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ABSTRACT

Self-assembling oligopeptides present a means to fabricate biocompatible
supramolecular aggregates with engineered electronic and optical functionality. We
conducted molecular dynamics simulations to probe the thermodynamics and mor-
phologies of self-assembling synthetic oligopeptides with Asp-X3-Xo-X;-11-X;-X2-
X3-Asp architectures. Dimerisation and trimerisation free energies were computed
for a range of Asp-X1-X2-X3 amino acid sequences within the symmetric tetrapep-
tide wings, and for perylenediimide (PDI) and naphthalenediimide (NDI) conju-
gated II cores that mediate hydrophobic stacking and electron delocalisation along
the backbone of the self-assembled nanostructure. Insertion of the larger PDI cores
elevated oligomerisation free energies by a factor of 2-3 relative to NDI and also
improved alignment of the oligopeptides within the stack. Training of a quantitative
structure-property relationship (QSPR) model over the molecular simulation data
revealed key physicochemical determinants of the observed oligomerisation free en-
ergies and produced a quantitative predictive model for the oligomerisation thermo-
dynamics. Oligopeptides with moderate dimerisation and trimerisation free energies
of ~(-25) kT produced aggregates with the best in-register parallel stacking, and
we used this criterion within our QSPR model to perform high-throughput virtual
screening of oligopeptide chemical space and identify promising candidates for the
spontaneous assembly of ordered nanoaggregates. We identified a small number of
oligopeptide candidates for direct testing in large scale molecular simulations, and
discover a novel chemistry DAVG-PDI-GVAD previously unstudied by experiment
or simulation that produces well-aligned nanoaggregates expected to possess good
optical and electronic functionality.
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1. Introduction

Self-assembling oligopeptides present an attractive vehicle for the synthesis of nanoag-
gregates with attractive structural properties and biological function [1-6]. Peptide
assemblies can be controlled by a variety of properties such as primary structure, salt
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concentration, and pH [7-13], allowing for many degrees of freedom with which to
influence peptide assembly. Assembled aggregates have great potential applications in
drug delivery, antimicrobials, vaccination, and regenerative medicine [1-3,7,8,14-17].
In addition to standard amino acids, synthetic oligopeptides can be functionalised with
polymeric m-conjugated inserts [11,18-21], endowing the self-assembled supramolecu-
lar aggregates with optoelectronic and photophysical activity. Such materials have
applications in a variety of systems including organic light emitting diodes (OLEDs),
organic field-effect transistors (OFETSs), and organic solar cells [22-31], and are at-
tractive for their biocompatibility and water solubility [8,32-39].

The chemical sequence space accessible to synthetic oligopeptides is vast, and it is
of value to understand the microscopic molecular forces and mechanisms governing as-
sembly in order to provide rational principles to guide experimental peptide design to-
wards candidates with good assembly behaviour. Such properties, however, can be dif-
ficult to access experimentally. As a result, computational studies provide an attractive
method to elucidate these interactions [32,40-47]. While computer simulation can pro-
vide a great deal of insight, all-atom and even coarse-grained simulation at the length
and time scales relevant to supramolecular assembly can make such calculations pro-
hibitively expensive. This computational expense, coupled with the enormous palette
of possible oligopeptide chemistries, makes it infeasible to directly evaluate the self-
assembly behaviour of every possible chemistry. Quantitative structure-activity rela-
tionship/quantitative structure-property relationship (QSAR/QSPR) models present
a means to develop inexpensive predictive models of molecular behaviour that can
be used to perform high-throughput computational screening of chemical space to
evaluate vastly more candidate peptides than would be possible by simulation and/or
experimentation [48-51]. These models seek a predictive relationship between molec-
ular behaviour that is expensive to evaluate and a set of physicochemical molecular
descriptors that are inexpensive to compute or measure. It is typically implicitly as-
sumed that similar molecules behave similarly and that the input descriptors are suf-
ficient to predict the desired molecular behaviour [52]. The training of such models
is a form of supervised learning, by which the relationship is extracted from a lim-
ited set of training data, validated against some test data, and then used to perform
high-throughput “virtual screening”. The use of QSPR models has a long history in
chemometrics [53,54], and they have been applied to a diversity of peptidic systems in
the context of structure, binding, drug loading, antimicrobial activity, and aggregation
[52,55-61].

In this work, we conduct molecular dynamics simulations of a limited number of syn-
thetic oligopeptide chemistries, and use these data to train QSPR models to predict
oligomerisation thermodynamics from molecular physicochemical descriptors. These
models are then used to inform the important determinants of assembly behaviour
and perform high-throughput computational screening to identify peptide candidates
with good predicted assembly behaviours. We focus our study on a class of synthetic
oligopeptides with a peptide-II-peptide symmetric triblock architecture of the form
Asp-X3-Xo-X;-11-X1-X5-X3-Asp, where {X;, Xo, X3} are amino acids from the set
{Ala (A), Phe (F), Gly (G), Ile (I), Val (V)} and the II insert is either a naph-
thalenediimide (NDI) or a perylenediimide (PDI) conjugated core (Figure 1). The
peptide family represents a flexible archetype that may be readily synthesized by on-
resin dimerization [62], and which has been previously shown in a number of prior
computational [10,32,45,46,63] and experimental studies [9,32,35,46,62,64] to possess
a variety of desirable properties. Specifically, these biocompatible and water soluble
oligopeptides exist as dispersed small aggregates at neutral pH that are triggered to



assemble into micron-sized pseudo-1D fibrils upon acidification due to protonation of
the terminal Asp residues. This eliminates the electrostatic repulsion between the Asp
residues, and promotes assembly by hydrophobic, hydrogen bonding, and w-stacking
interactions. Delocalisation of electrons between the mw-conjugated cores provides the
assemblies with functional electronic and photophysical properties, including electron
transport and exciton migration, fluorescence, and gate voltage dependent current,
which make such peptides viable materials to be used in biosensing, tracking molecu-
lar delivery to cells, energy transport and harvesting, imaging, field effect transistors,
and other bioelectronic applications [32,35,38,38,39,45,62,65-67]. Previous studies have
probed the role of N-to-C polarity, peptide concentration, pH, and particular peptide
sequences and core chemistries upon assembly [10,32,45,46,62,68], but no work to date
has sought to develop predictive physicochemical models of assembly to identify the
important determinants promoting the formation of the ordered pseudo-1D assemblies
required for good optoelectronic functionality and enable virtual screening of peptide
sequence space. It is the principal motivation of this work to achieve these goals,
and computationally test the model predictions by direct simulation of the assembly
behaviour of identified candidates in large-scale molecular simulations.

[Figure 1 about here.]

We structure our work around two hypotheses. First, we propose that physicochem-
ical molecular descriptors can be used to develop predictive models of oligomerisa-
tion free energies. A prerequisite to predicting large-scale many-body aggregation is a
proper understanding of the mechanisms and thermodynamics of oligomerisation [47].
We demonstrate that QSPR models can ably predict oligopeptide dimerisation and
trimerisation free energies for non-polar oligopeptides from small numbers of molecular
descriptors, revealing the important physicochemical determinants of association and
setting the stage for our second hypothesis. Second, we propose that the large-scale
assembly behaviour can be predicted from the thermodynamics of oligomerisation.
We ground this conjecture in the well-known principle for self-assembling systems
in general [69,70], and experimental findings for this oligopeptide family in particu-
lar [32,64,67,68], that interactions between self-associating building blocks should be
sufficiently strong to mediate assembly, but not so strong as to prevent mutual re-
arrangements into ordered structures as opposed to kinetically trapped states. Our
results provide good support that our QSPR model can accurately identify non-polar
oligopeptides possessing intermediate oligomerisation thermodynamics, and that these
chemistries robustly assemble into aggregates with good in-register parallel stacking
between neighbouring molecules. We deploy our model to perform high-throughput
screening of oligopeptide chemical space, and identify a number of novel candidate
sequences that form well-ordered parallel-stacked nanoaggregates in large-scale molec-
ular simulation. The structure of the remainder of this manuscript is as follows. In
Section 2, we describe our simulation methodology and QSPR model development.
In Section 3, we report the results of our free energy and alignment simulations, the
implementation of a QSPR model to predict simulation results, and a high-throughput
screening of chemistries based on this model. Finally, in Section 4, we close with our
conclusions and outlook for future work.



