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ABSTRACT
We study the thermal evolution of hypernuclear compact stars constructed from covariant den-
sity functional theory of hypernuclear matter and parametrizations which produce sequences
of stars containing two-solar-mass objects. For the input in the simulations, we solve the
Bardeen–Cooper–Schrieffer gap equations in the hyperonic sector and obtain the gaps in the
spectra of �, �0, and �− hyperons. For the models with masses M/M� ≥ 1.5 the neutrino
cooling is dominated by hyperonic direct Urca processes in general. In the low-mass stars the
(�p) plus leptons channel is the dominant direct Urca process, whereas for more massive stars
the purely hyperonic channels (�−�) and (�−�) are dominant. Hyperonic pairing strongly
suppresses the processes on �−s and to a lesser degree on �s. We find that intermediate-mass
1.5 ≤ M/M� ≤ 1.8 models have surface temperatures which lie within the range inferred
from thermally emitting neutron stars, if the hyperonic pairing is taken into account. Most
massive models with M/M� � 2 may cool very fast via the direct Urca process through the
(�p) channel because they develop inner cores where the S-wave pairing of �s and proton is
absent.
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1 INTRODUCTION

The observations of several white dwarf–pulsar binaries with pulsar
masses close to two solar masses (Demorest et al. 2010; Antoniadis
et al. 2013; Fonseca et al. 2016; Barr et al. 2017) have spurred
intensive research on the problem of hyperonization of dense mat-
ter in compact stars. The key issue is the construction of mod-
els of compact stars containing hypernuclear matter in their cores,
which accommodate the two-solar-mass compact stars mentioned
just above. The core compositions of compact stars are computed
for a given nuclear equation of state (hereafter EoS). Depending
on mass, nuclear densities in excess of several times the density
of normal nuclear matter are encountered. So far, the bulk of the
research on such stars has been directed towards the integral pa-
rameters of non-rotating and rotating compact stars (Bednarek et al.
2012; Bonanno & Sedrakian 2012; Long et al. 2012; Weissenborn,
Chatterjee&Schaffner-Bielich 2012a,b; Colucci&Sedrakian 2013;
Miyatsu, Cheoun & Saito 2013; Gusakov, Haensel & Kantor 2014;
van Dalen, Colucci & Sedrakian 2014; Gomes et al. 2015; Maslov,
Kolomeitsev & Voskresensky 2015; Oertel et al. 2015; Fortin et al.
2016; Tolos, Centelles & Ramos 2016; Marques et al. 2017).

� E-mail: araduta@nipne.ro (ARR); sedrakian@fias.uni-frankfurt.de (AS);
fweber@sdsu.edu (FW)

The purpose of this work is to advance these studies by address-
ing the problem of their thermal evolution. If the late-time heating
processes are ignored then the problem reduces to the neutrino cool-
ing from stellar interior during the time-span t ≤ 105 yr after the
star’s birth, which is followed by asymptotic photon cooling from
its surface. The onset of hyperons in dense matter gives rise to an ar-
ray of new processes involving weak decays of hyperons (and their
inverse), such as direct (Prakash et al. 1992) and modified Urca
processes (Maxwell 1987; Kaminker, Yakovlev & Haensel 2016).
The direct Urca (hereafter dUrca) processes strongly enhance the
neutrino luminosity of the star, potentially cooling it very rapidly
(Boguta 1981; Lattimer et al. 1991). The required threshold densi-
ties of hyperons for these processes to operate are very low, of the
order of several per cent of the density. Therefore, these processes
become operative at densities slightly above those where hyper-
ons first become energetically favourable in compact star matter,
provided that all involved species are present.

Early models of compact star cooling with hyperon admix-
tures were studied by Haensel & Gnedin (1994) in the isother-
mal approximation for non-superfluid hyperons and by Schaab,
Balberg & Schaffner-Bielich (1998) using a non-isothermal code
which accounted for � hyperon pairing. A more recent study by
Tsuruta et al. (2009) included also the pairing of�− hyperons along
with other additional physics, such as three-body forces in the EoS.
Since the onset of hyperons softens the EoS drastically and lowers
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the maximum mass that can be supported by the EoS, the cooling
models mentioned above were built for stars with relatively low
masses [e.g. in Tsuruta et al. (2009) the sequences are restricted to
M/M� ≤ 1.7], which are contrary to present-day measurements.
On the other hand, the relativistic density functionals (DF) con-
structed recently provide models of hypernuclear stars which sat-
isfy the presently known constraints from laboratory physics and
astrophysics of compact stars. It is, therefore, the purpose of this
work to study the cooling of compact stars whose mass range is in
agreement with observed data by employing models for the nuclear
EoS which account for hyperonic degrees of freedom, and to unveil
the new characteristics which hyperonization has on the cooling of
compact stars.

This work is structured as follows. In Section 2.2 we first set the
stage by describing the covariant DFs on which the EoS used in
this work are based. We then go on to solve the Bardeen–Cooper–
Schrieffer (BCS) equations in the hyperonic sector to obtain the
gaps and critical temperatures for hyperons (i.e. � and �−,0) inter-
acting via attractive forces. Section 3 is devoted to the discussion of
neutrino processes introduced by the hyperonic component; we list
themain direct Urca processes on hyperons, as well provide updated
rates of the pair-breaking processes on hyperons which account for
suppression of the vector current contributions. Section 4 describes
the results of our simulations of the thermal evolution of hypernu-
clear compact stars for three models from our EoS collection. Our
conclusions and a concise summary can be found in Section 5.

