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Distributed network optimization has been studied for well over a decade. However, we still do not have a

good idea of how to design schemes that can simultaneously provide good performance across the dimensions

of utility optimality, convergence speed, and delay. To address these challenges, in this paper, we propose a

new algorithmic framework with all these metrics approaching optimality. The salient features of our new

algorithm are three-fold: (i) fast convergence: it converges with only O (log(1/ϵ )) iterations that is the fastest
speed among all the existing algorithms; (ii) low delay: it guarantees optimal utility with finite queue length;

(iii) simple implementation: the control variables of this algorithm are based on virtual queues that do not

require maintaining per-flow information. The new technique builds on a kind of inexact Uzawa method in

the Alternating Directional Method of Multiplier, and provides a new theoretical path to prove global and

linear convergence rate of such a method without requiring the full rank assumption of the constraint matrix.
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1 INTRODUCTION
Consider a fixed data network shared by F end-to-end flows. Each flow f is described by its source-

destination node pair and associated utility function, without a priori established routes. The nodes

within the network cooperate by forwarding each others’ packets toward their destinations. The

network optimization problem is how does one jointly choose the end-to-end data rate xf of each flow
f , the schedule for each link and the link rate for each flow to maximize the network utilities defined
as

max

F∑
f =1

Uf (xf ) s.t. [xf ] ∈ Λ, (1)

where Λ is the capacity region of data network, dependent on the limited power resources and

interference among concurrent transmissions. The optimization problems of the above form plays

a key role in resource control and optimization for both wireline and wireless networks.

In distributed network optimization, each iteration of the algorithm corresponds to one commu-

nication among different nodes, which could require a very large amount of information exchange
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Table 1. Comparison of Existing Algorithms in Network Optimization

Optimality gap Queue-length Convergence speed Routing complexity Scheduling complexity
1

Dual decomposition method O (1/K ) O (K ) O (1/ϵ 2 ) O (F ) poly(L, F )
Proximal method optimal O (1) O∗ (1/ϵ ) O (F log(F )) unknown

Second-order method O (1/K ) O (K 2 ) O (log2 (1/ϵ )) O (F 2 + L2 ) exp(L, F )
Momentum method O (1/K ) O (

√
K ) O (1/ϵ 2 ) O (F ) poly(L, F )

Our new method optimal O (1) O (log(1/ϵ )) O (F log(F )) poly(L, F )
1
The scheduling complexity derives from the traditional node-exclusive interference model.

2
Momentum method refers to heavy-ball method and Nesterov’s accelerated method.

overhead. Therefore, one important metric to measure the performance of algorithm is the conver-

gence speed, i.e., how many iterations are required to obtain an ϵ−accurate solution. In addition,

other important metrics are utility and the physical queue length in steady state, which measures

the throughput and transmission delay that is achieved by the algorithm.

1.1 Existing Algorithms
The large body of work (see, e.g., [9, 20, 21, 23–27, 34–36], and [22] for a survey) in this area has

given rise to several efficient and distributed control algorithmic frameworks. We first review the

state-of-the-art of all the existing algorithms.

First-order dual decomposition method: This kind of algorithm applies the subgradient

descent method to the dual function of problem (1) and leads to a beautiful queue-length-based

control algorithmic (QCA) framework, based on which the components of congestion control,

routing and scheduling are naturally coupled by queuing states [9, 20]. However, the classical

QCA method achieves an O (1/K ) utility optimality gap at an expense of O (K ) steady-state queue-
length, where K > 0 is a system parameter. Hence, a small utility gap will yield a large queuing

delay. Significant efforts have been made to improve this tradeoff including the development of

virtual queue techniques [1, 18], the threshold-based packeting-dropping scheme [15] and the

[O (1/K ),O (
√
K )] tradeoff produced by recent momentum-based methods [23, 24]. Due to the

nonsmoothness of dual function and the subgradient nature, all the above methods suffer from a

slow convergence that requires O (1/ϵ2) iterations to obtain an ϵ−accurate solution.
Second-order Newton method: To improve the convergence speed, there have been many

attempts in obtaining new algorithms by applying the second-order method [25, 26, 36]. Compared

with the first-order method, this kind of algorithm has a faster convergence rate, i.e., O (log2 (1/ϵ ))
iterations (three-level convergence structure with interior point, Newton and matrix splitting

method). However, it has several limitations: (i) the complexity of computing the Hessian inverse

in the second-order method is quite high and does not scale well with the network size; (ii) a

worse utility-delay tradeoff [O (1/K ), O (K2)] in [25]; (iii) it cannot efficiently handle the wireless

interference channel. For example, in the algorithm [26], even the number of variables (time sharing

parameters) in the control plane is exponentially large.

Proximal method: The proximal method was first introduced in the work [21] to tackle the

oscillation problem in a network optimization problem with given routing paths. Unlike the QCA

method, it adds a quadratic regularizer in the routing component to stabilize the solution, and is

proven to be the first algorithm to break the existing utility-delay tradeoff that offers both the

zero utility optimality gap and finite queue length. Recently, the work [37] generalizes this idea to

the scenario of dynamic routing and designs a new backpressure routing algorithm for wireline

network. They prove that the proximal method not only exhibits the feature of low-latency, it also

offers an improved convergence speed of O∗ (1/ϵ )1.

1
Here the O∗ (1/ϵ ) means that the convergence rate is in the ergodic sense. A sequence {an } converges with ergodic rate

O∗ (1/ϵ ) if 1

N
∑N
n=1 an = O (1/N ), with rate O (1/ϵ ) if an = O (1/N ).
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It can be observed that all the existing algorithms sacrifice the performance of one or more

metrics to improve the others. In particular, the slow convergence of all these algorithms will result

in large information exchange overhead. The key question that we aim to answer in this paper

is that: is it possible to develop a joint congestion control, routing and scheduling algorithm with the
fast convergence speed, routing complexity as low as the first-order method and delay as low as the
proximal method?

1.2 Our Results
In this paper, we positively answer this open question and propose a new algorithmic framework.

The comparison of our algorithm and the existing schemes in a L−links and F−flows network
are listed in TABLE 1. One can see that our algorithm offers the fastest convergence speed,

optimal utility, finite queue length, and low routing and scheduling complexity compared with

all the existing methods. The rationale behind our algorithm design is to utilize the Alternating

Directional Method of Multiplier (ADMM), first appeared in [10]. Our key idea is to reformulate the

joint scheduling-routing-congestion control problem as a 2−block separable optimization problem,

and apply the ADMM to the Augmented Lagrangian function of problem (1), which then allows

us to obtain an optimization framework with a layered structure and only a limited degree of

cross-layer coupling.

However, due to a number of technical challenges, developing an ADMM-based method is highly

non-trivial. First, the ADMM’s focus is on minimizing the Augmented Lagrangian function that

is the summation of original utility function and a quadratic penalty function of the constraints.

It will produce a routing-scheduling problem with a non-separable objective function regarding

the rate vector among different links. Therefore, it is difficult to be solved in a low-complexity

and distributed manner. Second, the structure of this method is substantially different from both

the dual decomposition method and the proximal method. For example, the form of congestion

control, routing component, and the coupling among the different layers are different. Hence, the

analytical techniques used in existing methods for utility optimality and queue stability are not

applicable. Third, in a wireless network with interference constraints, unlike the clear relationship

between the linear program-based scheduling problem in the dual decomposition method and the

combinatorial optimization problem, i.e., maximum weighted matching [20, 33], it is unclear how

to solve the new scheduling problem derived from the ADMM-based decomposition.

The main contribution of this paper is that we develop a new algorithmic framework that

addresses the aforementioned challenges. The detailed results and technical contributions of this

paper are as follows:

• We utilize a kind of inexact Uzawa method of Alternating Directional Method of Multiplier [2,

38] to approximately solve a local second-order approximation of the Augmented Lagrangian

function with respect to the link rates. This technique will yield a routing and scheduling

problem with a separable quadratic objective function and a constraint set defined by a

convex hull of feasible link rate vectors.

• We establish the utility optimality and finite queue length of our proposed framework. In

particular, we show that, as the algorithm keeps running, the network utility gap will vanish,

while the queue lengths in each node are bounded throughout by a finite constant. This result

is much stronger than the best tradeoff [O (1/K ),O (
√
K )] of the traditional QCA framework.

Moreover, we prove that our new algorithmic framework converges at a global and linear

rate that obtains an ϵ−accurate solution with only O (log(1/ϵ )) number of iterations, which

is faster than the existing second-order methods.
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• We provide several algorithms to implement the new routing and scheduling problem in

our proposed framework. More precisely, for the wireline network, we show that the new

routing problem can be solved in a distributed manner and in O (F log(F )) time within each

link, which is much lower than O (F 2 + L2) complexity of the second-order method in [25].

For the wireless networks with interference constraints, we show that the complexity of

solving our new scheduling problem is equivalent to the classical MaxWeight scheduling.

This result not only implies a deep connection between these two problems, but also paves

a path to use the existing algorithms [17, 33] of MaxWeight scheduling to solve this new

problem.

One technical contribution independent of interest is the global and linear convergence rate of

our proposed algorithm. As mentioned earlier, this algorithm is indeed applying an inexact Uzawa

method of ADMM to the optimization problem of the form min f (x) + д(y), s.t. Ax + By = b. All
the existing global and linear convergence results [3, 5, 19] of this generalized ADMM requires

an assumption that one of the constraint matrices is of full rank. However, in our problem, both

matrices A and B do not satisfy this condition. We provide a new technical path to overcome this

challenge. The critical technical step is to estimate the distance from the primal and dual iterates

of ADMM to the optimal solution set by the distance to an inscribed polyhedron of the optimal

set. This enables us to utilize the isolated calmness of polyhedral mapping to upper bound such

distance by certain amount of constraint violation.

The remainder of this paper is organized as follows. In Section 2, we introduce the network

model and problem formulation. Section 3 presents our proposed algorithmic framework and the

main results. In Section 4, we provide the detailed theoretical analysis of convergence speed and

queuing stability. Section 5 develops the algorithms for the principal components of our framework.

Section 6 presents numerical results. Section 7 provides some discussions and Section 8 concludes

this paper. Due to the space limit, all the proofs are listed in Appendix.

2 PROBLEM STATEMENT
2.1 Network Model
We consider a slotted communication network system with time slot units being indexed by

t = 1, 2, . . .. As shown in Fig. 1, we represent the network by a directed graph G = {N ,L}, where
N is the set of nodes and L is the set of edges. Let |N | = N and |L| = L. For each node n, denote
the sets of its incoming links and outgoing links as I (n) and O (n), respectively. Let deg(n) be the
number of adjacent links of noden. We define Tx(l ) and Rx(l ) as the transmitting and receiving node

for each edge l . There are F end-to-end sessions in the network, indexed by f ∈ F ≜ {1, 2, . . . , F }.
Each session f has a source node sf and a destination node df in the node setN . To avoid triviality,

suppose that different sources are located at different nodes.

2.2 Congestion Control
Let scalar xf be the injection rate of session f with which data is sent from sf to df , possibly
via multiple hops and multiple paths. We assume that injection rate xf is bounded in [mf ,Mf ].

Associated with each flow f is a utility function Uf (xf ), which reflects the “utility” to session f
when it can transmit at rate xf . We assume that the utility function Uf (·) satisfy the following

conditions.

Assumption 1. (Utility function) For each session f , the utility function Uf (·) is a nondecreasing
and concave function in the interval [mf ,Mf ].
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Fig. 1. Illustrative example of model.

The use of such utility functions is common in the congestion control literature to model fairness.