2. Methods

2.1. Explicit solvent simulations

Molecular dynamics (MD) simulations of peptides in explicit solvent were conducted
using GROMACS 4.6.7 [71,72] in order to compute free energy profiles for peptide col-
lapse and dimerisation that we subsequently used to parametrise an implicit solvent
model [45]. Peptide geometries were obtained using the GlycoBioChem PRODRG2
Server [73], and modelled using AMBER99SB [74,75]. Terminal Asp residues were
fully protonated to order simulate a low pH environment. The NDI and PDI cores
are non-standard groups within AMBER99SB force field. Bonded parameters for the
cores were determined using the parmchk2 method from Antechamber [76]. Native
AMBERY99SB parameters were unavailable for three bond angle interaction types, that
instead were adopted from the Generalized Amber Force Field (GAFF) [77]. In keep-
ing with methodology used for the derivation of partial charges for the AMBER force
field [78], we compute partial charges on the core atoms by means of the Restrained
Electrostatic Potential (RESP) method [79] using the RESP ESP charge Derive Server
(REDS) [80]. Cores were parametrised as fragments by adding N-methylamide groups
to either side and enforcing charge neutrality. The server computes charges utilising
a single configuration in two different orientations in each run [79,81], and employs
Gaussian09 [82] at the Hartree Fock/6-31G(d) level of theory to obtain the partial
charges. Peptides were placed in a rhombic dodecahedral box with periodic boundary
conditions and solvated in TIP3P water [83]. The box size was sufficiently large to
accommodate the umbrella sampling calculations detailed in Section 2.4. The system
was subjected to steepest descent energy minimization until the maximum force on
any given atom was less than a threshold of 1000 kJ/mol.nm. Atomic velocities were
initialized from a Maxwell distribution at 298 K and the system equilibrated for 100
ps in an NVT ensemble at a temperature of 298 K using a stochastic velocity rescal-
ing thermostat [84] with a time constant of 0.5 ps, and finally for 100 ps in an NPT
ensemble using the same thermostat and a Parrinello-Rahman barostat [85,86] at a
pressure of 1 atm with a time constant of 1 ps and a compressibility of 4.5 x107°
bar~!. Production runs were conducted in the NPT ensemble using the same barostat
and a Nosé-Hoover thermostat [87,88] with a time constant of 0.5 ps to maintain a
temperature of 298 K. The equations of motion were integrated using the leap-frog
algorithm with a 2 fs time step [89]. Electrostatic interactions were treated using
Particle Mesh Ewald (PME) with a cutoff of 1.0 nm and a 0.12 nm Fourier grid spac-
ing that were optimized during runtime [90]. Lennard-Jones interactions were shifted
smoothly to zero at 1.0 nm. Bond lengths were fixed using the LINCS algorithm [91],
and Lorentz-Berthelot combining rules were used to determine interaction parameters
between unlike atoms [92]. Execution speeds of 3.3 ns/day were achieved on one core
of an Intel i7-4820K processor.

2.2. Implicit solvent simulations

To reach the long length and time scales necessary to observe peptide self-assembly
and realize computational efficiency gains to enable us to simulate more molecular
chemistries, we parametrised an implicit solvent model similar to that we previously
employed in our study of the self-assembly of Asp-Phe-Ala-Gly-OPV3-Gly-Ala-Phe-
Asp peptides [45]. Peptides were modelled using the AMBER99SB force field as de-
scribed above [74,75], but the water solvent is now represented implicitly using the



Generalized Born model to treat polar interactions between peptide and solvent, and
the solvent accessible surface area approximation to treat nonpolar interactions [93].
Nonpolar interactions were treated using an analytical continuum electrostatic (ACE)
approximation [94] with a value of 2.259 kJ/mol.nm? for the surface tension [95]. Born
radii were calculated using the method of Onufriev, Bashford, and Case with a relative
dielectric constant of 78.3 and the standard parameter set of « = 1, § = 0.8, and v =
4.85 [96]. Coulombic interactions were treated using a cutoff of 3.4 nm and a dielectric
offset of 0.009 nm. Lennard-Jones interactions were shifted smoothly to zero at 3.4
nm. All simulations were conducted in the NVT ensemble at 298 K by integrating the
Langevin equation with a friction constant of 0.5 ps~! [95]. Following our previous
work [45], we rescale the non-bonded interactions within the AMBER99SB force field
to compensate for the use of an implicit solvent model that overestimates inter-residue
interaction strengths [97-99]. As detailed in the Appendix, we compute the optimal
rescaling factor of a = 0.75 from a best fit of the potential of mean force profiles for
single peptide collapse (Section 2.3) and peptide dimerisation (Section 2.4) to those
computed in explicit solvent for a representative peptide chemistry Asp-Phe-Ala-Gly-
NDI-Gly-Ala-Phe-Asp. Execution speeds of 33 ns/day were achieved on one core of
an Intel i7-4820K processor, representing a ~10 fold speedup relative to the explicit
solvent model.

2.3. Potential of mean force for peptide collapse

The potential of mean force (PMF) profile in the head-to-tail extent of a single
oligopeptide specifies the free energy of the molecule as a function of its linear ex-
tent, quantifying the relative favourability of extended and collapsed configurations
[100-102]. We determine PMF profiles for isolated oligopeptides in both explicit and
implicit solvent and use these profiles to parametrise the implicit solvent model (Sec-
tion 2.2). The PMF profiles were calculated by performing umbrella sampling in the
molecular head-to-tail distance (h2t) defined as the distance between the C, atoms
in the terminal aspartic acid residues [100]. Umbrella windows were placed at evenly
spaced 0.1 nm intervals over the range h2t = 0-4.0 nm. Initial configurations for each
umbrella window were obtained from non-equilibrium pulling of an initially fully ex-
tended peptide to induce collapse. Harmonic biasing potentials with a force constant
of 1000 kJ /mol.nm? were applied in each umbrella window, and simulations run for 20
ns discarding the first 1 ns for equilibration. The unbiased PMF profile was estimated
from the biased umbrella sampling data by solving the WHAM equations [101] using
the g_wham program within GROMACS 4.6.7 [71,72]. The PMFs resulting from each
of the two independent umbrella sampling calculations are mutually aligned within
the large-h2t bond-stretching regions of the PMFs, and then averaged. Uncertainties
in each individual PMF are estimated from 100 rounds of bootstrap resampling, and
in the average by standard propagation of uncertainties.

2.4. Potential of mean force for peptide oligomerisation

We also computed the PMF profiles for the formation of oligopeptide dimers (n = 2)
and trimers (n = 3) as a function of the centre of mass separation rcom between a
monomer and a preassembled (n — 1) oligopeptide stack. Initial stacks of n peptides
were prepared by first stretching a monomer to its maximum head-to-tail extent, repli-
cating it n times, and constructing parallel stacks of the copies with inter-monomer



separations of 0.45 nm, corresponding approximately to the global free energy mini-
mum of the dimerisation PMF for stacked oligopeptides [45]. The system was allowed
to equilibrate for 20 ps with the positions of the core atoms restrained, and then for
another 20 ps with core restraints removed. This procedure allowed for peptides to
relax into a well-stacked configuration. We then simulated the system for 1.5 ns, and
used the system geometry at 0.5 ns, 1.0 ns, and 1.5 ns as the starting point for a
non-equilibrium pulling runs. Nonequilibrium pulling is applied to the centre of mass
separation rcom between a terminal monomer and the remaining (n — 1) monomer
stack. The configurations over the course of each pull are used to initialize umbrella
sampling runs at evenly spaced 0.1 nm intervals over the range rcom = 0-2.5 nm in
the case of dimer aggregation and over the range rcoym = 0-3.0 nm in the case of
trimer aggregation, where the upper bound of the range is specified to be sufficiently
large that the two groups are effectively non-interacting. Harmonic biasing potentials
with a force constant of 1000 kJ/mol.nm? were applied in each umbrella window, and
simulations run for 20 ns discarding the first 1 ns for equilibration. The unbiased
PMF profile was estimated from the biased umbrella sampling data by solving the
WHAM equations [101] using the g_-wham program within GROMACS 4.6.7 [71,72].
The AFeory = -2kpT In(rcom) correction is applied to each PMF to remove the purely
entropic effects attributable to restraining the two groups to a particular separation
[95,103,104]. The PMF's resulting from each of the three independent umbrella sam-
pling calculations are mutually aligned within the large-rcom plateau regions of the
PMFs where the two groups are non-interacting, and then averaged. Uncertainties
in each individual PMF are estimated from 100 rounds of bootstrap resampling, and
in the average by standard propagation of uncertainties. The dimerisation AF5 and
trimerisation AF3 free energies are defined as the difference in free energy between the
large-rcom non-interacting plateau of the PMF and the global free energy minimum
containing the associated configurations.

2.5. Measurement of structural alignment

We ultimately seek to relate the AFy and AFj3 values predicted by our model to a
measure of the quality of structural alignment within self-assembled aggregates formed
by large numbers of peptides. Since we are interested in engineering peptides for opto-
electronic functionality, our primary design objective is to establish good 7-7 stacking
between neighbouring oligopeptides within the self-assembled stacks. Essentially, we
are using good parallel stacking of the m-conjugated aromatic cores as a classical proxy
for good quantum delocalisation of electrons over the backbone of the self-assembled
stacks. We quantify the degree of structural alignment exhibited by a particular peptide
chemistry by conducting 50 ns unbiased simulations of 64 peptides in a 50x50x 50 nm?
implicit solvent box, corresponding to a concentration of 0.85 mM. This concentration
is both experimentally achievable and at which oligopeptide assembly has previously
been observed [9]. The structure of aggregates is tracked as a function of time to mon-
itor the formation of well-aligned parallel stacked clusters. The association distance
between two oligopeptides is defined as [63,105],

assoc __ s . B
Rg3°¢ = minmin ryj, (1)
i€a jEb

where r;; is the distance between atom ¢ in oligopeptide a and atom j in oligopeptide
b. Two oligopeptides are defined to be associated if RE°¢ < 0.5 nm. The alignment



distance is defined as [63,105],

R — max [( max min - 7i;), ( max min = ry)]. @)

i€(core a) j€E(core b) i'€(core b) j'€(core a)

The first term in round brackets defines the minimum intermolecular distance from
each atom ¢ in the m-conjugated core of oligopeptide a to each atom j in the m-
conjugated core of oligopeptide b, and selects the maximum of these. The second term
in round brackets defines the reciprocal of this, computing the maximum minimum
distance from any core atom ¢’ in oligopeptide b to any core atom ;' in oligopeptide
a. In the square brackets we then take the maximum of the two terms. As has been
previously observed, this distance is equivalent to the graph diameter [105,106]. This
measure presents a relatively strict definition of molecular association, with small align-
ment distances only reported that if all atoms within the cores of the two molecules are
in close proximity. Accordingly, it presents a means to identify whether the cores of a
pair of oligopeptides are in a parallel stacked configuration with in-register alignment
between all of the fused aromatic cores. Two oligopeptides are defined to be aligned
if Rz}})gn < 0.5 nm. We specify the two cutoffs based on the observed mean separa-
tion of two peptides in a 20 ns unbiased run starting from a well-aligned, m-stacked
configuration. Based on these definitions, we define the our alignment metric a for
a particular snapshot of our molecular simulation as the ratio of the average size of
aligned oligopeptide clusters to associated oligopeptide clusters,

— (3)

where 7, is the mean number of peptides in an aligned cluster and 7. is the mean
number of peptides in an associated cluster. The subtraction of unity in the numerator
and denominator assures that the metric does not spuriously assign high alignment
scores to oligopeptide monomers, for which a is undefined. Averaging a over the equi-
librated portion of our simulation trajectory provides a measure of the likelihood with
which oligopeptides form well aligned clusters upon aggregation.

