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ABSTRACT: Kinetic and DFT computational studies reveal that the
reaction of {(IPr)Ni(μ-S)}2 (1, IPr = 1,3-bis(2,6-diisopropyl-phenyl)-
imidazolin-2-ylidene) with dihydrogen to produce {(IPr)Ni(μ-SH)}2
(2) proceeds by rate-limiting heterolytic addition of H2 across a Ni−S
bond of intact dinuclear 1, followed by cis/trans isomerization at Ni and
subsequent H migration from Ni to S, to produce the bis-hydrosulfide
product 2. Complex 1 reacts in a similar manner with pinacolborane to
produce {(IPr)Ni}2(μ-SH)(μ-SBPin) (3), showing that heterolytic
activation by this nickel μ-sulfide complex can be generalized to other H−E bonds.

■ INTRODUCTION

The removal of sulfur compounds from petroleum fractions by
catalytic hydrodesulfurization is an important step in the
production of clean fuels.1,2 The catalysts employed are based
on MoS2 doped with Ni or Co, and the initial activation of H2 is
a key step in these reactions. Theoretical investigations of MoS2
catalysts have predicted that H2 is activated heterolytically by
the Mo-S-Mo units to form Mo-H and Mo-SH functionalities
and that coordinatively unsaturated Mo-S-Mo sites located at
the edges of the 2D lattice are more active than those at
internal positions within the lattice.3 The reactions of molecular
metal sulfide complexes with H2 have been studied to model
the H2 activation step.4 In particular, several dinuclear M2(μ-S)
μ-sulfido complexes have been reported to react with H2 to
produce M2(μ-SH) μ-hydrosulfide products, and experimental
and computational studies have implicated several different
mechanistic pathways for these processes.5−9

The diiridium complex {(Ph3P)2Ir(μ-S)}2 reacts with 2 equiv
of H2 to afford {(Ph3P)2IrH}2(μ-S)(μ-SH)(μ-H) (Scheme 1).

5

DFT computations predict that this reaction proceeds by initial
oxidative addition of H2 at one Ir center, followed by H
migration to the second Ir center, which produces two terminal
hydride ligands and oxidizes the Ir centers from the formal 2+
to the 3+ oxidation state. Subsequent addition of the second
equiv of H2 across the S−S vector, followed by H migration to a
bridging location, produces the final product. The calculated
barriers for these steps (16.8 and 16.5 kcal/mol, respectively)
are consistent with the results of low-temperature NMR and
isotopic labeling experiments.
Cp2Mo2S4 complexes react with H2 to form Mo(μ-SH)2(μ-

S)2Mo species (Scheme 2).6 While the chemistry of these
systems is complicated by the presence of several isomers of the
reactant and product compounds,7 a recent DFT study of the
Cp*2Mo2S4 system proposed that the favored pathway involves
concerted addition of H2 across the two μ-S ligands to generate
a Mo(μ-SH)2(μ-S2)Mo intermediate, followed by cleavage of
the S−S bond, to form the product.8
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The {MeC(CH2PPh2)3Rh(μ-S)}2
2+ dication reacts reversibly

with 2 equiv of H2 at room temperature to form {MeC-
(CH2PPh2)3RhH(μ-SH)}2

2+ (Scheme 3).9 Low-temperature

NMR studies revealed the formation of an intermediate in
which all of the phosphorus atoms are equivalent on the NMR
time scale at −80 °C. DFT calculations predict that this
reaction proceeds by two sequential heterolytic H2 additions
across the Rh−S bonds with barriers of 7.2 and 8.0 kcal/mol.
The calculations also predict that, in addition to the Rh(μ-
H)(μ-SH)Rh intermediate, Rh(μ-SH)2Rh and Rh(μ-H)(μ-
SH)(μ-S)Rh species are energetically accessible.
We recently reported that {(IPr)Ni(μ-S)}2 (1, IPr = 1,3-

