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Abstract. Many decision problems are set in changing environments. For example, deter-
mining the optimal investment in cyber maintenance depends on whether there is evi-
dence of an unusual vulnerability, such as “Heartbleed,” that is causing an especially high
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rate of incidents. This gives rise to the need for timely information to update decision mod-
els so that optimal policies can be generated for each decision period. Social media provide
a streaming source of relevant information, but that information needs to be efficiently
transformed into numbers to enable the needed updates. This article explores the use of
social media as an observation source for timely decision making. To efficiently generate
the observations for Bayesian updates, we propose a novel computational method to fit an
existing clustering model. The proposed method is called k-means latent Dirichlet alloca-
tion (KLDA). We illustrate the method using a cybersecurity problem. Many organizations
ignore “medium” vulnerabilities identified during periodic scans. Decision makers must
choose whether staff should be required to address these vulnerabilities during periods of
elevated risk. Also, we study four text corpora with 100 replications and show that KLDA
is associated with significantly reduced computational times and more consistent model
accuracy.
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1. Introduction

Consider solving a similar problem for several deci-
sion periods. In each period, an updated model is
used. Decisions in different periods are assumed here
to have no interactive effect, and time enters as a factor
only through changes to the environment for differ-
ent periods. As a result, sequential decision policies,
such as decision trees (e.g., Cao 2014) or continu-
ous control policies (e.g., Borrero et al. 2015), are not
instructive here. The motivating example is a cyber-
security investment decision (Paté-Cornell 2012, Gao
et al. 2013, Parnell et al. 2015, Miller et al. 2016). This
problem relates to monthly basic maintenance for peri-
ods of usual or, alternatively, elevated risk. Over 90%
of breaches involve the exploitation of known vul-
nerabilities that have not been patched or remediated
(Cockburn 2009). Organizations often exert intense

L
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efforts to address critical and high-level vulnerabili-
ties but ignore medium vulnerabilities. Equilibrium
game behavior is not relevant because, if all higher-
level vulnerabilities are eliminated, the attacker has no
recourse except to attempt to exploit lower vulnerabil-
ities that remain. These vulnerabilities are more diffi-
cult to exploit and offer less access if exploited Mell
et al. (2007).

Social media offer a useful source of timely informa-
tion to update assumptions for many decision prob-
lems, for example, about the rate in which medium
vulnerabilities are presently being exploited. The pri-
mary objective of this article is to provide computa-
tionally efficient and repeatable methods for updating
period-specific decision models using Twitter or other
streaming text data. Streaming social media data con-
tain timely and valuable warnings about threats. For
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example, experts on Twitter mentioned the medium
vulnerability Heartbleed before more than 85% of the
associated warnings/incidents appear in our univer-
sity data set. Therefore, instead of using social media as
an application area for decision analyses (Charalabidis
and Loukis 2012, Bok et al. 2012), we seek to use it
as a source of timely data for decision analysis prob-
lems. In a few periods in our motivating example, vul-
nerabilities constituted a large fraction of cybersecu-
rity expert tweets. These were precisely the periods in
which the most warnings and incidents were eventu-
ally observed. By monitoring tweets, it was possible
for system administrators to anticipate and mitigate
the attacks that followed. We expect that social media-
based monitoring could aid updating for many types
of decision analysis problems.

The method must be computationally efficient be-
cause text processing can be prohibitively slow (e.g.,
see Blei et al. 2003, Packiam and Prakash 2015). For
our purposes, any method that transforms streaming
text into numbers that strongly correlate with the sys-
tem state could be used. For example, one might use
sentiment analysis, which scores positive and nega-
tive words or even simpler counts of word mentions.
Here, we use clustering methods primarily because the
Twitter experts wrote about many subjects unrelated to
medium vulnerabilities. Through clustering, all their
topics can be mapped, including those that relate to
the decision problem. We seek to generate useful data
by recalling tweets from the key clusters.

Probably the most widely studied methods for clus-
tering text data are variants of latent Dirichlet allocation
(LDA) or “topic models” (Blei et al. 2003, Packiam and
Prakash 2015). There are several ways to fit topic models
to data, including collapsed Gibbs sampling, a form of
Markov chain Monte Carlo simulation (Teh et al. 2006;
Allen 2011, p. 14), and “mean field variational infer-
ence” (Blei et al. 2003), an approximate maximum like-
lihood fit of the clustering (distribution) model.

