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Abstract. Many decision problems are set in changing environments. For example, deter-
mining the optimal investment in cyber maintenance depends on whether there is evi-
dence of an unusual vulnerability, such as “Heartbleed,” that is causing an especially high
rate of incidents. This gives rise to the need for timely information to update decision mod-
els so that optimal policies can be generated for each decision period. Social media provide
a streaming source of relevant information, but that information needs to be efficiently
transformed into numbers to enable the needed updates. This article explores the use of
social media as an observation source for timely decision making. To efficiently generate
the observations for Bayesian updates, we propose a novel computational method to fit an
existing clustering model. The proposed method is called k-means latent Dirichlet alloca-
tion (KLDA). We illustrate the method using a cybersecurity problem. Many organizations
ignore “medium” vulnerabilities identified during periodic scans. Decision makers must
choose whether staff should be required to address these vulnerabilities during periods of
elevated risk. Also, we study four text corpora with 100 replications and show that KLDA
is associated with significantly reduced computational times and more consistent model
accuracy.

Funding: The authors thank the U.S. Army’s TRADOC Analysis Center (TRAC) for supporting part
of this research [Grant W9124N-15-T-0033]. The National Science Foundation [Grant 1409214] also
supported part of this research.
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1. Introduction
Consider solving a similar problem for several deci-

sion periods. In each period, an updated model is

used. Decisions in different periods are assumed here

to have no interactive effect, and time enters as a factor

only through changes to the environment for differ-

ent periods. As a result, sequential decision policies,

such as decision trees (e.g., Cao 2014) or continu-

ous control policies (e.g., Borrero et al. 2015), are not

instructive here. The motivating example is a cyber-

security investment decision (Paté-Cornell 2012, Gao

et al. 2013, Parnell et al. 2015, Miller et al. 2016). This

problem relates to monthly basic maintenance for peri-

ods of usual or, alternatively, elevated risk. Over 90%

of breaches involve the exploitation of known vul-

nerabilities that have not been patched or remediated

(Cockburn 2009). Organizations often exert intense

efforts to address critical and high-level vulnerabili-

ties but ignore medium vulnerabilities. Equilibrium

game behavior is not relevant because, if all higher-

level vulnerabilities are eliminated, the attacker has no

recourse except to attempt to exploit lower vulnerabil-

ities that remain. These vulnerabilities are more diffi-

cult to exploit and offer less access if exploited Mell

et al. (2007).

Social media offer a useful source of timely informa-

tion to update assumptions for many decision prob-

lems, for example, about the rate in which medium

vulnerabilities are presently being exploited. The pri-

mary objective of this article is to provide computa-

tionally efficient and repeatable methods for updating

period-specific decision models using Twitter or other

streaming text data. Streaming social media data con-

tain timely and valuable warnings about threats. For
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example, experts on Twitter mentioned the medium

vulnerability Heartbleed before more than 85% of the

associated warnings/incidents appear in our univer-

sity data set. Therefore, instead of using social media as

an application area for decision analyses (Charalabidis

and Loukis 2012, Bok et al. 2012), we seek to use it

as a source of timely data for decision analysis prob-

lems. In a few periods in our motivating example, vul-

nerabilities constituted a large fraction of cybersecu-

rity expert tweets. These were precisely the periods in

which the most warnings and incidents were eventu-

ally observed. By monitoring tweets, it was possible

for system administrators to anticipate and mitigate

the attacks that followed. We expect that social media-

based monitoring could aid updating for many types

of decision analysis problems.

The method must be computationally efficient be-

cause text processing can be prohibitively slow (e.g.,

see Blei et al. 2003, Packiam and Prakash 2015). For

our purposes, any method that transforms streaming

text into numbers that strongly correlate with the sys-

tem state could be used. For example, one might use

sentiment analysis, which scores positive and nega-

tive words or even simpler counts of word mentions.

Here, we use clustering methods primarily because the

Twitter experts wrote about many subjects unrelated to

medium vulnerabilities. Through clustering, all their

topics can be mapped, including those that relate to

the decision problem. We seek to generate useful data

by recalling tweets from the key clusters.

Probably the most widely studied methods for clus-

tering text data are variants of latent Dirichlet allocation

(LDA) or “topic models” (Blei et al. 2003, Packiam and

Prakash 2015). There are several ways to fit topic models

to data, including collapsed Gibbs sampling, a form of

Markov chain Monte Carlo simulation (Teh et al. 2006;

Allen 2011, p. 14), and “mean field variational infer-

ence” (Blei et al. 2003), an approximate maximum like-

lihood fit of the clustering (distribution) model.