bis(2,6-diisopropyl-phenyl)imidazolin-2-ylidene) reacts cleanly
with H2 to produce {(IPr)Ni(μ-SH)}2 (2, Scheme 4).10 This

system provides a simple and well-behaved reaction to study
the activation of H2 and develop an improved understanding of
how M2(μ-S)2 complexes react with this substrate. Here we
describe kinetic and DFT computational studies that show that
this process occurs by rate-limiting heterolytic addition of H2

across a Ni−S bond of the intact dimer 1, followed by cis/trans
isomerization at Ni and subsequent H migration from Ni to S,

to form 2. We also report that 1 reacts with HBPin (Pin = 2,3-
dimethylbutane-2,3-diolate) in a similar manner, showing that
this heterolytic activation pathway can be generalized to other
E−H bonds.

■ RESULTS AND DISCUSSION

Kinetics of the Reaction of 1 and H2. Kinetic studies of
the reaction of 1 with H2 were performed to establish if the
intact dimer reacts directly with H2 or must first dissociate into
monomeric fragments, and if the H2 activation is the rate-
determining step. The kinetics were measured by 1H NMR
spectroscopy by monitoring the imidazole resonances of
starting material 1 and product 2, which are sharp and well-
separated from other resonances, using C6Me6 as an internal
standard. A representative set of spectra is shown in Figure 1.
The only observed species were 1, 2, and thermal
decomposition products from 2.11 No intermediates were
observed.

As shown in Figure 2, these kinetic data fit the first-order rate
law in eq 1. As ESI-MS results establish that the dimeric
structure of 1 is maintained in solution (see the Supporting
Information), this rate law implies that dinuclear 1 remains
intact in the rate-limiting step.

= − =t k1 1Rate d[ ]/d [ ]obs (1)

Kinetic runs at different H2 pressures were performed to
determine the reaction order in H2 (Figure 3). The rate
increases linearly with increasing H2 pressure, indicating that
the reaction is first-order in H2.

12 The full rate law is given in eq
2

= − =t k P1 1Rate d[ ]/d [ ] H2 (2)

where k = 5.7(1) × 10−3 s−1 atm−1 at 80 °C.
The kinetic isotope effect (KIE) was determined to be kH/kD

= 1.8(1) by comparing the rates of the reaction of 1 with 1 atm
of H2 or D2 in J. Young NMR tubes at 80 °C. The μ-SH

Scheme 3

Scheme 4

Figure 1. 1H NMR monitoring of the reaction of 1 with H2 to produce
2. The imidazole region of the spectrum is shown. Concentration
versus time data corresponding to these spectra are given in Figure 2.
Conditions: benzene solvent, 80 °C, 5 atm H2, [1]0 = 0.0037 M.
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resonance of 2 was not observed in the D2 reaction, confirming
that deuterium is incorporated at this site as expected.
Additionally, control experiments establish that no deuterium
scrambling between 2 and D2 occurs under the reaction
conditions. This KIE value is characteristic of a primary isotope
effect and provides evidence that H−H bond cleavage occurs
during the rate-limiting step of this reaction. While KIE values
are not available for the reactions in Schemes 1−3, a KIE of

2.0(1) was measured for H2 addition to a mononuclear Ru-
amide complex,13 and KIEs of 1.8−2.4 were reported for the
addition of H2 to dinuclear Zr-N2 complexes.

14

DFT Computational Investigation. DFT calculations
were undertaken to elucidate the reaction pathway for the
hydrogenation of 1. The B3PW91 functional was used as it
performed well in model geometry optimizations and was
reasonably time-efficient for these systems (see the Supporting
Information).
The calculated free energy surface for the hydrogenation of 1