Yet, both collapsed Gibbs sampling and variational
inference can be prohibitively expensive computa-
tionally for corpora involving tens of thousands of
documents. Collapsed Gibbs is known for its lack
of repeatability. Here, we seek computationally effi-
cient methods to fit approximate topic models with
improved repeatability. Specifically, we propose to
explore the concept of transforming k-means clustering

BIiRfHFR | r.!a:-l}

results to estimate topic model parameters. Lee (2012)
had used fuzzy c clustering to generate “fuzzy LDA,”
which permits documents that cover multiple topics
like LDA and unlike k-means clustering. Yet Ghosh
and Dubey (2013) show that k-means scaled more effi-
ciently than fuzzy c clustering.

The remainder of this article is organized as follows.
First, we describe the time decision analysis formu-
lation. Then, we describe the proposed methods for
efficient clustering needed to generate the decision for-
mulation inputs. Next, we compare the proposed esti-
mation methods with alternatives. Finally, we illustrate
the methods on a cyber investment problem and con-
clude with a summary of the results and future work
possibilities.

2. Timely Decision Modeling

Consider a two-phase approach for estimating the
probabilities in our decision problem. The first phase
is a startup phase in which the model is estimated and
matrices are estimated to facilitate Bayesian updates.
The second phase is steady state in which new text
data are analyzed and Bayesian updates potentially
change the results for subsequent decision problems.
In each period, the decision maker observes the sys-
tem state from social media, then chooses an action.
The Bayesian updates require the collection of observa-
tion data and the estimation of “observation matrices”
(Smallwood and Sondik 1973), both of which steps we
describe.

2.1. Two-Phase Approach

In the first phase, data are gathered carefully such
that the true state of the system can be assumed to be
known. We denote the system state as Y with possible
values y =1,...,s and the chosen action in period i
is a; =1,...,a. The state is independent of the action
and observed before the action selection. The reward
depends on the action and state and is 7[(y,4;)], and
the utility function is u[r(y, a;)]. The current probabil-
ity distribution for the state in period i is p;(y, a;), and
the initial probability distribution is py(y,a,). In each
time period, the decision maker selects the option that
maximizes the expected utility given by

H}fXE[u(‘Zi)] :Zpi(yrai)”[”(]/fai)]/ (1)
i y=1
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which is essentially the Von Neumann and Morgen-
stern (2007) problem. Note that the utility could be
equivalently applied to each reward, state, and action
set, resulting in a simplified exposition.

In the cybersecurity investment context, the model
in Equation (1) is analogous to the model by Parnell
et al. (2015). An exception is that the probability distri-
bution may depend on the time period, i, as for time-
dependent formulations (DeGroot 2005). This time-
dependence persists throughout the observation, O,
which is here assumed to be one of m levels, that is,
O € {1,...,m}. The key idea here is that the social
media text is converted to a series of observations,
01,0,..., one for each period, with relevance to the
decision problem. Then the probabilities are updated
using Bayes’ theorem:

po(y,a)p(O=o0ly,a;)
Zyapoly,a)p(O=oly,a)’

pi(y,a;|O=o0)= 2

where p, is the initial or prior probability, and the
so-called “observation” matrix is p(O = o | y,a;) for
indices 0 =1,...,m, y =1,...,s, and each possible
action a;. Establishing the prior during the “burn in”
Phase 1 is part of preparing for continuing fluctu-
ations in Phase 2. The formulation in Equations (1)
and (2) is relevant for problems in which the system
resets between periods, a phenomenon that applies
only approximately to our cybersecurity case study.

The objective of the startup phase is to estimate the
observation matrix, p(O =0 | y, 4;), using training data.
Then, in steady state (Phase 2), the analysis method is
used to provide observations, O, from the social media.
The true state is not known, only the observation val-
ues. Updates are performed using Equation (2), and
the result is used to solve Equation (1) to generate the
optimal action for the relevant time period i. In each
period, action follows the observation.

2.2. Observations and Observation Matrices

The following sections describe a computationally effi-
cient method to derive random observations Oy, ..., O,
over 1 periods for which the system states y,, ..., y, are
assumed known for known actions a,,...,a,. Counts
for the number of times an observation was observed

in each state are Coay foro=1,...,m,a;=1,...,v,and

BIiRfHFR | r.!a:-l}

y=1,...,s. Then, the observation matrix, p(O | y, a;) is
estimated using

0,a,y
m
Zo’:l Co’,a,y
a;=1,...,a,andy=1,...,5, (3)

p(O=oly,a;)= foro=1,...,m,

which derives the standard frequentist probability esti-
mates. Observation matrices are displayed for each
action, a; with rows corresponding to states, y, and
columns corresponding to observation levels (Small-
wood and Sondik 1973). Observations are informative
about the system state if the probabilities have dissim-
ilar values along the columns of the observation matri-
ces. Then, if the relevant observation level occurs, the
Bayesian update in Equation (2) generates a high prob-
ability that the system is in a specific state.