3. Results and Discussion

3.1. Dimerisation and trimerisation free energies computed by molecular
stmulation

Containing three independently mutable amino acid residues and NDI or PDI as poten-
tial m-conjugated cores, our Asp-X3-Xo-X1-1I-X1-Xo-X3-Asp peptide family comprises
203x2 = 16,000 members. Even with our implicit solvent model, exhaustive calcula-
tion of the dimerisation and trimerisation free energies from molecular simulation is
computationally intractable. Accordingly, we instead perform these calculations over
the restricted subset of oligopeptide chemistries DFAX-II-XAFD, DFXG-II-GXFD,
and DXAG-II-GAXD, where X € {A, F, G, I, V} and IT € {NDI, PDI}. This choice of
26 different chemistries was motivated by experimental work showing good assembly
behaviours of peptides belonging to these and similar families [32,35,62,107], and the
decision to avoid charged and/or polar residues that are expected to interfere with
the triggerable low-pH association. We present in Table 1 the dimerisation AF, and
trimerisation AF3 free energies computed from the implicit solvent umbrella sampling



simulations described in Section 2.4.
[Table 1 about here.]

Analysis of the data reveals a significant difference between the free energies of
interaction between PDI and NDI cores: the most strongly interacting NDI peptides
(DFFG-NDI for dimers and DFAV-NDI for trimers) possess more shallow free en-
ergy wells that the most weakly interacting PDI peptides (DFAA-PDI for dimers and
DFAV-PDI for trimers). Interestingly, we observe that stronger free energy changes
for the formation of a dimer do not necessarily imply stronger free energy wells in
the formation of a trimer, indicating the importance of going beyond purely pairwise
interactions in characterizing multi-body assembly [47]. For example, DFAV-PDI has
one of the largest AF5 values but one of the lowest AF3 values. While it is clear that
the larger PDI w-conjugated cores tend to elevate oligomerisation free energies over
that for NDI cores by a factor of 2-3, discerning more subtle trends based on peptide
composition and sequence by inspection or intuition is challenging. In the following
sections, we describe the development and interrogation of a QSPR model to assist in
the discovery of the key determinants governing the thermodynamics of oligopeptide
oligomerisation.

3.2. QSPR modelling of oligomerisation thermodynamics

We engage our hypothesis that oligomerisation thermodynamics can be predicted from
physicochemical molecular descriptors by training a QSPR model to predict oligopep-
tide dimerisation and trimerisation free energies computed by umbrella sampling.
Training is conducted over data for the 26 chemistries reported in Table 1. Although
these particular oligopeptides represent no more than a small sampling of the 16,000
possible Asp-Xg-Xo-X1-I1-X1-Xo-X3-Asp chemistries, we show that it was sufficient to
produce QSPR models capable of quantitatively predicting oligomerisation free en-
ergies of a diversity of non-polar oligopeptides with diverse residue composition and
sequence. Training of our QSPR model constitutes a form of supervised learning to
regress a relationship of the form {AFi, AFi} = f(d;), where AFy and AFj are the
dimerisation and trimerisation free energies computed from molecular simulation, d
is a vector of physicochemical molecular descriptors that can be inexpensively com-
puted from the chemical sequence and/or three-dimensional structure of the peptide
monomer, i indexes the particular peptide chemistry, and f is the functional mapping
that is sought. Development of the QSPR model comprises four main steps: descriptor
generation, descriptor cleaning, model construction, and model validation. An illus-
tration of the QSPR training procedure is depicted in Figure 2.

[Figure 2 about here.]

3.2.1. Descriptor generation.

A molecular descriptor is a numerical quantity that can be computed directly from
the molecular chemistry and/or structure [50,108]. The PaDEL software package [109]
was used to compute a total of 1444 1D (dependent only on composition) and 2D
(dependent on bond network) descriptors, and 431 3D (dependent on three dimen-
sional structure) descriptors. These descriptors correspond to a number of physical
and chemical attributes, examples of which include numbers of atoms of various types,
autocorrelations between atoms separated by particular numbers of bonds weighted by



quantities such as electronegativity, and three dimensional weighted radial distribution
functions. Peptide structures required by PaDEL were generated by steepest descent
energy minimization from an initially extended configuration until the maximum force
in the system does not exceed 1000 kJ/mol.nm. The resulting file is converted to an
MDL MOL format using Babel [110] and aromatic bonds manually assigned. When
descriptors involve atomic partial charges, PaDEL computes them using the Gasteiger-
Marsili method [111]. The resultant descriptors produced over the 26 chemistries are
Z-scored such that they are centred, standardised, and de-dimensionalised [112]. To
increase the diversity of descriptors and potentially improve their interpretability, we
apply the descriptor generation protocol to the entire oligopeptide, the m-conjugated
core alone, and the variable X;-X5-X3 amino acid triplet. In this manner, we generate
a total of 5625 descriptors for each of the 26 chemistries.

3.2.2. Descriptor cleaning.

We clean the ensemble of 5625 descriptors to eliminate unstable, uninformative or
redundant descriptors [112,113]. First, we eliminated 1230 descriptors with a sensitive
dependence on the three dimensional structure of the oligopeptide. The oligopeptides
are known to adopt a diversity of configurations both in isolation and within self-
assembled aggregates, so we wished to discard descriptors that vary strongly with
the peptide conformational state, and may be strongly influenced by the particulars
of the methodology used to generate the initial peptide conformation. We compare
descriptor values for all peptide chemistries in the training data set that are generated
from our energy minimized peptide structure with those that are generated from the
terminal configuration of a 20 ns simulation of an isolated peptide in implicit solvent,
and select only those descriptors for which the root mean square deviation across all
chemistries was less than a cutoff value of 0.15. Second, we eliminate 1686 descriptors
that were found to be constant or nearly constant (defined as having a standard
deviation less than 0.0001) over the 26 chemistries. Third, we removed 2462 highly
correlated descriptors, identified from descriptor pairs possessing a Pearson correlation
coefficient with magnitude in excess of p = 0.90. Highly correlated descriptors are
removed in an iterative procedure. We first identify and retain the descriptor that
is least correlated with all other descriptors, and then eliminate all descriptors with
which it is highly correlated (i.e., p > 0.90). The next least correlated descriptor, of
those that have not been selected or rejected, is then selected and those descriptors
with which it is highly correlated are rejected, and so on. Together, these three cleaning
protocols down-selected the number of descriptors from 5625 to 247.

3.2.3. Model construction.

We randomly partition the 26 chemistries into a training set consisting of 21 pep-
tide chemistries (80% of the data) and a testing set comprising the remaining five
chemistries. We train a QSPR model over the training data to regress a relationship of
the form {AFy, AF3} = f(d), where d is a vector of the 247 descriptors retained after
cleaning. A number of choices of functional forms and machine learning approaches to
determine f are possible, including artificial neural networks, support vector regres-
sion, Gaussian process regression, and nonlinear regression. In this work, we choose to
employ simple multiple linear regression (MLR) for its simplicity, interpretability, and
appropriateness for the high-dimensional low-sample size (HD-LSS) regime in which



we are operating. As such, we seek a relationship of the form,
N
AF =co+ Y eid; + e, (4)
j=1

where i indexes the particular oligopeptide chemistry, j indexes the descriptor, AF ’
is either the dimerisation or trimerisation free energy computed for oligopeptide ¢, d;

is the j*" descriptor associated with chemistry 3, {ci}ﬁ\;o are the regression coefficients
to be determined, and ¢; is the residual error associated with chemistry ¢. In principle,
regression may be conducted over all N = 247 descriptors retained after the clean-
ing procedure. Typically, however, it is valuable to perform some form of descriptor
selection in order to generate more simple, interpretable, and generalizable models in
which a large number of the ¢; are constrained to be zero [112,113]. A number of means
exist to perform wrapped and/or embedded descriptor selection, including genetic al-
gorithms [114] and various flavours of regularization including ridge (L2), LASSO (L1),
and elastic net (L; and Lo) [115-117]. In this work, we implement a combination of
exhaustive and pseudo-greedy forward stepwise descriptor selection to regularize our
models, and we avoid overfitting by dividing data into training and testing datasets
and monitoring errors over the test set [118]. Specifically, we exhaustively compute
all (*]") = 247 univariate, (*') = 30,381 bivariate, and (%) = 2,481,115 trivariate
MLR models by least squares fitting of Equation 4 over the 21 training chemistries.
Exhaustive consideration of all (237) = 151,348,015 tetravariate models proved compu-
tationally expensive, so we instead greedily considered the 12,200 tetravariate models
formed by adding one more descriptor to the top 50 trivariate models. Exhaustive
computation of trivariate models proved to yield no significant benefit over trivariate
models obtained using this greedy approach, so the final analysis was conducted using
a greedy search approach for trivariate models as well and lending support for our
use of this technique. Models were computed for 15 separate random divisions of data
into training and testing sets in order to evaluate uncertainties in training and testing
errors. In principle, we could have extended this stepwise selection procedure to mod-
els of arbitrary complexity, but in practice, we found tetravariate models or smaller
were sufficient to predict dimerisation and trimerisation free energies with estimated
uncertainties better that the accuracy with which these quantities were computed
from our simulations. Furthermore, testing errors were observed to increase for both
dimerisation and trimerisation free energies for higher than tetravariate models, indi-
cating that the small size of our data set places us in a regime prone to overfitting.
We avoid overfitting by controlling model complexity so as to minimise the testing
error, but elect not to exacerbate the overfitting danger through the incorporation of
nonlinear terms in our regression model. This also has the advantage of leading to
more interpretable models formed from simple linear descriptor combinations.