is shown in Figure 4. The starting point for the reaction is the
open shell singlet (OSS) structure of 1 and H2. The first and
rate-limiting step is heterolytic addition of H2 across the Ni−S
bond within the Ni2S2 plane, which has a free energy barrier of
30.9 kcal/mol and produces a cis-hydride μ-hydrosulfide species
(cis-(H)(SH)) as a local minimum at 6.0 kcal/mol relative to
separated reactants. In the cis conformation, the H atom cannot
migrate to the remaining bridging sulfide (to which it is trans),
so the complex must isomerize. The cis/trans isomerization
occurs via a pseudo-tetrahedral transition state with a barrier of
14.7 kcal/mol and produces the trans-hydride-hydrosulfide
species (trans-(H)(SH)) at a relative free energy of 6.6 kcal/
mol. The Ni-H atom then migrates to the bridging sulfide to
form the product {(IPr)Ni(μ-SH)}2 (2). There are two isomers
of 2 with syn and anti configurations of the μ-SH ligands at
−3.0 and −4.0 kcal/mol, respectively, and transition states
leading to both configurations were found at 27.4 and 22.2
kcal/mol, respectively. The KIE calculated by substituting D2 in
place of H2 for relevant structures is 1.9, which agrees well with
the experimental value of 1.8(1). Overall, the reaction is close
to thermoneutral (ΔG = −4 kcal/mol). The computed barrier
of 30.9 kcal/mol agrees well with that calculated from the
experimental kobs value determined at 80 °C and 1 atm H2 by
the Eyring equation (29.1(3) kcal/mol). Other H2 activation
mechanisms were investigated (see the Supporting Informa-
tion), but the calculated barriers were much higher than that in
Figure 4. A key factor that favors the mechanism in Figure 4
over other pathways is that, during the rate-limiting H2

activation step, a simple pivoting of the IPr ligand around the
Ni2S2 plane is sufficient to accommodate the H2 molecule
without steric clashing of the aryl rings of the two IPr ligands.

Figure 2. Plot of ln[1] versus time for the reaction of 1 with H2 to
form 2 from Figure 1. Conditions: benzene solvent, 80 °C, 5 atm H2,
[1]0 = 0.0037 M.

Figure 3. Plot of the observed rate constant kobs versus H2 pressure for
the reaction of 1 with H2. Conditions: benzene solvent, 80 °C and [1]0
≈ 0.0037 M.

Figure 4. Calculated reaction pathway for the hydrogenation of 1. All structures were optimized with B3PW91/6-31+G(d) as functional and basis
set. Energies are ΔG-corrected and reported in kcal/mol, with the starting materials defined as 0. All species are singlets, except for the first transition
state, for which singlet (TS1(1)) and triplet (TS1(3)) states were found at similar energies. L = 1,3-bis(2,6-diisopropyl-phenyl)imidazolin-2-ylidene.
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In contrast, other possible pathways (e.g., heterolytic addition
of H2 from above the Ni2S2 plane and addition of H2 across the
Ni−Ni vector) require displacement of the IPr ligands out of
the Ni2S2 plane and result in significant steric clashing. The H2

activation step converts one Ni-S-Ni unit to a Ni(H)(μ-SH)Ni
unit and does not change the oxidation state at Ni (both Ni
centers remain NiII). The movement of the Ni-H atom from Ni
to the remaining S2− ligand may be viewed as a reductive
elimination that reduces one NiII to Ni0. Accompanying
electronic rearrangement produces two NiI centers.
Reaction of 1 with Pinacolborane. The conclusion that

the hydrogenation of 1 proceeds by heterolytic addition of H2

across a Ni−S bond suggests that other substrates that undergo
heterolytic bond activation may display similar reactivity. The
B−H bonds of boranes are often activated in a heterolytic
manner.15 The reaction of the 1 with HBPin (Pin = 2,3-
dimethylbutane-2,3-diolate) in Et2O produces {(IPr)Ni}2(μ-
SH)(μ-SBPin) (3) within seconds at room temperature
(Scheme 4). The reaction is quantitative as measured by 1H
NMR and is accompanied by a color change from turquoise to
yellow.
The solid-state structure of 3 was determined by X-ray