3. Efficient Methods for Obtaining
Observations from Social Media

In this section, we review the LDA model, which is a
probability distribution from Blei et al. (2003). Then,
we review the associated estimation methods from Blei
etal. (2003), Teh et al. (2006), and Griffiths and Steyvers
(2004). In the next section, we propose a new estimation
method based on transforming a k-means clustering
model into an LDA model.

Note that virtually all text-modeling methods begin
with a natural language-processing step in which text
is transformed into numbers with irrelevant words
removed and words “stemmed” (e.g., “jumping” and
“jumps” are both shortened to “jump,” see Feldman
and Sanger 2007, Porter 1980).

3.1. Latent Dirichlet Allocation

Our notation follows Blei et al. (2003) and Carpenter
(2010) so that w, ; is the jth word in the dth document
withd=1,...,D and j =1,...,N,. Therefore, “D” is
the number of documents or tweets, and “N,” is the
number of words in the dth document. We transform
words into numbers using the method of Porter (1980).
Therefore, w, € {1,...,W}, where W is the number of
distinct words in all documents.

The clusters or “topics” are defined by the estimated
probabilities, cf)m, that a randomly selected word in
cluster t =1,...,T (on that topic) is the word ¢ =
1,...,W. The value éd, , represents the estimated prob-
ability a randomly selected word in document d is



Downloaded from informs.org by [140.254.87.149] on 11 April 2018, at 12:22 . For personal use only, all rights reserved.

Allen, Sui, and Parker: Decision Analysis Enabled by Social Media Modeling

Decision Analysis, 2017, vol. 14, no. 4, pp. 250-260, ©2017 INFORMS

253

assigned to cluster t of the T possible. Estimating
the giA)t,c and éd,t fort=1,...,T,d=1,...,D and c =
1,..., W permits estimation of the observations needed
for our timely decision analysis problem. This follows
because we are interested in clusters or topics related
to our problem by the probabilities, ¢, . and periods
in which the document probabilities, 0,,, on these
topics are high. The model variables z; ; are the clus-
ter assignments for each word in each document, d =
1,...,Dand j=1,...,N,.

Generally, low values or diffuse prior parameters a
and B are applied (Griffiths and Steyvers 2004). Note
that these priors are relevant to Bayesian estimation of
LDA only. The joint probability of the data, w, ;, and
the parameters to be estimated, (z,, ;, 0, ;, ¢; ), are pro-
vided in many references, including Carpenter (2010).
The key quantities to be estimated in the distribution
are the counts of words on topic ¢ in document d, nﬁd),
given by

Ny W

n® => 2 1(zs,=tand c=¢), )

=1 c'=1

and the number of instances of word ¢ with topic ¢,
n'9, given by

D Ny

nidzzzI(zd’j=tande'j=C)’ ©)

d=1 j=1

where I(...) is an indicator function giving 1 if the
equalities hold and 0 otherwise.

Note Equation (4) is a simple representation of
human speech in which words, w, ;, are multinomial
draws associated with given topics, z, ;, which are also
multinomial draws. The probabilities, ¢, ., that define
the topics are also random; that is, it is a hierarchical
distribution. Technically, the estimates that are often
used for these probabilities are Monte Carlo estimates
for the posterior means of the Dirichlet distributed
probabilities, ¢, ..

Once the parameters Cf;t,c and éd,t have been esti-
mated, the derivation of the observations is relatively
easy. Studying the estimated posterior mean proba-
bilities of ¢, ., the clusters or topics (t) relevant to
the decision problem are identified. Then, retrieving
the documents on these topics with values of éd,t
that exceed a threshold in each time period gives the
needed observation counts, O,...,0,. For example,

BIiRfHFR | r.!a:-l}

if there are many tweets on cyber vulnerabilities, the
period is likely associated with elevated threats neces-
sitating additional investment.

