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ABSTRACT
Control charting cyber vulnerabilities is challenging because the same vulnerabilities can remain from
period to period. Also, hosts (personal computers, servers, printers, etc.) are often scanned infre-
quently and can be unavailable during scanning. To address these challenges, control charting of
the period-to-period demerits per host using a hybridmoving centerline residual-based and adjusted
demerit (MCRAD) chart is proposed. The intent is to direct limited administrator resources to unusual
cases when automatic patching is insufficient. The proposed chart is shown to offer superior average
run length performance compared with three alternative methods from the literature. The methods
are illustrated using three datasets.

Introduction

Cyber attacks are on the increase and many orga-
nizations are losing substantial amounts of money
as a result. A study of the financial impact, cus-
tomer turnover, and actions taken by 51 compa-
nies in the United States concluded that, on aver-
age, the cost of a successful attack in 2010 increased
to $7.2 million, up 7% from $6.8 million in 2009
(Ponemon Institute 2011). Cyber vulnerabilities are
ways that hosts such as personal computers, servers,
and printers can be exploited. Examples of vulnera-
bilities include: weak passwords, weak authentication
processes, unsupported operating systems, informa-
tion disclosures, and the use of software with known
exploitable bugs. Reportedly, over 90% of successful
attacks exploit known vulnerabilities for which a patch
exists but has not been applied by the system admin-
istrators (Legard 2002). Therefore, while new technol-
ogy to identify and patch vulnerabilities is important,
securing and focusing human resources to eliminate
known vulnerabilities is also important.

The objective of this article is to propose control
charting methods for cyber vulnerabilities to direct the
attention of system administrators to unusual occur-
rences that correspond to assignable causes that they
can address. As noted in Afful-Dadzie and Allen
(2014), a substantial fraction of vulnerabilities are
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repaired each month by automatic patching without
local intervention. Typically, only a tiny fraction of
vulnerabilities are repaired manually because of auto-
matic patching and limited resources. As a result, it
may be of interest for administrators to intervene only
when there is something unusual occurring (i.e., an
assignable cause) or, alternatively, amajor threat is clear
(e.g., an on-going attack). Therefore, this article focuses
on a statistical process control approach designed to
signal the presence of assignable causes.

Previous authors have developed monitoring tech-
niques relating to cyber vulnerabilities. Yet, some have
used data that is not available in vulnerability reports.
For example, Dowdy (2012) discusses the challenges
in integrating data from many sources to summarize
risks. Abedin et al. (2006) also use traffic volumes as
part of a comprehensive network evaluation approach.
Further, Abedin et al. (2006) introduce exponential
functions in their formulations which potentially com-
plicate the interpretation. Others authors have based
their metrics on forecasted quantities without invoking
the concepts from statistical process control (Ahmed
et al., 2008). In this article, a relatively simple monitor-
ing technique based on readily available data and sta-
tistical process control is proposed.

Cyber vulnerability data are often providedmonthly
with reference to the Common Vulnerability Scoring
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System (CVSS) described in Mell et al. (2007). CVSS
scores range from 0.0, meaning no vulnerability, to
10.0, indicating that the program evaluating the sys-
tem (scanner) is in a position to take over the host sys-
tem. Common scanning technology divides vulnera-
bilities into categories based on the CVSS score: low
(0.0–3.9), medium (4.0–6.9), high (7.0–9.9), and criti-
cal (10.0). A given host could have multiple vulnerabil-
ities, e.g., 2 mediums and 1 critical. Therefore, the sit-
uation is somewhat analogous to manufacturing with
nonconformity counts of different levels of severity.
Weightings of these counts or demerits and the asso-
ciated demerit charting techniques are potentially rel-
evant in this case (e.g., see Nembhard and Nembhard
2000). Also, because of the infrequent (often monthly)
nature of relevant data, charting without subgroups or
“individuals” control charting of demerits is relevant.

However, unlike in manufacturing, the hosts (or
units) with the vulnerabilities (or nonconformities) are
not shipped each period. Instead, these hosts might
be personal computers which are used for multiple
months and might likely have the same vulnerabili-
ties for an extended period. On-going “patching” elim-
inates a fraction of the vulnerabilities each month, but
far fewer than 100%. The accumulation of vulnera-
bilities almost unavoidably induces autocorrelation or
correlation in period-to-period nonconformity counts.
Autocorrelation is amajor issue related to control chart
performance (Alwan and Roberts 1988; Montgomery
and Mastrangelo 1991; Runger and Willemain 1995;
Loredo et al. 2002; Nembhard and Nembhard 2000).