2 EQUATION OF STATE AND PAIRING

2.1 Density functionals for hypernuclear matter

Hyperons in dense nuclear matter have been studied using a number
of methods, ranging from non-relativistic potential-based many-
body models to Lagrangian based relativistic DF methods (Weber
1999; Sedrakian 2007). The parameter of DFs are fixed by the
nuclear phenomenology of hypernuclear matter, nuclear collisions,
and compact stars. Non-relativistic potential models (Balberg &
Gal 1997; Baldo, Burgio & Schulze 2000; Burgio, Schulze & Li
2011) fail to produce heavy enough neutron stars (NS) and/or are
incompatible with most recent experimental hypernuclear data.

The relativistic DF formalism provides a consistent theoretical
framework, which can be used to extrapolate the nuclear EoS to very
high densities. In this work we use a set of representative DFs based
on the density-dependent parametrization of nucleonic DFs, specif-
ically the DDME2 parametrization (Lalazissis et al. 2005), and
DFs which have constant coupling constants but include non-linear
mesonic contributions instead, such as NL3 (Lalazissis, König &
Ring 1997) and GM1 (Glendenning & Moszkowski 1991). The ex-
tensions of the DDME2model to the hypernuclear sector have been
carried out in several works (Colucci & Sedrakian 2013; van Dalen
et al. 2014; Fortin et al. 2016; Spinella 2017) and we shall use the
parametrization of Fortin et al. (2016) and Spinella (2017) below;
we shall adopt the parameter set of Gusakov et al. (2014) for GM1A
model; for NL3 model we shall employ the parameter set NL3(b) of
Miyatsu et al. (2013), which is identical to NL3Yss of Fortin et al.
(2016) and very similar to the hyperonic NL3 model of Wang &
Shen (2010).

In Table 1 we list the nuclear parameters of these models. Note
that, in theNL3model, the saturation values of the symmetry energy
J and its slope L are outside of the preferred ranges (Tsang et al.
2012; Lattimer & Steiner 2014). Nevertheless, we keep this model
in our collection for the sake of illustration.

Table 1. Key nuclear properties of the relativistic DF models considered in
this work. Listed are the energy per nucleon (Es) and compression modulus
(K) at the saturation density of symmetric nuclear matter (ns) together with
the symmetry energy (J), slope (L), and curvature (Ksym) of the symmetry
energy at ns.

Model ns Es K J L Ksym

[fm−3] [MeV] [MeV] [MeV] [MeV] [MeV]

NL3 0.149 −16.2 271.6 37.4 118.9 101.6
GM1A 0.154 −16.3 300.7 32.5 94.4 18.1
DDME2 0.152 −16.1 250.9 32.3 51.2 −87.1
SWL 0.150 −16.0 260.0 31.0 55.0 n.a.

Table 2 displays the properties of the hyperonic stars computed
for our collection of EoSs. For each DF the second columns list
mesonic fields whereas the third column specifies the underlying
flavour symmetry group. The couplings of the σ scalar meson to
hyperons, gσY, are typically determined from the values of semi-
empirical depths of potential wells for hyperons at rest in symmetric
nuclear matter at saturation density,

U
(N )
Y (ns) = − (

gσY + g′
σY ρs

)
σ + (

gωY + g′
ωY ns

)
ω, (1)

where ρs is the scalar density, the prime denotes the derivative with
respect to the total density; the derivative terms are non-zero only
in the models with density-dependent couplings. In all DFs the
following values of hyperonic potentials were used: U

(N )
� ≈ −28

MeV, U (N )
� ≈ −18 MeV, and U

(N )
� ≈ 30 MeV (Millener, Dover &

Gal 1988). In the NL3 model (Wang & Shen 2010; Miyatsu et al.
2013; Fortin et al. 2016), which accounts for the hidden strangeness
meson σ ∗, gσ ∗� is determined from the value of the �-potential in
� matter

U
(�)
� = −gσ�σ − gσ ∗�σ ∗ + gω�ω + gφ�φ, (2)

assuming U
(�)
� (ns) ≈ −5 MeV (Takahashi et al. 2001). The cou-

plings with the other hyperons are obtained from symmetry argu-
ments, gσ ∗� = gσ ∗� andU

(�)
� ≈ 2U (�)

� . The vector meson–hyperon
coupling constants are expressed in terms of the couplings to the
nucleon and assume certain flavour symmetries. The first three
DFs in Tables 1 and 2 are based on the SU(6) and the SWL on
the SU(3) flavour symmetry. In this last case, the ESC08 model
(Rijken, Nagels & Yamamoto 2013) values are employed for the
vector mixing angle θv = 37.50◦, the vector coupling ratio αV = 1,
and the meson singlet to octet coupling ratio z = 0.79.

Columns 4–14 of Table 2 list the maximum mass and the corre-
sponding central baryon number density, the threshold density of
each hyperonic species, and the mass of the star associated with that
density. It is seen that for all models the first two hyperons to appear
are the � and �− hyperons; the third type of hyperon to nucleate
could be either �0 or �−. The chosen DFs favour �− hyperon over
the less massive �− because of its potential in nuclear matter is at-
tractive, whereas that of the �− is repulsive (Millener et al. 1988).
Clearly, if the threshold density for appearance of any given hy-
peron is larger than the central density of the maximum-mass star,
that particular hyperon will not be accounted in our simulations.
Finally, the last two columns of Table 2 list the baryon number
density and NS mass threshold above which the nucleonic dUrca
process operates in a purely nucleonic NS matter.

2.2 BCS models of hyperonic pairing

The attractive component of the nuclear force between the hyperons
will lead to their BCS pairing. Because of the relatively low density
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Table 2. Astrophysical characteristics of the relativistic DF EoS models (with hyperons) used in this work: nmax shows the central densities of the maximum-
mass (MY

max) hyperonic star of each stellar sequence, nYi
shows the threshold densities at which hyperons of type Yi are produced, and MYi

lists the mass of
the hyperonic star for that density. The last two entries show the baryon number density (nDU) beyond which the nucleonic dUrca process is allowed in purely
nucleonic NS matter and the mass (MDU) of the associated compact star.