For example, these conditions hold for the following two typically used utility functions: (i) weighted

proportionally fair utilitiesUf (xf ) = wf log(xf ), wherewf , f = 1, . . . , F are the weights; (ii) general

weighted proportionally fair utilities,

Uf (xf ) = wf
x1−γ

1 − γ
,γ > 0. (2)

Note that these two examples are also strictly concave functions.

2.3 Routing and Scheduling
For each edge l in the set L, suppose that l = (m,n) and the data is transmitted from nodem to node

n. Let rdl represent the amount of capacity on link l that is allocated for data towards destination

d . In the sequel, we call it the link rate for simplicity. The set of destination nodes are defined as

D = {df , f ∈ F }, and let |D| = D. Then we can describe the capacity region of the data network.

Definition 2.1. (Capacity Region [27, 35]) The capacity region Λ of the network is the largest set

of injection rate vector [xf ]f ∈F for which there exists a link rate vector [rdl ]
d ∈D
l ∈L that satisfies the

following constraints.

(1) Flow conservation: for each destination d in D, each node n in N\{d },∑
f ∈F

xf 1{sf =n,df =d } +
∑

l ∈I (n)

rdl =
∑

l ∈O (n)

rdl , (3)

where 1{ · } is an indicator function that takes the value 1 if sf = n,df = d and 0 otherwise.

(2) Capacity constraint: for each link l ∈ L and d ∈ D,



∑
d ∈D

rdl


∈ C ≜ Conv(Γ), rdl ≥ 0, (4)

where Γ = {r(1), r(2), . . . , r(I ) } is the set of feasible link rate vectors, and Conv(·) represents
the convex hull operation.

2.4 Queue Stability
We use Qd

n [t] to denote the length of the physical queue that are destined for node d , waiting for
service at node n in time slot t . For each d ∈ D and n ∈ N\d , the evolution of physical queue
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length is given by

Qd
n [t] =


Qd
n [t − 1] −

∑
l ∈O (n)

rdl [t]

+
+

∑
l ∈I (n)

r̂dl [t]+∑
f ∈F

xf [t]1{sf =n,df =d }, (5)

where [·]+ ≜ max{·, 0}. The rate rdl [t] is the capacity provided to d-destined packets over link l in

time slot t and the rate r̂dl [t] is the actual used capacity over link l for d-destined packets in time

slot t . We have r̂dl [t] ≤ rdl [t] since node n may have less than rdl [t] amount of data to transmit for

destination d . Note that the definition of Qd
n [t] is only used to measure the delay performance of

our algorithm. The actual operation of our algorithm does not require this information (details in

Section 3.1).

Definition 2.2. (Network Stability) Under a congestion control, routing and scheduling scheme,

we say that the network is stable if the sum of queue lengths in steady state remains finite.

lim sup

t→∞

∑
d ∈D

∑
n∈N\d

Qd
n [t] < +∞. (6)

2.5 Problem Formulation
Our objective is to develop a joint congestion control, routing and scheduling algorithm to maximize

the total utility

∑
f ∈F Uf (xf ), subject to the network capacity constraints. Putting together the

models presented earlier leads to the following general multi- commodity network flow formulation.

JCRS:

max

xf ,rdl

∑
f ∈F

Uf (xf ) (7)

s .t .
∑

f ∈F
xf 1{sf =n,df =d } +

∑
l ∈I (n)

rdl =
∑

l ∈O (n)
rdl ,∀d,n ∈ N\d,

[ ∑
d ∈D

rdl

]
∈ C, rdl ≥ 0,∀d ∈ D, l ∈ L,

mf ≤ xf ≤ Mf ,∀f ∈ F .

Problem (7) is a convex program with affine constraints. The objective is to develop a distributed

algorithm to solve the above problem. We make the following standard assumption that is used in

all the existing works.

Assumption 2. (Existence of optimal solutions) There exists an optimal injection rate vector
[x∗f ]f ∈F , link rate vector [r

d
l
∗
]
d ∈D
l ∈L and the Lagrangian multiplier vector [λdn

∗
]
d ∈D
n∈N\d in the problem

(7).

Note that the existence of optimal primal and dual solutions can be be guaranteed if a certain

constraint qualification such as the Slater condition holds [32]. In what follows, we will investigate

a new distributed joint congestion control, routing and scheduling algorithm.

3 JOINT CONGESTION CONTROL, ROUTING AND SCHEDULING FRAMEWORK
In Section 3.1, we first introduce our new algorithmic framework. Then, in Section 3.2, we present

the main results on the utility optimality, queue stability and the convergence speed of the proposed

algorithm.
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3.1 Algorithmic Framework
Themain procedure of our new joint congestion control, routing and schedulingmethod is described

in Algorithm 1.

Algorithm 1: New Joint Congestion Control, Routing and Scheduling Framework

Initialization:
Choose parameters ρ > 0, τ ∈ [1,

√
5+1
2

) and βm,n > deg(m) + deg(n),∀(m,n) ∈ L. Set t = 0. Let both

physical and virtual queues be empty at the initial state Qd
n [0] = λdn[0] = λdn[−1] = 0,∀d ∈ D and

n ∈ N\{d }. Let injection rates xf [0] = 0,∀f ∈ F and service rates rdl [0] = 0,∀d ∈ D, l ∈ L.
Iteration: In each time slot t ≥ 1, repeat the following three steps.

1: Routing and Scheduling: For each destination d ∈ D and node n ∈ N\{d }, calculate the new weight

zdn [t] = (1 + 1/τ )λdn[t − 1] − λ
d
n[t − 2]/τ . Let z

d
d [t] = 0,∀d ∈ D. Then choose the link rate

[rdl [t], l ∈ L,d ∈ D] as the solution to the following quadratic program.

max

rdm,n

∑
(m,n)∈L

∑
d ∈D

(zdm[t] − zdn [t])r
d
m,n −

ρβm,n

2

(rdm,n − r
d
m,n[t − 1])

2

s .t .
[∑

d r
d
m,n

]
∈ C, rdm,n ≥ 0,∀(m,n) ∈ L,d ∈ D . (8)

2: Congestion Control: For each node sf , calculate the injection rate xf [t] as the solution to the following

optimization problem.

max

xf ∈[mf ,Mf ]
Uf (xf ) − (z

df
sf [t] + ρ∆rf [t])xf −

ρ

2

(xf − xf [t − 1])
2. (9)

where the quantity ∆rf [t] is given by

∆rf [t] =
∑

l ∈I (sf )

(
r
df
l [t] − r

df
l [t − 1]

)
−

∑
l ∈O (sf )

(
r
df
l [t] − r

df
l [t − 1]

)
. (10)

3: Virtual Queue Update: For each destination d ∈ D and node n ∈ N\{d }, update the virtual queue
length by

λdn[t] =λ
d
n[t − 1] − ρτ

∑
l ∈O (n)

rdl [t] + ρτ
∑

l ∈I (n)

rdl [t] + ρτ
∑
f ∈F

xf [t]1{sf =n,df =d } . (11)

Some important remarks on Algorithm 1 are in order:

Relation to QCA: In the QCA method [9, 20], the congestion control component has the form

of

max

xf ∈[mf ,Mf ]
Uf (xf ) −Q

df
sf [t]xf , (12)

and the routing and scheduling component is given by

max

rdm,n

∑
(m,n)∈L

∑
d ∈D

(Qd
m[t] −Q

d
n [t])r

d
m,n

s .t .
[∑

d r
d
m,n

]
∈ C, rdm,n ≥ 0,∀(m,n) ∈ L,d ∈ D . (13)

Each component in this method is “loosely” connected by the physical queue lengthQd
n [t]. Similarly,

our new algorithm also exhibits a layered structure, however, each component is “densely” connected

by several quantities including the virtual queue length λdn[t], the injection rate xf [t] and the link

rate rdl [t]. For example, the congestion control in the source node is dependent on both the virtual

queue length and the change of link rate ∆rf [t] in the adjacent links.
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Quadratic congestion control and routing: Unlike the QCA method, Algorithm 1 contains

a separable quadratic function in each component. In [21], it has been observed that such a l2-
regularization in the routing component can resolve the oscillation problem that occurs in traditional

backpressure routing (13). Technically, we will see later that this technique also leads to significant

delay reduction and convergence speed up, moreover, it can be derived from a kind of inexact

Uzawa method in Alternating Directional Method of Multiplier [2, 38].

Virtual queue-based control: Existing methods such as the dual decomposition and the

momentum-based methods require each node to maintain a separate physical queue for each

flow, which is usually difficult to implement, especially in large networks. However, one can see

that all the operations of congestion control, routing and scheduling in Algorithm 1 are based on

the virtual queue length λdn[t]. In practice, each node will maintain a separate virtual queue (i.e.,

a counter) for each flow going through it and a FIFO queue for storing packets of all the flows

going through the corresponding link. This technique has been used in some existing works [1, 18].

However, they cannot guarantee the utility optimality and fast convergence rate.

3.2 Main Results
For notational convenience, we use vectors x[t], r[t],λ[t] to group all the injection rates, link rates

and virtual queue lengths in time slot t , respectively. The first result in this paper is on the utility

optimality and queue stability of Algorithm 1.

Theorem 3.1. (Utility optimality and queue stability) Under the Assumptions 1 and 2, the network
utility and physical queue length produced by Algorithm 1 satisfies

lim sup

t→∞

�������

∑
f ∈F

Uf (xf [t]) −
∑
f ∈F

Uf (x
∗
f )

�������
= 0, (14)

lim sup

t→∞

∑
d ∈D

∑
n∈N\d

Qd
n [t] < +∞, (15)

where [x∗f , f ∈ F ] is the optimal injection rate vector.

Theorem 3.1 says that our proposed algorithm achieves optimal utility while guaranteeing

that the physical queue length at each node is a finite constant. This result improves the utility-

delay tradeoffs of prior works including [O (1/K ), O (K2)] in [25], [O (1/K ),O (K )] in [20] and

[O (1/K ),O (
√
K )] in [23, 24]. All these methods will produce an unbounded queue length to obtain

a vanishing utility optimality gap.

Theorem 3.2. (Global and linear convergence rate) Under Assumptions 1 and 2 and the assumption
that utility function is strictly concave, the Algorithm 1 converges at a global and linear rate. More
specifically, there exists one of the optimal injection rate vector x∗, link rate vector r∗ and dual variable
λ∗ of the problem (7) such that ∥x[t] − x∗∥ ≤ O (ct ), ∥r[t] − r∗∥ ≤ O (ct ), ∥λ[t] − λ∗∥ ≤ O (ct ) for all
t ≥ 1, where c is a constant satisfying 0 < c < 1.

As can be seen in Theorem 3.2, to obtain an ϵ−accurate solution, our new algorithm only requires

O (log(1/ϵ )) iterations, or equivalently, solving number of O (log(1/ϵ )) congestion control and

routing components. This iteration complexity is much less than the traditional first-order method

including dual decomposition method withO (1/ϵ2) or the proximal method withO (1/ϵ ). Moreover,

it is even faster than the three-layered second-order Newton method [26].

Currently, several natural questions arise are: (i) how to design this new joint scheduling-routing-

congestion control algorithm? (ii) how to prove the linear convergence rate, optimal utility and

finite queue length of this new algorithm? (iii) how to efficiently solve the quadratic congestion
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control, routing and scheduling component in our new algorithm? In the sequel, we focus on

answering these questions.

4 THEORETICAL ANALYSIS
In this section, we first provide some necessary notations and basics in the variational analysis. Then,

we will show how to apply the inexact Uzawa method in the Alternating Directional Method of

Multiplier to obtain Algorithm 1. Finally, we will prove the technical results stated in Theorems 3.1

and 3.2.

4.1 Notations and Preliminaries
We use the bold letter x to represent the vector, and capital and bold letter A to denote the matrix.