An additional complication is that local vulnerabil-
ities are influenced by external causes including con-
tinual discoveries of new vulnerabilities for the soft-
ware in use. These phenomena could cause a constant
increase in vulnerability counts over time onmany sys-
tems (Alhazmi and Malaiya 2005).

Charting based on autoregressive (AR) moving
average modeling promises to eliminate the adverse
effects of autocorrelation and trending because the
model residuals are generally uncorrelated and de-
trended (Montgomery and Mastrangelo 1991; Runger
and Willemain 1995). Perhaps the simplest of the
relevant schemes is based on the first-order autore-
gressive or AR(1) model. Authors have noted the
ability of such approaches for addressing autocorrela-
tion as well as underlying trends (Runger and Wille-
main 1995). Another relevant approach is moving
centerline demerit (MCD) charts which offer the

advantage that the charted quantity is intuitive, i.e.,
it is the demerits per unit (Nembhard and Nemb-
hard 2000). Yet, Runger and Willemain (1995) noted
the poor average run length performance of residual
charts given their diminished capacity to identify shifts
after the first subgroup following the shift (Runger and
Willemain 1995). MCD charts are also based on resid-
uals and can be expected to have similar performance.
This deficiency motivates two new charts that are pro-
posed in this article. These are “adjusted demerit” (AD)
and hybrid moving centerline residual-based demerit
and adjusted demerit (MCRDAD) charts for monitor-
ing cyber vulnerabilities. An average run length (ARL)
comparison is also described to confirm the benefits of
the proposed methods.

The remainder of this article is organized as follows.
First, alternative statistical process control (SPC) charts
relevant to cyber vulnerability data are described.
Because of the repeat nature of cyber vulnerabilities,
the focus is on procedures specifically addressing auto-
correlated data. The reviewed procedures includemov-
ing centerline demerit (MCD) charts from Nembhard
and Nembhard (2000) and moving centerline charts
based on AR(1) residuals. Issues with residual-based
charting are used to motivate the proposed adjusted
demerit (AD) and moving centerline residual-based
and adjusted demerit (MCRAD) methods. The aver-
age run lengths (ARLs) of the alternative methods are
then compared. Next, the application of the proposed
methods is illustrated using three cyber vulnerability
datasets from different organizations. Finally, conclu-
sions are presented and opportunities for future work
are described.

Statistical process control charting

In this section, four alternative methods are described.
As mentioned previously, the carryover of vulnera-
bilities from one period to the next causes a high
degree of autocorrelation in related vulnerability data.
Therefore, the focus here is on methods specifically
addressing autocorrelation rather than general tech-
niques such as exponentially weighted moving aver-
age (EWMA) charts. Also, the charting methods can
be applied both retrospectively as an analysis tech-
nique and also built into scanning software for active
monitoring.

The first alternativemethod explored here ismoving
centerline demerit (MCD) charting from Nembhard
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and Nembhard (2000). The second is a trivial combi-
nation of the residual charting methods from Runger
and Willemain (1995) and the moving centerline con-
cept from Nembhard and Nembhard (2000). Next, an
adjusted demerit chart and a hybrid moving centerline
residual-based and adjusted demerit (MCRAD) meth-
ods are proposed. The motivations for the proposed
methods relate to the objectives of improved average
run length performance and interpretability.

Residual-based charts

In general, the residuals of a defensible time series
model are approximately independent, and identically
distributed from a normal distribution assuming that
the process is under control (for example, when there
are no shifts). The properties of the residuals can be
evaluated using autocorrelation function (ACF) and
partial autocorrelation function (PACF) residual plots.
The charting of residuals from time series models
such as AR(1) was described in Runger andWillemain
(1995). For the AR(1) processes, the model prediction
can be written:

ŷi = μ + ϕyi−1 [1]

and the model residual is simply:

ε̂i = yi − ŷi. [2]

where yi is the dependent variable (or the demerit per
unit in our model) at time period i, ε̂i is a white noise
with zeromean and constant variance, andμ and−1 <

ϕ < 1 are constants to be determined. The symbol “^”
denotes the estimated or predicted value based on the
data, yi for time period i = 1,…, p. In a residual chart,
the charted quantity is ε̂i in (2).