3.2.4. Model validation.

At each order of model complexity N = {1,2,3,4} the MLR models were validated and
ranked according to their root mean squared error (RMSE) in leave-one-out cross-
validation of AFy and AF3 over the 21 chemistries constituting the training data. The
performance of the top ranked N = {1,2,3,4} models over the training and testing data
for a random division of the data into training and testing datasets are illustrated in
Figure 3.
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[Figure 3 about here.]

In principle, we could have terminated our QSPR validation procedure here, and
selected from the four top-ranked models with the smallest RMSE over the testing data
as our terminal model. However, we seek to further improve our predictive accuracy
by developing ensemble regressors that average over the top several models at each
level of model complexity (i.e., the univariate, bivariate, trivariate, and tetravariate
MLR models). It is well known that such ensemble models frequently exhibit better
performance than any one of the constituent models alone [119-121]. We determine
an appropriate number of top-ranked models over which to average at each level of
model complexity by performing 15 rounds of shuffled cross-validation, in which we
train the ensemble predictor on a randomly selected split of 80% of the training data
and measure its prediction accuracy on the remaining 20%. We identify the optimal
number of top-ranked models over which to average by identifying a knee in the curve
of test RMSE against number of models participating in the average. This analysis
identifies optimized ensemble predictors that average over the top one N = 1 order
MLR models, top four N = 2 order models, top nine N = 3 order models, and top
six N = 4 order models for AF5, and the top three N = 1 order MLR models, top
nine N = 2 order models, top four N = 3 order models, and top two N = 4 order
models for AF3. The performance of these ensemble models at each level of model
complexity over the training and testing data is illustrated in Figure 4, from which
we identify the N = 2 ensemble predictor to be optimal for prediction of AF5, and
the N = 1 ensemble predictor optimal for prediction of AF3. The increase in testing
error for models containing higher numbers of descriptors is a result of overfitting over
our small dataset, and we avoid overfitting by selecting the model with the minimum
testing error. The functional form of the best AF, ensemble model averaging over the
four top-ranked N = 2 MLR models is,

1
AFy = 4[

+ (9.85 x MATS3c + 4.90 x ATSC4e_wing — 16.43) (5)
+ (=5.05 x SpMax6_Bhs — 10.73 x piPC3 — 16.43)
+(3.73 x (AVP_5) — 7.98 x piPC3 — 16.43)]

(9.68 x MATS3c + 4.58 x MATS1c_wing — 16.43)

and that of the best AFj3 ensemble model averaging over the three top-ranked N = 1
MLR models is,
1 .
AF; :§[(—7.80 x piPC3 — 19.30)
+ (7.81 x maxHBint10 — 19.30) (6)
+ (7.83 x GATS2i — 19.30)]

An assessment of the statistical performance of these two ensemble models is presented
in Table 2.

[Table 2 about here.]

The particular descriptors resolved in our terminal A F5 QSPR model are the Moran
autocorrelation [122] of lag 3 weighted by partial charges (MATS3c) and Moran auto-
correlation of lag 1 of the amino acids on one side of the core minus the ASP residue on
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the end weighted by partial charges (MATS1lc_wing), and the centred Broto-Moreau
autocorrelation [123] of lag 4 weighted by the Sanderson electronegativities [124] of the
peptide wing (ATSC4e_wing), the 6 largest eigenvalue of the modified Burden ma-
trix [125] weighted by relative intrinsic state [126] (SpMax6_Bhs), conventional bond
order ID number of order 3 [108] (piPC3), and the average valance path of order 5
[127] (AVP_5). The particular descriptors resolved in our terminal AF3 QSPR model
are the conventional bond order ID number of order 3 [108] (piPC3), the maximum
electrotopological state [126] descriptor of strength for potential hydrogen bonds of
path length 10 (maxHBint10), and the Geary autocorrelation [128] of lag 2 weighted
by first ionization potential (GATS2i).

[Figure 4 about here.]

Importantly, the simple ensemble MLR QSPR models defined in Equations 5 and 6
provide quantitatively accurate predictions of the dimerisation and trimerisation free
energies to within calculation accuracy of ~4 kT using just a handful of easily cal-
culable molecular properties. Indeed, computation of the eight molecular descriptors
required by these two expressions for a particular oligopeptide chemistry requires only
about 4 s of computation on one core of an Intel i7-4820K processor, amounting to ap-
proximately a 3 million-fold speedup over direct calculation of AFs and AF3 by molec-
ular simulation. Accordingly, these models can be used to perform high-throughput
virtual screening for oligopeptide chemistries possessing desirable oligomerisation free
energies.

3.3. Trained QSPR models provide molecular insight into determinants
of oligomerisation thermodynamics

We now proceed to interrogate the particular descriptors and associated regression
coefficients appearing in the optimal MLR ensemble predictors in Equations 5 and
6. In doing so we pick apart the physicochemical properties reflected in each descrip-
tor, and develop insight into the key molecular features governing the oligomerisation
thermodynamics.

MATS3c is the Moran autocorrelation [122] of lag 3 weighted by partial charges.
Physically, this descriptor measures the correlation between atomic charges separated
by three bonds. This descriptor appears twice with large positive regression coefficients
in the expression for AF», indicating that large positive values of MATS3c favour large
positive (i.e., unfavourable) values of AF,. Bulkier aromatic residues and the larger
PDI core tend to have lower values of MATS3c due to lower correlation between charges
in atoms separated by three bonds in such residues compared to the higher correlation
in the peptide backbone.

MATS1c_wing is the Moran autocorrelation weighted by partial charges between
adjacent atoms in the peptide wing. This descriptor also appears with a positive co-
efficient in the expression for AF5. This quantity is lowest for residues with multiple
hydrogen atoms bonded to a single carbon atom in the peptide wings due to such a
configuration resulting in the most polarized bonds in our training dataset. Aromatic
residues, on the other hand, take on higher values. This term appears with and pro-
vides a correction to the MATS3c term by decreasing the magnitude of free energy
wells for peptides containing wings with a higher fraction of aromatic atoms.

ATSC4e_wing is is the centred Broto-Moreau autocorrelation [123] of lag 4 weighted
by Sanderson electronegativities [124] of the peptide wing. This descriptor also has
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a positive correlation with AFy. The Sanderson measure of electronegativity takes
negative values for C and H atoms and positive values for N and O atoms. Due to
spacing between atoms in the amino acid backbone, Ala and Gly residues tend to have
lower values of this descriptor. Similar to MATS1c_wing, this descriptor appears with
MATS3c and provides corrections to this term, in this case by predicting a larger free
energy well for peptides containing more Ala and Gly residues.

piPC3 is the conventional bond order ID number of order 3 [108]. Physically, it
measures the degree of branching in the bonded structure of the molecule. Aromatic
bonds are weighted more heavily than single bonds so larger peptides, especially those
containing large numbers of aromatic elements, with have larger values of this quantity.
This descriptor appears twice in the expression for AF5 and once in that for AF3, in
each case with large negative regression coefficients. PDI cores possess significantly
larger values of piPC3 than NDI, with this descriptor reflecting the more favourable
association free energies of the former relative to the latter. Less clear-cut correlations
between residue size and lower free energies may play a role as well.

SpMax6_Bhs is the 6 largest eigenvalue of the modified Burden matrix [125]
weighted by relative intrinsic state [126]. It appears with piPC3 with a negative re-
gression coefficient in the expression for AFy. This descriptor does not have a simple
physical interpretation, but is strongly negatively correlated r = —0.922 with the
number of aromatic atoms. This descriptor appears to correct the piPC3 term by
decreasing the free energy well for peptides containing a larger number of aromatic
atoms, and increasing the free energy well for peptides containing fewer.

AVP_5 is the average valance path of order 5 [127]. It is positively correlated with
AFy and appears with piPC3. AVP_5 can be thought of as a measure of molecular
compactness: molecules with more paths of length 5 that contain heavier atoms with
fewer valance electrons or atoms to which many hydrogen atoms are bound will have
higher values for this descriptor. For the standard amino acids, this quantity will in
general be larger when the ratio of hydrogen atoms to other atoms is larger. Ac-
cordingly, atoms containing Phe or Ile residues possess higher values, while NDI and
PDI cores are not significantly differentiated from one another. This term appears to
correct the piPC3 term that tends to overestimate the importance of residue size in
determining AF5.

maxHBint10 is the maximum electrotopological state [126] descriptor of strength
for potential hydrogen bonds of path length 10. This descriptor is positively correlated
with AFj3. Physically, the small size of the NDI core allows this path length to span
across the core between two viable atoms, which is not possible for the PDI core. As
a result, oligopeptides with NDI cores possess higher values for this descriptor than
PDI peptides, resulting in less favourable trimerisation free energies. Furthermore, the
presence of atoms with lower Kier-Hall electronegativity in residues adjacent to the
NDI core or residues one position away from the PDI core leads to lower values for
this descriptor and deeper free energy wells for trimerisation.

