm searches
for the index of s that maximizes its projection onto r;, which
is then subtracted from the residue.

Since we assume that k is known and the choice of 7 is not
straight-forward, we use a variant of this algorithm, which we
call OMP-k. Its only difference from the original algorithm
is the stopping rule. Instead of using a threshold we run the
algorithm for k iterations. The pseudo-code of this method is
presented in Algorithm 1, where I denotes the identity vector
and < ry,x; > is the dot product of the two vectors.

Algorithm 1 OMP-k

Require: The active number of stations k

ri=yand S=0

fort=1,2,..,k do
Zy = argmax
Py = A(S)(A(S)TA(S)) L A(S)T
ri1 = =Py

end for

return S

‘<’I’t,$t>|
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C. Numerical Investigations

1) Simulation Setting: We conducted numerical investi-
gations under the sparse activation model, using OMP-k
decoding for k..., = 20. In our simulations, we use the
implementation of OMP in the scikit-learn [17] software
library. In order to capture the behavior of our policy in various
settings we report results for a set of different SNR levels
and span a wide range of n. As the performance metric, we
report the accuracy where an attempt is considered successful
if the states of all stations are correctly detected. All reported
results are obtained using random Gaussian codebooks and by
averaging the results of 50 independent simulations.

® SNR=-15 dB A SNR=-10 dB M SNR=-5dB
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Figure 4: The accuracy of OMP-k for m chosen as the lower
bound in Corollary 1 under the sparse activation model

2) Numerical Results: We set m to be equal to the bound
presented in Corollary 1, which is the minimum block-length
that ensures vanishing probability of error. We simulated the
detection process for growing station population and various
SNR levels. The results are presented in Figure 4.

Despite the shown delay guarantees being asymptotic and
were for ML-decoding, the proposed scheme achieves ac-
curacy levels very close to 1 with the minimum choice of
m for relatively small n using OMP. This result shows the
potential of the simultaneous detection scheme for practical
applications. Note that one can obtain even higher accuracies
for such small station populations by setting m larger and
slightly sacrificing from the delay.

VI. DISCUSSION & CONCLUSION

In this paper, we introduced a multiple access scheme for
the simultaneous detection of mobile stations. Unlike the vast
majority of existing approaches, we embrace collisions rather
than trying to avoid them. We presented both finite-regime and
asymptotic theoretical guarantees for this scheme concerning
its delay performance and error probability. Another contribu-
tion of this work is the analysis of collision avoidance schemes
and basic limits of achievable delay using this paradigm. We
showed for an independent activation model that the proposed
simultaneous scheme asymptotically achieves lower delay than
any collision avoidance scheme. Finally, we discussed the
practical challenges and presented lower complexity variants
of our decoding method and presented numerical investiga-
tions showing the applicability and high performance of the
proposed scheme.

Some of the emerging use-cases of multi-station detection
introduce novel challenges, investigation of which would make
valuable contributions to the literature. One of these is the
treatment of fading channels. A key challenge in this setting
is the heterogeneity of the channel gains, which complicates
the decoding process. Another interesting direction for future
research would be considering the dynamics of backscatter



networks. A dynamic power constraint on stations due to
attenuation or spatial factors introduces novel challenges that
would benefit the practicality of this problem setting.
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APPENDIX A
PROOF OF THEOREM 1

Due to the k,,,, bound, we have N‘Su)_S(m < 2knmaz-
Therefore, the probability of making errors with more than
2k a2, mismatches is zero under this scheme. By Lemma 1

and by ’L—’: > (}), we obtain
kP \ -
2Ny '

2kmaxn nk
PE)< Y k!<1+

k=1

N‘S

Since this is a finite sum, it suffices to show that each summand
of the bound vanishes to show that P(£) — 0. Hence,
following is an equivalent condition.

nk kP %
— 1+ — =0, Vk < 2knaz 9
{ k! ( ’ 2N0> } B ®
By taking the logarithm of both sides of (9), we obtain

{klog(n) ~log(k!) — % log (1 + 21350)} = -0

The following condition on the choice of m as a function of
n, ensures the stated condition above is satisfied.

m(n) > leog(n) —log(k!) +g(n)

log (1 + 2@{;)

where g(n) is any monotonically increasing non-negative
function of n. If this condition is satisfied for & = 2k,,0x»
then it holds for all k. Setting k = 2k, completes the proof.

.

lim

lim
n—oo

APPENDIX B
PROOF OF THEOREM 2

Let ¢ > 0. We partition the event £ over the number of
active stations, denoted by Ng.

P(£) =P(E|Ns > np(1 +€))P(Ns > np(1 +¢))
+P(E|Ns < np(1 + €))P(Ns < np(1 +¢))
< P(Ny > np(1+ €)) + P(E|Ns < np(1 +€))

Since s; are i.i.d. Bernoulli random variables with parameter
f(n)

p = ==, we can use Chernoff-Hoeffding bound.
fzﬂ,p e2f(n
P(Ns>np(l+e) <e 3" =e 5"

Therefore, lim,, o, P(Ng > np(1 + ¢€)) = 0.
To bound P(E|Ns < np(1 + €)), we use (2) with the fact

that %’: > (Z)

m
2

2[f(n)(1+e€)] nk EP\ "~
P(E|N. 1 < A\,
(E|Ns < np(1 +¢)) < 1;::1 k!( +2N0>

k -
<2f(n)(1+e)ml?x{z!<1+2k]€)> }

Instead of finding the maximizing k& value for this bound, we
choose m such that this bound vanishes for all k. Similar to
(9), we require
k —_m
. n kP 2
Since this expression holds for arbitrarily small € > 0, we can
drop the (1 + ¢€) coefficient from our expression by choosing

it small enough. Taking the logarithm of both sides yields the
following condition.

log(2f(n)) + klog(n) — log(k!) o(n)
log (1 + £SNR)

where g(n) is a monotonically increasing nonnegative function

of n. Setting k = [2f(n)] completes the proof. O

m(n) > 2