Nembhard and Nembhard (2000) examined charts
based on residuals in Eq. [2] and proposed two mod-
ifications. First, they argued that charting of residu-
als is not intuitive for decision-makers in that they are
generally more interested in the process mean than
the model residuals. Instead of residual charting, they
proposed using a moving centerline based on model
predictions and moving limits based on the standard
deviation of the residuals. Their proposed approach
is in accord with the insights in Alwan and Roberts
(1988), who had argued that residual charting was
insufficient, while offering the simplicity of a single
chart. The Nembhard and Nembhard (2000) moving

centerline approach is functionally identical to resid-
ual charting in that the charts would deliver the same
out-of-control signals in identical situations and yet the
charted quantity is the demerits per unit. Second,Nem-
bhard and Nembhard (2000) argued that time series
modeling might be too complicated for many possi-
ble users and exponentially weighted moving average
(EWMA) offers similar predictions with only a single
adjustable parameter, λ. Therefore, they based the cen-
terline (CLi) of theirmoving centerline demerit (MCD)
chart on the following EWMA formula:

CLi = ŷi+1 = λyi + (1 − λ) ŷi−1 [3]

where λ is the weight given to themost recent weighted
value and must satisfy 0 < λ � 1

Then, the MCD upper control limit UCLi+1, and
lower control limits LCLi+1 are:

UCLi+1 = ŷi + Mσ̂

LCLi+1 = ŷi − Mσ̂
[4]

where M is a potentially adjustable parameter given
in Nembhard and Nembhard (2000), and usually M
= 3.0. The parameter σ̂ is the standard deviation for
the one step ahead prediction errors e = yi − ŷi, which
are independent and uncorrelated with mean of zero.
Nembhard and Nembhard (2000) proposed two pro-
cedures for estimating λ and σ̂ . The first of which is
used for illustration and involves selecting λ to mini-
mize the sum of squared residuals and σ̂ as the root
mean squared residual.

A trivial variant of the MCD charts is to sim-
ply base the predictions on the time series model in
Eq. [1] instead of the EWMA model in Eq. [3]. This
approach offers the benefit of MCD charts in that the
charted quantity is the intuitive demerits per unit. Also,
the predictions are based on the likely more accurate
time series models instead of the EWMA model. The
proposed variant is referred to as moving center-line
residual-based demerit (MCRD) charts. The MCRD is
slightly different than a residual chart because unlike
the residual chart theMCRDwill adjust the lower limit
to zero in situations when the calculated lower control
limit is negative.

As mentioned previously, MCD and MCRD charts
are approximately equivalent to residual charts in the
signals generated. Also, Runger and Willemain (1995)
documented the average run-length (ARL) properties
of residuals charts with two notable findings. First,
residual charts offer run-length performance that may
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be considered poor based on the tables provided by
Runger and Willemain (1995) compared with alter-
natives for cases without autocorrelation and EWMA
charts. Second, the poor performance relates to the fact
that residual charts offer a relatively high probability
of generating an out-of-control signal in the first sub-
group after a shift. After the first subgroup, the chance
of detecting the shift is greatly diminished. In the next
section, two charting techniques are proposed with the
objective of offering improved ARL performance com-
pared with MCD and MCRD charting procedures.

Adjusted demerit charts

Standard demerit charts are generally considered to
be inapplicable to cases involving significant autocor-
relation (e.g., see Montgomery, 2012). These charts
are based on the assumption of independently Poisson
distributed demerits. While the Poisson distribution
seems approximately appropriate for weighted vulner-
ability counts, the assumption of independence from
period to period does not apply because of the signif-
icant autocorrelation. In what follows, we first present
the standard demerit control chart model, point out its
limitations to charting demerits per unit of cyber vul-
nerability data, and proposed an adjusted demerit con-
trol chart for overcoming such limitations.

The standard demerit control chart formulas from
Dodge (1928) are derived as follows. Let di be the
weighted total number of demerits in period i, ni be the
sample size, and cik, be the number of class k noncon-
formities, k = 1, 2, . . . ,m. If wk is the weight of non-
conformity class k, the weighted demerits di, and the
demerit per unit Di (which is the charted quantity and
referred to in this article as demerit per host) in period
i are:

di =
m∑
k=1

wkcik

and

Di = di
ni

. [5]

The average number of demerits, D̄k, across all the p
periods, for nonconformity class k is:

D̄k =
∑p

i=1 cik∑p
i=1 ni

. [6]

Then, the center line (CL) of the demerit control
chart is:

CL =
m∑
k=1

wkD̄k. [7]

The upper and lower control limits for period i are:

UCLi = CL + Mσ̂i

and

LCLi = max
[(
CL − Mσ̂i

)
, 0

]
[8]

where

σ̂i =
√∑m

k=1 w2
kD̄k

ni
, [9]

and where M is a potentially adjustable parameter
which, in standard demerit charts, is 3.0.