diffraction (Figure 5). Compound 3 assumes a bimetallic

structure with planar Ni centers (sum of angles: 359.2(2)°,
359.2(2)°) linked by μ-SH and μ-SBPin ligands that are
arranged in an anti configuration. The hydrosulfide hydrogen
atom was located in the difference map, and its position was
refined isotropically. The Ni2S2 core adopts a diamond shape
with acute angles at S and obtuse angles at Ni. The Ni−Ni
distance (2.4302(5) Å) is slightly longer than that in 2
(2.3601(7) Å) but still well within the range observed for
Ni(I)-Ni(I) species with antiferromagnetically coupled Ni

centers (2.314(1)−2.559(2) Å).16 The imidazolin-2-ylidene
rings are oriented nearly perpendicular to the corresponding
NiS2 planes (72.3° and 85.9°). The μ-SH group is sandwiched
by two diisopropyl-phenyl rings. The boron center adopts the
expected trigonal planar geometry (sum of angles: 360.0(7)°),
and the S−B distance (1.804(3) Å) is in the normal range for
B−S bonds in 3-coordinate B compounds.17

The 1H NMR spectrum of 3 in benzene-d6 solution at room
temperature contains a μ-SH resonance (1H) at δ = −6.1,
which is ca. 1.3 ppm upfield compared to that of 2 (δ = −4.8)
and is consistent with the anisotropic shielding by the two di-
isopropyl-phenyl rings expected from the solid-state structure.
The spectrum also contains two methyl resonances and one
methine resonance, indicating that all four isopropyl groups are
equivalent on the NMR time scale. At 215 K, the 1H NMR
resonances of 3 are broadened but not split. Rotation around
the Ni−carbene bond is probably fast, based on results for 2,
but this process does not permute all four isopropyl groups.10

Rotation around the Ni−carbene bond combined with rotation
around the N−aryl bonds would permute the four isopropyl
groups, but based on results for other systems, the barrier to the
latter process is probably too high for it to be operable at 215
K.18 However, stereochemical inversion at the S centers
combined with Ni−carbene bond rotation will exchange all
four isopropyl groups. Low sulfur inversion barriers have been
reported for the μ-SR complexes {(dippe)Rh(μ-SPh)}2 (7.7
kcal/mol) and {(dippe)Rh(μ-S(o-biphenyl))}2 (14.7 kcal/
mol),19 while a much higher barrier was reported for the
terminal-SR complex {(Cp)(CO)Fe(μ-SPh)}2 (30.7 kcal/
mol).20 Sulfur inversion barriers as low as 11.2 kcal/mol have
been measured for Ru, Pd, and Pt thioether complexes.21

The 11B NMR resonance of 3 appears at δ = 25.2, slightly
upfield from those of {Rh(PEt3)2(SBPin)}2(μ-C) (δ 33.6),22

Os(PiPr3)2(H)(H2)(SBPin) (δ 35),23 and organic borylthio-
lates (δ 32.8−33.7).24,25

Complex 3 is an unusual example of a crystallographically
characterized compound that contains a borylthiolate ligand.26

The terminal −SBPin complex {Rh(PEt3)2(SBPin)}2(μ-C) was
formed by the reaction of CS2 with Rh(PEt3)3(BPin), which
proceeds with complete C−S bond cleavage to generate the
borylthiolate ligand.22 The Os(II) complex Os(PiPr3)2(H)-
(H2)(SBPin) was synthesized by the reaction of Os(PiPr3)2-
(H)(SH) and HBPin, which proceeds by addition of the H−B
bond across the Os−S bond and subsequent H migration from
S to Os.23 Several mononuclear metal thiolate and sulfide
complexes have been reported to undergo E−H bond
activation reactions similar to those observed for 1.27

■ CONCLUSIONS

Kinetic and computational studies reveal that {(IPr)Ni(μ-S)}2
(1) reacts with H2 to produce {(IPr)Ni(μ-SH)}2 (2) via rate-
limiting heterolytic addition of H2 across a Ni−S bond of intact
1, followed by cis/trans isomerization at Ni and subsequent H
migration from Ni to S. This pathway is analogous to that
implicated for the {MeC(CH2PPh2)3Rh(μ-S)}2

2+ system.9

Complex 1 reacts similarly with pinacolborane to produce
{(IPr)Ni}2(μ-SH)(μ-SBPin) (3), showing that this reaction can
be generalized to other H−E bonds.