Yet, both collapsed Gibbs sampling and variational

inference can be prohibitively expensive computa-

tionally for corpora involving tens of thousands of

documents. Collapsed Gibbs is known for its lack

of repeatability. Here, we seek computationally effi-

cient methods to fit approximate topic models with

improved repeatability. Specifically, we propose to

explore the concept of transforming k-means clustering

results to estimate topic model parameters. Lee (2012)

had used fuzzy c clustering to generate “fuzzy LDA,”

which permits documents that cover multiple topics

like LDA and unlike k-means clustering. Yet Ghosh

and Dubey (2013) show that k-means scaled more effi-

ciently than fuzzy c clustering.

The remainder of this article is organized as follows.

First, we describe the time decision analysis formu-

lation. Then, we describe the proposed methods for

efficient clustering needed to generate the decision for-

mulation inputs. Next, we compare the proposed esti-

mation methods with alternatives. Finally, we illustrate

the methods on a cyber investment problem and con-

clude with a summary of the results and future work

possibilities.

2. Timely Decision Modeling
Consider a two-phase approach for estimating the

probabilities in our decision problem. The first phase

is a startup phase in which the model is estimated and

matrices are estimated to facilitate Bayesian updates.

The second phase is steady state in which new text

data are analyzed and Bayesian updates potentially

change the results for subsequent decision problems.

In each period, the decision maker observes the sys-

tem state from social media, then chooses an action.

The Bayesian updates require the collection of observa-

tion data and the estimation of “observation matrices”

(Smallwood and Sondik 1973), both of which steps we

describe.

2.1. Two-Phase Approach
In the first phase, data are gathered carefully such

that the true state of the system can be assumed to be

known. We denote the system state as Y with possible

values y � 1, . . . , s and the chosen action in period i
is ai � 1, . . . , a. The state is independent of the action

and observed before the action selection. The reward

depends on the action and state and is r[(y , ai)], and

the utility function is u[r(y , ai)]. The current probabil-

ity distribution for the state in period i is pi(y , ai), and

the initial probability distribution is p0(y , a0). In each

time period, the decision maker selects the option that

maximizes the expected utility given by

max
ai

E[u(ai)]�
s∑

y�1

pi(y , ai)u[r(y , ai)], (1)
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which is essentially the Von Neumann and Morgen-

stern (2007) problem. Note that the utility could be

equivalently applied to each reward, state, and action

set, resulting in a simplified exposition.

In the cybersecurity investment context, the model

in Equation (1) is analogous to the model by Parnell

et al. (2015). An exception is that the probability distri-

bution may depend on the time period, i, as for time-

dependent formulations (DeGroot 2005). This time-

dependence persists throughout the observation, O,

which is here assumed to be one of m levels, that is,

O ∈ {1, . . . ,m}. The key idea here is that the social

media text is converted to a series of observations,

o1 , o2 . . ., one for each period, with relevance to the

decision problem. Then the probabilities are updated

using Bayes’ theorem:

pi(y , ai | O � o)� p0(y , ai)p(O � o | y , ai)∑s
y�1 p0(y , ai)p(O � o | y , ai) , (2)

where p0 is the initial or prior probability, and the

so-called “observation” matrix is p(O � o | y , ai) for

indices o � 1, . . . ,m, y � 1, . . . , s, and each possible

action ai . Establishing the prior during the “burn in”

Phase 1 is part of preparing for continuing fluctu-

ations in Phase 2. The formulation in Equations (1)

and (2) is relevant for problems in which the system

resets between periods, a phenomenon that applies

only approximately to our cybersecurity case study.

The objective of the startup phase is to estimate the

observation matrix, p(O � o | y , ai), using training data.

Then, in steady state (Phase 2), the analysis method is

used to provide observations, O, from the social media.

The true state is not known, only the observation val-

ues. Updates are performed using Equation (2), and

the result is used to solve Equation (1) to generate the

optimal action for the relevant time period i. In each

period, action follows the observation.