The standard demerit chart given above is likely to
foster high false alarm rates if applied to charting cyber
vulnerabilities for the following reasons. The estimated
standard deviation in Eq. [9] is based on the assump-
tion that the demerit counts of different levels of sever-
ity are uncorrelated. For the cyber vulnerabilities in
the case studies shown later, at least two counts of vul-
nerabilities are significantly correlated for all three of
the organizations considered. In the presentation here,
the anonymous organizations are assigned labels corre-
sponding to their size, so that organization #1 had the
most hosts. For example, the correlation between the
high and critical counts for organization #1 in Table 1
is 0.97 which is significant with a p-value less than
0.001. Also, Dodge and Romig (1928) assumed that the
charted quantities (demerits per host), yi, exhibit no
autocorrelation if the system is under statistical con-
trol. As noted in Table 4 later, the autocorrelation coef-
ficients are significant for all three organizations.

It was the violations of assumptions of control charts
that motivated new methods such as those in Runger
and Willemain (1995) and Nembhard and Nembard
(2000). Runger and Willemain (1995) evaluated resid-
ual charts and determined that applying individuals
control charts (e.g., see Montgomery, 2012) to batched

Table . The estimated AR() parameters for the three organiza-
tions (cases).

Case  Case  Case 

Coefficient (ϕ̂) . . .
Mean (μ̂ = μ

1−ϕ
) . . .

Sigma (σ̂ ) . . .
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observations offered relatively desirable average run
lengths. Then, instead of charting the demerits per host
for each period, yi, one would chart the average of
m subgroups. Runger and Willemain (1995) recom-
mended batch sizes to reduce the autocorrelations to
less than 0.1. For cases such as organization #1 with
autocorrelation coefficients greater than 0.98, the rec-
ommended batch size was m = 58. With each period
lasting a single month, there would be a single sub-
group every 4.8 years, which is impractical for cyber
vulnerability charting.

With the goal of providing desirable average run
length performance with an intuitive charted quantity,
the following adjusted demerit charting procedure is
proposed.

Step 1: Apply time series modeling from Box and Jenk-
ins (1994) to develop a time series model of the
demerits per host. For example, Table 1 shows the
coefficients for the AR(1) models derived in the case
studies.

Step 2: Obtain a value of M in Eq. [7] such that the
average run length (ARL) with the process in con-
trol achieves a desired value, e.g., ARL(in control)=
200.0. The value ofM can be determined using sim-
ulation based on the model derived in Step 1. Apply
charting to the demerits per host using the derived
M values.

The above adjusted demerit procedure is facilitated
by modern computing. Using this procedure, there is
no assumption about the autocorrelation or cross cor-
relation other than that it can bemodeled appropriately
in Step 1.

Moving centerline residual-based and
adjusted demerit charts

An alternative approach is to chart the demerits per
host using limits frombothmoving centerline residual-
based (MCR) and adjusted demerit (AD) charts. If
the demerits per host cross any of the control limits,
an out-of-control signal is generated by the derived
hybrid moving centerline residual-based and adjusted
demerit (MCRAD) chart. Let M1 refer to the param-
eter in Eq. [4] associated with MCD limits and M2 to
refer to the parameter in Eq. [7] associated with AD
limits. As a default and for simplicity, we set M1 = 3.0
and then findM2 using a two-step procedure similar to
the one for determining adjusted demerit chart limits.

A user might seek even greater average run length per-
formance by optimizing simultaneously over M1 and
M2. It is also possible, the desired in-control average
run length cannot be attained using the default value
ofM1 = 3.0. Then, bothM1 andM2 should be adjusted
simultaneously to achieve desired in-control average
run length with, again, the in control model being the
estimated time series model.

Comparison of average run lengths

In this section, the four charting procedures are com-
pared using average run lengths (ARLs). While ARL
calculations are skewed by rare long run lengths, we
include them to provide a direct comparison with pre-
vious research on charts for autocorrelated data. The
derived ARL values are based on a simulated demerit
per host data from an autoregressive model. The four
charting procedures to be compared are: moving cen-
terline demerit (MCD) from Nembhard and Nemb-
hard (2000), moving centerline residual-based demerit
(MCRD) which is an extension of residual charts from
Runger and Willemain (1995), adjusted demerit (AD),
and moving centerline residual and adjusted demerit
(MCRAD) charts. The ARL values are estimated using
20,000 simulations in which the shift (δ) occurs on the
first subgroupwith the initial subgroup being subgroup
zero following the procedure in Runger andWillemain
(1995). Therefore, all the ARL estimates have standard
deviations less than 1% (0.007× standard deviation) of
the estimated ARL values making virtually all compar-
isons significant simultaneously. Therefore also, after
the first subgroup all responses derive from Eq. [10]
with δ (in increment of 0.5) added. In each case, the
simulated demerits per host derived from the standard
AR(1) model of the demerits per host (yi) with a single
lag can be written for period i:

yi = μ + ϕyi−1 + εi, [10]

where the εi are assumed to be independent identically
distributed (IID) N(0, σ 2). The coefficients, μ and ϕ,
can be estimated through least squares regression using
a lag variable, which is available in standard software
under the time series menus.