■ EXPERIMENTAL SECTION

General Procedures. All experiments were performed under
nitrogen using drybox or Schlenk techniques. Nitrogen was purified by
passage through activated molecular sieves and a Q-5 oxygen

Figure 5. Molecular structure of {(IPr)Ni}2(μ-SH)(μ-SBPin) (3).
Hydrogen atoms except for the S-H hydrogen are omitted. Selected
bond distances (Å) and angles (deg): Ni(1)−Ni(2) = 2.4302(5),
Ni(1)−S(1) = 2.1945(8), Ni(1)−S(2) = 2.2220(8), Ni(2)−S(1) =
2.2089(8), Ni(2)−S(2) = 2.2260(8), Ni(1)−C(1) = 1.889(2), Ni(2)−
C(34) = 1.892(2), S(2)−B(1) = 1.804(3); Ni(1)−S(1)−Ni(2) =
66.99(2), Ni(1)−S(2)−Ni(2) = 66.24(2), S(1)−Ni(1)−S(2) =
113.67(3), S(1)−Ni(2)−S(2) = 112.94(3), C(1)−Ni(1)−S(1) =
121.16(8), C(1)−Ni(1)−S(2) = 124.35(8), C(34)−Ni(2)−S(1) =
115.51(8), C(34)−Ni(2)−S(2) = 130.74(8).
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scavenger. Anhydrous Et2O and THF were purified by passage
through activated alumina.28 Anhydrous benzene, pentane, and
toluene were purified by passage through activated alumina and a
BASF R3-11 oxygen scavenger. C6D6 was purchased from Cambridge
Isotope Laboratories, degassed by freeze−pump−thaw cycles, and
dried over Na-benzophenone ketyl or activated Linde 4 Å molecular
sieves. Celite and 4 Å molecular sieves were activated by evacuation
overnight at 180 °C. Pinacolborane was purchased from Sigma-Aldrich
and used as received. {(IPr)Ni(μ-S)}2 was prepared as described
previously.10 All other chemicals were used as received. 1H and 13C
NMR spectra were recorded on a Bruker DRX-500 spectrometer at
room temperature using Teflon-valved tubes. 1H and 13C NMR
chemical shifts are reported relative to SiMe4 and were determined by
reference to the residual solvent resonances (1H: residual C6D5H in
C6D6 δ 7.16; 13C: C6D6 δ 128.1). Coupling constants are given in
hertz (Hz). 11B NMR spectra were collected on a Bruker DRX-400
spectrometer and are reported relative to externally referenced BF3·
Et2O (δ = 0). Mass spectrometry was performed on Agilent 6224
TOF-MS (high resolution) or 6130 LCMS (low resolution)
instruments.
{(IPr)Ni}2(μ-SH)(μ-SBPin) (3). Neat HBPin (5.5 μL, 0.038 mmol)

was added dropwise via microsyringe to a solution of 1 (0.0360 g,
0.038 mmol) in Et2O (5 mL) while the mixture was stirred. The color
turned from turquoise to bright green to neon yellow within 10 s. The
solution was stirred for 5 min and transferred to a scintillation vial.
The solution was chilled to −35 °C overnight, and the resulting yellow
crystals were collected by vacuum filtration. Yield: 0.0187 g (46%). X-
ray quality crystals were grown by liquid diffusion of pentane into an
Et2O solution of 3 at −35 °C. 1H NMR (C6D6): δ 7.35 (t, J = 7.5,
4H), 7.25 (d, J = 7.5, 8H), 6.45 (s, 4H), 3.05 (sept, J = 6.5, 8H), 1.53
(d, J = 6.5, 24H), 1.11 (d, J = 6.5, 24H), 0.89 (s, 12H), −6.09 (s, 1H).
13C{1H} NMR (C6D6): δ 187.2 (Ni-CN2), 146.9 (o-C6