The element of a vector x is denoted by a scalar xi , and the element of a matrix A is denoted by

a scalar Ai j . We use 0 to represent a vector with each elements equal to zero. Let xT and AT
to

denote the transpose of a vector and a matrix, respectively. Let ⟨·, ·⟩ represent the standard inner

product, and let ∥ · ∥ denote the l2 norm (the Euclidean norm of a vector or the spectral norm

of a matrix). Let matrix norm ∥x∥M = xTMx, where M is a positive semidefinite matrix. We use

λmin (A) and λmax (A) to represent the smallest and largest eigenvalues of a symmetric matrixA. The
spectral norm of a matrix A is then given by ∥A∥ = λmax (ATA)

1

2 . One basic inequality regarding

the spectral norm is ∥Ax∥ ≤ ∥A∥∥x∥.

Definition 4.1. (subdifferential) The subdifferential ∂ f (x) of a convex function f : Rn → R at x
is the set of all subgradients.

∂ f (x) = {g ∈ Rn |gT (y − x) ≤ f (y) − f (x),∀y ∈ dom( f )}.

The definition of subgradients is a generalization of the basic inequality from differentiable

convex function to the non-differentiable function. For example, the indicator function over a

convex set IC (x) = 0, x ∈ C and IC (x) = ∞, x < C, is a convex and non-differentiable function. The
subdifferential ∂IC (x) is the classical normal cone NC (x) = {g|gT (y − x) ≤ 0,∀y ∈ C}.

Definition 4.2. (Convex function) A function f : Rn → R is called convex with modulus v ≥ 0 if

for all x, y ∈ dom( f ) and g ∈ ∂ f (x), it satisfies

f (y) ≥ f (x) + gT (y − x) +
v

2

∥y − x∥2.

As a consequence of the above definition, we have the following inequality, which will be used

in our theoretical development. For arbitrary x, y ∈ dom( f ),

⟨gx − gy , x − y⟩ ≥ v ∥x − y∥2, gx ∈ ∂ f (x), gy ∈ ∂ f (y). (16)

Note that the strictly convex function refers to that modulus v > 0.

Definition 4.3. (Moreau-Yosida proximal mapping) The proximal mapping of a closed and convex

function f : Rn → R is defined as

Prf (y) = argmin

x
f (x) +

1

2

∥x − y∥2.

If the function f is the indicator function over a closed and convex set C, then Prf (·) = ΠC (·)
is the metric projection operator over C. For simplicity, we use [·]+ to denote ΠC (·) when C is

the positive orthant [0,+∞)n . One important property of Moreau-Yosida proximal mapping is

non-expansiveness, which can be interpreted as the globally Lipschitz continuous with modulus

one.

∥Prf (x) − Prf (y)∥ ≤ ∥x − y∥,∀x, y.
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4.2 Rationale behind the Algorithm Design
Algorithm 1 is inspired by an inexact Uzawa method in Alternating Directional Method of Multiplier

(ADMM). For the sake of brevity, we will use the following vector notation in the rest of the paper.

The node-arc incidence matrix Ad ∈ R(N−1)×L is defined as

Ad
nl =




1, if n = Tx(l )
−1, if n = Rx(l )
0, otherwise

,∀n ∈ N\{d }, l ∈ L.

The matrix Bd ∈ R(N−1)×F is defined as

Bdnf =
{
−1, if n = sf ,d = df
0, otherwise

,∀n ∈ N\{d }, f ∈ F .

Define matrix A ∈ RD (N−1)×DL
and B ∈ RD (N−1)×F

as

A = diag{A1,A2, . . . ,AD } =



A1 · · · 0
...
. . .

...
0 · · · AD


,B =



B1

...
BD


.

We denote the objective function f (x) = U (x) + h(x), where the functionU (x) = −
∑

f ∈F Uf (xf )
and the indicator function h(x) is defined as

h(x) =
{

0, ifmf ≤ xf ≤ Mf ,∀f ∈ F
+∞, otherwise

.

Let the indicator function д(r) represent the capacity constraints of link rate vector.

д(r) =
{

0, if

[∑
d r

d
l

]
∈ C, rdl ≥ 0,∀l ,d

+∞, otherwise

.

Based on the above notation, we can reformulate the JCRS problem (7) as the following equivalent

form.

min

x,r
f (x) + д(r) (17)

s .t . Bx + Ar = 0.

Note that optimization of this form contains a separable objective function and a separable

constraint between injection rate vector x and the link rate vector r. Therefore, it inspires us to
adopt the Alternating Directional Method of Multiplier (ADMM) to split the decision variables x
and r, which results in a nice layered structure during the operation of the algorithm. Formally, the

Augmented Lagrangian function of problem (17) is defined as

L(x, r,λ) = f (x) + д(r) +
ρ

2

∥Bx + Ar − λ/ρ∥2, (18)

where ρ is a pre-defined penalty parameter, λ is the Lagrangian multiplier. Then the ADMM

optimizes the Augmented Lagrangian function L(x, r,λ) in a Gauss-Seidel fashion. In each time

slot t , go through the following three steps.

(1) Primal update: r[t] = argmin

r
L(x[t − 1], r,λ[t − 1]).

(2) Primal update: x[t] = argmin

x
L(x, r[t],λ[t − 1]).

(3) Dual update: λ[t] = λ[t − 1] − τ ρ (Bx[t] + Ar[t]).
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Based on the definition of the matrix A and B, it is clear that the third step is the virtual queue

update (11) in the Algorithm 1. We then show that the second step is indeed the congestion control

component in Algorithm 1. We first omit the constant term д(r[t]) and write it as

x[t] = argmin

x
f (x) +

ρ

2

∥Bx + Ar[t] − λ[t − 1]/ρ∥2.

Transforming the indicator function h(x) in f (x) into the box constraints, we have

x[t] = argmax

m≤x≤M

∑
f ∈F

Uf (xf ) −
ρ

2

∥Bx + Ar[t] − λ[t − 1]/ρ∥2.

Based on the separability of both objective function and box constraints with respect to the variable

xf , we can decompose the original problem into F one-dimensional optimization problems.

xf [t] = argmax

xf ∈[mf ,Mf ]

Uf (xf ) −
ρ

2

*.
,
xf +

∑
l ∈I (sf )

r
df
l [t] −

∑
l ∈O (sf )

r
df
l [t] + λ

df
sf [t − 1]/ρ

+/
-

2

.

Rearranging the terms by utilizing the virtual queue length update in the time slot t − 1, we can
obtain the congestion control component in Algorithm 1.

The next step is to derive the routing component in Algorithm 1. As discussed before, the challenge

in the first primal update step of ADMM is that the quadratic term ∥Bx[t − 1] + Ar − λ[t − 1]/ρ∥2

in the objective function is non-separable with respect to the decision variable r due to the non-
diagonal structure of the matrix A.2 The basic idea to overcome this difficulty is to inexactly solve
the r−subproblem, which is based on minimizing a second-order local approximation of the function

∥Bx[t − 1]+Ar−λ[t − 1]/ρ∥2 instead of the original one. The approximation of the above function

at the point r[t − 1] is given by the Taylor expansion.

Ar + Bx[t − 1] − λ[t − 1]/ρ2

≈ constant + ⟨g[t − 1], r − r[t − 1]⟩ + ∥r − r[t − 1]∥2M,

where the gradient g[t − 1] = 2AT (Ar[t − 1]+Bx[t − 1]−λ[t − 1]/ρ) and the matrixM is diagonal

with M = diag{. . . , βdl , . . .}. Then, substituting this local approximation into the first step, we can

write it as the following form.

r[t] = argmin

r
д(r) + ρ⟨AT (Ar[t − 1] + Bx[t − 1] − λ[t − 1]/ρ), r − r[t − 1]⟩ +

ρ

2

∥r − r[t − 1]∥2M.

(19)

Transforming the indicator function д(r) into constraints, we are ready to obtain the routing

component in the Algorithm 1.

The idea of approximately solving the subproblem in the ADMM has been widely applied in the

existing literatures [13, 38]. The method is called the inexact Uzawa method and can be actually

recovered by the following equivalent form.

r[t] = argmin

r
L(x[t − 1], r,λ[t − 1]) +

1

2

∥r − r[t − 1]∥2Q, (20)

with matrix Q = ρ (M − ATA). In the sequel, we will use this simplified form to prove all the

theoretical results of Algorithm 1.

2
One can actually utilize the randomized coordinate descent algorithm to solve this problem, which can lead to a asynchro-

nous updates. However, the complexity is increased due to a two-layer iteration structure.
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4.3 Convergence Analysis
In this subsection, we establish the global convergence of Algorithm 1. We first exploit the structure

of matrix B and write the standard ADMM model (17) as the following form.

min

x,r
f (x) + д(r) (21)

s .t . Asr = x, Ar r = 0,

where As is a F × DL dimensional matrix formed by extracting the rows of matrix A whose index

node is a source for one flow. The matrixAr is formed by the rest of rows of the matrixA. Therefore,
the first equation Asr = x in (21) denotes the flow conservation law in those source nodes and the

second equation Ar r = 0 describes the flow conservation law in those intermediate nodes. Let the

associated Lagrangian multiplier of constraints Asr = x, Ar r = 0 be λs , λr , respectively and let

λ = [λs ;λr ]. In the sequel, we write the Assumption 2 as the following equivalent form.

Assumption 3. (Existence of optimal solution) There exists a saddle point (x∗, r∗,λ∗) of the
problem (17), i.e., optimal primal variables x∗, r∗ and dual variables λ∗, satisfying the KKT conditions:

− λ∗r ∈ ∂ f (x
∗), (22)

AT
s λ
∗
s + A

T
r λ
∗
r ∈ ∂д(r

∗), (23)

Asr∗ = x∗,Ar r∗ = 0. (24)

As discussed before, this assumption is a mild condition and can be guaranteed by various

conditions. When this assumption fails to hold, Algorithm 1 has either unsolvable or unbounded

subproblems or a diverging sequence of λ[t].

Lemma 4.4. (Sufficient descent of primal and dual variables) Assume Assumption 1 and 2. If
τ ∈ [1, (

√
5 + 1)/2), there exists an α ,η > 0 such that

V (x[t − 1], r[t − 1],λ[t − 1]) −V (x[t], r[t],λ[t]) ≥α *
,



[
λ[t − 1] − λ[t]
x[t − 1] − x[t]

]

2

+ ∥r[t − 1] − r[t]∥2Q+
-
+

2v ∥x[t] − x∗∥2 + 2v ∥x[t] − x[t − 1]∥2. (25)

The function V (x[t], r[t],λ[t]) is defined as

V (x[t], r[t],λ[t]) =
1

ρτ
∥λ[t] − λ∗∥2 + ρ∥x[t] − x∗∥2 + ∥r[t] − r∗∥2Q +

ρ

η
∥Asr[t] − x[t]∥2. (26)

where matrix Q = ρ (M − ATA), v is the convexity modulus of function f (x) and (x∗, r∗,λ∗) is one of
the saddle points of the problem (17).

In Lemma 4.4, the function V (x[t], r[t],λ[t]) describes the distance between the current iterates

and the optimal solution set. To guarantee that the function V (·) has sufficient descent, the matrix

M should be chosen such that matrix Q is positive definite with ∥r[t]− r∗∥2Q > 0. One simple choice

is that each diagonal element of matrixM satisfies

βdm,n > deg(m) + deg(n),∀(m,n) ∈ L,∀d ∈ D . (27)

Then one can see that Q is a diagonally dominant matrix, thus it is also positive definite by

Gershgorin circle theorem. The proof of Lemma 4.4 is modified from [5].