Table 1 contains the three sets of parameters needed
for simulating the demerit per host data. These were
obtained from the three case study datasets described
later. The related ARL results are shown in Tables 2–4,
where values under M = 3 are presented to show the
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Table . Average run length values for an AR() process with estimated parametersϕ = .,μ = ., and σ = . based on data from
Case .

MCD MCRD AD MCRAD

δ/σ M= . M= . M= . M= . M= . M= . M = .

. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .

Table . Average run length values for an AR() process with estimated parameters ϕ = .,μ = ., and σ = . for Case .

MCD MCRD AD MCRAD

δ/σ M= . M= . M= . M= . M= . M= . M = .

. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .

relatively arbitrary performance levels if the standard
choices are used. For example, theM= 3 in-control run
lengths for the demerit charts are generally so short that
false alarms wouldmake their application prohibitively
expensive.

For the MCRAD chart, the simulations involve val-
ues ofM1 = 3.0 in Eq. [4] andM2 in Eq. [8] that gener-
ate ARL in-control (with no assignable causes active,
δ/σ = 0.0) values approximately equal to 200. In all
cases where the ARL in-control value is approximately
200, the ARL values for the MCD chart exceed that of
the MCRD chart. This is explained by the fact that, in
using the same AR(1) internalized within the MCRD
chart, an advantage is conferred to theMCRD chart. In
other words, the MCRD charting method is designed

to directly address the test cases such that its residu-
als are IID N(0, σ 2). Similarly, the ARL for the MCD
andMCRDexceed that for theADandMCRADcharts.
The exception is for the largest shifts (δ/σ = 4.0) under
the assumptions in Table 2. Then, the MCRD chart
offers a lower average run length than theADchart. Yet,
the MCRAD chart dominates the MCD and MCRD
charts in all cases. Therefore, it is concluded that the
use of MCD or MCRD charting in the context of cyber
vulnerabilities is generally inadvisable since AD and
MCRADmethods offer generally superior ARL perfor-
mance. This assumes that the ability to perform time
series modeling and simulation is within the capabili-
ties of the practitioners. The authors have excel-based
software available upon request for generating the M

Table . Average run length values for an AR() process with estimated parameters ϕ = .,μ = ., and σ = . for Case .

MCD MCRD AD MCRAD

δ/σ M= . M= . M= . M= . M= . M= . M = .

. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
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or M2 values required by the AD and MCRAD charts,
respectively.

Further, the AD chart dominates the MCRAD chart
for small shifts (δ/σ < 3.0) while the MCRAD dom-
inates for large shifts (δ/σ > 3.0). This corroborates
Runger and Willemain (1995). Residual-based charts
offer a relatively high probability of identifying a large
shift on the first subgroup, but adjusted demerit charts
offer improved detection probabilities in other cases.
The differences are larger for the assumptions inTable 2
which is attributed here to the higher degree of auto-
correlation. Runger and Willemain (1995) also found
larger differences in ARL values among alternative
charts when the degree of autocorrelationwas relatively
high. The MCRAD charts are recommended for cyber
vulnerability modeling because we feel that the ability
to quickly detect large shifts is likely relevant in appli-
cations. Yet, the AD charts also offer relative simplic-
ity and competitive ARL performance making them a
viable alternative.

Case studies

In this section, the case studies that motivated our
research are described. The section begins with the
steps taken to prepare the data for attribute chart-
ing and the report from the local system administra-
tor about assignable causes. Next, the applications of
Box-Jenkin’s time series modeling are then described.
Finally, results illustrate possible insights gained using
the proposed adjusted demerit (AD) and moving cen-
terline residual-based and adjusted demerit (MCRAD)
charting procedures.

Vulnerability data preprocessing

The organizations under study had (altogether) 498
hosts over a 28-month period using data from the
monthly Nessus scans. Nessus is a vulnerability scan-
ning software developed by Tenable Network Security,
widely regarded as a world leader in vulnerability scan-
ning. One of the main challenges during a scan is that,
if a host is turned off or its firewall is turned on, it would
not appear in the final vulnerability report even if it had
vulnerabilities.