iPr2H3), 138.0
(i-C6

iPr2H3), 129.4 (p-C6
iPr2H3), 124.4 (CN2C2H2), 124.2 (m-

C6
iPr2H3), 82.1 (BO2C2Me4), 28.9 (Ar-CHMe2), 25.1 (ArCH(CH3)2),

25.0 (ArCH(CH3)2), 24.4 (BO2C2(CH3)4).
11B{1H} NMR (C6D6): δ

25.2.

X-ray Data Collection and Structure Refinement for 3. A yellow
plate of 3 was mounted on a Dual-Thickness MicroMount (MiTeGen)
with a 30 μm sample aperture with Fluorolube oil. Diffraction data
were collected at 100 K on a Bruker D8 VENTURE diffractometer
equipped with a microfocus Mo-target X-ray tube (λ = 0.71073 Å) and
PHOTON 100 CMOS detector. Data reduction and integration were
performed with the Bruker APEX3 software package (Bruker AXS,
version 2015.5-2, 2015). The data were scaled and corrected for
absorption effects using the multiscan procedure as implemented in
SADABS (Bruker AXS, version 2014/5, 2015, part of Bruker APEX3
software package). The structure was solved by SHELXT (Version
2014/5)29 and refined by a full-matrix least-squares procedure using
OLEX230 (XL refinement program version 2014/7).31 Crystallo-
graphic data and details of the data collection and structure refinement
are listed in Table 1.

All atoms were refined with anisotropic thermal parameters.
Hydrogen atoms were included in idealized positions for structure
factor calculations except the H atom attached to S1, which was found
in the difference Fourier map and refined without any geometric
restraints. Its thermal parameter was constrained to be 1.2 times that
of the S1 atom. The pinacolate group was found to be disordered over
two rotational orientations (refined to an 82/18 occupancies ratio).
This disorder was modeled with the application of geometric (SADI)
restraints and using enhanced rigid body restraints (RIGU) for the
thermal parameters. A solvent molecule was located on the edge of
two unit cells and was modeled as Et2O. All structures are drawn with
thermal ellipsoids at 50% probability.

Kinetic Studies. Kinetic runs at 1 atm of H2 or D2 were performed
in J. Young NMR tubes. Compound 1 and the internal standard
C6Me6 were loaded into the tube inside a glovebox. C6D6 was vacuum-
transferred into the tube from a Na-benzophenone ketyl solution, and
the tube was pressurized with H2 or D2. The tube was heated to 80 °C,
and NMR spectra were taken periodically until the reaction had
proceeded for five half-lives.

Reactions at 0.2, 2, and 5 atm H2 were performed in a Fischer-
Porter bottle. Compound 1 and the internal standard C6Me6 were
dissolved in C6D6, and loaded into the bottle along with a stir bar

Table 1. Crystal Data and Structure Refinement for (IPrNi)2(μ-SH)(μ-SBPin) (3)

empirical formula C62H90BN4Ni2O2.5S2
formula weight 1123.72

temperature/K 100(2)

crystal system monoclinic

space group P21/c

a/Å 25.528(3)

b/Å 12.3656(13)

c/Å 20.065(2)

α/deg 90

β/deg 103.772(3)

γ/deg 90

volume/Å3 6152.1(11)

Z 4

ρcalc/g/cm
3 1.213

μ/mm−1 0.724

F(000) 2412.0

crystal size/mm3 0.08 × 0.06 × 0.02

radiation MoKα (λ = 0.71073)