Now we are ready to use the sufficient descent of the function V (·) to establish the global

convergence of Algorithm 1.
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Theorem 4.5. (Global convergence of Algorithm 1) For any τ ∈ [1, (
√
5+1)/2) and any parameter

βdm,n > deg(m) + deg(n) for all (m,n) ∈ L,d ∈ D, the sequences (x[t], r[t],λ[t]) converges to a
saddle point of (17), namely,

lim sup

t→∞
∥x[t] − x∗∥ = 0,

lim sup

t→∞
∥r[t] − r∗∥ = 0, (28)

lim sup

t→∞
∥λ[t] − λ∗∥ = 0.

Note that the convergence of Algorithm 1 only requires the concavity of the utility function

without the assumption of smoothness and strictly concavity (v could be zero). The existing

theoretical analysis of two-block ADMM [13] has shown that the algorithm converges at a globally

sub-linear rate, i.e., O (1/ϵ ), when both function f and д are proper closed convex. Clearly, our

definition of function f and д satisfy this condition and Algorithm 1 converges inO (1/ϵ ) iterations.
However, in the next subsection, we will present a surprising result that, when the utility function

is strictly concave (v is positive), the Algorithm 1 actually converges globally and linearly, which

requires only O (log(1/ϵ )) iterations to achieve an ϵ−accurate solution.

4.4 Linear Convergence Rate Analysis
Based on the result in Lemma 4.4, we have an inequality of the form, for arbitrary t ≥ 1,

V (x[t − 1], r[t − 1],λ[t − 1]) −V (x[t], r[t],λ[t]) ≥ C .

To establish the global and linear convergence rate of Algorithm 1, it is sufficient to show that,

there exists constant γ > 0 such that

C ≥ γV (x[t], r[t],λ[t]),∀t ≥ 1. (29)

The function V (x[t], r[t],λ[t]) contains the terms including ∥r[t] − r∗∥2Q and ∥λ[t] − λ∗∥2, but the

lower bound C only contains the terms like ∥r[t] − r[t − 1]∥2Q. Therefore, the challenge is how

to bound the terms ∥λ[t] − λ∗∥2 and ∥r[t] − r∗∥2Q using the existing terms in the lower bound

C . In the existing works of theoretical ADMM [5], they assume that the matrix B is of full row

rank and matrix A is of full column rank, and utilize this assumption to upper bound ∥λ[t] − λ∗∥2

and ∥r[t] − r∗∥2Q by existing terms in C . However, in our problem, both matrix B and A do not

satisfy this assumption (matrix B has several all-zero rows, i.e., those nodes do not contain sources;

the number of rows of matrix A is less than the number of columns). In the sequel, we provide a

completely new theoretical path to overcome this technical challenge. We first introduce some

basics in the variational analysis.

Definition 4.6. (Calmness [29]) Define the multi-valued mapping F : Rn → Rm . We say that F is

calm at x0 if there exists a neighborhoodU of x0 and a constant κ0 > 0 such that

F (x) ⊆ F (x0) + κ0∥x − x0∥By ,∀x ∈ U . (30)

where unit ball By ≜ {y ∈ Rm |∥y∥ ≤ 1}.

The calmness property can be regarded as a generalization of Lipschitz continuous property from

single-valued function to set-valued mapping. Recall that the set-valued mapping F is piecewise

polyhedral if the graph of F is the union of finitely many polyhedral sets. The following Lemma

in [30] establishes the calmness of the piecewise polyhedral mapping.

Lemma 4.7. (Calmness of piecewise polyhedral mapping) If the set-valued mapping F : Rn → Rm

is piecewise polyhedral, then F is calm at any x0 with modulus κ independent of choice of x0.
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Dual
variable 𝝀

Link rate r

Injection
rate x

u[t]=(x[t],r[t],𝝀[t])

Optimal
solution set Ω∗

polyhedral Ω∗(𝒙∗)

x=x*

A

B

C

Hyperplane aTu=c

Fig. 2. The distance AB between current iterates and the optimal solution set Ω∗ (non-polyhedral set) is less
than the distance AC between current iterates and the set Ω∗ (x∗) (polyhedral set). The upper bound AC is
the distance between a point A and a hyperplane aT u = c that can be implicitly given by |aT u[t] − b |/∥a∥ =
O ( |aT u[t] − b |) (error bound in the simplest case).

The key technical path to obtain the inequality (29) is to utilize the calmness of piecewise

polyhedral mapping to establish a global error bound. Then one can apply this error bound to

estimate the distance to the optimal solution set, i.e., the terms in the function V (x[t], r[t],λ[t]),
by certain constraint violations, which can be further upper bounded by the existing terms in C .
Denote the solution set of KKT system (22)-(24) by Ω∗. The main difficulty is that the set Ω∗ is
non-polyhedron, and one cannot use existing error bound such as Hoffman bound [14] or calmness

to estimate the distance to the optimal solution set. However, one important observation is that,

the intersection of the optimal solution set Ω∗ and the hyperplane x = c, given by

Ω∗ (c) = Ω∗ ∩ {(x, r,λ) |x = c}, (31)

is actually the inverse image of a piecewise polyhedral mapping at origin. This result enables us to

first upper bound the distance between current iterates (x[t], r[t],λ[t]) and the optimal solution

set Ω∗ by the distance to the set Ω∗ (c), then utilize the calmness property to further upper bound

above distance by certain constraint violation.

Lemma 4.8. For arbitrary optimal injection rate vector x∗, define the set-valued mapping Rx∗ (x, r,λ)
as

Rx∗ (x, r,λ) =
*....
,

x − Prh (x − λs − ∇U (x∗))
r − Prд (r + (AT

s λs + AT
r λr ))

Ar + Bx
x − x∗

+////
-

, (32)

Then, for arbitrary (x, r,λ), we have (x, r,λ) ∈ Ω∗ (x∗) if and only if Rx∗ (x, r,λ) = 0.

Since functions h(·) and д(·) are the indicator functions of the closed and convex sets, the

Moreau-Yosida proximal mappings Prh (·) and Prд (·) are projection mappings onto a convex set

and therefore piecewise polyhedral by Proposition 12.30 in [7]. Considering the fact that mappings

λs +∇U (x∗), AT
s λs +AT

r λr , Ar+Bx and x−x∗ are affine, the set-valued mapping Rx∗ (·) is therefore
piecewise polyhedral, and so is R−1x∗ (·). Then, from the result of Lemma 4.8, we can regard the subset

Ω∗ (x∗) as R−1x∗ (0) and utilize the calmness result in Lemma 4.7 to upper bound the distance between

the current iterates and the set Ω∗ (x∗) by the constraint violation ∥Rx∗ (x[t], r[t],λ[t])∥. Formally,

we have the following global error bound.
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Lemma 4.9. (Global error bound) Assume Assumptions 1 and 2. If τ ∈ [1, (
√
5+1)/2) and parameter

βdm,n > deg(m) + deg(n), then there exists a constant κ > 0 such that the sequence (x[t], r[t],λ[t])
generated by Algorithm 1 satisfies

dist
2 ((x[t], r[t],λ[t]),Ω∗) ≤ κ∥Rx∗ (x[t], r[t],λ[t])∥2, t ≥ 1, (33)

where x∗ is an arbitrary optimal injection rate vector and the distance function is defined as

dist
2 ((x[t], r[t],λ[t]),Ω∗) ≜ inf

(x,r,λ)∈Ω∗





x
r
λ


−



x[t]
r[t]
λ[t]





2

, (34)

We finally upper bound the residual ∥Rx∗ (x[t], r[t],λ[t])∥ by the existing terms in lower boundC
and combine the results in Lemma 4.4 and Lemma 4.9 to establish the global and linear convergence

rate in Theorem 3.2. The detailed proof can be seen in Appendix E. An example of the key proof

idea and the global error bound are illustrated in Fig 2.

Remark 1. The existing work [6] also utilizes the isolated calmness to show that the ADMM converges
at a linear rate when applying to the quadratic programs. In the quadratic programs, the optimal
solution set can be characterized by a piecewise polyhedral mapping and one can straightforwardly
apply the isolated calmness property. However, in our problem, due to lack of such a curvature
information, the optimal solution set Ω∗ is not piecewise polyhedral. The key in our proof is to find a
subset of Ω∗ that is also piecewise polyhedral.

4.5 Queue Stability Analysis
Based on the evolution of physical queue length (5), we have the following inequality for each

queue.

Qd
n [t] ≤


Qd
n [t − 1] −

∑
l ∈O (n)

rdl [t]

+
+

∑
l ∈I (n)

rdl [t] +
∑
f ∈F

xf [t]1{sf =n,df =d } . (35)

In the proof of Theorem 3.2, we have shown that the quantity Bx[t] + Ar[t] ≤ O (ct ), which
implies that the change of physical queue length vanishes exponentially. This observation provides

a simple path to establish the boundedness of physical queue length. However, it requires the

assumption that utility function is strictly concave. In the sequel, we provide a different path, which

only assumes the weakly concavity of the utility function. The following technical lemma connects

the boundedness of the physical queue length Qd
n [t] and the virtual queue length λdn[t].

Lemma 4.10. For each destination d ∈ D and node n ∈ N\d , suppose that λdn[t] and Q
d
n [t] evolves

by (11) and (35) with initializations λdn[t] = Qd
n [t] = 0. If there exists a constant M > 0 such that

|λdn[t]| < M,∀t ,d ∈ D,n ∈ N\d , then

Qd
n [t] ≤

2M

ρτ
+ B,∀t ,d ∈ D,n ∈ N\d . (36)

where B is the constant dependent on the largest link capacity.

From Theorem 4.5, we know that the virtual queue length λ[t] converges to an optimal dual

variable λ∗ and we can obtain that

|λdn[t]| ≤ ∥λ[t]∥ = ∥λ[t] − λ
∗
+ λ∗∥ ≤ ∥λ[t] − λ∗∥ + ∥λ∗∥.

Based on the result in Lemma 4.4, the function V (x[t], r[t],λ[t]) is monotonically decreasing with

respect to t . Then we have

|λdn[t]| ≤ ρτV (x[t], r[t],λ[t]) + ∥λ∗∥
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≤ ρτV (x[0], r[0],λ[0]) + ∥λ∗∥ ≜ M,∀t ≥ 1.

which is a finite constant dependent on the initial distance to the optimal solution set Ω∗. Therefore,
combining the result in Lemma 4.10, one can conclude that the physical queue length for each node

and destination is finite.

5 EFFICIENT SUBPROBLEM SOLVER
In this section, we develop several efficient algorithms to solve the congestion control, routing and

scheduling components in Algorithm 1.

5.1 Congestion Control
The congestion control component is an one-dimensional optimization problem, which can be

efficiently solved by Newton method or Fibonacci search. Moreover, if the utility function takes

a specific form such as the weighted proportional fair utilities, Uf (xf ) = wf log(xf ),xf > 0, the

solution can be obtained in a close-form expression,

xf [t] =
xf [t − 1]

2

−
z
df
sf [t] + ∆rf [t]

2ρ
+

√√
wf

ρ
+

(z
df
sf [t] + ∆rf [t] − ρxf [t − 1])

2

4ρ2
. (37)

5.2 New Backpressure Routing in Wireline Network
In the wireline network, there exist no interference among different links and the achievable rate

region C is given by the following form [25, 37].

C =


[rdl ]

�����

D∑
d=1

rdl ≤ Cl ,∀l


, (38)

where Cl is the capacity of link l . Then both the objective function and the constraints of problem

(8) are separable among the rate vectors in different links. Therefore, the link rate rdl [t] can be

determined in a distributed fashion: for each link l = (m,n), solving the following quadratic

program to obtain [rdm,n[t],d ∈ D].

max

rdm,n

∑
d ∈D

(zdm[t] − z
d
n[t])r

d
m,n −

ρβm,n

2

(rdm,n − r
d
m,n[t − 1])

2

s .t .
∑
d r

d
m,n ≤ Cm,n , r

d
m,n ≥ 0,∀d . (39)

We define this problem as the new backpressure routing problem. After rearrangement of the

terms, it can be formulated as a problem that projects the point (rdm,n[t −1]+ (z
d
m[t]−zdn[t])/ρβm,n )

onto a simplex defined in (39), which has already been investigated in [8].