GATS2i is the Geary autocorrelation [128] of lag 2 weighted by first ionization
potential. It has positive correlation with AFj3. This quantity is an inverse measure of
autocorrelation (i.e., values > 1 indicate negative correlation and values < 1 indicate
positive correlation) between the first ionization potential of atoms separated by two
bonds. This quantity tends to reveal a weak negative correlation across all peptides,
but the positive correlation between atoms in larger aromatic regions, such as PDI
cores and Phe side chains, lowers the strength of this negative correlation and so
the value of this descriptor. The second hydrogen in glycine residues also tends to
decrease the strength of the negative correlation, so peptides containing more Gly will
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have lower values for this descriptor.

In sum, the QSPR model has identified a small number of physicochemcial prop-
erties that are the principal determinants of dimerisation and trimerisation free en-
ergies. Synthesizing the above analyses provides the following three physical insights
into the molecular mechanisms governing assembly. First, the larger PDI cores lead to
deeper free energy wells for dimerisation and trimerisation. Each set of descriptors for
dimerisation and each descriptor for trimerisation has some way of drawing a sharp
distinction between PDI and NDI cores. Specifically, this model predicts a ~ 15kgT
difference between PDI and NDI cores in both dimerisation and trimerisation free
energies. Second, larger residues, especially Phe, are predicted to yield stronger free
energies of aggregation, but that can easily be overestimated. Each pair of descriptors
in the AF, model is characterized by the same general trend: one term distinguishes
between PDI and NDI cores and overestimates the stability of larger residues, and the
second term corrects for this. Specifically, this model predicts an average increase in
well depth over the range of simulated chemistries of ~ 2.5kpT for replacing a given
residue with Phe, with this effect larger for NDI than PDI cores. Third, larger residues
with lower electronegativity nearer to the NDI core seem to play an important roll in
stabilizing the NDI trimer, while such residues are not as important in PDI trimers.

3.4. Correlation of oligomerisation thermodynamics with self-assembled
alignment quality.

Having developed a predictive QSPR model of dimerisation and trimerisation free
energies, we now move to test our second hypothesis that oligomerisation thermody-
namics can predict the large-scale self assembly behaviour. Following the precept that
self-assembling building blocks should possess sufficiently strong interactions to sta-
bilize self-assembled aggregates but not so strong as to impose kinetic trapping and
prohibit mutual rearrangements and healing of defects to form ordered aggregates [69],
it is our conjecture that peptide chemistries with intermediate AF, and AF3 values
should show the best assembly into well-ordered aggregates with in-register stacking of
the m-conjugated cores. Experimental support for this assertion in the context of these
oligopeptides comes from recent work showing significant differences in photophysical
and conductive properties of assembled peptides resulting from variation of peptide
amino acid sequence [32,35,107]. These results are hypothesized to be caused by ki-
netically trapped aggregates forming at early stages of assembly [32] and variations
in local packing order [107]. While these results are rather qualitative and pertain to
different m-conjugated cores than those studied here, they nevertheless support the
hypothesis that the formation of kinetically trapped states, most likely resulting from
overly attractive peptide interactions, have a negative impact on core alignment. To
test this conjecture, we conduct large scale simulations of assembly during which we
monitor the degree of in-register parallel stacking of the m-conjugated cores. The com-
putational expense associated with these calculations precluded us from conducting
these runs for all 26 chemistries, and so we judiciously selected DFAG-NDI, DFAG-
PDI, DFAF-NDI, DFAF-PDI, DFAV-NDI, DFAV-PDI, DFAI-PDI, and DAAG-PDI
as eight oligopeptides spanning a wide range of dimerisation and trimerisation free en-
ergies (cf. Table 1). We track alignment quality using the alignment metric a defined
in Equation 3 as a measure of the probability that associated peptides will form well-
aligned parallel stacks. The time evolution of this quantity over the 50 ns simulations
are reported in Figure 5a, and the average a values over the equilibrated portion of
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the runs reported alongside AF, and AF3 in Table 1.
[Figure 5 about here.]

Our calculations reveal that oligopeptides with the smaller NDI core tend not to
form well-aligned aggregates regardless of peptide wing chemistry. Peptides possess-
ing a PDI core show two distinct groupings: DFAG-PDI and DAAG-PDI align most
readily, while DFAV-PDI, DFAF-PDI, and DFAI-PDI do not align as well, although
still better than those with an NDI core (Figure 5a). We quantify this relationship by
fitting a bivariate Gaussian relating alignment quality and dimerisation and trimeri-
sation free energies,

2 2
0 = ayexp (_ (AF2202MAF2) N (AFZU2MAF3) ) 7 (7)
AF, AF;

where apg = 0.548, HAF, = -22.2 kBT, HAF, = -25.3 k)BT, and OAF, = OAF;, = 6.6
kT provide a good fit to the data (Figure 5b). This fit illuminates a “goldilocks”
regime in which peptides possessing intermediate AFy ~ AF3 ~ -25 kT exhibit
the best alignment, pointing towards an optimal trade off between sufficiently strong
interaction strength to mediate assembly, but not so strong as to result in kinetic
trapping in poorly ordered clusters.

3.5. High-throughput virtual screening

The good fit of the alignment metric to the dimerisation and trimerisation free energies
— although based on a relatively small training set of only eight peptides — gives
confidence that we can use our QSPR model to perform high-throughput screening of
chemical space to identify peptides with AFy and AF3 values predicted produce well-
aligned stacks. Computing the eight molecular descriptors required by the QSPR model
takes only 4 s per oligopeptide on a single Intel i7-4820K core, enabling traversal of
orders of magnitude more chemistries than would be possible by molecular simulation.
We search over the 172x2 = 9,826 chemistries in the Asp-X3-Xo-X;-11-X1-X5-X3-Asp
peptide family, where II € {NDI, PDI} and {X;, X2, X3} take on all possible natural
amino acids with the exception of Lys, His, and Arg. These three residues are neglected
since they are positively charged at low pH, and would therefore disrupt the pH-
triggered assembly mechanism due to electrostatic repulsion. We present in Table 3
the predicted AFy and AF3 values from our QSPR model (Equations 5 and 6) and
alignment metric a from our bivariate Gaussian fit (Equation 7) for a selected fraction
of the 9,826 chemistries.

[Table 3 about here.]

In order to test our model predictions, we select from our list four oligopeptide
chemistries predicted to possess good alignment metrics, and also seven controls. We
select DMPP-PDI and DATA-PDI as the two highest ranked chemistries. We also
select DAVG-PDI as the highest ranked chemistry possessing a Gly residue adjacent
to the core, as experimental work has previously suggested this as an important factor
in dictating good assembly [32,35,107]. We also select DWWW-NDI as the highest
ranked NDI core chemistry. Finally we also select DWNN-PDI, DTCT-NDI, DWCG-
PDI, DWYW-NDI, DSSW-PDI, DYGA-PDI, and DYGG-PDI as controls possessing a
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range of predicted free energies and alignments, and constituent amino acids. Several of
these oligopeptides contain polar amino acids, which were not contained in the training
data set, and so allow us to assess the generalizability and transferability of our model.
These 11 oligopeptides were then subjected to implicit solvent molecular simulation
to evaluate their dimerisation and trimerisation free energies, and large-scale 40 ns
simulations of 64 peptides at 0.85 mM to assess their alignment behaviours. We report
the predicted and calculated values of AFs, AF3, and a in Table 4.

[Table 4 about here.]

Comparison of the predicted and calculated values of AF, and AF3 show that our
QSPR model accurately predicts the oligomerisation thermodynamics for both NDI
and PDI oligopeptides containing non-polar amino acid residues (Table 4, upper). For
all five such chemistries, the predicted and calculated quantities lie well within the
estimated uncertainties. Importantly, this group of chemistries contains Met (M), Pro
(P), Cys (C), and Trp (W) residues that were not part of the training ensemble, but
the model is sufficiently transferable to give good predictive performance. Further,
the model correctly predicts that the six Trp residues in the peptide wings lead to
strong associations in the DWWW-NDI chemistry, despite the fact that very few of
the NDI training examples had dimerisation and trimerisation free energies that were
even half as large (Table 1). This indicates the model is able to accurately estimate the
impact bulkier aromatic regions have on the free energies of aggregation. Considering
now the six polar chemistries (Table 4, lower), we see poor agreement of the predicted
and calculated free energies. These chemistries all contain one or more polar residues
Ser (S), Asn (N), Thr (T), or Tyr (Y) containing OH or NH, polar moieties. The
poor predictive performance of our QSPR model may be attributed to the fact that
our training data contained only the non-polar residues Ala(A), Phe (F), Gly (G), Ile
(I), and Val (V), and clearly demonstrates that our current model cannot be reliably
extrapolated to strongly polar molecules.

We observe similar trends in the QSPR model prediction of the alignment metric a.
We see relatively good, although not quantitative, agreement between the predicted
and calculated a values for the five non-polar chemistries, with the only outlier being
DWWW-NDI. The large deviation for this chemistry may be attributed to the fact
that although the dimerisation and trimerisation free energies lie within the identified
optimal range, the association is mediated in large part through the aromatic groups in
the peptide wings rather than the aromatic core. Accordingly, good core-core parallel
stacking is compromised by core-wing -7 stacking interactions. It is a failure of our
simple model predicting alignment quality from oligomerisation free energies alone that
we do not distinguish the structural locale of the 7-interactions within the oligopeptide.
Conversely, our model shows very poor performance in predicting the alignment quality
of the polar oligopeptide chemistries.