Model mesons flavor nmax MY
max Y1 nY1 MY1 Y2 nY2 MY2 Y3 nY3 MY3 nDU MDU

sym. [fm−3] [M�] [fm−3] [M�] [fm−3] [M�] [fm−3] [M�] [fm−3] [M�]

NL3 σ , σ∗, ω, φ, ρ SU(6) 0.77 2.07 � 0.28 1.47 �− 0.33 1.73 �0 0.57 2.02 0.21 0.85
GM1A σ , ω, φ, ρ SU(6) 0.92 1.994 � 0.35 1.49 �− 0.41 1.67 – – – 0.28 1.10
DDME2 σ , ω, φ, ρ SU(6) 0.93 2.12 � 0.34 1.39 �− 0.37 1.54 �− 0.39 1.60 – –
SWL σ , ω, ρ SU(3) 0.97 2.003 � 0.41 1.51 �− 0.45 1.65 �0 0.90 2.00 0.90 2.00

of hyperons, the most attractive partial wave is the 1S0 channel,
which would pair hyperons as spin-singlet Cooper pairs. Hyperon–
nucleon pairing as well as pairing among non-identical hyperons,
e.g. ��−, 0, will be suppressed because of the difference in their
densities and/or the difference in their effective masses (Stein et al.
2014). In fact, the latter strongly disfavour cross-species pairing
among baryons even when their abundances become equal at some
density.

A reliable strategy for computing pairing gaps in nucleonicmatter
has been outlined in past studies of relativistic DF models of nu-
cleonic pairing, where the non-relativistic BCS equation is solved
for a given two-nucleon potential (Kucharek & Ring 1991) using
single-particle energies and particle composition computed for the
relativistic DF method. Although there is certain inconsistency in
themethods of treating the background and pairing correlations, this
approach has been validated in computations of finite nuclei within
the relativistic Hartree–Fock–Bogoliubov theory (Long et al. 2010).

We employ this strategy and use for the composition of matter
the DF results from the previous subsection; for the �� pairing in-
teraction we use the configuration space parametrization of ESC00
potentials (Rijken 2001) given by Filikhin & Gal (2002); for�−�−

and �0�0 interaction we use the potential designed by Garcilazo,
Valcarce & Vijande (2016), which corresponds to Nijmegen Ex-
tended Soft Core ESC08c potential (Rijken et al. 2013). Our choice
of ESC00 and ESC08c potentials is motivated by the fact that they
provide maximum attraction in the�� and, respectively,�� chan-
nels. Consequently, our results provide an upper limit on the hyperon
pairing and thus maximize the role of hyperon pairing on NS cool-
ing. The �� pairing is disregarded because according to ESC08c
potential this interaction channel is repulsive. The pairing in the �-
channel was studied by Balberg & Barnea (1998) and most recently
by Wang & Shen (2010) for a matter composition determined from
relativistic DF theory. The �-channel has been briefly discussed by
Takatsuka et al. (2001), but the physical implications of � pairing
have remained largely unexplored.

The quantity determining the onset of superfluidity is the energy
gap function �Y(k), obtained by solving the gap equation,

�Y (k) = − 1

4π2

∫
dk′k′2 VYY (k, k′)�Y (k′)√[

EY
s.p.(k

′) − μY

]2
+ �2

Y (k′)

, (3)

where Es.p.(k) is the single-particle energy of hyperon Y with mo-
mentum k,

EY
s.p.(k) =

√
(�c)2k2 + m∗2

Y + gωY ω + gφY φ + gρY τ3Y ρ + �R, (4)

where �R represents the rearrangement term entering the models
with density-dependent couplings, μY = EY

s.p.(kF) stands for the
chemical potential, and m∗

Y = mY − gσY σ − gσ ∗Y σ ∗ is the Dirac
effective mass of the species Y. For the pairing interaction in the 1S0

channel the potential matrix element can be written as

VYY (k, k′) = 〈k|VYY |k′〉 = 4π
∫

drr2j0(kr)VYY (r)j0(k
′r), (5)

where j0(kr) = sin (kr)/(kr) is the spherical Bessel function of the
order zero and VYY(r) is the 1S0 channel YY interaction potential
in coordinate space. The gap equation (3) was solved numerically
by using as an input equation (5), with the configuration space
interactions for the � and � channels taken from Filikhin & Gal
(2002) and Garcilazo et al. (2016), respectively, and for matter
properties computed for the models introduced in Section 2.1. An
iterative method for solving the gap equation was applied with
adaptive momentum mesh to account for rapid variations of the
integrand in the vicinity of Fermi momentum (Sedrakian & Clark
2006).

Fig. 1 shows the dependence of the pairing gaps for � and �−, 0

hyperons on their respective Fermi momenta. When the dispersive
effects are neglected (Fig. 1, top panel) the gaps reflect the attrac-
tion in the given channel. The bell-shaped form of these curves
results from the increase in the density of states combined with the
decreasing attraction among the hyperons as their Fermi momenta
kF increase. The reduction of the hyperon masses by the medium
reduces the density of states, and hence the gap at the Fermi surface.
This effect is more pronounced at higher densities where the effec-
tive masses are substantially smaller than unity (middle and bottom
panels of Fig. 1). The reduction in the �� pairing is larger than
in the case of �−�− and �0�0 and reflects the magnitude of the
change in the effective mass. We have computed also pairing gaps
using as a background other DFs, which were recently proposed in
the literature, e.g. GM1’B and TM1C from Gusakov et al. (2014)
and GM1(c), TM1(c) and NL3(c) from Miyatsu et al. (2013), all
of which fulfill recent hypernuclear and astrophysical constrains.
For these DFs the pairing gaps are comparable or lower than those
shown in Fig. 1.