Lemma 5.1. (solution of routing component) For each link l = (m,n) ∈ L, the solution of new
backpressure routing has the form of rdm,n[t] = [rdm,n[t − 1] + (zdm[t] − zdn[t])/ρβm,n − θ

∗
]+, where θ ∗

can be determined in O (F log(F )) time.

The main procedure to solve problem (39) are listed in Algorithm 2. Note that the step 1-4 and

step 6-8 have O (F ) complexity and hence the overall complexity of Algorithm 2 is dominated by

the sorting step 5 with complexity O (F log(F )).

5.3 New Scheduling in Wireless Network
In the wireless network, different links cannot be simultaneously activated due to the existence of

interference. Therefore, in addition to the rate assignment at each link, we need to schedule the

link itself. The basic challenge to solve the scheduling component is that the the number of feasible
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Algorithm 2: New backpressure routing algorithm

1: Let xd = [rdm,n[t − 1] + (zdm[t] − zdn [t])/ρβm,n]+,∀d ∈ D.

2: if
∑D
d=1 xd ≤ Cm,n then

3: Let θ∗ = 0 and rdm,n[t] = xd ,∀d ∈ D and terminate algorithm.

4: end if
5: Sort {xd ,d ∈ D} in an decreasing order π such that xπ (1) ≥ xπ (2) ≥ · · · ≥ xπ (D ) .

6: Find p = max

{
k ∈ [D]���xπ (k ) −

1

k

(
k∑

d=1
xπ (d ) −Cm,n

)
> 0

}
.

7: Let θ∗ = 1

p

( p∑
d=1

xπ (d ) −Cm,n

)
.

8: Output rdm,n[t] = [rdm,n[t − 1] + (zdm[t] − zdn [t])/ρβm,n − θ
∗
]+,∀d ∈ D.

link rate vectors |Γ | is possibly exponentially large. For example, in the one-hop node-exclusive

model [20], all the feasible link rate vectors correspond to all the matchings in the graph G, which

could be O (2L ) even in the bipartite graph. In the QCA method, the scheduling component is the

classical MaxWeight scheduling, and the objective function is linear and such a problem can be

reduced to some classical combinatorial problems such as maximum weighted matching. Instead,

in our scheduling component (8), the objective function is quadratic, and the optimal solution may

not belong to the vertex set Γ of the convex hull C, which poses a significant challenge in solving

this problem. However, utilizing the idea of ellipsoid method, we will show a surprising result that

the complexity of solving our new scheduling component (8) is equivalent to the complexity of

solving the traditional MaxWeight scheduling problem.

Before presenting our main result, we first briefly introduce several concepts and technical tools

in geometric algorithms [12] that will be used in the sequel.

Definition 5.2. (Separation oracle) Let H be a non-empty convex polyhedron in Rn . A separation

oracle for H is that, given any x ∈ Rn , it either outputs x ∈ H , and if not, find a hyperplane such

that cT x > cT y,∀y ∈ H .

Lemma 5.3. (Separation and optimization) Let H be a non-empty convex polyhedron in Rn and
f (·) be a convex function in Rn . If the separation oracle for H can be solved in poly(n) time, then we
can compute an x with B (x,δ ) ∈ H and maxy∈H f (y) − f (x) ≥ δ in poly(n, log(δ−1)) time.

In this lemma, B (x,δ ) is the ball centering at x with radius δ , where the δ is the finite truncation

error from irrational number to rational number.

Theorem 5.4. Assume that the feasible link rate vector r(i ) ∈ NL,∀r(i ) ∈ Γ. There is a poly(L, F )
time algorithm to compute the new scheduling component (8) if and only if there is a poly(L, F ) time
algorithm to compute the MaxWeight scheduling problem (13).

In practice, the link rate always refers to the number of transmitted packets, hence the integer

assumption on the feasible link rate vector is reasonable. Theorem 5.4 shows that our quadratic
scheduling component is not much “harder” than the traditional MaxWeight scheduling problem.

Therefore, we can establish the hardness of our new scheduling problem based on all existing

complexity results of MaxWeight scheduling. For example, under the node-exclusive interference

model, the MaxWeight scheduling is actually a maximum weighted matching problem that can be

solved in polynomial time [20]. This result implies that problem (8) can also be solved in polynomial

time. Another example is the Maximum Weighted K-Valid Matching problem introduced in [33] to

characterize the multi-hop interference. They show that this problem is NP-hard when we have at

least 2−hop interference, which implies that the problem (8) is also NP-hard.
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Fig. 3. Comparison of Algorithm 1 and existing methods in a small-scale and a medium-scale wireline
networks.

Table 2. Comparison of Convergence Speed andQueue Length per Link

Problem size

Momentum method Second-order method Proximal method Our method

# Iterations Queue len # Iterations Queue len # Iterations Queue len # Iterations Queue len

(50, 150, 10) 4658 22.5 9600 35.1 369 1.10 207 0.66
(100, 300, 20) 9594 82.6 38900 145.2 512 1.94 298 0.83
(500, 1500, 100) > 10

5 > 10
3 > 10

5 > 10
3

853 8.15 371 3.92
(1000, 3000, 200) > 10

5 > 10
4 > 10

5 > 10
4

1921 15.30 639 6.61
benchmark 1044 31.2 1510 29.5 102 1.08 82 0.58

Remark 2. The Theorem 5.4 has exhibited the complexity equivalence between the new scheduling
component and the traditional MaxWeight scheduling. However, such a poly(L, F ) time reduction is
based on the ellipsoid method and requires high complexity. In practice, one can solve the new scheduling
component (8) by several efficient optimization techniques. For example, both the subgradient method
with a dual averaging [28] and FrankWolfe [16] algorithm can reduce problem (8) toO (1/ϵ )MaxWeight
problem, where ϵ is the accuracy.

The rest of challenge is the implementation issue incurred by the non-integer solution of (8),

because the optimal point may not lie in the set of feasible link rate vectors. We next show that

this problem can be tackled by connecting the practical time sharing technique and the convex

decomposition technique in the combinatorial optimization.

Lemma 5.5. If there is a poly(L, F ) time algorithm to compute the MaxWeight scheduling problem
(13), then there is a poly(L, F ) time algorithm that, given any optimal solution r∗ of (8), yields (L + 1)
feasible rate vectors r(i ) ∈ Γ such that [

∑
d r

d
l
∗
] =

∑L+1
i=1 τir

(i ) and
∑L+1

i=1 τi = 1,τi ≥ 0.

The proof of Lemma 5.5 is a straightforward application of Theorem 5.4 and the polynomial

time reduction from the convex decomposition of point within a polyhedron H to the separation

oracle problem [11]. Based on this result, we can first divide the time slots into mini slots and then

operate the link rate vector r(i ) in τi fraction of time. For each link l , given the link rate vector r (i )l ,

the specific rate assignment for each d−destined packets can be determined by solving a problem

same as (39) (only change Cl to r
(i )
l ).

6 NUMERICAL ANALYSIS
In this section, we conduct some numerical studies to verify the theoretical improvements of our

proposed method compared with the state-of-arts.

6.1 Simulation Setup
We adopt the well-known weighted proportional fair utilities Uf (xf ) = wf log(xf ), where the

weightwf of each flow f is randomly generated from a uniform distributionU (0, 1). The network
typology G = (N ,L) is generated by the classic Erdős-Rényi (ER) random graph model G (n,p),
where n is the number of nodes and p is the connected probability between two nodes (we only
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Fig. 4. The two left figures shows the impact of parameter τ on convergence and queue length. The two right
figures compare our algorithm and the momentum method for a wireless network with fading channel.

consider the connected graph). We compare our algorithm with the following three benchmark

algorithms.

Momentummethod:Here the Momentummethod refers to the Heavy-ball algorithm proposed

in [24]. The existing works [23, 24] have shown that this method produces significantly faster

convergence speed and lower queuing delay compared to the traditional QCA method
3
.

Second-order method: There exists several versions of second-order algorithms [25, 26, 36] in

solving this problem. We use the one with the fastest convergence speed proposed in [25]. This

algorithm has a two-layered iteration structure: (i) each outer iteration corresponds to one Newton

step; (ii) a Sherman-Morrison-Woodbury (SMW) based inner iteration to determine the Newton

direction.

Proximal method:We use the one proposed in [37]. They have shown superior performance

in the queue length reduction and improvement of convergence speed than the QCA method in the

wireline network.

We adopt the following two comparison metrics: (i) the relative error of injection rate: ∥x[t] −
x∗∥/∥x∗∥, where the x∗ is obtained approximately by running our method with a strict stopping

condition; (ii) total physical queue length of all nodes and all flows:

∑
d ∈D

∑
n∈N\d Q

d
n [t]. In the

simulation, each iteration refers to one communication per node. For our method, momentum

method and proximal method, each iteration refers to solving one congestion control and routing

component. For the second-order method, each iteration refers to one SMW-based iteration.

6.2 Wireline Network
We first compare our algorithm with above three algorithms in a wireline network with link

capacity Cl randomly generated from a uniform distributionU (0, 1). As shown in Figure 3, we plot

the relative error of rate and the total physical queue length versus the number of iterations under

a small-scale network (10 nodes, 30 edges, 3 sessions) and a medium-scale network (60 nodes, 180

edges, 18 sessions). For the momentum method and second-order method, we choose parameter K
and µ large enough to guarantee the utility optimality gap is less than 0.1%. For proximal method,

we choose parameter αn = (dn + 1)/2. It can be observed that our proposed algorithm converges at

a global and linear rate with bounded physical queue length, which matches our theoretical results.

Moreover, it produces the fastest convergence speed and lowest physical queue length among all

the existing methods. Although the second-order method has only 40 − 80 outer iterations (newton

step), it still converges quite slowly due to the large number of inner iterations in computing the

Newton direction. Another observation is that our method, proximal method and second-order

method gradually increases the injection rates to the optimal point, instead, the momentum method

3
Hence, we don’t compare our algorithm with QCA.
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first produces an extremely high injection rate, then gradually decrease it, which leads to a large

physical queue length.

As we will discuss in the next section, the proximal algorithm can be recovered by a kind of

inexact Uzawa ADMM with Jacobi updates, instead, our method is the inexact Uzawa ADMM with

Gauss-Seidel updates. Therefore, our method is much efficient compared with the proximal method

since the Gauss-Seidel updates is usually faster than the Jacobi updates in the 2−block ADMM [5].

Besides, the existing analysis shows that the ADMM with Jacobi update converges sub-linearly.

Interestingly, in our simulations one observation is that this algorithm exhibits a linear convergence

rate.

We then investigate the impact of the network size and compare our algorithm with the existing

methods in number of iterations and physical queue lengths to obtain solution with a given accuracy.

The stopping criterion is that both the relative error of rate ∥x[t] − x∗∥/∥x∗∥ and the constraint

violation ∥Bx[t] + Ar[t]∥ is less than 1%. Similarly, we set parameters K and µ of momentum

method and second-order method large enough to guarantee the desired utility optimality gap. To

avoid the random noises, we randomly generate 1000 instances in each problem size and take the

average. Besides, we also use a benchmark network in [37], whose optimal solution is known. The

results are listed in TABLE 2. Note that the queue length is normalized by the number of links. It

can be observed that our proposed algorithm exhibits a 10 − 103 order of improvement of both

convergence speed and queue length compared with the momentum method and the second-order

method. It also converges 2− 3 times faster and produces 40%− 60% less physical queue length than

the proximal method. Moreover, our algorithm has an effect of relieving the curse of dimensionality

in the traditional algorithms. For example, when the problem size increases 20 times (from the first

instance to fourth instance), the number of iterations only increases 3 times.