Our results support our hypothesis that the AF, and AF3 of non-polar peptide
oligomers can be accurately predicted by our QSPR model, and these oligomerisation
free energies used to identify non-polar oligopeptide chemistries — excluding those pos-
sessing high aromatic residue contents — likely to possess good alignment (a = 25%)
within the self-assembled aggregates. In particular, we identify a chemistry DAVG-PDI
previously unstudied by either simulation or experiment showing very high structural
alignment propensity of a = 0.64. A representative snapshot of the equilibrium aggre-
gates formed by this oligopeptide chemistry is presented in Figure 6.

[Figure 6 about here.]

16



4. Conclusions

We conducted molecular dynamics simulations and developed QSPR models to un-
derstand and engineer self-assembling m-conjugated Asp-X3-Xo-X1-1I-X1-Xo-X3-Asp
oligopeptides. These molecules exhibit pH-triggered assembly with in-register parallel
-7 stacking between the conjugated aromatic cores leading to electronic delocalisa-
tion along the nanoaggregate backbones and the emergence of desirable optical and
electronic properties. Our study was founded on two hypotheses: that physicochemi-
cal properties of the oligopeptides can be used to accurately predict dimerisation and
trimerisation thermodynamics, and that chemistries possessing moderate oligomeri-
sation free energies produce the best ordered nanoaggregates. To engage these hy-
potheses, we parametrised an implicit solvent molecular model against explicit solvent
all-atom calculations, and used this efficient model to compute the dimerisation AFy
and trimerisation AFj free energies for 26 oligopeptides generated from all Ala (A),
Phe (F), Gly (G), Ile (I), and Val (V) point mutants — excluding the distal Asp (D)
residues required for pH-triggered assembly — of DFAG-II-GAFD oligopeptides con-
taining NDI and PDI cores. These results revealed the larger PDI cores to give rise
to AFy ~ (-24) kT and AF3 ~ (-27) kT compared to only AFy ~ (-9) kT and
AFs3 ~ (-12) kT for NDI inserts. To parse more subtle trends based on the compo-
sition and sequence of the peptide wings, we parametrised a QSPR model based on
eight molecular descriptors that was capable of quantitatively predicting the dimeri-
sation and trimerisation of non-polar oligopeptides. The predictive performance for
polar chemistries was poor, and attributable to the fact that the model was developed
exclusively over non-polar training examples. The particular descriptors identified by
the model are informative as to the underlying determinants of the oligomerisation
thermodynamics. It predicts oligomerisation free energies to be ~15 kT larger for
PDI cores as compared with NDI, and bulkier residues, especially Phe, to increase
free energies of association by ~2.5 kgT'. Finally, we observe that amino acids having
lower electronegativity near the peptide core may play an important role in stabilizing
formation of the NDI trimer. In developing a qualitatively accurate QSPR model for
non-polar oligopeptide dimerisation and trimerisation thermodynamics, we provide
strong support for our first hypothesis. This result is weakened by the poor perfor-
mance for polar chemistries, but we anticipate that expansion of the training set to
encompass polar training examples can produce similarly accurate models for this class
of molecules.

We then correlated the alignment quality of associated peptides with the computed
oligomerisation free energies to develop a model that supported the existence of opti-
mal dimerisation and trimerisation free energies of AF5 ~ AF3 ~ (-25) kpT. Heartened
by this support for our second hypothesis, we performed a high-throughput screen of
oligopeptide chemical space to identify a number of novel candidate chemistries pre-
dicted to exhibit good alignment behaviour alongside a number of controls. Direct
large-scale simulation showed our QSPR model to be a good, but not quantitatively
accurate, predictor of alignment quality for non-polar oligopeptides. Using this ap-
proach, we were able to computationally identify and validate DAVG-PDI-GVAD as a
promising oligopeptide chemistry not previously studied by experiment or simulation
that exhibits good ordering in its self-assembled pseudo-1D nanoaggregates, and is
therefore disposed to desirable optical and electronic functionality.

In future work, we aim to expand the training data to incorporate polar oligopeptide
chemistries in order to build a more general and transferable QSPR model. Moreover,
we would like to expand the training set to incorporate side chains of differing lengths
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and a wider variety of II cores, including oligophenylvinylenes, oligothiophenes, and
other rylene diimides. We also propose to incorporate additional computational tech-
niques, including deep learning techniques that obviate the need for descriptors [129-
131], Markov state models parametrised by molecular simulation data to reach longer
length and time scales [45,132], and time-dependent density functional theory (TD-
DFT) to explicitly engage the electronic properties of the self-assembled aggregates.
Finally, we will work with experimental collaborators to explicitly test the optimal
designs identified under our computational screening protocol thereby guiding and ac-
celerating experimental discovery efforts, and also incorporate the experimental results
into our modelling paradigm to refine and improve our computational screens. These
endeavours will continue to pave the way for design and realization of self-assembling
oligopeptides as novel biocompatible supramolecular optoelectronic materials.
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Appendix: Rescaling of implicit solvent non-bonded interactions

We demonstrated in our previous work that the GBSA implicit solvent model sub-
stantially overestimates the strength of non-bonded interactions between peptides,
and that it is necessary to rescale these interactions in order to reliably reproduce
the thermodynamics of peptide aggregation [45]. Following our previous protocol, we
adopt the minimally invasive strategy of uniformly rescaling the non-bonded interac-
tions within the peptide force field in implicit solvent to best reproduce the potential
of mean force (PMF) profiles for single peptide collapse (Section 2.3) and peptide
dimerisation (Section 2.4) computed in explicit solvent [45,133]. This rescaling proto-
col can be considered a form of PMF matching [134-136]. Despite its simplicity, we
previously showed the approach to produce satisfactory performance in reproducing
explicit solvent results [45]. We adopt DFAG-NDI-GAFD as a prototypical oligopep-
tide for which to perform the fitting procedure and ascertain the optimal value of the
rescaling factor.

The non-bonded interactions comprise Coulombic and Lennard Jones interactions
V™ (r) = Vo(r) + Vs (r) that are each pairwise decomposable functions of interatomic
separation r. As detailed in Ref. [45], a uniform rescaling of these pairwise interactions
V7 5 aV™ amounts to rescaling the Lennard-Jones interaction parameter by a factor
of a and the partial charges by a factor of \/a. We define the optimal scaling factor
as that which minimizes the error function,

RMSE(ar) = RMSE; () + RMSEs(a), (8)

where RMSE; and RMSE, are, respectively, the root mean squared error between the
PMF for single peptide collapse and peptide dimerisation computed in explicit and
implicit solvent. We computed the implicit solvent PMF curves at values of a = [0.50,
0.60, 0.70, 0.72, 0.75, 0.78, 0.80, 0.90, 1.00], and report in Figure 7 the values of RMSE,
RMSE;, and RMSE; as a function of «. From these results, we discern a = 0.75 to be
the optimal value of the scaling factor at which the PMF profiles for peptide collapse
agree to within a root mean squared error of 0.7 kg7 and for peptide dimerisation
within 1.3 kgT.

[Figure 7 about here.]

27



Table 1. Free energies of dimerisation AF5 and trimeri-
sation AF3 computed from implicit solvent umbrella sam-
pling calculations for the 26 chemistries in the families
DFAX-II-XAFD, DFXG-II-GXFD, and DXAG-II-GAXD,
where X € {A, F, G, I, V} and II € {NDI, PDI}. Val-
ues are computed as the mean over the three independent
runs, and uncertainties are estimated by propagation of
uncertainties and bootstrap resampling. Eight of the 26
peptides were selected for large-scale simulations to assess
the alignment quality of the self-assembled supramolec-
ular assemblies (Section 3.4). We report for these eight
chemistries the alignment metric a (Equation 3) averaged
over the equilibrated portion of simulations of the assem-
bly of 64 oligopeptides at a concentration of 0.85 mM as
a measure of the probability oligopeptides will assemble
into well-aligned stacks with in-register parallel stacking
between the m-conjugated cores. Uncertainties were esti-
mated by five-fold block averaging the equilibrated portion
of the trajectory.

Chemistry AFy AF3 a
DAAG-NDI | -8.1+1.2  -13.844.8 -
DAAG-PDI | -22.3£1.6 -25.5£3.2  0.584 4+ 0.039
DFAA-NDI | -7.7£2.6 -8.9£3.1 -
DFAA-PDI | -18.8+£3.5 -22.5+£3.1 -
DFAF-NDI | -11.842.4 -15.946.0 0.016 £ 0.007
DFAF-PDI | -24.0+£3.2 -30.6+3.9 0.303 £ 0.039
DFAG-NDI | -8.1£2.1 -7.6£1.9  0.021 £ 0.016
DFAG-PDI | -22.14+2.8 -25.34+3.2 0.537 £ 0.042

DFAI-NDI | -9.44+3.1  -14.7+2.8 -

DFAI-PDI | -21.8£2.8 -34.9£4.0 0.268 & 0.042
DFAV-NDI | -9.0+2.1 -17.8£3.6 0.020 % 0.006
DFAV-PDI | -27.3+£3.0 -21.2+29 0.348 £ 0.033
DFFG-NDI | -12.2£1.9 -16.6£4.9 -
DFFG-PDI | -29.2+3.1 -29.843.9 -
DFGG-NDI | -7.0£1.0 -9.1£2.7 -
DFGG-PDI | -26.9+2.7 -23.6+2.3 -
DFIG-NDI | -8.5+2.1  -14.6£2.6 -
DFIG-PDI | -27.6+4.7 -24.5+3.0 -
DFVG-NDI | -7.64+2.8 -12.9£3.2 -
DFVG-PDI | -22.9£2.6 -34.247.4 -
DGAG-NDI | -8.9+£1.0 -5.7£2.5 -
DGAG-PDI | -26.9+1.7 -29.3+2.6 -
DIAG-NDI | -6.5+1.4 -8.0£3.1 -
DIAG-PDI | -24.4£3.3 -28.5£2.7 -
DVAG-NDI | -7.7£1.4 -4.6+1.2 -
DVAG-PDI | -20.3+1.6 -21.5+5.1 -
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Table 2. Statistical measures of our computed QSPR
model for AF; and AF3 for both training data and testing
data. RMSE is the root mean square error of the model
measured in kg7, R? is the Pearson correlation coeffi-
cient, ¢2 is the correlation coefficient over the leave one
out cross validation of the training data, MAE is the mean
average error of the model measured in kT, and Rgdj is
the adjusted correlation coefficient [137]. Error values are
comparable to errors obtained in simulation. High values
of the correlation coefficient and similar values of the ad-
justed correlation coefficient indicate the data are fit well
by the model without overfitting.