2.2. Observations and Observation Matrices
The following sections describe a computationally effi-

cient method to derive random observations O1 , . . . ,On

over n periods for which the system states y1 , . . . , yn are

assumed known for known actions a1 , . . . , an . Counts

for the number of times an observation was observed

in each state are Co , a , y for o � 1, . . . ,m, ai � 1, . . . , v, and

y � 1, . . . , s. Then, the observation matrix, p(O | y , ai) is

estimated using

p(O � o | y , ai)�
Co , a , y∑m

o′�1 Co′ , a , y
for o � 1, . . . ,m ,

ai � 1, . . . , a , and y � 1, . . . , s , (3)

which derives the standard frequentist probability esti-

mates. Observation matrices are displayed for each

action, ai with rows corresponding to states, y, and

columns corresponding to observation levels (Small-

wood and Sondik 1973). Observations are informative

about the system state if the probabilities have dissim-

ilar values along the columns of the observation matri-

ces. Then, if the relevant observation level occurs, the

Bayesian update in Equation (2) generates a high prob-

ability that the system is in a specific state.

3. Efficient Methods for Obtaining
Observations from Social Media

In this section, we review the LDA model, which is a

probability distribution from Blei et al. (2003). Then,

we review the associated estimation methods from Blei

et al. (2003), Teh et al. (2006), and Griffiths and Steyvers

(2004). In the next section, we propose a new estimation

method based on transforming a k-means clustering

model into an LDA model.

Note that virtually all text-modeling methods begin

with a natural language-processing step in which text

is transformed into numbers with irrelevant words

removed and words “stemmed” (e.g., “jumping” and

“jumps” are both shortened to “jump,” see Feldman

and Sanger 2007, Porter 1980).

3.1. Latent Dirichlet Allocation
Our notation follows Blei et al. (2003) and Carpenter

(2010) so that wd , j is the jth word in the dth document

with d � 1, . . . ,D and j � 1, . . . ,Nd . Therefore, “D” is

the number of documents or tweets, and “Nd” is the

number of words in the dth document. We transform

words into numbers using the method of Porter (1980).

Therefore, wd , j ∈ {1, . . . ,W}, where W is the number of

distinct words in all documents.

The clusters or “topics” are defined by the estimated

probabilities, φ̂t , c , that a randomly selected word in

cluster t � 1, . . . ,T (on that topic) is the word c �

1, . . . ,W . The value θ̂d , t represents the estimated prob-

ability a randomly selected word in document d is
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assigned to cluster t of the T possible. Estimating

the φ̂t , c and θ̂d , t for t � 1, . . . ,T, d � 1, . . . ,D and c �

1, . . . ,W permits estimation of the observations needed

for our timely decision analysis problem. This follows

because we are interested in clusters or topics related

to our problem by the probabilities, φt , c and periods

in which the document probabilities, θd , t , on these

topics are high. The model variables zd , j are the clus-

ter assignments for each word in each document, d �

1, . . . ,D and j � 1, . . . ,Nd .

Generally, low values or diffuse prior parameters α
and β are applied (Griffiths and Steyvers 2004). Note

that these priors are relevant to Bayesian estimation of

LDA only. The joint probability of the data, wd , j , and

the parameters to be estimated, (zd , j , θd , t , φt , c), are pro-

vided in many references, including Carpenter (2010).

The key quantities to be estimated in the distribution

are the counts of words on topic t in document d, n(d)
t ,

given by

n(d)
t �

Nd∑
j�1

W∑
c′�1

I(zd , j � t and c � c′), (4)

and the number of instances of word c with topic t,
n(c)

t , given by

n(c)
t �

D∑
d�1

Nd∑
j�1

I(zd , j � t and wd , j � c), (5)

where I(. . .) is an indicator function giving 1 if the

equalities hold and 0 otherwise.

Note Equation (4) is a simple representation of

human speech in which words, wd , j , are multinomial

draws associated with given topics, zd , j , which are also

multinomial draws. The probabilities, φt , c , that define

the topics are also random; that is, it is a hierarchical

distribution. Technically, the estimates that are often

used for these probabilities are Monte Carlo estimates

for the posterior means of the Dirichlet distributed

probabilities, φ̂t , c .

Once the parameters φ̂t , c and θ̂d , t have been esti-

mated, the derivation of the observations is relatively

easy. Studying the estimated posterior mean proba-

bilities of φt , c , the clusters or topics (t) relevant to

the decision problem are identified. Then, retrieving

the documents on these topics with values of θ̂d , t

that exceed a threshold in each time period gives the

needed observation counts, O1 , . . . ,On . For example,

if there are many tweets on cyber vulnerabilities, the

period is likely associated with elevated threats neces-

sitating additional investment.