6.3 Impact of Parameter
We next investigate the impact of parameter τ on the convergence speed and the queue length

of our algorithm. Theorem 4.5 shows that the convergence of our algorithm is guaranteed when

τ ∈ [1, (
√
5 + 1)/2). We test our algorithm in a 20−nodes 60−links and 8−sessions network with

τ = {1, 1.2, 1.6, 2.0} and plot the sum of injection rate and queue length versus the number of

iterations in Fig. 4. The basic observation is that when the parameter τ increases, the convergence

speed of our algorithm will slightly increase and the queue length will decrease at an inversely

proportional manner, which roughly matches the upper bound of physical queue length provided

in Lemma 4.10 that Qd
n [t] ≤

2M
ρτ +constant. For example, when τ increases from 1 to 2, the queue

length is reduced roughly 40%. However, from the simulation, we observe that when τ ≥ (
√
5+1)/2,

the algorithm sometimes diverges. Therefore, we suggest a safe value τ = 1.618 when using our

algorithm.

6.4 Wireless Network
From the methods compared above, only the momentum method and our algorithm can be applied

to the wireless networks with interference constraints. We compare our algorithm with it in a

20−nodes 60−links and 2−sessions wireless network with quasi-static block fading (channel states

vary from one slot to the next but remain constant in each slot). We plot the injection rate of each

session and sum of queue length versus the number of iterations in Fig. 4. It can be observed that

our algorithm converges to the steady state in less than 50 iterations and the momentum method

requires at least 5000 iterations. Moreover, our algorithm produces only 1% queue length compared

to the momentum method.
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7 DISCUSSIONS
We now discuss the connection of our algorithm to the existing proximal method and list some

follow-up works as well as directions for future research.

7.1 Connection to Proximal Method
In the scenario of wireline networks, the existing proximal methods [21, 37] also contain a quadratic

regularizer in the congestion control and routing component. Interestingly, we find that this method

can be recovered by a kind of proximal linear ADMM with following Jacobi (parallel) updates.

(1) x[t] = argmin

x
L(x, r[t − 1],λ[t − 1]).

(2) r[t] = argmin

r
L(x[t − 1], r,λ[t − 1]) + 1

2
∥r − r[t]∥2Q.

(3) λ[t] = λ[t − 1] − ρ (Bx[t] + Ar[t])

The function L(·) is the Augmented Lagrangian function defined in (18). ThematrixQ = ρ (M−ATA)
and matrix M = diag{. . . , βdl , . . .}. Therefore, we can use the existing analysis in [4] to establish a

stronger theoretical result that the proximal algorithm in [37] actually converges in a non-ergodic

sublinear rate o(1/ϵ ).

7.2 Stochastic Network Optimization
In the reality, the channel conditions will fluctuate due to the environmental changes (e.g., fading).

To accommodate this situation, we assume that there exists a finite set J of states that channel

conditions can be in. Let Γj denote the set of feasible link rates in state j and πj be the stationary
probability of jth channel state. We define the following average capacity region.

C =
∑
j ∈J

πjConv(Γj ).

Then, the problem becomes an optimization problem over this new capacity region. Accordingly,

the routing and scheduling components in each time slot t can be modified to an optimization

problem over instantaneous region C[t]. Although the numerical results have already exhibited

improved performance over existing algorithms, the theoretical performance under this setting is

unknown. One possible approach is to utilize some stochastic Alternating Directional Method of

Multipliers. However, the challenge is that all existing stochastic ADMMs can only be applied to

the smooth stochastic objective function, which is not the case in this problem.

8 CONCLUSION
In this paper, we have proposed a new joint congestion control, routing and scheduling algo-

rithmic framework for distributed network optimization based on an inexact Uzawa method of

the Alternating Directional Method of Multiplier. This algorithm offers zero utility optimality

gap with finite queue length, the fastest convergence speed to date, i.e., O (log(1/ϵ )) iterations,
among all the existing algorithms. Moreover, the virtual queue-based control provides an extremely

low-complexity implementation of this algorithm. These results build a deep connection between

the cross-layer decomposition of network optimization and the variable splitting in the multi-block

Alternating Directional Method of Multiplier. One important theoretical contribution is that we

prove that the ADMM with an inexact Uzawa method converges globally and linearly without

requiring the full rank assumption of constraint matrix.
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A APPENDIX
A.1 Proof of Lemma 4.4
The first step of the Algorithm 1 is

r[t] = argmin

r
L(x[t − 1], r,λ[t − 1]) +

1

2

∥r − r[t − 1]∥2Q

(a)
⇐⇒ r[t] = argmin

r
д(r) +

ρ

2



[
Asr − x[t − 1] − λs [t − 1]/ρ

Ar r − λr [t − 1]/ρ

]

2

+
1

2

∥r − r[t − 1]∥2Q

(b )
⇐⇒ AT

s [λs [t − 1] − ρ (Asr[t] − x[t − 1])] + AT
r (λr [t − 1] − ρAr r[t]) + Q(r[t − 1] − r[t]) ∈ ∂д(r[t])

(c )
⇐⇒ AT

s

[
¯λs [t] − ρ (x[t] − x[t − 1])

]
+ AT

r
¯λr [t] + Q(r[t − 1] − r[t]) ∈ ∂д(r[t]). (40)

The above, step (a) utilizes definition of the Augmented Lagrangian function (18), step (b) is based

on the first-order optimality condition, step (c) is based on the following definition of variables

¯λs [t] and ¯λr [t].

¯λs [t] = λs [t − 1] − ρ (Asr[t] − x[t]), (41)

¯λr [t] = λr [t − 1] − ρAr r[t]. (42)

Similarly, based on the the first-order optimality condition and the definition of the variable
¯λs [t]

in (41), the second step of the Algorithm 1 is

x[t] = argmin

x
f (x) +

ρ

2

∥Asr[t] − x − λs [t − 1]/ρ∥2

⇐⇒ − ¯λs [t] ∈ ∂ f (x[t]). (43)

Combining the KKT condition (23) that AT
r λ
∗
r +AT

s λ
∗
s ∈ ∂д(r∗), the optimality condition (40) in the

second step of ADMM, we have

⟨r[t] − r∗,AT
s

[
¯λs [t] − λ

∗
s − ρ (x[t] − x[t − 1])

]
+ AT

r (
¯λr [t] − λ

∗
r ) + Q(r[t − 1] − r[t])⟩

(a)
≥ 0. (44)

The above, (a) utilizes the fact that function h(x) is convex and the subdifferential of a convex

function is a monotone operator, i.e., the inequality (16) holds with v = 0.

Similarly, combining the result of KKT condition (22) that −λ∗r ∈ ∂ f (x∗) and the optimality

condition (43) in the second step of ADMM, we have

⟨x[t] − x∗, ¯λs [t] − λ∗s [t]⟩
(a)
≤ −v ∥x[t] − x∗∥2,v > 0. (45)

The above, step (a) utilizes the fact that function f (x) is convex with modulus v and inequality (16).

Then, change the direction of inequality (45) and sum it with inequality (44), we have

⟨x[t] − x∗,λ∗s [t] − ¯λs [t]⟩ + ⟨r[t] − r∗,Q(r[t − 1] − r[t])⟩ + ⟨r[t] − r∗,AT
s

[
¯λs [t] − λ

∗
s − ρ (x[t]

−x[t − 1])]⟩ + ⟨r[t] − r∗,AT
r (

¯λr [t] − λ
∗
r )⟩ ≥ v ∥x[t] − x∗∥2

(a)
⇐⇒

1

ρ
⟨λs [t − 1] − ¯λs [t], ¯λs [t] − λ

∗
s ⟩ + ρ⟨x

∗ − x[t], x[t] − x[t − 1]⟩ + ⟨r[t] − r∗,Q(r[t − 1] − r[t])⟩
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+
1

ρ
⟨λr [t − 1] − ¯λr [t], ¯λr [t] − λ

∗
r [t]⟩ ≥ v ∥x[t] − x∗∥2 + ⟨λs [t − 1] − ¯λs [t], x[t] − x[t − 1]⟩

(b )
⇐⇒

1

ρ
⟨λs [t − 1] − ¯λs [t],λs [t − 1] − λ

∗
s ⟩ + ρx[t − 1] − ⟨x

∗, x[t − 1] − x[t]⟩ + ⟨r[t − 1] − r∗,

Q(r[t − 1] − r[t])⟩ +
1

ρ
⟨λr [t − 1] − ¯λr [t],λr [t − 1] − λ

∗
r [t]⟩ ≥

1

ρ
λ[t − 1] −

¯λ[t]
2

+ ρ∥x[t − 1]

− x[t]∥2 + ∥r[t − 1] − r[t]∥2Q +v ∥x[t] − x
∗∥2 + ⟨λs [t − 1] − ¯λs [t], x[t] − x[t − 1]⟩

(c )
⇐⇒

1

ρτ

(
∥λ[t − 1] − λ∗∥2 − ∥λ[t] − λ∗∥2

)
+ ρ (∥x[t − 1] − x∗∥2 − ∥x[t] − x∗∥2) + ∥r[t − 1] − r∗∥2Q−

∥r[t] − r∗∥2Q ≥
2 − τ

ρ
∥λ[t − 1] − ¯λ[t]∥2 + ρ∥x[t − 1] − x[t]∥2 + ∥r[t − 1] − r[t]∥2Q+

2v ∥x[t] − x∗∥2 + 2⟨λs [t − 1] − ¯λs [t], x[t] − x[t − 1]⟩. (46)

The above, step (a) rearranges the terms in the original inequality and utilizes the definition of the

variable
¯λs [t], ¯λr [t] in (41), (42) and the KKT condition (24). The step (b) rearranges terms by writing

x∗ − x[t] = x∗ − x[t − 1] + x[t − 1] − x[t] (similarly for variables r[t] and ¯λ[t]). The step (c) applies

the three-point equality of Euclidean norms ∥x − z∥2M − ∥y − z∥
2

M = 2(x − z)TM(x − y) − ∥x − y∥2M
to the left hand side of the inequality, and utilizes the equation λ[t − 1]− ¯λ[t] = (λ[t − 1]−λ[t])/τ .

The rest is to show that the term ⟨λs [t − 1] − ¯λs [t], x[t] − x[t − 1]⟩ is lower bounded by certain

form of other existing terms in (46) and the primal residual. Applying the equation (43) to the time

slot t − 1, we have

− λs [t − 2] + ρ (Asr[t − 1] − x[t − 1]) ∈ ∂ f (x[t − 1]).

Combing this result, equation (43) and inequality (16), we have

⟨x[t − 1] − x[t],−λs [t − 2] + ρ (Asr[t − 1] − x[t − 1]) + ¯λs [t]⟩ ≥ v ∥x[t − 1] − x[t]∥2

(a)
⇐⇒ ⟨x[t] − x[t − 1],λs [t − 1] − ¯λs [t]⟩ ≥ ⟨x[t] − x[t − 1], (1 − τ )ρ (Asr[t − 1] − x[t − 1])⟩+

v ∥x[t − 1] − x[t]∥2

(b )
⇐⇒ ⟨x[t] − x[t − 1],λs [t − 1] − ¯λs [t]⟩ ≥ −

ρ

2η
∥Asr[t − 1] − x[t − 1]∥2+

[
v −

(1 − τ )2ρη

2

]
∥x[t] − x[t − 1]∥2. (47)

The above, step (a) is based on the virtual queue update λs [t−1] = λs [t−2]−ρτ (Asr[t−1]−x[t−1]),
step (b) utilizes the following inequality.