RMSE  R? ¢®> MAE R2?

adj
AF, training 1.9 0.95 0.90 1.5 0.91
AF, testing 3.0 0.83 - 2.6 0.75
AF3 training 3.7 0.83 0.68 3.0 0.79
AF3 testing 3.9 0.72 - 3.3 0.68
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Table 3. Dimerisation AF> and trimerisation AF3 free energies predicted by
Equations 5 and 6 and alignment metric a predicted by Equation 7 for a se-
lected number of the 9,826 chemistries in the Asp-X3-Xg-X1-I1-X1-X2-X3-Asp
peptide family, where IT € {NDI, PDI} and {X;, X2, X3} take on all possi-
ble natural amino acids with the exception of Lys, His, and Arg. Chemistries
are ordered by the magnitude of the predicted alignment metric. Uncertainties
in AF> and AF3 are the mean error in prediction of the testing data over 15
rounds of shuffled cross validation. Uncertainties in a are estimated by apply-
ing Equation 7 to 10° {AF», AF3} pairs generated by sampling from a Gaus-
sian distribution with the specified mean and standard deviation and taking
the standard deviation of the result. DMMP-PDI and DAIA-PDI are selected
for further simulation as the chemistries with the highest predicted alignment,
DAVG-PDI is selected as the chemistry having a Gly residue nearest the core
with the highest predicted alignment, and DWWW-NDI is selected as the NDI
core with the highest predicted alignment. Finally, DWCG-PDI, DWYW-NDI,
DSSW-PDI, DYGA-PDI, DYGG-PDI, DTCT-NDI, and DWNN-PDI are all se-
lected as controls having a wide variety of predicted free energies, alignments,

and constituent amino acids.
Chemistry | Predicted AF>  Predicted AF3  Predicted alignment a
DMMP-PDI -22.4 £ 3.0 -25.5 + 3.9 0.430 £ 0.096
DAIA-PDI -22.4 £+ 3.0 -25.2 + 3.9 0.430 + 0.097
DAMI-PDI -22.0 & 3.0 -25.4 + 3.9 0.430 £ 0.097
DCMV-PDI -22.3 £ 3.0 -25.7 &+ 3.9 0.429 + 0.097
DVAV-PDI -22.2 + 3.0 -25.4 + 3.9 0.429 + 0.097
DMMI-PDI -22.6 &+ 3.0 -25.4 + 3.9 0.429 + 0.097
DMIM-PDI -22.6 = 3.0 -25.5 + 3.9 0.429 + 0.097
DMIA-PDI -22.3 = 3.0 -24.9 + 3.9 0.429 + 0.097
DAIM-PDI -22.0 &+ 3.0 -25.6 + 3.9 0.429 + 0.097
DCVM-PDI -22.3 £ 3.0 -25.7 £ 3.9 0.429 + 0.097
DAVG-PDI -22.0 &+ 3.0 -24.9 + 3.9 0.429 + 0.097
DAMP-PDI -21.9 £+ 3.0 -25.7 + 3.9 0.429 + 0.097
DAAP-PDI -22.5 + 3.0 -24.8 + 3.9 0.429 + 0.098
DVMM-PDI -21.6 & 3.0 -25.2 + 3.9 0.429 + 0.097
DWWW-NDI -22.7 + 3.0 -25.6 + 3.9 0.428 + 0.098
DWCG-PDI -26.1 + 3.0 -22.7 + 3.9 0.351 + 0.123
DWYW-NDI -33.6 = 3.0 -23.8 &+ 3.9 0.123 £ 0.088
DSSW-PDI -35.7 + 3.0 -23.2 + 3.9 0.074 + 0.065
DYGA-PDI -38.4 + 3.0 -24.6 + 3.9 0.036 £ 0.039
DYGG-PDI -38.8 £ 3.0 -24.5 £ 3.9 0.032 £ 0.036
DTCT-NDI -37.6 + 3.0 -6.6 + 3.9 0.002 + 0.006
DWNN-PDI -72.6 + 3.0 -28.1 + 3.9 0.000 =+ 0.000
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Table 4. Predicted and calculated dimerisation free energy AF5, trimerisation free energy AF3, and align-
ment metric a for the 11 oligopeptide chemistries selected from our high-throughput virtual screening.
Chemistries above the horizontal line possess non-polar amino acid residues for which QSPR model predictions
of the oligomerisation thermodynamics and alignment quality are generally very good. The polar oligopeptide
chemistries — defined as those containing a difference in partial charge between any two bonded atoms greater
than 1.0 e — reside below the line, for which the model predictions are relatively poor. Chemistries are ordered

by the magnitude of the predicted alignment metric.
|

Chemistry ' AF> (pred) AF, (sim)  AF3 (pred) AF3 (sim) a (pred) a (sim)
DMMP-PDI | -224 £3.0 -21.3+£23 -255+39 -22.8 + 3.3 0.430 £ 0.096  0.245 + 0.014
DAIA-PDI | -224 4+3.0 -25.84+ 21 -25.24 3.9 -29.1 £ 5.2 0.430 £ 0.097  0.579 £ 0.048
DAVG-PDI | -22.0 £3.0 -2324+20 -249 4 3.9 -25.4 £ 3.2 0.429 £ 0.097  0.640 £ 0.072
DWWW-NDI | -22.7£3.0 -21.8+23 -25.6%+3.9 -30.1 £ 4.9 0.428 £ 0.098  0.016 % 0.005
DWCG-PDI | -26.1 £3.0 -32.0+ 3.8 -22.7 4+ 3.9 -27.0 + 4.6 0.350 £ 0.123  0.272 4 0.048
DWYW-NDI | -33.6 £3.0 -222+£71 -23.8=£39 -30.5 + 3.9 0.123 £ 0.089  0.000 % 0.000
DSSW-PDI | -35.7 +£3.0 -51.2+5.3 -23.2+39 -103.5+ 385 0.074 £ 0.064 0.269 £ 0.021
DYGA-PDI | -384 +3.0 -304+26 -24.6+ 3.9 -36.5 £ 7.9 0.036 £ 0.039  0.600 % 0.085
DYGG-PDI | -388 £3.0 -26.1+46 -245+3.9 -40.3 + 6.8 0.032 £ 0.036  0.468 + 0.047
DTCT-NDI | -37.6 £ 3.0 -83.4+9.2 -6.6 = 3.9 -91.8 + 28.9 0.002 £ 0.005 0.037 £+ 0.010
DNWW-PDI | -72.6 £ 3.0 -31.2+3.6 -281+3.9 -49.6 + 4.2 0.000 £ 0.000  0.139 £ 0.020
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Chemical structure of the Asp-X3-X9-X;-11-X;-X5-X3-Asp peptide fam-
ily. {X1, X3, X3} may be tuned to any one of the 20 natural amino acids,
and the II insert is a conjugated aromatic core, which in this work we
restrict to be either a naphthalenediimide (NDI) or a perylenediimide
(PDI) conjugated core. The N-to-C directionality of each peptide points
away from the core, such that the oligopeptide sequence is antisymmet-
ric and possesses two C-termini. The terminal aspartic acid residues
and carboxyl termini are deprotonated at pH 2 5 such that the pep-
tides carry a (-4) formal charge, and large-scale assembly is prohibited
by electrostatic repulsion; at pH < 1, the termini protonate and as-
sembly proceeds by m-7 stacking, hydrogen bonding, and hydrophobic
interactions [32]. . . . . ...
Schematic illustration of the QSPR model development protocol. . . .
Performance of top-ranked MLR models comprising N = 1 (red dots),
2 (green dots), 3 (cyan dots), and 4 (black dots) molecular descriptors
in predicting (a) dimerisation free energy and (b) trimerisation free en-
ergy computed in simulation. Free energies are reported in units of kT,
where kg is Boltzmann’s constant and 7' = 298 K. The MLR models
are fitted by least-squares fitting over the 21 training chemistries (blue
bars), and their performance evaluated over the five testing chemistries
(yellow bars). Black error bars indicate the estimated uncertainties in
the AF5 and AFj3 values computed from molecular simulation. The par-
ticular descriptors constituting the top ranked models are reported in
the legends where GATS2i is the Geary autocorrelation of lag 2 weighted
by first ionization potential, MATS3c is the Moran autocorrelation of
lag 3 weighted by charges, MATS1c-aaWing is the Moran autocorre-
lation of lag 1 weighted by charges of the peptide wing, MDEC-23 is
the molecular distance edge between all secondary and tertiary car-
bons, AATS6s-aaWing is the Average Broto-Moreau autocorrelation of
lag 6 weighted by I-state of the peptide wing, SpMax6-Bhs is the sixth
largest absolute eigenvalue of the Burden modified matrix weighted by
the relative I-state, piPC3 is the conventional bond order ID number
of order 3, maxsssCH-aaWing is the maximum atom-type E-State for
singly bonded carbons with one hydrogen of the peptide wing, ATSC4p-
aaWing is the centred Broto-Moreau autocorrelation of lag 4 weighted
by polarisabilities, SpMAD-Dzp is the spectral mean absolute devia-
tion from Barysz matrix weighted by polarisabilities, GATS2c¢ is the
Geary autocorrelation of lag 2 weighted by charges, SpMin5-Bhm is the
fifth smallest absolute eigenvalue of Burden modified matrix weighted
by relative mass, GATS6i-aaWing is the Geary autocorrelation of lag
6 weighted by the first ionization potential of the peptide wing, and
MATSSs is the Moran autocorrelation of lag 8 weighted by I-state.
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Performance of the optimal ensemble models at each level of model
complexity over the training (green) and testing (blue) data in predict-
ing the (a) dimerisation free energy and (b) trimerisation free energy
computed in simulation. Free energies are reported in units of kT,
where kp is Boltzmann’s constant and T = 298 K. For AF5, the opti-
mal ensemble model comprising N = 1 molecular descriptors averages
over the single top-ranked MLR model, N = 2 over the top four, N =
3 over the top nine, and N = 4 over the top six. For AFj3, the opti-
mal ensemble model comprising N = 1 molecular descriptors averages
over the three top-ranked MLR models, N = 2 over the top nine, N
= 3 over the top four, and N = 4 over the top two. The uncertainty
in the AFy and AF3 computed from simulation is depicted as a hor-
izontal red line. Uncertainties in the model predictions are estimated
from K = 15 rounds of shuflled cross-validation and depicted as error
bars. This analysis reveals the N = 2 ensemble predictor to be optimal
for prediction of AFy, and the N = 1 ensemble predictor optimal for
prediction of AF3. The increase in testing error for models that utilize
higher numbers of descriptors indicates that such models are overfitting