To illustrate the suppression of the pairing gaps by dispersive
effects quantitatively we show in Fig. 2 the dependence of the
effective masses of baryons on the baryon density for the models
studied in this work. The effective masses of baryons decrease with
increasing density due to their interactions with scalar mesons. (The
NL3 model leads to an unrealistic drop of the effective mass, but
this occurs at densities where no stable configurations of compact
stars exist.)

The dependence of the pairing gaps on the composition of matter
is displayed in Fig. 3. Note that the density range of �� pairing
is restricted to densities nB ≤ 0.55 fm−3 which implies that at
high densities, which may be achieved in massive stars, regions of
unpaired � matter will exist. In contrast to this, the �− component
remains paired up to the highest densities. It can also be seen that
the NL3 model predicts density ranges for �, �−, and �0 pairing,
which deviate strongly from other, better constrained models. The
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Figure 1. Dependence of 1S0 pairing gaps at Fermi energy on the Fermi
momentum for � and � hyperons in NS matter based on our collection of
DF models: (top) gaps obtained with m∗ = m and chemical potentials taken
from GM1A model; (middle) gaps for � hyperons with medium dependent
single particle energies and composition according to DDME2 (solid), NL3
(dashed), GM1A (dash–dotted), and SWL (long-dashed) models; (bottom)
same as middle panel, but for �− (thin lines) and �0 (thick lines) hyperons.
Note that in the case of DDME2 DF the �0 hyperon does not nucleate in
the density range shown in the figure.

largest discrepancy appears for the �0 pairing range, which is due
to the early onset of �0s for this model.

3 NEUTRINO RADIATION PROCESSES

The neutrino radiation from compact star interiors depends sen-
sitively on the particle content of matter and the magnitude and
density dependence of the pairing gaps of fermions. The leading
neutrino radiation processes in nucleonic phases are well-known
[see for reviews Weber (1999), Yakovlev et al. (2001), Page et al.
(2004), Sedrakian (2007)]. The presence of hyperons leads to the
hyperonic dUrca processes (Prakash et al. 1992), which can be
written symbolically as

� → p + l + ν̄l , (6)

Figure 2. Dependence of effective masses of neutrons (top panel) and of �

(thin) and �− (thick) hyperons (bottom panel) on baryonic number density,
for DF models. The proton and �0 effective masses are close to those of
neutrons and �− hyperons as none of our models accounts for δ-mesons.

Figure 3. The same as in Fig. 1, but for 1S0 pairing gaps as a function of
baryonic number density. Note that the �0 hyperon appears in the density
range shown in the figure only for the NL3 and SWL DFs and its onset for
GM1A DF is at nB = 0.99 fm−3, i.e. close to the upper limit of the range
considered.
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�− →
⎛
⎝ n

�

�0

⎞
⎠ + l + ν̄l , (7)

�− →
⎛
⎝ �

�0

�0

⎞
⎠ + l + ν̄l , (8)

�0 → �+ + l + ν̄l , (9)

where l stands for a lepton, either electron or muon, and ν̄l is the as-
sociated anti-neutrino. Provided that all hyperonic species involved
in a given reaction exist in matter, the corresponding thresholds on
their density fractions are quite low – of the order of a few per cent.
The hyperon abundances increase strongly as soon as they become
energetically favourable, therefore the hyperonic dUrca processes
start to operate soon after the onset of hyperons. Their rates are
larger than those of the modified Urca processes involving hyper-
ons (Maxwell 1987) (which can be visualized by adding a bystander
baryon to the processes listed in equations 6–9). Although, when
allowed by the triangle inequalities (Boguta 1981; Lattimer et al.
1991), the rate of the nucleonic direct Urca process n → p + e + ν̄

is higher than its hyperonic counterparts, it is suppressed by the su-
perfluidity of nucleons. Thus, hyperonic dUrca processes dominate
if hyperons are not paired.

Hyperonic pairing, discussed in the previous section, changes
the picture in two-fold way: first, it suppresses the hyperonic dUrca
rate (exponentially at low temperatures T � TcY, where TcY is the
critical temperature of hyperonic pairing); secondly, it opens a new
channel of neutrino emission based on the Cooper pair-breaking
and formation (PBF) mechanism:

{YY } → Y + Y + ν + ν̄, Y + Y → {YY } + ν + ν̄, (10)

where {YY} stand for a hyperonic Cooper pair. The rate of the
process (10) has been discussed previously (Yakovlev, Kaminker
& Levenfish 1999; Jaikumar & Prakash 2001), but it requires
some revision. Specifically, the component of the emissivity to
the vector current coupling (∝ c2V) is negligible for S-wave paired
baryons compared to that of axial-vector coupling (∝ c2A) (Leinson
& Pérez 2006; Sedrakian, Müther & Schuck 2007; Kolomeitsev &
Voskresensky 2008, 2010; Steiner & Reddy 2009; Sedrakian 2012).
The first contribution scales as (vYF/c)4, where vYF is the Fermi ve-
locity of a given hyperon and c is speed of light, whereas the second
one scales as (vYF/c)2. This last contribution can be written, in
analogy with the result for nucleons, as

εY = 4G2
FζA

15π3

1

�10c6
[c2Aν0v

2
FIν]Y T 7, (11)

where the phase-space integral is given by

IνY = z7Y

∫ ∞

1
dy

y5√
y2 − 1

fF (zY y)2 , (12)

where GF is the Fermi coupling constant, ζA = 6/7, the no-
tation [. . . ]Y indicates that the quantities in the braces depend
on the hyperon type Y, cA is the axial-vector coupling constant,
ν0 = m∗