3.2. Collapsed Gibbs Sampling
Perhaps the most popular way to estimate the param-

eters in the LDA model in Equation (4) is called “col-

lapsed Gibbs” sampling (Teh et al. 2006, Griffiths and

Steyvers 2004). To implement collapsed Gibbs, the val-

ues of the topic assignments for each word, zd , j , are

sampled uniformly. Then, iteratively, multinomial sam-

ples are drawn for each topic assignment zd , j iterat-

ing through each document, d, and word, j, using

the last iterations of all other assignments, z−(d , j). The

multinomial draw probabilities are given in Teh et al.

(2006). In the collapsed Gibbs sampling method, each

word is randomly assigned to a cluster with proba-

bilities proportional to the counts for that word being

assigned multiplied by the counts for that document

being assigned. After M iterations, the last set of topic

assignments generates the counts and the estimated

posterior means:

φ̂t , c �
n(c)

t + β

n( · )
t +Wβ

(6)

and the posterior mean topic definitions using

θ̂d , t �
n(d)

t + α

n(d)· +Tα
. (7)

Therefore, if words are assigned commonly to cer-

tain topics by the Gibbs sampling chain, their fre-

quency increases the posterior probability estimates

both in the topic definitions, φ̂t , c , and the document

probabilities θ̂d , t . From θ̂d , t , we can see periods when

certain topics dominate.

4. k-Means-Based Latent Dirichlet
Allocation (KLDA)

Gibbs sampling is noisy and inefficient since only a sin-

gle iteration of topic assignments is used for the poste-

rior estimates, and even approximate convergences can

require thousands or millions of iterations. The pro-

posed estimation method clusters documents. This is

different from LDA, which permits documents to have

specific words on multiple topics. Yet, for short docu-

ments such as tweets, the difference may be considered

unimportant, and robustness is explored in Section 6.
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Denote the word counts for each document, d, and

word, c, as Xd , c . The standard k-means clustering in

our notation is Lloyd (1982):

1. Select T documents, d1 , . . . , dT , uniformly from

{1, . . . ,D}. Initialize the cluster centroids using qt , c �

Xdt , c for c � 1, . . . ,W and t � 1, . . . ,T.

2. Compute the distances for each document to each

centroid using

vd , t �

√
W∑

c�1

(qt , c −Xd , c)2 for t � 1, . . . ,T, d � 1, . . . ,D.
(8)

3. Assign each document to a cluster, z̃d , using

z̃d � argmin
t

vd , t for d � 1, . . . ,D. (9)

The set St contains documents with z̃d � t for t �

1, . . . ,T.

4. Update the centroids using the average locations

for documents in the cluster:

qt , c �

∑
d∈St

Xd , c

|St | . (10)

5. Repeat steps 2 through 4 until the cluster assign-

ments do not change.

A last step is added to permit fractional membership

in clusters by documents and facilitate the interpre-

tation as a topic model. The “membership” function,

similar to fuzzy-c clustering (as distinct from fuzzy

decision making), is

ud , t � 1/vd , t for t � 1, . . . ,T, d � 1, . . . ,D. (11)

This permits estimation of the document topic proba-

bilities using

θ̂d , t �
ud , t∑D

d′�1 ud′ , t
for t � 1, . . . ,T, d � 1, . . . ,D. (12)

Also, the estimated topic definitions are generated

using

φ̂t , c �
qt , c∑W

c′�1 qt , c′
for t � 1, . . . ,T for c � 1, . . . ,W (13)

as the topic proportions, which show the distribution

of topics in all the document lists. Clearly, if the docu-

ments are long and cover many substantially different

topics, the approximation will be poor. We explore the

robustness computationally in Section 6. Intuitively,

the memberships in Equation (11) are, for short doc-
uments at least, approximately proportional to the
counts in Equations (4) and (5). Therefore, the ratios in
Equations (12) and (13) are like the Bayesian estimates
in Equations (6) and (7).

5. Numerical Studies
In this section, a computational comparison of Gibbs
sampling and KLDA is provided. Four test corpora
drawn from Allen et al. (2016) include two having mul-
tiple topics per document, permitting the sensitivity
of KLDA performance to be studied. The purpose of
this step is to clarify the computational and accuracy
advantages of the alternative estimation methods.

5.1. Test Problems
In this section, four similar cases are studied to com-
pare different estimation methods. To preview, Table 1
summarizes the results of the computational run times.
Table A.1 (in the appendix) shows the four similar cases
in which 40 documents are studied so that D � 40 for
each case. Table A.2 (in the appendix) shows the true
model topic proportion and topic definition, where
topic number T � 5 for cases 1 and 2 and T � 6 for cases
3 and 4. In general, “true topics” are possible because
they can be used to generate the documents. In this
case, they are simply assumed. The dictionary size for
all the cases is W � 25. This is a “robustness” study
because four cases span a variety of cases in terms of
topic diversity and overlap.