3.2. Collapsed Gibbs Sampling

Perhaps the most popular way to estimate the param-
eters in the LDA model in Equation (4) is called “col-
lapsed Gibbs” sampling (Teh et al. 2006, Griffiths and
Steyvers 2004). To implement collapsed Gibbs, the val-
ues of the topic assignments for each word, z; j» are
sampled uniformly. Then, iteratively, multinomial sam-
ples are drawn for each topic assignment z, ; iterat-
ing through each document, d, and word, j, using
the last iterations of all other assignments, Z_(d,j) The
multinomial draw probabilities are given in Teh et al.
(2006). In the collapsed Gibbs sampling method, each
word is randomly assigned to a cluster with proba-
bilities proportional to the counts for that word being
assigned multiplied by the counts for that document
being assigned. After M iterations, the last set of topic
assignments generates the counts and the estimated
posterior means:

(c)
A n,’ +
tc = (;—‘B (6)
n, +Wp
and the posterior mean topic definitions using
5 i+ o
N T a—
n 4+ Ta

Therefore, if words are assigned commonly to cer-
tain topics by the Gibbs sampling chain, their fre-
quency increases the posterior probability estimates
both in the topic definitions, gf)tlc, and the document
probabilities éd, ;. From éd,t, we can see periods when
certain topics dominate.

4. k-Means-Based Latent Dirichlet
Allocation (KLDA)

Gibbs sampling is noisy and inefficient since only a sin-
gle iteration of topic assignments is used for the poste-
rior estimates, and even approximate convergences can
require thousands or millions of iterations. The pro-
posed estimation method clusters documents. This is
different from LDA, which permits documents to have
specific words on multiple topics. Yet, for short docu-
ments such as tweets, the difference may be considered
unimportant, and robustness is explored in Section 6.
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Denote the word counts for each document, d, and
word, ¢, as X .. The standard k-means clustering in
our notation is Lloyd (1982):

1. Select T documents, d,,...,d;, uniformly from
{1,...,D}. Initialize the cluster centroids using g, . =
Xy, fore=1,...,Wand t=1,...,T.

2. Compute the distances for each document to each
centroid using

W
Ve =\ D@~ X, ) fort=1,...,T,d=1,..,D.
c=1

3. Assign each document to a cluster, Z;, using

Z;=argmino,, ford=1,...,D. )
t

The set S, contains documents with Z, =t for t =
1,...,T.

4. Update the centroids using the average locations
for documents in the cluster:

_ Zdest Xd,c

e R 10
qt, |St| ( )

5. Repeat steps 2 through 4 until the cluster assign-
ments do not change.

A last step is added to permit fractional membership
in clusters by documents and facilitate the interpre-
tation as a topic model. The “membership” function,
similar to fuzzy-c clustering (as distinct from fuzzy
decision making), is

ug = 1/vy, fort=1,...,T,d=1,...,D. (11)

This permits estimation of the document topic proba-
bilities using

A Uyt

b, =——— fort=1,...,T,d=1,...,D. (12)
Zg’:lud’,t

Also, the estimated topic definitions are generated
using

(;[)M:L fort=1,...,Tforc=1,..., W (13)

DI
as the topic proportions, which show the distribution
of topics in all the document lists. Clearly, if the docu-
ments are long and cover many substantially different
topics, the approximation will be poor. We explore the
robustness computationally in Section 6. Intuitively,

BIiRfHFR | r.!a:-l}

the memberships in Equation (11) are, for short doc-
uments at least, approximately proportional to the
counts in Equations (4) and (5). Therefore, the ratios in
Equations (12) and (13) are like the Bayesian estimates
in Equations (6) and (7).

5. Numerical Studies

In this section, a computational comparison of Gibbs
sampling and KLDA is provided. Four test corpora
drawn from Allen et al. (2016) include two having mul-
tiple topics per document, permitting the sensitivity
of KLDA performance to be studied. The purpose of
this step is to clarify the computational and accuracy
advantages of the alternative estimation methods.

5.1. Test Problems

In this section, four similar cases are studied to com-
pare different estimation methods. To preview, Table 1
summarizes the results of the computational run times.
Table A.1 (in the appendix) shows the four similar cases
in which 40 documents are studied so that D =40 for
each case. Table A.2 (in the appendix) shows the true
model topic proportion and topic definition, where
topic number T =5 for cases 1 and 2 and T = 6 for cases
3 and 4. In general, “true topics” are possible because
they can be used to generate the documents. In this
case, they are simply assumed. The dictionary size for
all the cases is W = 25. This is a “robustness” study
because four cases span a variety of cases in terms of
topic diversity and overlap.