LpF/π
2 is the density of states, fF(x) = [exp (x) + 1]−1 is the

Fermi distribution function with z = �/T and m∗
L refers to the Lan-

dau effective mass (as opposed to the Dirac effective mass entering
in the definition of eigenstates of the Dirac equation for nucleons
and hyperons in medium.). Note that we have used the Landau
effective masses in expressions for the emissivities of the weak pro-
cesses. The axial-vector current coupling constants for the tree-level

Figure 4. Upper panel: composition of NS with masses of 1.8M� (thin)
and 2M� (thick lines) in terms of n, p,�,�−, and�− relative abundances,
as predicted by theDDME2 (Fortin et al. 2016)EoS. Lower panel: the pairing
critical temperatures for n, p, �, and �− as a function of radial distance
from the centre of the star. Two scenarios for proton 1S0 pairing have been
considered: (a) CCDK (Chen et al. 1993) and (b) BCLL (Baldo et al. 1992).
The relation Tc[1010K] ≈ 0.66� [MeV] has been used to find Tc for the
1S0 and 3P2 − 3F2 pairing gaps. The pairing gaps for �−s are scaled by a
factor of 0.4. For neutron pairing, we choose the ‘b’ curve of the gap shown
in fig. 10 of Page et al. (2004).

Y → Y transitions are given by Savage & Walden (1997)

cA(�) = −(F + D/3) = −0.73, (13)

cA(�
−) = cA(�

−) = D − 3F = −0.58, (14)

cA(�
0) = −cA(�

+) = −(D + F ) = −1.26, (15)

cA(�
0) = D − F = 0.34, (16)

where the parameter values used in the numerical evaluation are
D= 0.79 andF= 0.47. Finally, we note that the hyperons contribute
also to the specific heat of the core of the star; these contributions are
suppressed once they pair to form a condensate. The heat capacity
and its suppression by S-wave superfluidity are modelled in full
analogy to the S-wave paired nucleons.

To understand the relative role of the hyperons played in the
cooling of NS, it is useful first to examine the relative abundances
of the baryon octet xi = ni/n, where ni is the partial density of
the baryons, and the critical temperatures Tci of their pairing phase
transition as a function of some interior parameter, for example,
the internal radius. Figs 4 and 5 show these dependences for the
DDME2 and GM1A models; the results for the SWL model are
very close to that of DDME2 and are not shown.

The profiles of the relative abundances reveal that aside from
dominant component of neutrons with xn ≤ 1 the baryons separate
into two groups: in the first group, which includes p, �, and �− the
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Figure 5. The same as Fig. 4, but for NS with masses 1.5M� (thin) and
1.9M� (thick lines) and the GM1A model (Gusakov et al. 2014). The
pairing gaps for �−s are scaled by a factor of 0.4. The proton 1S0 pairing
gap is implemented as in Chen et al. (1993) and the neutron pairing gap is
chosen as in Fig. 4.

baryon abundances are of the order of 0.1. The second group in-
cludes �− and (at high densities) �0 and, possibly, other hyperons
with relative abundances≤0.01. This latter group plays a negligible
role in the cooling, except of �− which do not pair under our work-
ing assumption that the relevant interaction is repulsive. Among the
second group the first baryons to pair are �−s. Their maximal criti-
cal temperature ∼2 × 1010 K; a burst of neutrino emission via PBF
processes from this component is overshadowed by the Urca pro-
cess on� hyperons given by equation (6). The remaining baryons n,
p, and � thus control cooling through the Urca processes, whereby
the following factors play a role: (a) whether or not the nucleonic
dUrca threshold is achieved in the star interior; (b) whether some
of these baryons lose their pairing at high density leaving some in-
terior regions unpaired. As seen, e.g. from Fig. 4 the more massive
star’s interior is stripped from � and p pairings, which provides
rapid Urca cooling via the (�p) channel (see equation 6). Note that
the �− hyperons are paired in the entire range of their existence
and cannot contribute via the dUrca process (except the special case
where only the tale of the pairing gap enters the density range of
the star).

Thus, we conclude that the main effect of accelerated cooling is
caused by absence of pairing in p and � components in the high-
density regions of the stars: the more massive is the star, the larger is
the relevant region. Comparing the two models of dense matter, i.e.
Figs 4 and 5, it is easy to conclude that the same arguments apply
also in the case of matter composition based on GM1A model. The
minor differences (for example, the absence of �− hyperons, or
larger fraction of protons) do not affect the mechanism by which
the rapid cooling becomes available with increasing stellar mass.
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Figure 6. Mass versus radius relation for the stellar models considered in
this work. The shaded areas show the masses of two massive pulsars, PSR
J0348+0432 with M = 2.01 ± 0.04M� (Antoniadis et al. 2013), and PSR
J1614−2230 with M = 1.93 ± 0.02M� (Fonseca et al. 2016).

4 THERMAL EVOLUTION OF
HYPERNUCLEAR STARS

The above discussed models of the EoS of hypernuclear matter,
which are based on covariant relativistic DF theory, were employed
to construct static, spherically symmetrical configurations of self-
gravitating objects assuming that these are non-rotating and non-
magnetized. Fig. 6 shows themass versus radius relation for our col-
lection of EoS; in particular it demonstrates that our models satisfy
the astrophysical constraints placed by pulsar mass measurements.