5.2. Evaluation Metrics
Because the estimated distribution topics have no nat-
ural ordering, it is hard to compare the result against
the assumed ground truth. Therefore, Steyvers and
Griffiths (2007) proposed that the permutations of clus-
ter labels should be considered and the closest “dis-
tance” permutation should be selected. Define the
function t′(r, t) as the selection of topic t in permu-
tation r. Use φtrue

t , c to denote the ground truth topic
definitions for t � 1, . . . ,T and for c � 1, . . . ,W . In the
appendix, the ground truth is provided for one of the
four cases. For all cases, see Allen et al. (2016). Further,
denote r∗ as the argmax permutation for Equation (13).
The accuracy measure used here is the average root
mean squared (RMS):

RMS(φ)� 1

T

T∑
t�1

√
W∑

c�1

(φtrue
t , c −φt′(r∗ , t), c)2. (14)
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Intuitively, the RMS value indicates the typical size of

errors in the topic definition estimation.

5.3. Comparison Results
Table 1 contains the comparison results of k-means

LDA, Gibbs Sampling LDA with 10, 100, and 1,000 runs.

Each value in the table is the average RMS for 100 repli-

cations, that is, starting from distinct random seeds.

Using RMS metrics, k-means LDA could achieve a simi-

lar level of distance or even a smaller distance to the true

model compared with other models. This holds even if

there are multiple topics in each document (case 3 and

case 4). For Gibbs sampling, Monte Carlo simulation

introduces uncertainties. A higher number of iterations

gives slightly better RMS than lower numbers, but the

quality is highly influenced by the random seed. Table 1

gives the timing for estimation methods. Clearly, KLDA

is significantly more efficient with comparable quality.

It permits our VBA software to analyze 10,000 tweets in

less than 20 minutes on an i5 processor.

6. Cybersecurity Twitter-Enabled Study
In this section, we use a routine decision problem faced

by many organizations to illustrate the application of

the formulation, modeling of social media data, obser-

vations, and results (Afful-Dadzie and Allen 2014).

With only two actions and two states, this problem

is simple and illustrative. The same approach could

be applied to problems with more states, actions, and

multiple sets of noninteracting time periods. Yet the

Table 1. Computational Accuracy (RMS) and Timing Results for the Case Studies

100 replicates time
Case Test model Iterations Average RMS Std RMS (sec)

1 k-means LDA 2 0.0453 0.0000 5
1 Gibbs sampling LDA 10 0.0507 0.0098 4
1 Gibbs sampling LDA 100 0.0451 0.0089 44
1 Gibbs sampling LDA 1,000 0.0436 0.0064 323

2 k-means LDA 2 0.0500 0.0000 5
2 Gibbs sampling LDA 10 0.0531 0.0076 6
2 Gibbs sampling LDA 100 0.0492 0.0063 43
2 Gibbs sampling LDA 1,000 0.0492 0.0049 301

3 k-means LDA 2 0.0401 0.0000 6
3 Gibbs sampling LDA 10 0.0482 0.0093 6
3 Gibbs sampling LDA 100 0.0416 0.0063 56
3 Gibbs sampling LDA 1,000 0.0409 0.0046 489

4 k-means LDA 2 0.0450 0.0000 6
4 Gibbs sampling LDA 10 0.0519 0.0080 7
4 Gibbs sampling LDA 100 0.0456 0.0075 59
4 Gibbs sampling LDA 1000 0.0459 0.0053 485

authors are aware of an organization that suffered

losses perhaps exceeding $1 M because of failure to

solve this problem optimally. Often, organizations do

not attempt to patch medium-level cyber vulnerabil-

ities. Patching requires staff time and can cause dis-

ruptions because some software may not work after

patching actions.

Yet, during times of elevated risks resulting from

exceptionally problematic medium-level vulnerabili-

ties, adjustments are potentially relevant. Also, in these

cases, the actions of administrators do not affect the

threat level, but only the rewards (or losses). This

simplifies our formulation in Equation (1) since the

probabilities do not depend on the actions. Experts

tweet on Twitter continually on many subjects rele-

vant to decision problems. The experts cover many

topics, and there are hundreds of potentially relevant

medium-level vulnerabilities. Continued discussion of

a medium vulnerability by experts is likely an indicator

of an elevated risk state.