5.2. Evaluation Metrics

Because the estimated distribution topics have no nat-
ural ordering, it is hard to compare the result against
the assumed ground truth. Therefore, Steyvers and
Griffiths (2007) proposed that the permutations of clus-
ter labels should be considered and the closest “dis-
tance” permutation should be selected. Define the
function t'(r,t) as the selection of topic t in permu-
tation r. Use ¢;"'® to denote the ground truth topic
definitions for t =1,...,T and forc=1,...,W. In the
appendix, the ground truth is provided for one of the
four cases. For all cases, see Allen et al. (2016). Further,
denote r* as the argmax permutation for Equation (13).
The accuracy measure used here is the average root
mean squared (RMS):

T w
RMS($) =1 > \/ 2O = b (19)
t=1 c=1
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Intuitively, the RMS value indicates the typical size of
errors in the topic definition estimation.

5.3. Comparison Results

Table 1 contains the comparison results of k-means
LDA, Gibbs Sampling LDA with 10,100, and 1,000 runs.
Each value in the table is the average RMS for 100 repli-
cations, that is, starting from distinct random seeds.
Using RMS metrics, k-means LDA could achieve a simi-
lar level of distance or even a smaller distance to the true
model compared with other models. This holds even if
there are multiple topics in each document (case 3 and
case 4). For Gibbs sampling, Monte Carlo simulation
introduces uncertainties. A higher number of iterations
gives slightly better RMS than lower numbers, but the
quality is highly influenced by the random seed. Table 1
gives the timing for estimation methods. Clearly, KLDA
is significantly more efficient with comparable quality.
It permits our VBA software to analyze 10,000 tweets in
less than 20 minutes on an i5 processor.

6. Cybersecurity Twitter-Enabled Study

In this section, we use a routine decision problem faced
by many organizations to illustrate the application of
the formulation, modeling of social media data, obser-
vations, and results (Afful-Dadzie and Allen 2014).
With only two actions and two states, this problem
is simple and illustrative. The same approach could
be applied to problems with more states, actions, and
multiple sets of noninteracting time periods. Yet the

authors are aware of an organization that suffered
losses perhaps exceeding $1 M because of failure to
solve this problem optimally. Often, organizations do
not attempt to patch medium-level cyber vulnerabil-
ities. Patching requires staff time and can cause dis-
ruptions because some software may not work after
patching actions.

Yet, during times of elevated risks resulting from
exceptionally problematic medium-level vulnerabili-
ties, adjustments are potentially relevant. Also, in these
cases, the actions of administrators do not affect the
threat level, but only the rewards (or losses). This
simplifies our formulation in Equation (1) since the
probabilities do not depend on the actions. Experts
tweet on Twitter continually on many subjects rele-
vant to decision problems. The experts cover many
topics, and there are hundreds of potentially relevant
medium-level vulnerabilities. Continued discussion of
a medium vulnerability by experts is likely an indicator
of an elevated risk state.

Here, we study D = 16,047 tweets starting in January
2014 for 12 months from 16 selected Twitter accounts
on multiple top 10 lists relating to cybersecurity: Math-
ewjschwartz, Neilweinberg, Scotfinnie, Secureauth,
Lennyzeltser, Dangoodin001, Dstrom, Securitywatch,
Cyberwar, Jason_Healey, FireEye, Lancope, Varonis,
DarkReading, RSAsecurity, and Mcafee_Labs. The
decision problem includes s = 2 states (normal and ele-
vated risk), a =2 actions (1-do not patch medium-level
vulnerabilities, 2—patch medium-level vulnerabilities).

Table 1. Computational Accuracy (RMS) and Timing Results for the Case Studies

100 replicates time

Case Test model Iterations Average RMS Std RMS (sec)
1 k-means LDA 2 0.0453 0.0000 5
1 Gibbs sampling LDA 10 0.0507 0.0098 4
1 Gibbs sampling LDA 100 0.0451 0.0089 44
1 Gibbs sampling LDA 1,000 0.0436 0.0064 323
2 k-means LDA 2 0.0500 0.0000 5
2 Gibbs sampling LDA 10 0.0531 0.0076 6
2 Gibbs sampling LDA 100 0.0492 0.0063 43
2 Gibbs sampling LDA 1,000 0.0492 0.0049 301
3 k-means LDA 2 0.0401 0.0000 6
3 Gibbs sampling LDA 10 0.0482 0.0093 6
3 Gibbs sampling LDA 100 0.0416 0.0063 56
3 Gibbs sampling LDA 1,000 0.0409 0.0046 489
4 k-means LDA 2 0.0450 0.0000 6
4 Gibbs sampling LDA 10 0.0519 0.0080 7
4 Gibbs sampling LDA 100 0.0456 0.0075 59
4 Gibbs sampling LDA 1000 0.0459 0.0053 485