These models have been further evolved from some initial tem-
perature distribution (chosen to be sufficiently large, but the details
are inessential) at initial time assuming that the structure of the
models does not change in time. The evolution was followed for
106 yr after which the star surface temperature drops below the
observable limit. We employ the public domain NSCOOL code1

by D. Page, which was suitably modified to include the physics
of hyperonic components. In all considered cases heating sources,
magnetic fields, and accretion have been disregarded. The envelope
is assumed to consist of Fe. The crust EoS of Negele & Vautherin
(1973) and Haensel, Zdunik & Dobaczewski (1989) was smoothly
merged with the core EoS. Finally the following computations of
the nucleonic pairing gaps are implemented in the code. The neu-
tron 1S0 pairing in the crust is given by Schwenk, Friman & Brown
(2003). For neutron 3P2 − 3F2 pairing we choose the ‘b’ curve of the
gap shown in fig. 10 of Page et al. (2004). Two computations of 1S0
proton pairing have been used: ‘CCDK’by Chen et al. (1993) and
‘BCLL’ by Baldo et al. (1992). These computations differ mostly
in the density domain that proton superfluid occupies: 0 � kF �
1.3 fm−1 for CCDK and 0.1 � kF � 1.05 fm−1 for BCLL. The
difference in the maximal values of the critical temperatures for
these models is about 20 per cent, Tc ≈ 6.6 × 109 K for CCDK and
≈5.6 × 109 K BCLL.

4.1 Cooling models without nucleonic Urca process

We first discuss models where the process n → p + e + ν̄e and its
inverse are forbidden by sufficiently low proton fraction.

1 www.astroscu.unam.mx/neutrones/NSCool
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Figure 7. Cooling models based on the DDME2 EoS for NS masses 1.3,
1.4, 1.5, 1.6, 1.7, 1.8, 1.85, 1.9, and 2M� (from top to bottom) without (top
panel) and with (middle and bottom panels) hyperon pairing. Two scenarios
for 1S0 proton pairing have been used: CCDK (Chen et al. 1993) (top and
middle panels) and BCLL (Baldo et al. 1992) (lower panel). Observational
data correspond to 19 isolated NS listed in Beznogov & Yakovlev (2015).

We start with the cooling models based on the DDME2 EoS and
show the dependence of the effective surface temperature Teff on
time in Fig. 7 for the cases of unpaired (upper panel) and paired
(middle panel) hyperon component for the proton pairing model
CCDK (Chen et al. 1993). The alternative proton pairing model
BCLL (Baldo et al. 1992) with paired hyperon component is shown
in the lower panel of the same figure. The data shown in the figure
(including the error bars) are the temperatures inferred from the
thermal component of the X-ray emission measured from a number
of pulsars; the pulsar ages are the spin-down ages unless there is
an association with a known supernova [see Beznogov & Yakovlev
(2015)].

In the absence of hyperonic pairing the cooling curves for dif-
ferent masses separate into sets corresponding to slowly cooling
stars with surface temperatures T ∼ 106 K and fast cooling stars
with surface temperatures by an order of magnitude lower at about
t ∼ 104 yr. This dichotomy can be understood by examining the
neutrino luminosity of neutrino processes. For the DDME2 model
the threshold for the nucleonic dUrca process is not reached for any

model, therefore the only dUrca processes available are those on
hyperons. For star masses M/M� � 1.5 the dominant hyperonic
process is the dUrca process on�s (6) but it is effective only at early
stages of evolution (e.g. for M/M� = 1.5 for log t ≤ 3.2 yr) and
is suppressed after protons become superfluid. For M/M� = 1.6
model the central density exceeds the �− threshold, as a conse-
quence the purely hyperonic Urca process (8) in the (�−�) channel
dominates. For M/M� > 1.7 the central density exceeds the �−

threshold and another purely hyperonic Urca process (7) in the
(�−�) channel becomes the dominant agent [the process (8) in-
volving �− is about 10 per cent of the neutrino luminosity]. Note
that the �− decay into neutrons is suppressed by neutron pairing
and does not play a role. In the most massive model M/M� = 2.0
the process (�p) channel (6) contributes again, because for such
massive models the proton pairing vanishes in the inner core (r ≤
4 km).

In the case where the hyperon pairing is included, models fill-in
the region between the two extremes discussed above. For stars
with M/M� ≥ 1.7, the dUrca process in the (�p) channel (6)
dominates the early evolution for log t ≤ 4 yr and is suppressed at
the later times by pairing. The process (8) in the (�−�) channel
does not contribute significantly in any range of masses, because
of strong suppression by their superfluidity. For stars with M/M�
≥ 1.8 the hyperonic dUrca process (7) involving �−s (which do
not pair) is the dominant process up to times log t ≤ 5 to 5.5 yr,
after which the photon cooling from the surface takes over. For the
massive model withM/M� = 2.0 the inner core (r≤ 4 km) features
not only unpaired protons, but also unpaired �s. Nevertheless the
process (7) dominates, i.e, for massive hyperonic compact stars the
dominant cooling is provided by purely hyperonic dUrca process.

The cooling models are sensitive to the proton pairing pattern
inside the star because the dUrca process in the (�p) channel (6) is
the most effective process in low-mass stars. In particular, whenever
the proton pairing gaps are small and regions exist where protons
are unpaired (see Fig. 4) this process dominates the cooling. This
is indeed the case for BCLL pairing, as shown in the lower panel
of Fig. 7. Apart from the lightest star, the remaining configurations
are effectively cooled by this process, which leads to clustering
of cooling curves in the fast cooling regime. In the heaviest stars
M/M� ≥ 1.9 the competing process on (7) in the (�−�) channel
dominates. In this case the thermal evolution is the same in both
models of protonic pairing (cf. the middle and lower panels of
Fig. 4).