Here, we study D � 16,047 tweets starting in January

2014 for 12 months from 16 selected Twitter accounts

on multiple top 10 lists relating to cybersecurity: Math-

ewjschwartz, Neilweinberg, Scotfinnie, Secureauth,

Lennyzeltser, Dangoodin001, Dstrom, Securitywatch,

Cyberwar, Jason_Healey, FireEye, Lancope, Varonis,

DarkReading, RSAsecurity, and Mcafee_Labs. The

decision problem includes s � 2 states (normal and ele-

vated risk), a � 2 actions (1–do not patch medium-level

vulnerabilities, 2–patch medium-level vulnerabilities).
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Table 2. Posterior Mean Topic Definitions, φ̂t , c , Estimates from KLDA with 17 on Heartbleed

T1 0.0567 T2 0.0540 . . . T17 0.0500 . . .

Word Prob Word Prob . . . Word Prob . . .

(frequency) low 0.1393 (text) rt 0.1095 . . . (name) mathewjschwartz 0.1040 . . .
(name) cyberwar 0.0291 (frequency) low 0.0927 . . . (frequency) low 0.1018 . . .
(name) dangoodin001 0.0264 (name) dangoodin001 0.0183 . . . (text) infosec 0.1009 . . .
(name) darkread 0.0182 (name) cyberwar 0.0169 . . . (text) atinformationweek 0.0420 . . .
(month) 3 0.0164 (month) 2 0.0166 . . . (frequency) medium 0.0192 . . .
(month) 2 0.0162 (name) securitywatch 0.0165 . . . (text) breach 0.0152 . . .
(month) 4 0.0154 (frequency) high 0.0132 . . . (text) new 0.0152 . . .
(month) 1 0.0153 (name) jasonhealei 0.0124 . . . (text) risk 0.0147 . . .
(name) securitywatch 0.0135 (name) mcafeelab 0.0123 . . . (text) malwar 0.0129 . . .
(month) 5 0.0131 (month) 3 0.0123 . . . (month) 4 0.0125 . . .
(month) 8 0.0127 (text) secur 0.0112 . . . (month) 5 0.0121 . . .
(month) 7 0.0120 (month) 1 0.0112 . . . (text) attack 0.0121 . . .
(name) jasonhealei 0.0116 (text) atdavemarcu 0.0104 . . . (text) hack 0.0116 . . .
(month) 6 0.0113 (month) 4 0.0100 . . . (month) 6 0.0098 . . .
(month) 12 0.0099 (month) 8 0.0099 . . . (text) secur 0.0098 . . .
(name) mcafeelab 0.0091 (month) 6 0.0094 . . . (text) heartble 0.0098 . . .
...

...
...

...
...

...
...

...

Note. The words associated with medium-level cyber vulnerabilities are in bold.

We assume that the system was in state 1 except

for four months starting in April as indicated in

Table 3(a) because of the announcement of the well-

known Heartbleed vulnerability. The database has

W � 894 nonrare and not-stopping distinct words, that

is, common words excluding articles, prepositions, and

other relatively uninformative words.

Applying k-means-based LDA, one topic (T17) is

identified as related to cyber vulnerabilities in general

and Heartbleed. It is the only topic for which one of

the top 20 defining words is a medium vulnerability.

Table 3. (a) States y1 , . . . , y12, Raw Observations, and O1 , . . . ,O12; (b) Counts CO , a , y ; (c) Observation Matrices, p(o | y , a); and
(d) Posterior Values, p(y , a | O), for Different Observation Levels

(a) (b) (c) (d)

Months System state Raw mentions Observation State 1 (0) 2 (>0) 1 (0) 2 (>0) State p0 1 (0) 2 (>0)

1 1 0 1 State 1 1 3 0.250 0.750 State 1 0.333 0.125 0.750
2 1 0 1 State 2 7 1 0.875 0.125 State 2 0.667 0.875 0.250
3 1 0 1
4 2 7 2
5 2 4 2
6 2 1 2
7 2 0 1
8 1 0 1
9 1 1 2

10 1 0 1
11 1 0 1
12 2 0 1

The stemmed results for the top words generated using

Equation (13) are shown in Table 2. Note how obscure

our decision problem is with so much discussion being

largely irrelevant and the need for filtering.