⟨
√
ρη(1 − τ ) (x[t − 1] − x[t]),

√
ρ

η
(Asr[t − 1] − x[t − 1])⟩ ≤

ρη(1 − τ )2

2

∥x[t − 1] − x[t]∥2 +
ρ

2η
∥Asr[t − 1] − x[t − 1]∥2,

where η > 1 is an arbitrary constant. Substituting the above inequality into (46), we can finally

obtain

V (x[t − 1], r[t − 1],λ[t − 1]) −V (x[t], r[t],λ[t]) ≥ ρ

(
2 − τ −

1

η

)
∥Asr[t] − x[t]∥2+

2 − τ

ρ
∥λr [t − 1] − ¯λr [t]∥

2 + ρ
[
1 − η(1 − τ )2

]
∥x[t] − x[t − 1]∥2 + ∥r[t − 1] − r[t]∥2Q+
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2v ∥x[t] − x∗∥2 + 2v ∥x[t] − x[t − 1]∥2. (48)

The existence of α > 0 can be guaranteed by 2 − τ − 1

η > 0 and 1 − η(1 − τ )2 > 0, or, equivalently,

τ ∈ [1, (1 +
√
5)/2). Therefore, the lemma follows.

B PROOF OF THEOREM 4.5
By Lemma 4.4, if the parameter τ satisfies τ ∈ [1, (

√
5 + 1)/2), the function V (x[t], r[t],λ[t]) is

bounded. Then we have that ∥λ[t] − λ∗∥, ∥x[t] − x∗∥ and ∥r[t] − r∗∥2Q are bounded, which implies

that sequence λ[t] and x[t] are bounded. Based on the choice of parameter βdm,n > deg(m)+deg(n),
the matrix Q is positive definite, thus the sequence r[t] is also bounded. Being bounded, these

sequences have the converging subsequences such that

lim

i→∞
x[ti ] = x̂, lim

i→∞
r[ti ] = r̂, lim

i→∞
λ[ti ] = ˆλ.

The function V (x[t], r[t],λ[t]) is monotonically nonincreasing and thus converging. Due to the

fact that α > 0, we have lim sup ∥λ[t − 1] − λ[t]∥ = 0, and then we have

lim sup ∥Asr[t] − x[t]∥ = lim sup ∥Ar r[t]∥ = 0. (49)

By passing the limit on (49) over subsequences, we have

As r̂ = x̂,Ar r̂ = 0. (50)

Similarly, we have lim sup ∥x[t − 1] − x[t]∥ = lim sup ∥r[t − 1] − r[t]∥ = 0. Recall the optimality

condition (40) and (43) of first and second step of ADMM, taking limit over the subsequence and

applying Theorem 24.4 of [31], we obtain

− ˆλs ∈ ∂ f (x̂), and AT
s
ˆλs + AT

r
ˆλr ∈ ∂д(r̂). (51)

Together with (50), x̂, r̂, ˆλ satisfy the KKT conditions of problem (17). Therefore, the theorem

follows.

C PROOF OF LEMMA 4.8
Based on the fact that f (x∗) = U (x∗), we have

Rx∗ (x, r,λ) = 0

⇐⇒




x − Prh (x − λs − ∇U (x∗)) = 0
r − Prд (r + AT

s λs + AT
r λr ) = 0

Asr − x = 0,Ar r = 0
x = x∗

(a)
⇐⇒




−λs ∈ ∂h(x) + ∇U (x∗)
AT
s λs + AT

r λr ∈ ∂д(r)
Asr = x,Ar r = 0

x = x∗

(b )
⇐⇒




−λs ∈ ∂ f (x)
AT
s λs + AT

r λr ∈ ∂д(r)
Asr = x,Ar r = 0

x = x∗

⇐⇒ (x, r,λ) ∈ Ω∗ (x∗). (52)
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The above, step (a) utilizes the definition of proximal mapping and the first-order optimality

condition that

x = argmin

u
h(u) +

1

2

∥u − [x − λs − ∇U (x∗)]∥2

⇐⇒ 0 ∈ ∂h(x) + x − [x − λs − ∇U (x∗)],

and

r = argmin

u
д(u) +

1

2

∥u − [r + (AT
s λs + A

T
r λr )]∥

2

⇐⇒ 0 ∈ ∂д(r) + r − [r + (AT
s λs + A

T
r λr )].

The step (b) is based on the following fact.{
−λs ∈ ∂h(x) + ∇U (x∗)

x = x∗ ⇐⇒

{
−λs ∈ ∂ f (x)

x = x∗ .

Therefore, the lemma follows.

D PROOF OF LEMMA 4.9
For notational simplicity, let u[t] = (x[t], r[t],λ[t]). Based on the result of Lemma 4.7, there exists

two constants κ0 and η0 such that, for all u[t] ∈ {u[t]|Rx∗ (u[t]) ≤ η0},

dist
2

(
u[t],R−1x∗ (0)

)
≤ κ0∥Rx∗ (u[t])∥2. (53)

From Theorem 4.5, we know that the sequence u[t] converges to a KKT point u∗ with ∥u[t]−u∗∥ ≤
B0 for all t ≥ 1, where B0 is a finite constant. Then, for u[t] with ∥Rx∗ (u[t])∥ > η0, it holds that

dist
2

(
u[t],R−1x∗ (0)

)
≤ ∥u[t] − u∗∥2

≤ B2

0

≤
B2

0

η2
0

∥Rx∗ (u[t])∥2

Then, let κ = max{κ0,B
2

0
/η2

0
}, we have

dist
2

(
u[t],R−1x∗ (0)

)
≤ κ∥Rx∗ (u[t])∥2,∀t ≥ 1. (54)

Based on the result of Lemma 4.8, the set R−1x∗ (0) is equivalent to the set Ω
∗ (x∗). Therefore, we have

for all t ≥ 1,

dist
2 (u[t],Ω∗) = inf

u∈Ω∗
∥u − u[t]∥2

(a)
≤ inf

u∈Ω∗ (x∗ )
∥u − u[t]∥2

= dist
2

(
u[t],R−1x∗ (0)

)
≤ κ∥Rx∗ (u[t])∥2. (55)

The above, step (a) is based on the definition Ω∗ (x∗) = Ω∗∩ {(x, r,λ) |x = x∗}. Therefore, the lemma

follows.
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E PROOF OF THEOREM 3.2
For notational simplicity, let u[t] = (x[t], r[t],λ[t]). Based on the result of Lemma 4.9, we have

dist
2 (u[t],Ω∗) ≤ κ∥Rx∗ (u[t])∥2 = κ

(
∥x[t] − x∗∥2 + ∥x[t] − Prh (x[t] − λs [t] − ∇U (x∗))∥2

+∥r[t] − Prд (r[t] + AT
s λs [t] + A

T
r λr [t])∥

2 + ∥Ar[t] + Bx[t]∥2
)
. (56)

Firstly, the term ∥Ar[t] + Bx[t]∥ = ∥λ[t − 1] − λ[t]∥/ρτ . Secondly, from the Proof of Lemma 4.4,

we have shown that the optimality condition of the first step in Algorithm 1 is equivalent to the

condition (40), which can be further written as

r[t] =Prд
(
r[t] + AT

s

[
¯λs [t] − ρ (x[t] − x[t − 1])

]
+ AT

r
¯λr [t] + Q(r[t − 1] − r[t])

)
.

Then, we have

∥r[t] − Prд (r[t] + AT
s λs [t] + A

T
r λr [t])∥

=
Prд (r[t] + A

T
s

[
¯λs [t] − ρ (x[t] − x[t − 1])

]
+ AT

r
¯λr [t] + Q(r[t − 1] − r[t]))−

Prд (r[t] + AT
s λs [t] + A

T
r λr [t])


(a)
≤ ∥AT

s (
¯λs [t] − λs [t]) + AT

r (
¯λr [t] − λr [t]) − ρAT

s (x[t] − x[t − 1]) + Q(r[t − 1] − r[t])∥
(b )
≤ ∥AT

s ∥∥
¯λs [t] − λs [t]∥ + ∥AT

r ∥∥
¯λr [t] − λr [t]∥ + ρ∥AT

s ∥∥x[t] − x[t − 1]∥ + ∥Q∥∥r[t − 1] − r[t]∥
(c )
≤ (1 −

1

τ
)∥AT

s ∥∥λs [t − 1] − λs [t]∥ + ρ∥A
T
s ∥∥x[t] − x[t − 1]∥ + (1 −

1

τ
)∥AT

r ∥∥λr [t − 1] − λr [t]∥+

∥Q∥∥r[t − 1] − r[t]∥.

The above, step (a) is based on the non-expansiveness of the proximal mapping that ∥Prf (x) −
Prf (y)∥ ≤ ∥x − y∥, step (b) utilizes the triangle inequality and the matrix norm inequality that

∥Ax∥ ≤ ∥A∥∥x∥, step (c) is based on the definition of
¯λ[t] in (41) and (42) such that

¯λ[t] − λ[t] =
(τ − 1)ρ (Ar[t] + Bx[t]) = (1 − 1/τ ) (λ[t − 1] − λ[t]). Similarly, we have

x[t] = Prh (x[t] − ¯λs [t] − ∇U (x[t])), (57)

and then

∥x[t] − Prh (x[t] − λs [t] − ∇U (x∗))∥

=∥Prh (x[t] − ¯λs [t] − ∇U (x[t])) − Prh (x[t] − λs [t] − ∇U (x∗))∥

≤∥ ¯λs [t] − λs [t]∥ + ∥∇U (x[t]) − ∇U (x∗)∥
(d )
≤ (1 −

1

τ
)∥λs [t − 1] − λs [t]∥ + Lu ∥x[t] − x∗∥. (58)

The above, step (d) is based on the assumption that utility functionU (·) has Lipschitz continuous
gradient with constant Lu . Then, substitute the above inequalities into upper bound (56) and

rearrange the terms, we have

dist
2 (u[t],Ω∗) ≤ c1∥x∗ − x[t]∥2 + c2∥λ[t − 1] − λ[t]∥2 + c3∥x[t] − x[t − 1]∥2 + c4∥r[t] − r[t − 1]∥2,

(59)

where the constant c1, c2, c3 and c4 are given by

c1 = κ (1 + 2L
2

u ),

c2 = (1 −
1

τ
)2 (4max{∥AT

s ∥
2, ∥AT

r ∥
2} + 2) +

1

ρ2τ 2
,
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c3 = 4ρ2∥AT
s ∥

2,

c4 = 4∥Q∥2.

Note that the constants 2 and 4 in coefficients ci derive from the Cauchy-Schwartz inequality. For

all t ≥ 1, define

(xt , rt ,λt ) = arg min

(x,r,λ)∈Ω∗
∥x − x[t]∥2 + ∥r − r[t]∥2 + ∥λ − λ[t]∥2.

Then we have

dist
2 (u[t],Ω∗) = ∥x[t] − xt ∥2 + ∥r[t] − rt ∥2 + ∥λ[t] − λt ∥2. (60)

Further, define

x∗t = arg min

(x,r,λ)∈Ω∗
∥x − x[t]∥,

r∗t = arg min

(x,r,λ)∈Ω∗
∥r − r[t]∥,

λ∗t = arg min

(x,r,λ)∈Ω∗
∥λ − λ[t]∥.

Based on the fact that matrix Q is positive definite, we have λmin (Q) > 0 and ∥r[t] − r∗∥2Q ≥
λmin (Q)∥r[t] − r∗∥2. Then, we can write the inequality (25) in Lemma 4.4 as the following form.