BIiRfHFR | r.!a:-l}
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Table 2. Posterior Mean Topic Definitions, (f)m, Estimates from KLDA with 17 on Heartbleed

T1 0.0567 T2 0.0540 ... T17 0.0500
Word Prob Word Prob . Word Prob
(frequency) low 0.1393 (text) rt 0.1095 ... (name) mathewjschwartz ~ 0.1040
(name) cyberwar 0.0291 (frequency) low 0.0927 ... (frequency) low 0.1018
(name) dangoodin001 ~ 0.0264  (name) dangoodin001  0.0183 ... (text) infosec 0.1009
(name) darkread 0.0182 (name) cyberwar 0.0169 ... (text) atinformationweek  0.0420
(month) 3 0.0164 (month) 2 0.0166 ... (frequency) medium 0.0192
(month) 2 0.0162  (name) securitywatch ~ 0.0165 ... (text) breach 0.0152
(month) 4 0.0154 (frequency) high 0.0132 ... (text) new 0.0152
(month) 1 0.0153 (name) jasonhealei 0.0124 ... (text) risk 0.0147
(name) securitywatch ~ 0.0135 (name) mcafeelab 0.0123 ... (text) malwar 0.0129
(month) 5 0.0131 (month) 3 0.0123 ... (month) 4 0.0125
(month) 8 0.0127 (text) secur 0.0112 ... (month) 5 0.0121
(month) 7 0.0120 (month) 1 0.0112 ... (text) attack 0.0121
(name) jasonhealei 0.0116 (text) atdavemarcu 0.0104 ... (text) hack 0.0116
(month) 6 0.0113 (month) 4 0.0100 ... (month) 6 0.0098
(month) 12 0.0099 (month) 8 0.0099 ... (text) secur 0.0098
(name) mcafeelab 0.0091 (month) 6 0.0094 ... (text) heartble 0.0098

Note. The words associated with medium-level cyber vulnerabilities are in bold.

We assume that the system was in state 1 except
for four months starting in April as indicated in
Table 3(a) because of the announcement of the well-
known Heartbleed vulnerability. The database has
W =894 nonrare and not-stopping distinct words, that
is, common words excluding articles, prepositions, and
other relatively uninformative words.

Applying k-means-based LDA, one topic (T17) is
identified as related to cyber vulnerabilities in general
and Heartbleed. It is the only topic for which one of
the top 20 defining words is a medium vulnerability.

The stemmed results for the top words generated using
Equation (13) are shown in Table 2. Note how obscure
our decision problem is with so much discussion being
largely irrelevant and the need for filtering.

Then, KLDA identifies the top 20 documents by pos-
terior mean estimate, @d,t, for each of the 12 months
(not shown). Inspecting these tweets manually and tab-
ulating relevant mentions of Heartbleed (or any other
medium vulnerability) resulted in the raw mentions
in Table 3(a). In most periods, medium vulnerabilities
received no mentions. Yet, when there is a mention

Table 3. (a) States v, ..., y;,, Raw Observations, and Oy, ..., O;,; (b) Counts Co/ﬂ,y; (c) Observation Matrices, p(o | y,a); and

(d) Posterior Values, p(y,a | O), for Different Observation Levels

(@)

(b) (© (d)

Months ~ System state ~ Raw mentions  Observation State

10) 2(>0) 1(0) 2(=0) State Py 1(0) 2(>0)

1 1 0 1 State 1
2 1 0 1 State 2
3 1 0 1
4 2 7 2
5 2 4 2
6 2 1 2
7 2 0 1
8 1 0 1
9 1 1 2
10 1 0 1
11 1 0 1
12 2 0 1

1 3 0250  0.750  State1l 0.333 0125  0.750
7 1 0.875 0.125  State2 0.667 0.875  0.250

BIiRfHFR | r.l-:-l}
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of a medium-level vulnerability, for example, Heart-
bleed, the count of tweets is increased. For simplicity,
observations are divided into two levels, that is, level
1—zero mentions of Heartbleed or level 2—greater
than zero mentions. This results in the observations
O,...,0y,,and cross-tabulating generates the counts in
Table 3(b) Co,,, ,- There are eight total counts of obser-
vation 1 and four total of observation 2. The frequen-
tist estimates for the observation matrices are given
in Table 3(c). The prior values and posterior estimates
from Equation (2) are provided for different observa-
tions in Table 3(d).