Then, KLDA identifies the top 20 documents by pos-

terior mean estimate, θ̂d , t , for each of the 12 months

(not shown). Inspecting these tweets manually and tab-

ulating relevant mentions of Heartbleed (or any other

medium vulnerability) resulted in the raw mentions

in Table 3(a). In most periods, medium vulnerabilities

received no mentions. Yet, when there is a mention
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of a medium-level vulnerability, for example, Heart-

bleed, the count of tweets is increased. For simplicity,

observations are divided into two levels, that is, level

1—zero mentions of Heartbleed or level 2—greater

than zero mentions. This results in the observations

O , . . . ,O12, and cross-tabulating generates the counts in

Table 3(b) CO , a , y . There are eight total counts of obser-

vation 1 and four total of observation 2. The frequen-

tist estimates for the observation matrices are given

in Table 3(c). The prior values and posterior estimates

from Equation (2) are provided for different observa-

tions in Table 3(d).

We assume that attempting to patch medium vul-

nerabilities will reduce the number of successful intru-

sions. We assume rewardsof r(y �1, ai �1)�−$300,000,

r(y � 2, ai � 1) � $100,000, r(y � 1, ai � 2) � −$200,000,

and r(y � 2, ai � 2) � −$50,000 and the exponential

utility function u(r) � 1 − er/r0 from Kirkwood (1997,

p. 22). To represent moderate risk aversion, we assume

that the reference parameter r0 is $200,000, which is

smaller than the highest rewards in absolute value. If

we observe Oi � 1 (no mentions of medium vulnera-

bilities), the expected utilities are E[(ai � 1)] � 0.125 ×
(−3.48) + 0.875 × 0.393 � −0.090 and E[u(ai � 2)] �

0.125 × (−1.72) + 0.875 × 0.284 � −0.4633. With obser-

vation Oi � 2 (mentions of medium vulnerabilities), the

expected utilities are E[(ai � 1)]� 0.75×(−3.48)+0.25×
0.393 � −2.513 and E[(ai � 2)] � 0.75 × (−1.72) + 0.25 ×
0.284 � −1.360. Therefore, if the experts tweet about

medium vulnerabilities, the optimal action is patching.

Otherwise, patching is not recommended. Smaller val-

ues of the reference value r0 correspond to more risk-

averse decision makers (Kirkwood 1997). The thresh-

old level is $115,067. For smaller values, patching

medium vulnerabilities is always recommended.

This example illustrates how social media analytics

can inform timely decision problems. Note that our

default model assumes that the prior for each month

resets. For cyber maintenance decision making, this is

justified by the fact that the cycle of exploitation and

patching has a finite duration. Vulnerabilities such as

Heartbleed become known and, after a period, almost

all systems are patched with little period-to-period

dependence. Admittedly, the time scale of the reset

might be longer than a single month and carryover

effects of patching could be important. Fully sequen-

tial methods using, for example, partially observable

Markov decision processes (POMDP), are proposed as
a topic for future research.

7. Conclusions and Future Research
In this article, we proposed a method to link social
media analytics with routine decision analyses. We
also proposed an innovative topic estimation technique
based on k-means clustering called KLDA. This per-
mits the rapid estimation of LDA models. The latter
incorporate human high-level domain knowledge so
that users can direct or perturb the model and results.
Applying the techniques to test problems, we demon-
strated that KLDA can achieve improved repeatabil-
ity and comparable subjective accuracy. Specifically,
we used four cases to test our new model against the
true models. The improved efficiency is important for
enabling spreadsheet applications, allowing users to
benefit from text processing and information retrieval
for private text corpora.

Yet a number of topics remain for future study. Prob-
lems in which the current state selection may depend
on previous states can potentially be investigated by
simply using the current probabilities for the update
in the next period using partially observable Markov
decision process (POMDP) formulations. Incorporat-
ing risk aversion in multi-period decision making is an
active area of research (Homem-de-Mello and Pagnon-
celli 2016); however, other techniques besides k-means-
based estimation, such as fuzzy c clustering, can be
explored. Also, additional comparison metrics and
test cases might better clarify the accuracy limitations
of KLDA methods. New evaluation metrics could be
more objective and interpretable than RMS. Currently,
the computational experiments involve only small test
corpora from Allen et al. (2016). Larger corpora from
the literature can be explored. Methods that permit
experts to edit topics offer the promise of more infor-
mative observations (Zhao et al. 2012, Sun 2014, Allen
et al. 2016, Sui et al. 2015). Timely pricing enabled by
social media analysis and local elicitation can also be
investigated (Allen and Maybin 2004).
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Appendix. Numerical Study Details
This appendix contains data for the case studies including the true model, which originally appeared in Allen et al. (2016).