V (x[t − 1], r[t − 1],λ[t − 1]) −V (x[t], r[t],λ[t]) ≥c5∥λ[t − 1] − λ[t]∥ + c5∥x[t − 1] − x[t]∥2+

c6∥r[t] − r[t − 1]∥2+c7∥x[t] − x∗∥2 + c7∥x[t] − x[t − 1]∥2, (61)

where the coefficients c5, c6 and c7 are positive constants. Combining the above inequality with the

error bound (59), we conclude that there exists a positive constant γ > 0 such that

V (x[t − 1], r[t − 1],λ[t − 1]) −V (x[t], r[t],λ[t]) ≥ γ

(
1

ρτ
∥λ[t] − λt ∥

2 + ρ∥x[t] − xt ∥2+

∥r[t] − rt ∥2Q +
ρ

η
∥Asr[t] − x[t]∥2

)
.

Let x∗ = x∗t−1, r
∗ = r∗t−1 and λ

∗
= λ∗t−1 in the function V (·) of the above inequality, then we have

1

ρτ
∥λ[t − 1] − λ∗t−1∥

2 + ρ∥x[t − 1] − x∗t−1∥
2 +

ρ

η
∥Asr[t − 1] − x[t − 1]∥2 + ∥r[t − 1] − r∗t−1∥

2

Q ≥(
1

ρτ
∥λ[t] − λ∗t−1∥

2 + ρ∥x[t] − x∗t−1∥
2 + ∥r[t] − r∗t−1∥

2

Q +
ρ

η
∥Asr[t] − x[t]∥2

)
+ γ

(
1

ρτ
∥λ[t] − λt ∥

2+

ρ∥x[t] − x∥2 + ∥r[t] − rt ∥2Q +
ρ

η
∥Asr[t] − x[t]∥2). (62)

Based on the definition of sequences (xt , rt ,λt ) and (x∗t , r
∗
t ,λ
∗
t ), we have

∥x[t] − x∗t−1∥ ≥ ∥x[t] − x
∗
t ∥, ∥x[t] − x∥ ≥ ∥x[t] − x

∗
t ∥,

∥r[t] − r∗t−1∥ ≥ ∥r[t] − r
∗
t ∥, ∥r[t] − x∥ ≥ ∥r[t] − r

∗
t ∥,

∥λ[t] − λ∗t−1∥ ≥ ∥λ[t] − λ
∗
t ∥, ∥λ[t] − λt ∥ ≥ ∥λ[t] − λ

∗
t ∥. (63)

Combining inequality (62) and (63) together, we can get the following contraction.

G[t] ≤
1

1 + γ
G[t − 1], t ≥ 1.
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where G[t] is defined as

G[t] =
1

ρτ
∥λ[t] − λ∗t ∥

2 + ρ∥x[t] − x∗t ∥
2 + ∥r[t] − r∗t ∥

2

Q +
ρ

η
∥Asr[t] − x[t]∥2. (64)

Telescoping the above inequality for all iterations t , we arrive that

G[t] ≤

(
1

1 + γ

)t
D0, (65)

where D0 is the initial distance to the optimal solution set,

D0 =
1

ρτ
∥λ[0] − λ∗

0
∥2 + ρ∥x[0] − x∗

0
∥2 + ∥r[0] − r∗

0
∥2Q +

ρ

η
∥Asr[0] − x[0]∥2.

Therefore, the theorem follows.

F PROOF OF LEMMA 4.10
Define an auxiliary queue

ˆλdn[t] that evolves according to (11). Initializing the auxiliary queue with

ˆλdn[0] = M + ρτ
∑
l ∈O (n) ηl , where ηl is the upper bound of the capacity of link l . Then we can

prove by induction that

ˆλdn[t] = λdn[t] +M + ρτ
∑

l ∈O (n)

ηl ,∀t ,d ∈ D,n ∈ N\d .

Since λdn[t] ≥ −M,∀t ,n,d by assumption, we have that

ˆλdn[t] ≥ ρτ
∑

l ∈O (n)

ηl ,∀t ,d ∈ D,n ∈ N\d .

Then the auxiliary queue
ˆλdn[t] satisfies

ˆλdn[t] =


ˆλdn[t − 1] − ρτ

∑
l ∈O (n)

rdl [t]

+
+ ρτ

∑
l ∈I (n)

rdl [t] + ρτ
∑
f ∈F

xf [t]1{sf =n,df =d },∀t ,d ∈ D,n ∈ N\d .

Based on the fact that ρτ > 0, we can rewrite the above updating formula as

ˆλdn[t]

ρτ
=



ˆλdn[t − 1]

ρτ
−

∑
l ∈O (n)

rdl [t]

+
+

∑
l ∈I (n)

rdl [t] +
∑
f ∈F

xf [t]1{sf =n,df =d } .

We next prove thatQd
n [t] ≤

ˆλdn[t]/ρτ ,∀t ≥ 1 by induction. For t = 0, we haveQd
n [0] = 0 ≤ ˆλdn[0]/ρτ .

Suppose that it holds for k = t − 1, then for k = t , we have

Qd
n [t] ≤


Qd
n [t − 1] −

∑
l ∈O (n)

rdl [t]

+
+

∑
l ∈I (n)

r̂dl [t] +
∑
f ∈F

xf [t]1{sf =n,df =d }

≤



ˆλdn[t − 1]

ρτ
−

∑
l ∈O (n)

rdl [t]

+
+

∑
l ∈I (n)

r̂dl [t] +
∑
f ∈F

xf [t]1{sf =n,df =d }

=
ˆλdn[t]

ρτ
. (66)

Finally, since
ˆλdn[t] = λdn[t] +M + ρτ

∑
l ∈O (n) ηl and λ

d
n[t] ≤ M , we have

Qd
n [t] ≤

2M

ρτ
+

∑
l ∈O (n)

ηl .
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Let constant B = maxn∈N
∑
l ∈O (n) ηl . Therefore, the lemma follows.

G PROOF OF THEOREM 5.4
Let P ∈ RL(D+1) be a convex polyhedron, defined as

P =


(y, r)

�����
y ∈ C,yl =

D∑
d=1

rdl , and r
d
l ≥ 0,∀l ∈ L,d ∈ D



.

Formally, we define following two problems. The first one is the scheduling component in Algo-

rithm 1.

Definition G.1. (New scheduling problem) Given arbitrary weights a ∈ RDL , b ∈ RDL and c ∈ RL ,
output an (r∗, y∗) such that, for arbitrary (r, y) ∈ P,

L∑
l=1

D∑
d=1

adl r
d
l
∗
− cl (r

d
l
∗
− bdl )

2 ≥ −δ +
L∑
i=1

D∑
j=1

adl r
d
l − ci (r

d
l − b

d
l )

2, (67)

and B ((r∗, y∗),δ ) ∈ P.

Definition G.2. (MaxWeight scheduling) Given arbitrary weights w ∈ ZD , output an r∗ ∈ C such

that

wT r∗ ≥ wT r,∀r ∈ C and rl ≥ 0. (68)

We can observe that the above defined problem is actually equivalent to the original MaxWeight

scheduling problem (13) based on the fact that

max

rdl

L∑
l=1

∑
d ∈D

(Qd
m[t] −Q

d
n [t])r

d
l , s.t.



∑
d

rdl


∈ C, rdl ≥ 0.

⇐⇒ max

r

L∑
l=1

(Qdl
m [t] −Qdl

n [t])rdll , s.t. r ∈ C, r
dl
l ≥ 0,

where dl is defined as dl = argmaxd ∈D (Q
d
m[t]−Qd

n [t]), and the fact that the physical queue length
in the QCA method is an integer (number of packets). According to the above definitions, to prove

the Theorem 5.4, we need to construct a poly(L, F ) time reduction between the above two problems.

We first prove the “if” direction.

Based on the result in Lemma 5.3, we know that solving the new scheduling problem in

poly(L, F , log(δ−1)) time if the separation oracle problem for polyhedron P can be solved in

poly(L, F ) time. Since the constraints yl =
∑D
d=1 r

d
l and rdl ≥ 0 in P can be explicitly checked in

O (LF ) time, then the separation oracle problem for polyhedron P can be reduced to the separa-

tion oracle problem for polyhedron C by the following procedure: given a separation hyperplane

cTy ≥ cT y′,∀y′ ∈ C, construct the hyperplane cT y + c′T r with cdl
′
= cl ,∀l ,d . Then, we have

cT y + c′T r = cT y +
L∑
l=1

cl

D∑
D=1

rdl = cT y + cT y

≥ cT y′ + cT y′

= cT y′ + c′T r′,∀(y′, r′) ∈ P,

which implies that cT y + c′T r is also a separating hyperplane of polyhedron P. A classic result

in the combinatorial optimization due to Grötschel and Lovász [11] establishes the equivalence

between the linear optimization problem and the separation oracle problem for the same polyhedron.
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Therefore, the new scheduling problem (67) can be reduced to the original MaxWeight scheduling

problem (68) in poly(L, F ) time.

We next prove the “only if” direction.

For any input instance w ∈ ZD in the MaxWeight scheduling problem, construct the input

instance a ∈ RDL , b ∈ RDL and c ∈ RL as following.

adl = (LDB2 + 1)wl ,∀l ,d,

bdl = 0,∀l ,d, cl = 1,∀l .

The above, constant B is the upper bound of the all the link rate rdl . Suppose that we solve the new

scheduling problem in poly(L, F , log(δ−1)) time under the above input instance. Then we have an

(r∗, y∗) such that B ((r∗, y∗),δ ) ∈ P and for arbitrary (r, y) ∈ P,

(LDB2 + 1)
L∑
l=1

wly
∗
l −

L∑
l=1

D∑
d=1

rdl
∗2
≥ −δ + (LDB2 + 1)

L∑
l=1

wlyl −
L∑
l=1

D∑
d=1

rdl
2

.

The quantity y∗l and yl derives from y∗l =
∑D
d=1 r

d
l
∗
and yl =

∑D
d=1 r

d
l . We prove the following

argument by contradiction.

L∑
l=1

wly
∗
l ≥

L∑
l=1

wlyl ,∀y ∈ Γ and yl ≥ 0,∀l .

Assume that there exists y ∈ Γ and yl ≥ 0,∀l such that

L∑
l=1

wly
∗
l <

L∑
l=1

wlyl . Then, we have

(LDB2 + 1)
L∑
l=1

wly
∗
l < (LDB2 + 1)

L∑
l=1

wlyl

(a)
⇒(LDB2 + 1)


1 +

L∑
l=1

wly
∗
l


≤ (LDB2 + 1)

L∑
l=1

wlyl − δ

(b )
⇒(LDB2 + 1)

L∑
l=1

wly
∗
l <

L∑
l=1

D∑
d=1

rdl
∗2
−

L∑
l=1

D∑
d=1

rdl
2

− δ + (LDB2 + 1)
L∑
l=1

wlyl

⇒(LDB2 + 1)
L∑
l=1

wly
∗
l −

L∑
l=1

D∑
d=1

rdl
∗2
< −

L∑
l=1

D∑
d=1

rdl
2

+ (LDB2 + 1)
L∑
l=1

wlyl − δ ,

which is a contradiction. The above, step (a) is based on the assumption that the weightwl , feasible

link rate yl , y
∗
l are the integers, and that δ is sufficiently small, step (b) utilizes the definition that

rdl ≤ B,∀l ,d . Utilizing the fact that the optimal point of linear optimization lies in the vertex set of

the feasible region, the y∗l is also the optimal solution of the following optimization problem.

max

r
wT r, s.t. r ∈ C, rl ≥ 0,∀l .

which is clearly the solution of the MaxWeight scheduling problem (68). Therefore, the theorem

follows.
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