We assume that attempting to patch medium vul-
nerabilities will reduce the number of successful intru-
sions. Weassumerewardsof r(y =1, a; =1)=-$300,000,
r(y =2,a; =1)=%$100,000, r(y = 1,a; = 2) = —$200,000,
and r(y = 2,a; = 2) = —=$50,000 and the exponential
utility function u(r) = 1 — e’/ from Kirkwood (1997,
p- 22). To represent moderate risk aversion, we assume
that the reference parameter r, is $200,000, which is
smaller than the highest rewards in absolute value. If
we observe O; =1 (no mentions of medium vulnera-
bilities), the expected utilities are E[(a; = 1)] = 0.125 X
(—3.48) + 0.875 x 0.393 = —0.090 and E[u(a;=2)] =
0.125 x (-1.72) + 0.875 x 0.284 = —0.4633. With obser-
vation O; = 2 (mentions of medium vulnerabilities), the
expected utilities are E[(a; =1)] = 0.75 X (—3.48) + 0.25 X
0.393 = -2.513 and E[(a; =2)] =0.75 x (-1.72) + 0.25 X
0.284 = —1.360. Therefore, if the experts tweet about
medium vulnerabilities, the optimal action is patching.
Otherwise, patching is not recommended. Smaller val-
ues of the reference value r, correspond to more risk-
averse decision makers (Kirkwood 1997). The thresh-
old level is $115,067. For smaller values, patching
medium vulnerabilities is always recommended.

This example illustrates how social media analytics
can inform timely decision problems. Note that our
default model assumes that the prior for each month
resets. For cyber maintenance decision making, this is
justified by the fact that the cycle of exploitation and
patching has a finite duration. Vulnerabilities such as
Heartbleed become known and, after a period, almost
all systems are patched with little period-to-period
dependence. Admittedly, the time scale of the reset
might be longer than a single month and carryover
effects of patching could be important. Fully sequen-
tial methods using, for example, partially observable

BIiRfHFR | r.!a:-l}

Markov decision processes (POMDP), are proposed as
a topic for future research.

7. Conclusions and Future Research

In this article, we proposed a method to link social
media analytics with routine decision analyses. We
also proposed an innovative topic estimation technique
based on k-means clustering called KLDA. This per-
mits the rapid estimation of LDA models. The latter
incorporate human high-level domain knowledge so
that users can direct or perturb the model and results.
Applying the techniques to test problems, we demon-
strated that KLDA can achieve improved repeatabil-
ity and comparable subjective accuracy. Specifically,
we used four cases to test our new model against the
true models. The improved efficiency is important for
enabling spreadsheet applications, allowing users to
benefit from text processing and information retrieval
for private text corpora.

Yet a number of topics remain for future study. Prob-
lems in which the current state selection may depend
on previous states can potentially be investigated by
simply using the current probabilities for the update
in the next period using partially observable Markov
decision process (POMDP) formulations. Incorporat-
ing risk aversion in multi-period decision making is an
active area of research (Homem-de-Mello and Pagnon-
celli 2016); however, other techniques besides k-means-
based estimation, such as fuzzy c clustering, can be
explored. Also, additional comparison metrics and
test cases might better clarify the accuracy limitations
of KLDA methods. New evaluation metrics could be
more objective and interpretable than RMS. Currently,
the computational experiments involve only small test
corpora from Allen et al. (2016). Larger corpora from
the literature can be explored. Methods that permit
experts to edit topics offer the promise of more infor-
mative observations (Zhao et al. 2012, Sun 2014, Allen
et al. 2016, Sui et al. 2015). Timely pricing enabled by
social media analysis and local elicitation can also be
investigated (Allen and Maybin 2004).
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Appendix. Numerical Study Details

This appendix contains data for the case studies including the true model, which originally appeared in Allen et al. (2016).