2Θ range for data collection/deg 4.662−51.506

index ranges −31 ≤ h ≤ 31, −15 ≤ k ≤ 15, −24 ≤ l ≤ 22

reflns collected 82 382

independent reflns 11 404 [Rint = 0.0742, Rsigma = 0.0724]

data/restraints/parameters 11 404/481/787

goodness-of-fit on F2 1.007

final R indexes [I ≥ 2σ (I)] R1 = 0.0441, wR2 = 0.0760

final R indexes [all data] R1 = 0.0910, wR2 = 0.0876

largest diff. peak/hole/e Å−3 0.44/−0.48
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inside a glovebox. The bottle was removed from the glovebox and
attached to a Schlenk line and a H2 cylinder. The headspace was
saturated with H2 by 10 cycles of charging with H2 and discharging by
vacuum. The apparatus was then pressurized to the desired pressure of
H2 and heated to 80 °C, which was denoted as the start of the reaction.
The reaction mixture was sampled periodically for 12 h or until the
reaction had proceeded for five half-lives. The sampling was performed
by reducing the pressure, withdrawing 0.6 mL of the mixture by
syringe, and transferring it to a nitrogen-flushed NMR tube for 1H
NMR analysis. The Fischer-Porter bottle was repressurized with H2

and the reaction resumed. This entire sampling process was typically
completed within 3 min, a negligible amount of time for a reaction that
takes more than 8 h to go to completion. The sample was cooled to
room temperature and a 1H NMR spectrum was collected.
DFT Calculations. Density functional theory calculations were

performed with the Gaussian 09 package.32 The reaction coordinate
for the full IPr ligand was explored at the ONIOM33 (B3PW91/6-31+
G(d):UFF)34 level of theory. The 2,6-diisopropyl-phenyl rings were
included in the UFF partition, and the remainder of the complex
modeled with B3PW91/6-31+G(d). Unless otherwise noted, calcu-
lations were for the gas phase and assumed 298.15 K and 1 atm. All
calculated free energies are reported in kcal/mol. Optimized ground
states contained no imaginary vibrational frequencies, and optimized
transition states contained one imaginary vibrational frequency.
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Y.; Studt, F.; Lercher, J. A. Impact of Ni promotion on the
hydrogenation pathways of phenanthrene on MoS2/γ-Al2O3. J. Catal.
2017, 352, 171. (d) Albersberger, S.; Hein, J.; Schreiber, M. W.;
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E. Osmium-Promoted Dehydrogenation of Amine−Boranes and B−H
Bond Activation of the Resulting Amino−Boranes. Organometallics
2014, 33, 1104. (d) Buil, M. L.; Esteruelas, M. A.; Fernańdez, I.;
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B.; Fernańdez, E. Strategic Trimethylsilyldiazomethane Insertion into
pinB−SR Followed by Selective Alkylations. Org. Lett. 2016, 18, 3830.
(b) Ishiyama, T.; Mori, M.; Suzuki, A.; Miyaura, N. The palladium-
ca ta lyzed cross -coup l ing react ion of 9 -organoth io -9 -
borabicyclo[3.3.1]nonanes with organic electrophiles: Synthesis of
unsymmetrical sulfides. J. Organomet. Chem. 1996, 525, 225.
(c) Ishiyama, T.; Nishijima, K.; Miyaura, N.; Suzuki, A. Palladium-
(0)-catalyzed thioboration of terminal alkynes with 9-(alkylthio)-9-
borabicyclo[3.3.1]nonane derivatives: stereoselective synthesis of vinyl
sulfides via the thioboration-cross-coupling sequence. J. Am. Chem. Soc.
1993, 115, 7219.
(26) A CSD search performed on 6/1/2017 did not find any 3-
coordinate S-BO2 units that bridge two metal centers.
(27) (a) Wübbolt, S.; Maji, M. S.; Irran, E.; Oestreich, M. A Tethered
Ru−S Complex with an Axial Chiral Thiolate Ligand for Cooperative
Si−H Bond Activation: Application to Enantioselective Imine
Reduction. Chem. - Eur. J. 2017, 23, 6213. (b) Baḧr, S.; Simonneau,
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