The steps to generate attribute data were as follows.

Step 1. Identify all distinct vulnerabilities across all
hosts and all 28 months. For example, host 1 might

have vulnerability 23 (out-of-date operating system)
and vulnerability 35 (weak password) while host 2
might have vulnerability 35 only. Combining results
from all three of our case studies results in 183 dis-
tinct vulnerabilities.

Step 2. List the specific hosts known to have each of
the observed vulnerabilities in each month. Table 5
shows a portion of this listing. The numbers in the
table are the CVSS scores for the specific vulnera-
bilities. If an item is blank it implies that either the
host did not have the vulnerability or the host was
unavailable during the scanning period. It was found
that only 36 of the 498 hosts exhibited any vulnera-
bility during the 28 months. Therefore, the vulner-
abilities were concentrated on approximately 7% of
the hosts.

Step 3. Tabulate the counts of low, medium, high,
and critical vulnerabilities on all hosts for each
month. Table 6 shows the counts of vulnerabilities
of different levels of severity for two of the hosts.
The instances in which hosts were unavailable are
marked with borders and bolding.

Step 4. Impute the missing data using the sample
averages of the counts from the months before
and after each instance (possibly including multi-
ple month gaps), i.e., mean-based imputation was
applied (Enders 2010). For missing data in the first
or last months, counts were inserted from the clos-
est month in time for which there were data. Note
that such imputations are likely necessary as miss-
ing data in vulnerability datasets is the common
result of hosts being unavailable during the sys-
tem scans. The results are shown in Table 6 in bold
font.

Step 5. Tabulate the total number of sampled hosts (ni)
successfully scanned in each period i and the total
counts (cik) for severity levels k = 1,…4 for low,
medium, high, and critical vulnerabilities.

Step 6.Calculate the demerits (Di) per period i using:

Di =
4∑

k=1

wkcik [11]

with weights w1= 2.0, w2= 5.5, w3= 8.5, and w4= 10,
for low, medium, high, and critical, respectively. These
weights are determined with reference to the common
vulnerability scoring system (CVSS; Mell et al. 2007).
Also, the demerits per host, yi, were derived using yi =
Di = di/ni. The resulting data are shown in Table 7 for
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Table . Excerpt of the data of vulnerabilities and their CVSS scores for a single month.

Host# month Vul  Vul  Vul  Vul  Vul  Vul  Vul  … Vul 

    …
  . …
   . . …
  . . …
  …
  . . …
  …
  …
  …
  …
  …
  …
� � � � � � � � � � �
  … .

the largest of the three organizations. Tables A1 and
A2 in the appendix contain similar information for the
other organizations.

The choice of mean-based imputation in Step 4
was motivated by our inspection of the available data
for the 36 hosts for which there were vulnerabili-
ties. Table A3 in the appendix provides the CVSS
score for the most severe vulnerability on each host
by CVSS score. The data indicate a high degree of
constancy in the vulnerabilities on the hosts. The 462
hosts not shown in Table A3 are believed to have
had no known vulnerabilities during the entire 28
months.

The system administrator was also interviewed for
organization #1, which was the largest of the three.
The administrator reported taking 16 manual actions
during the 28 month period following direct requests
from the host users. These included manually apply-
ing patches for hosts with automatic patching turned
off, identifying false positives (vulnerabilities reported

in the Nessus scan with little chance of causing
actual intrusions), and changing host permissions. The
actions also included the resolution of three then on-
going cyber-attacks. This was accomplished through
removing host permissions and vulnerable software
manually. There was no awareness of any actions taken
with respect to hosts in organizations #2 and #3 during
the 28 months.

Despite the actions taken by the administrator to
patch a select number of hosts, the administrator per-
ceived only a single unusual occurrence or assignable
cause during the 28 months. The remaining variation
was perceived to be typical or associated with com-
mon causes only. The assignable cause occurred dur-
ing month 19 and began to affect counts on month
20. During month 19, there was a major organi-
zational change and the administrator lost respon-
sibility for approximately 200 hosts. This change
included none of the hosts having vulnerabilities in
Table A4.

Table . Vulnerability counts for two hosts with imputed data bolded.

Host 1 Host 2

Month Low Medium High Critical Low Medium High Critical

        
        
     0 1.5 2 0
 0 1 0 0    
        
        
        
        
        
        
     0 3 2 0
 0 1.5 0 0    
        
        
        
        
        
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Table . Tabulation of the hosts scanned successfully and numbers of vulnerabilities of different levels of severity for Case . Also included
are demerit and demerit per host data.