Alignment assessment of oligopeptide aggregates. (a) Time evolution of
the alignment metric a (Equation 3) over the course of 50 ns runs of
the self-assembly of 64 oligopeptides at a 0.85 mM initialized from ran-
domly oriented monomers deposited over a grid. Values of a averaged
over the equilibrated portion of the trajectory are reported in Table 1.
(b) Scatter plot of the dimerisation AF, and trimerisation AF3 free en-
ergies with points coloured by the computed alignment metric a. Char-
acteristic snapshots of the oligopeptide aggregates extracted from our
molecular simulations show that DFAG-PDI and DAAG-PDI tend to
form well-aligned stacks, DFAV-PDI, DFAF-PDI, and DFAI-PDI show
a weaker propensity for good alignment, and DFAV-NDI, DFAF-NDI,
and DFAG-NDI do not associate into well-formed stacks. The contour
plot represents a best fit bivariate Gaussian with pap, = -22.2 kT,
uar, = -25.3 kT, and oap, = oar, = 6.6 kg1, where kp is Boltz-
mann’s constant ant T = 298 K. The data and fit support the assertion
that intermediate AFy and AF3 values result in the optimal oligopep-
tide alignment. . . . . .. ..o Lo oo
Representative snapshot of a self-assembled aggregate formed by the
DAVG-PDI oligopeptide chemistry in 40 ns implicit solvent molecular
dynamics simulations of 64 peptides at 0.85 mM. . . . . . ... .. ..
Root mean squared error between the PMF profiles for single peptide
collapse and peptide dimerisation in implicit and explicit solvent as a
function of the scaling factor for the implicit solvent non-bonded inter-
actions. The agreement for single peptide collapse RMSE; and peptide
dimerisation RMSEs both attain their optima at a scaling factor of «
= (.75. Uncertainties are estimated by 100 bootstrap resamples of the
simulation data used to compute the PMF profiles. . . . . .. ... ..
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Figure 1. Chemical structure of the Asp-X3-Xg2-X;-II-X1-X2-X3-Asp peptide family. {X1, X2, X3} may be
tuned to any one of the 20 natural amino acids, and the IT insert is a conjugated aromatic core, which in
this work we restrict to be either a naphthalenediimide (NDI) or a perylenediimide (PDI) conjugated core.
The N-to-C directionality of each peptide points away from the core, such that the oligopeptide sequence
is antisymmetric and possesses two C-termini. The terminal aspartic acid residues and carboxyl termini are
deprotonated at pH 2 5 such that the peptides carry a (-4) formal charge, and large-scale assembly is prohibited
by electrostatic repulsion; at pH < 1, the termini protonate and assembly proceeds by 7-m stacking, hydrogen
bonding, and hydrophobic interactions [32].
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Figure 2. Schematic illustration of the QSPR model development protocol.
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Figure 3. Performance of top-ranked MLR models comprising N = 1 (red dots), 2 (green dots), 3 (cyan
dots), and 4 (black dots) molecular descriptors in predicting (a) dimerisation free energy and (b) trimerisation
free energy computed in simulation. Free energies are reported in units of kT, where kp is Boltzmann’s
constant and 7' = 298 K. The MLR models are fitted by least-squares fitting over the 21 training chemistries
(blue bars), and their performance evaluated over the five testing chemistries (yellow bars). Black error bars
indicate the estimated uncertainties in the AFy and AF3 values computed from molecular simulation. The
particular descriptors constituting the top ranked models are reported in the legends where GATS2i is the
Geary autocorrelation of lag 2 weighted by first ionization potential, MATS3c is the Moran autocorrelation
of lag 3 weighted by charges, MATS1c-aaWing is the Moran autocorrelation of lag 1 weighted by charges
of the peptide wing, MDEC-23 is the molecular distance edge between all secondary and tertiary carbons,
AATS6s-aaWing is the Average Broto-Moreau autocorrelation of lag 6 weighted by I-state of the peptide wing,
SpMax6-Bhs is the sixth largest absolute eigenvalue of the Burden modified matrix weighted by the relative
I-state, piPC3 is the conventional bond order ID number of order 3, maxsssCH-aaWing is the maximum
atom-type E-State for singly bonded carbons with one hydrogen of the peptide wing, ATSC4p-aaWing is the
centred Broto-Moreau autocorrelation of lag 4 weighted by polarisabilities, SpMAD-Dzp is the spectral mean
absolute deviation from Barysz matrix weighted by polarisabilities, GATS2c is the Geary autocorrelation of
lag 2 weighted by charges, SpMin5-Bhm is the fifth smallest absolute eigenvalue of Burden modified matrix
weighted by relative mass, GATS6i-aaWing is the Geary autocorrelation of lag 6 weighted by the first ionization
potential of the peptide wing, and MATSS8s is the Moran autocorrelation of lag 8 weighted by I-state.
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Figure 4. Performance of the optimal ensemble models at each level of model complexity over the training
(green) and testing (blue) data in predicting the (a) dimerisation free energy and (b) trimerisation free energy
computed in simulation. Free energies are reported in units of k7T, where kp is Boltzmann’s constant and
T = 298 K. For AF5, the optimal ensemble model comprising N = 1 molecular descriptors averages over the
single top-ranked MLR model, N = 2 over the top four, N = 3 over the top nine, and N = 4 over the top
six. For AF3, the optimal ensemble model comprising N = 1 molecular descriptors averages over the three
top-ranked MLR models, N = 2 over the top nine, N = 3 over the top four, and N = 4 over the top two. The
uncertainty in the AF> and AF3 computed from simulation is depicted as a horizontal red line. Uncertainties
in the model predictions are estimated from K = 15 rounds of shuffled cross-validation and depicted as error
bars. This analysis reveals the N = 2 ensemble predictor to be optimal for prediction of AF5, and the N = 1
ensemble predictor optimal for prediction of AF3. The increase in testing error for models that utilize higher
numbers of descriptors indicates that such models are overfitting the data.
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Figure 5. Alignment assessment of oligopeptide aggregates. (a) Time evolution of the alignment metric a
(Equation 3) over the course of 50 ns runs of the self-assembly of 64 oligopeptides at a 0.85 mM initialized
from randomly oriented monomers deposited over a grid. Values of a averaged over the equilibrated portion
of the trajectory are reported in Table 1. (b) Scatter plot of the dimerisation AF> and trimerisation AF3 free
energies with points coloured by the computed alignment metric a. Characteristic snapshots of the oligopeptide
aggregates extracted from our molecular simulations show that DFAG-PDI and DAAG-PDI tend to form well-
aligned stacks, DFAV-PDI, DFAF-PDI, and DFAI-PDI show a weaker propensity for good alignment, and
DFAV-NDI, DFAF-NDI, and DFAG-NDI do not associate into well-formed stacks. The contour plot represents
a best fit bivariate Gaussian with pap, =-22.2 kT, uar; =-25.3 kgT, and oar, = 0AF; = 6.6 kgT, where
kp is Boltzmann’s constant ant 7' = 298 K. The data and fit support the assertion that intermediate AF5 and
AF3 values result in the optimal oligopeptide alignment.
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Figure 6. Representative snapshot of a self-assembled aggregate formed by the DAVG-PDI oligopeptide
chemistry in 40 ns implicit solvent molecular dynamics simulations of 64 peptides at 0.85 mM.
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Figure 7. Root mean squared error between the PMF profiles for single peptide collapse and peptide dimeri-
sation in implicit and explicit solvent as a function of the scaling factor for the implicit solvent non-bonded
interactions. The agreement for single peptide collapse RMSE; and peptide dimerisation RMSE2 both attain
their optima at a scaling factor of & = 0.75. Uncertainties are estimated by 100 bootstrap resamples of the
simulation data used to compute the PMF profiles.
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