Next we consider cooling models based on the SWL equations
of state, which are shown in Fig. 8. The difference to the previous
case is the absence of unpaired �− hyperons, therefore this model
illustrates the physics of cooling of compact starswhere all hyperons
pair. As in the previous case the cooling curves separate into slow
and fast cooling sets if hyperon pairing is ignored. The slow cooling
set contains two models with M/M� = 1.5, 1.6 which are either
purely nucleonic or contain only a small admixture of �s. The
increase of� abundances and the onset of other hyperons accelerate
the cooling and the models withM/M� = 1.7 to 2 form the second
set of rapidly cooling stars. The M/M� = 1.7 and 1.8 models
cool predominantly via the (�−�) channel of equation (8), because
proton pairing suppresses the former process. For models M/M�
≥ 1.9, the proton pairing vanishes in the central region (r ≤ 4 km
for 1.9M� star) of the star and both processes (6) and (8) contribute
nearly equally.

Including the hyperon superfluidity completely suppresses
the process (8) on �− particles, which have quite a large gap.
The remaining dUrca process (6) in the (�p) channel dominates
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Figure 8. Cooling models based on the SWL EoS for NS masses 1.5, 1.6,
1.7, 1.8, 1.85, 1.9, 2.0M� (from top to bottom). For 1S0 proton pairing the
CCDK (Chen et al. 1993) gap has been used.

the neutrino luminosity up to logt ≤ 4.5 for models M/M� ≥ 1.7
and 1.8, but its rate is suppressed by the � pairing, consequently
the cooling tracks pass through the area where the cooler set of
the observed stars is located. The models with M/M� ≥ 1.9 are
not affected by hyperonic pairing, because, as pointed out above,
these develop a core where � and proton pairing vanish. Thus,
we conclude that in the case where �− does not appear in matter
and cooling via processes involving �− is strongly suppressed by
hyperons’ superfluidity the dominant role is played by the dUrca
process on �s, which provides a good description of the data of the
observed cooler compact stars. However, when the cores of most
massive stars develop unpaired regions with � hyperons and pro-
tons the cooling is strongly accelerated and the surface temperatures
drop well below the observed ones.

4.2 Allowing for nucleonic direct Urca process

Now we turn to the GM1A models, which support the nucleonic
dUrca process and consider first the case of unpaired hyperons. The
purely nucleonic model with M/M� = 1.4 in this case cools pre-
dominantly via the nucleonic dUrca process. For heavier models,
M/M� = 1.5 − 1.6, the dominant neutrino radiation mechanism
becomes the hyperonic dUrca process in the (�p) channel, as the nu-
cleonic dUrca process is suppressed by the neutron and proton gaps.
For the model with M/M� � 1.7 the cooling is controlled equally
by the processes (8) (�−�) channel and (6) by (�p) channel up to
time-scales log t ≤ 3 yr after which the last process is suppressed
by proton pairing, whereas the first one operates at full strength.
Nucleonic dUrca does not play any substantial role in these models
during the neutrino cooling era, as it is effectively suppressed by
nucleonic pairing. For models with M/M� ≥ 1.8 proton pairing
vanishes in the inner core (r ≤ 4 km forM/M� = 1.7 and r ≤ 6 km

Figure 9. Cooling models based on the GM1A (Gusakov et al. 2014) EoS
for NS masses 1.4, 1.5, 1.6, 1.7, 1.8, 1.9M� (from top to bottom). For 1S0
proton pairing the CCDK (Chen et al. 1993) gap has been used.

for M/M� = 1.9). As a consequence the hyperonic dUrca process
(6) on unpaired �s operates at full strength in the (�p) channel.
Even though protons are unpaired, the neutron pairing suppresses
the nucleonic Urca in the neutrino cooling era and it again is unim-
portant. As seen in Fig. 9, upper panel, the emergence of hyperons
leads to lower temperatures of compact stars; for masses in the
range below 1.6 M/M�, this is to the dUrca process (6) on �s, a
stronger shift towards lower temperatures occurs forM/M� ≥ 1.7
model due to the onset of the dUrca process (8) on �−. The lowest
effective temperatures of models with M/M� = 1.8 and 1.9 are
explained by the fact that, due to the high densities reached in the
core, the proton pairing gap in the 1S0 channel vanishes and, thus,
the process (6) operates at full strength over a large fraction of the
core.

In the case where hyperon superfluidity is included, the situa-
tion is simpler. Because of the large pairing gap of �− the dUrca
processes (8) on �− do not play any role. The nucleonic Urca is
suppressed still as in the previous case. The remainder dominant
neutrino emission process is dUrca in the �p channel (6). As a
consequence, the stars with masses up to 1.8 M/M� remain rela-
tively warm through thermal evolution, with their tracks clustered
at the lower edge of the observed NS temperatures. The sharp drop
in the temperature observed for the model with 1.9 M/M� is due
to the unpairing of �s at high densities, i.e. the closing of their 1S0
gap. This occurs in the density range where proton 1S0 gap closes as
well. In the absence of pairing the dUrca process in the (�p) chan-
nel operates at full strength leading to minimal possible surface
temperatures of the most massive models as discussed above.

5 CONCLUSIONS

In this work we considered a number of models of hypernuclear
matter based on the covariant DF theory which are compatible
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with the two-solar-mass constraint (Antoniadis et al. 2013; Fonseca
et al. 2016) on dense matter and semi-empirical depths of potential
wells of hyperons in symmetric nuclear matter at saturation density
(Millener et al. 1988). We have solved the BCS equations in the
hyperonic sector and obtained the gaps of hyperons in the� channel
as well as, for the first time, in the �− and �0 channels. With this
input, we carried out a series of cooling simulations of compact
stars and compared them with the available data.

Our study of the cooling of hypernuclear compact stars reveals
that quite generally the hyperonic component plays a dominant role
in neutrino cooling of hypernuclear stars, even in the case where
the nucleonic dUrca is allowed by the composition of matter. The
main cooling agents are various flavours of the hyperonic dUrca
process listed in equations (6)–(9). We have included in our studies
the pair-breaking processes on hyperons (10), but these turned out
to be subdominant to the dUrca processes. The obtained cooling
behaviour of our models, shown in Figs 7–9, depends sensitively
on the details of the composition of matter they predict and pairing
gaps. In the following we summarize the general trends found from
these simulations.