Number of Vulnerabilities

Month ni Low Medium High Critical di yi = Di

      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .

Time series models and autocorrelation

All of the charting methods consider here involve two-
step approaches. In the first step, a procedure such
as standard time-series modeling (Box and Jenkins
1994) is applied (MCRD, AD, and MCRAD). If the
time-series model provides a good fit, the residuals are
uncorrelated, approximately normally distributed, and
provide useful inputs for charting.

In this section, the application of time series models
to the data from the three organizations (three cases) is
described. By examining the autocorrelation function
(ACF) and partial autocorrelation function (PACF) for
the demerits per host for the three cases (Table 7;
Tables A1 and A2), it was determined that AR mod-
els offer an appropriate choice for all 3 cases. Figure 1
shows the ACF and PACF for organization #1 (case 1).
The results for the 3 cases indicate that AR(1) models
are good fit for the vulnerability data at hand. These
choices are confirmed by studying the ACF and PACF
plots of the AR(1) model residuals. In all three cases,
the residuals show no evidence of autocorrelation and
normal probability plots (not shown) indicate approxi-
mate normality (with the exception of the outlier asso-
ciated with an assignable cause described above). The

residuals for the case #1 data are shown in Figure 2. The
corresponding ACF and PACF plots are excluded for
cases #2 and #3 since they appear similar to those of
case #1.

The relevance of AR(1) models for cyber vulnera-
bility demerits is likely a general phenomenon because
it relates to the carryover of the same vulnerabilities
and associated demerits from period to period. With
the complete data represented by Table 5, it was pos-
sible to identify vulnerabilities that appeared in one
month but not the next month. Some of the miss-
ing vulnerabilities were presumably the result of the
host being turned off or its firewall turned on. Yet, by
assuming that all of the appearing and disappearing
vulnerabilities were patched, an upper estimate of the
average patching rate is obtained. For example, for
organization #1 966 total vulnerabilities (not distinct)
were identified over 28 months and a total of 265
instances in which vulnerabilities were present one
month and absent the next. Therefore, the upper bound
on the average monthly patching rate is determined as
100% × 265/966 = 27.4%. Table A4 in the Appendix
contains the upper bound percentages of vulnerabili-
ties that were patched from one month to the next for
organization #1.
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Figure . Case #: Demerits per host (a) autocorrelation function and (b) partial autocorrelation function.

Figure . Case #: AR() residuals (a) autocorrelation function and (b) partial autocorrelation function.

The AR model form was given in Eq. [10]. While
the same AR(1) model form in Eq. [10] applied to all
three cases, the degree of autocorrelation represented
by the coefficient (ϕ) and the mean (μ) and standard
deviation (σ ) varied. Table 1 summarizes the coeffi-
cients for the three cases from AR(1) modeling. There-
fore, organization #1 had tens of carry-over vulnerabil-
ities from period to period (high ϕ) while organization
#2 had many demerits per host (over 5) overall (high
μ). Organization #3 had relatively lower carryover and
good quality levels (low ϕ and low μ).

The application of the proposedmethods

Upon consultation with the relevant system admin-
istrator and inspection of the data in Table 5, an
assignable cause relating to an unusual shift in respon-
sibility was identified. Through a re-organization,
approximately 200 hosts were shifted to a different
organization in period 20. Therefore, this detection can
indeed be considered an assignable cause. The system
administrator commented that no other occurrences
during the 28 months seemed unusual.

Figure . Adjusted demerit (AD) chart for the data from organization #.



QUALITY ENGINEERING 323

Figure . MCRAD chart for the data from organization # withM = . andM = ..

In applying the adjusted demerit (AD) charting, the
derived values ofM for the three organizations and data
sets are M = 20.90, 7.06, and 2.405, respectively. Note
that the value 20.90 is much larger than 3.0 because of
the relatively high degree of autocorrelation for orga-
nization #1. The adjusted demerit chart for the data
from organization #1 in Table 7 is given in Figure 3. It
is noteworthy, perhaps, that the adjusted demerit chart
failed to identify the period 20 shift that both theMCD
and MCRD charts (not shown) identified. It is conjec-
tured that this failure highlights the relative strength of
residual-based charts relating to immediate identifica-
tion of shifts in the underlying process. Yet, the adjusted
demerit chart has the potential advantage of being

better able to identify causes in periods following a
shift. The MCRAD chart combines the strengths of
residual-based and adjusted demerit charts.