Table A.1. Synthetic Data for the Numerical Example

Doc Document

1 The operator cut aluminum and dropped it at station1.
2 The inspector drilled plastic and overheated it at station2.
3 The manager milled steel and misaligned it at station3.
4 The engineer saw stone and over torqued on the truck.
5 The supplier welded and misdimensioned the titanium offsite.
6 The inspector drilled plastic and overheated it at station2.
7 It was drilled and overheated.
8 It was drilled and overheated.
9 The engineer and the manager at station3 and on the truck.

10 The welded titanium was misdimensioned.
11 The titanium was welded and misdimensioned offsite.
12 The steel was misdimensioned.
13 The operator cut the steel and plastic.
14 The manager welded it and misdimensioned it.
15 The operator cut and dropped the aluminum at station1.
16 The operator cut and dropped it at station1.
17 The engineer welded and misdimensioned the titanium.
18 It was drilled and overheated.
19 It was drilled and overheated.
20 The manager milled steel and misaligned it at station3.
21 The operator cut and dropped the steel at station1.
22 The engineer and the manager at station3 and offsite.
23 It was drilled and overheated.
24 The engineer saw stone and over torqued on the truck.
25 The stone was drilled and overheated.
26 It was drilled and overheated.
27 It was drilled and overheated.
28 It was drilled and overheated offsite.
29 The supplier welded titanium and misdimensioned it offsite.
30 The operator cut and dropped the titanium at station1.
31 The operator cut and dropped it at station1.
32 It was steel.
33 The steel was drilled and overheated.
34 It was drilled and overheated at station3.
35 The engineer and the manager at station1 and on the truck.
36 The welded titanium was misdimensioned.
37 It was drilled and overheated.
38 It was drilled and overheated.
39 The supplier welded titanium and misdimensioned it offsite.
40 It was drilled and overheated.

Table A.2. Assumed Ground Truth for the Numerical Examples

T1 0.4 T2 0.2 T3 0.15 T4 0.125 T5 0.125

Word Prob Word Prob Word Prob Word Prob Word Prob

Oper 0 Oper 0 Oper 0.23 Oper 0 Oper 0
Cut 0 Cut 0 Cut 0.23 Cut 0 Cut 0
Aluminum 0 Aluminum 0 Aluminum 0.08 Aluminum 0 Aluminum 0
Drop 0 Drop 0 Drop 0.23 Drop 0 Drop 0
Station1 0 Station1 0 Station1 0.23 Station1 0 Station1 0
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Table A.2. (Continued)

T1 0.4 T2 0.2 T3 0.15 T4 0.125 T5 0.125

Word Prob Word Prob Word Prob Word Prob Word Prob

Inspector 0.1 Inspector 0 Inspector 0 Inspector 0 Inspector 0
Drill 0.35 Drill 0 Drill 0 Drill 0 Drill 0
Plastic 0.1 Plastic 0 Plastic 0 Plastic 0 Plastic 0.1

Overh 0.35 Overh 0 Overh 0 Overh 0 Overh 0
Station2 0.1 Station2 0 Station2 0 Station2 0 Station2 0
Manag 0 Manag 0 Manag 0 Manag 0.25 Manag 0.1
Mill 0 Mill 0 Mill 0 Mill 0 Mill 0.1
Steel 0 Steel 0 Steel 0 Steel 0 Steel 0.5
Misalign 0 Misalign 0 Misalign 0 Misalign 0 Misalign 0.1
Station3 0 Station3 0 Station3 0 Station3 0.25 Station3 0.1
Engin 0 Engin 0 Engin 0 Engin 0.25 Engin 0
Saw 0 Saw 0 Saw 0 Saw 0 Saw 0
Stone 0 Stone 0 Stone 0 Stone 0 Stone 0
Overtorqu 0 Overtorqu 0 Overtorqu 0 Overtorqu 0 Overtorqu 0
Truck 0 Truck 0 Truck 0 Truck 0.25 Truck 0
Supplier 0 Supplier 0.05 Supplier 0 Supplier 0 Supplier 0
Weld 0 Weld 0.3 Weld 0 Weld 0 Weld 0
Misdimens 0 Misdimens 0.3 Misdimens 0 Misdimens 0 Misdimens 0
Titanium 0 Titanium 0.3 Titanium 0 Titanium 0 Titanium 0
Offsit 0 Offsit 0.05 Offsit 0 Offsit 0 Offsit 0

Notes. These are the assumed probabilities that specific words will be generated if specific topics are selected and the chance that a random
word is on each topic.
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