(i) Mass-hierarchy. Consider a sequence of compact hypernu-
clear stars arranged from the lightest to the heaviest ones. We now
follow the changes in their cooling behaviour along such a mass
hierarchy. Hyperons start to populate the interiors of compact stars
withmassesM/M� > 1.5; in all models the first hyperons to appear
is� and the corresponding dUrca process on (�, p) plus leptons (see
equation 6) is the dominant cooling agent in the neutrino cooling era,
even in the case where nucleonic dUrca is kinematically allowed.
The efficacy of the dUrca process on (�, p) is the result of mod-
erate critical temperature of condensation of �s, with a maximum
in the range Tc,max � 5 − 7 × 109 K. For stars with M/M� > 1.6
our models predict the onset of �−, which would have provided
the dominant cooling mechanism via (�−�) channel of the dUrca
process (8) in the absence of hyperonic pairing. However, the large
critical temperatures of pairing Tc� � 2 × 1010 K prevent �−s from
playing a role in cooling of the star. For stars with M/M� ≥ 1.6
�− appear in the DDME2 model, but not in other models. Their
appearance implies that the dominant neutrino cooling process is
the (�−�) channel of the dUrca process (7), which accelerates the
cooling rate. Finally, a new feature in most massive starsM/M� �
2 is the unpairing of �s and protons in the central core of the star,
because their large density renders 1S0 pairing interaction repulsive.
Then, again, the dUrca process in the (�, p) channel (6) dominates
the cooling, but at a larger rate characteristic for unpaired hyperonic
matter.

(ii) Hyperonic species. The � hyperon appears first and plays a
substantial role when the densities are low enough that the �− does
not nucleate and when the density is so high that they do not form
pairs in the 1S0. The main neutrino emission channel is the dUrca
process (6) in the (�, p) channel.

The next hyperon to appear is �−. It does not play a role in the
cooling because of its large condensation temperature Tc� � 2 ×
1010 K and wide pairing gap. An exception can arise in a narrow
mass range around M/M� � 1.6, where the average density of
�−-gas is low, therefore only the low-density ‘tail’ of the pairing
gap function is important.

The �− hyperon nucleates in one out of three models considered
here within sufficiently massive (but stable) hypernuclear stars. If
�− do not pair, as implied by a repulsive �− interaction, �− con-
tribute to the dominant cooling mechanism via the (�−�) channel

in equation (7). Large neutron pairing throughout the hypernuclear
core does not allow for the (�−n) channel to operate.

The fractions of other hyperons, in particular �0, never become
significantly large in our models to be important for the neutrino
cooling.

(iii) Consistency with the data. The observational data require
a set of cooling tracks covering the range of temperatures 5.7 ≤
log Teff[K] ≤ 6.3 in the neutrino cooling era log t ≤ 5 [yr]; the
required variations of cooling tracks can be achieved by varying
the masses of the object along the sequence defined by an EoS. We
find that the DDME2 model can account for this, with the lightest
stars (featuring hyperonic cores)M/M� ≤ 1.6 accounting for hotter
objects and themoremassive onesM/M� ≤ 1.85 accounting for the
cooler objects (see Fig. 7). An important ingredient of this picture
is the proton 1S0 gap (CCDKmodel) extending to large densities; if
the proton 1S0 pairing gap is narrow (as exemplified by the BCLL
model), then the hypernuclear stars cool too fast. The SWL model
shows an analogous behaviour (see Fig. 8). In the case of GM1A
model, which allows for nucleonic dUrca process, the cooling of all
the models except the most massive one is at the lower edge of the
observable band of surface temperatures of thermally emitting NS.
Because this model does not feature a �− hyperon, the sharp drop
in the temperature for the most massive member shown in Fig. 9 is
only due to the unpairing of �s and protons at high densities and
efficacy of the dUrca process in the (�p) channel.

Thus, we conclude that the hypernuclear models where �− hy-
peron does not nucleate can account for surface temperatures of
the cooler class of thermally emitting compact stars and, inversely,
hypernuclear stars should be observable in soft X-rays through their
thermal emission from the surface, unless they are extremely mas-
sive, i.e. 1.9 ≤ M/M� ≤ 2 (see however below).

(iv) Alternatives.We now discuss the physical alternatives to the
key features discussed above. First, our models are based on the
evidence of highly repulsive interaction between �− and nucleons,
which has the consequence that the onset of �− is shifted to higher
densities; we also assume a repulsive �−�− interaction which
allows us to neglect the �− pairing. Should the interaction among
�− and nucleons be less repulsive in dense matter �− will replace
�−s with no significant effect on the EoS. If in addition the �−�−

interactions are attractive (Sasaki et al. 2015), �− pairing will lead
to a suppression of the associated dUrca processes. A study of
the consequences of the possible interchange between the �− and
�− on NS thermal evolution is beyond the scope of the present
paper and will be addressed elsewhere. Secondly, the rapid cooling
property of most massive models crucially depends on the closing
of the 1S0 gaps for �s and protons at high densities. However,
complete unpairing can be avoided if a higher partial wave channel,
such 3P2 − 3F2 coupled channel (which is known to be attractive
in the case of nucleons) or even possibly an attractive D-wave
channel, provides sufficient attraction to generate gaps and critical
temperatures of relevant magnitude (Tc ≥ 108 K). In that case the
extremely massive hypernuclear stars (1.9 ≤ M/M� ≤ 2) will
undergo a slower cooling evolution than claimed above.
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