Based on data in Table 7 from organization #1, the
value M2 = 22.9 was used to achieve an approximate
in-control average run length equal to 200. The derived
MCRAD control chart is given in Figure 4. The chart
generates the desired signal on subgroup 20 relating to
the assignable shift of 200 hosts that were moved out-
side the relevant organization. The absence of a lower
control limit from the adjusted demerit-related limits is
due to the value M2 = 22.79. Larger values of M2 may
generally be expected if the degree of autocorrelation
is high. The value ϕ = 0.920 (Table 1) associated with

Figure . MCRAD chart for the data from organization # withM = .,M = ..
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Figure . MCRAD chart for the data from organization # withM = . andM = ..

the organization #1 dataset indicates a relatively high
carryover of vulnerabilities from period to period.

The MCRAD charts for the data from organization
#2 (Table A1) and organization #3 (Table A2) are given
in Figures 5 and 6, respectively. Concerning organiza-
tion #2, the chart in Figure 5 shows no out-of-control
signals. For organization #3, the chart in Figure 6 shows
an out-of-control signal in month three. This is as a
result of the demerit per host for month 3 exceeding
the residual-based chart control limit. From the per-
spective of the authors, this signal appears to be a false
alarm.

Conclusions

This article addresses the important problem of mon-
itoring cyber vulnerabilities using statistical process
control (SPC) methods. The problem is important
because of the high and growing threat level associated
with cyber-attacks and the widespread use of personal
computers and other hosts. A process is proposed to
convert vulnerability data into demerits per host based
on the commonvulnerability scoring system (Mell et al.
2007). The application of standard time series mod-
els to cyber vulnerability data from three organizations
is then described. The conclusion is that AR models
with a single lag, i.e., AR(1) processes accurately model
the three datasets and are possibly relevant for many
other vulnerability modeling problems. The motiva-
tion for this choice relates to the carryover of the same
unpatched vulnerabilities from one period to the next.
Since the hosts aremonitored instead of parts, one does
not have new units each period.

Application of two residual-based methods taken
from the literature is then investigated. The applica-
tion involves moving centerline demerit (MCD) chart-
ing from Nembhard and Nembhard (2000) and a
slight extension of the residual charts from Runger
and Willemain (1995). The MCD chart offers the
advantage of charting the relatively intuitive demer-
its per host instead of residuals which motivated
the extension to create moving centerline residual-
based demerit (MCRD) charts. The proposed adjusted
demerit (AD) and hybrid moving centerline residual-
based and adjusted demerit (MCRAD) charting meth-
ods are based on using simulation to determine the
control limits. Average run length (ARL) comparisons
were based on assumptions relevant to the three case
studies. From this it is concluded that the proposed
AD and MCRAD offer improved ARL performance
compared withMCD andMCRD charts. TheMCRAD
charts in particular are recommended as a dashboard
formonitoring cyber vulnerabilities. Also, the concepts
of AD and MCRAD charts have applicability beyond
cyber vulnerabilities and demerit charts tomany chart-
ing situations involving autocorrelation.
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Appendix

This appendix includes additional data about vulnerabilities from our case studies. Table A1 describes the demerits
for organization #2 and Table A2 describes the demerits for organization #3. Table A3 describes the score for the
highest vulnerability on each host for the 36 hosts which had vulnerabilities (out of 498) for organization #1.
Table A4 provides data on the worldwide known vulnerability counts and local patching percentages during the
28 month period for organization #1.

Table A. Tabulation of the hosts scanned successfully and numbers of vulnerabilities of different levels of severity for organization #.
Also included are demerit sums based on the counts.

Month Number of Hosts Low Medium High Critical Demerits Demerits Per Host

      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .

Table A. Tabulation of the hosts scanned successfully and numbers of vulnerabilities of different levels of severity for organization #.
Also included are demerit sums based on the counts.

Month Number of Hosts Low Medium High Critical Demerits Demerits Per Host

      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .
      . .
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Table A. Monthly cumulative number of worldwide vulnerabilities and the local percentage of new vulnerabilities that is patched each
month, i.e., the number of vulnerabilities present in one month scan but missing in the next month scan divided by the total number of
vulnerabilities in the first month.

Month Cumulative Count of Distinct, Known Vulnerabilities Worldwide Vulnerability Patching Percentage

 , .
 , .
 , .
 , .
 , .
 , .
 , .
 , .
 , .
 , .
 , .
 , .
 , .
 , .
 , .
 , .
  .
  .
 , .
 , .
 , .
 , .
 , .
 , .
 , .
 , .
 , .
 , .
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