Table A.1. Synthetic Data for the Numerical Example

Doc Document
1 The operator cut aluminum and dropped it at station1.
2 The inspector drilled plastic and overheated it at station2.
3 The manager milled steel and misaligned it at station3.
4 The engineer saw stone and over torqued on the truck.
5 The supplier welded and misdimensioned the titanium offsite.
6 The inspector drilled plastic and overheated it at station2.
7 It was drilled and overheated.
8 It was drilled and overheated.
9 The engineer and the manager at station3 and on the truck.
10 The welded titanium was misdimensioned.
11 The titanium was welded and misdimensioned offsite.
12 The steel was misdimensioned.
13 The operator cut the steel and plastic.
14 The manager welded it and misdimensioned it.
15 The operator cut and dropped the aluminum at station1.
16 The operator cut and dropped it at station].
17 The engineer welded and misdimensioned the titanium.
18 It was drilled and overheated.
19 It was drilled and overheated.
20 The manager milled steel and misaligned it at station3.
21 The operator cut and dropped the steel at station].
22 The engineer and the manager at station3 and offsite.
23 It was drilled and overheated.
24 The engineer saw stone and over torqued on the truck.
25 The stone was drilled and overheated.
26 It was drilled and overheated.
27 It was drilled and overheated.
28 It was drilled and overheated offsite.
29 The supplier welded titanium and misdimensioned it offsite.
30 The operator cut and dropped the titanium at stationl.
31 The operator cut and dropped it at station].
32 It was steel.
33 The steel was drilled and overheated.
34 It was drilled and overheated at station3.
35 The engineer and the manager at station1 and on the truck.
36 The welded titanium was misdimensioned.
37 It was drilled and overheated.
38 It was drilled and overheated.
39 The supplier welded titanium and misdimensioned it offsite.
40 It was drilled and overheated.

Table A.2. Assumed Ground Truth for the Numerical Examples

Downloaded from informs.org by [140.254.87.149] on 11 April 2018, at 12:22 . For personal use only, all rights reserved.

T1 0.4 T2 0.2 T3 0.15 T4 0.125 T5 0.125
Word Prob Word Prob Word Prob Word Prob Word Prob
Oper 0 Oper 0 Oper 0.23 Oper 0 Oper 0
Cut 0 Cut 0 Cut 0.23 Cut 0 Cut 0
Aluminum 0 Aluminum 0 Aluminum 0.08 Aluminum 0 Aluminum 0
Drop 0 Drop 0 Drop 0.23 Drop 0 Drop 0
Station1 0 Station1 0 Station1 0.23 Station1 0 Station1 0
5
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Table A.2. (Continued)

T1 04 T2 0.2 T3 0.15 T4 0.125 T5 0.125
Word Prob Word Prob Word Prob Word Prob Word Prob
Inspector 0.1 Inspector 0 Inspector 0 Inspector 0 Inspector 0
Drill 0.35 Drill 0 Drill 0 Drill 0 Drill 0
Plastic 0.1 Plastic 0 Plastic 0 Plastic 0 Plastic 0.1
Overh 0.35 Overh 0 Overh 0 Overh 0 Overh 0
Station2 0.1 Station2 0 Station2 0 Station2 0 Station2 0
Manag 0 Manag 0 Manag 0 Manag 0.25 Manag 0.1
Mill 0 Mill 0 Mill 0 Mill 0 Mill 0.1
Steel 0 Steel 0 Steel 0 Steel 0 Steel 0.5
Misalign 0 Misalign 0 Misalign 0 Misalign 0 Misalign 0.1
Station3 0 Station3 0 Station3 0 Station3 0.25 Station3 0.1
Engin 0 Engin 0 Engin 0 Engin 0.25 Engin 0
Saw 0 Saw 0 Saw 0 Saw 0 Saw 0
Stone 0 Stone 0 Stone 0 Stone 0 Stone 0
Overtorqu 0 Overtorqu 0 Overtorqu 0 Overtorqu 0 Overtorqu 0
Truck 0 Truck 0 Truck 0 Truck 0.25 Truck 0
Supplier 0 Supplier 0.05 Supplier 0 Supplier 0 Supplier 0
Weld 0 Weld 0.3 Weld 0 Weld 0 Weld 0
Misdimens 0 Misdimens 0.3 Misdimens 0 Misdimens 0 Misdimens 0
Titanium 0 Titanium 0.3 Titanium 0 Titanium 0 Titanium 0
Offsit 0 Offsit 0.05 Offsit 0 Offsit 0 Offsit 0

Notes. These are the assumed probabilities that specific words will be generated if specific topics are selected and the chance that a random

word is on each topic.
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