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Abstract— We consider efficient controls for swimming with
multiple rigid legs at low Reynolds number. We derive equations
governing the translation and rotation of a general class
of multi-legged swimmers, and we formulate energy-efficient
controls of symmetric swimmers as a problem in geometric
control theory. We then focus on the case of symmetric
swimmers with multi pairs of legs. In the framework of sub-
Riemannian geometry, abnormal geodescics are analyzed and
shown to depend on the number of pairs of legs. Inspired
by larval copepods possessing three pairs of legs, we compute
various swimming strokes and explore optimal controls in that
specific situation. We also compare our results to experimental
measurements of larval copepod.

I. INTRODUCTION

Tiny marine organisms display diverse shapes and locomo-
tion strategies that are strikingly different from those of larger
organisms. For example, tiny crustaceans such as copepods,
arguably the most abundant group of animals on Earth, swim
by moving their numerous appendages or legs like the oars of
a boat, except that the leg movements are not synchronized
[1]. Given that swimming is critical to their survival, for
instance to find food particles and escape from predators,
one might expect the thriving copepod species to be efficient
swimmers following millions of years of evolution. To test
whether nature’s solutions to efficient swimming are optimal,
it is helpful to approach the problem from the perspective of
geometric control theory. This approach of finding optimal
controls also helps to identify suitable design principles for
tiny swimming robots in future medical, oceanography, and
technological applications.

Various different models of tiny swimmers and associated
optimization problems have been analyzed in the past. A
relatively well studied model is the minimal design consist-
ing of three linked rods known as Purcell’s swimmer [2]
[3]. Here we analyze a recent model [4] inspired by larval
copepods possessing three pairs of legs [1]. In fact, only
two pairs of rigid legs are needed for locomotion along a
straight line, and optimal strokes have been recently found
[5]. However, larval copepods curiously possess three pairs
of legs (Figure 1) and that number can increase as they
develop into adulthood. The number varies across species
and developmental stages of other crustaceans. Of interest
is a general mathematical framework for analyzing optimal
strokes of an arbitrary number of legs. In [6] the authors use
the maximum principle combined with numerical methods
to compute energy optimal periodic strokes for the so-called
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Purcell Three-link swimmer and in [5] a similar approach is
used for the symmetric copepod with two pairs of legs.

procure data on locomotion in this range, we have used one of
the smaller paddling microswimmers available, the nauplii of
the paracalanid copepod Bestiolina similis (length 70–200 mm)
[16,17]. Nauplii of this size swim at Re of 0.1–10 [18], which is
thus transitional between low and intermediate Re. Simplifica-
tions that have minimal impact on predictions can allow direct
measurement of the morphological and kinematic parameters
needed for modelling, so none are free. A relatively simple
mathematical description is then applied that can be confined
to the measured quantities, without sacrificing predictive capa-
bility. The purpose is to determine how well such a simplified
model succeeds in accounting for observed swimming behav-
iour. As Re increases into the transition zone, deviations are
expected to develop, providing new insights into swimming at
intermediate Rewhere viscous and inertial forces are important.
The minimal model we have employed is based on slender-
body theory for Stokes flow adapted from one that was recently
developed by one of us [19]. It differs from previous models in
not relyingonanynet force or inertia for propulsion. By account-
ing individually for the empirically measured dimensions and
kinematics of all six paddling appendages, our model was
used to predict displacements of the body over time and com-
pare these results with direct observations to assess the
neglected effects of inertia. In addition, the vetted model was
used to quantify the contribution to displacement of each appen-
dage pair, feathering of setae and appendage stroke phase in
order to better understand their role in naupliar propulsion.

2. Material and methods
2.1. High-speed videography of naupliar swimming
High-resolution measurements of angular position of individual
appendages and body displacement were made for nauplii of
B. similis. Nauplii were obtained from cultures maintained in the
laboratory for less than 1 year under standard conditions as
described in VanderLugt & Lenz [20]. Briefly, B. similis adults
were isolated from mixed plankton collections from Kaneohe
Bay Island of Oahu, Hawaii, and cultured at ambient temperature
(24–288C), a 12 L : 12 D light regime, and fed ad libitum with live
phytoplankton (Isochrysis galbana). Experimental nauplii were iso-
lated from the cultures and identified to stage usingmorphological
characteristics and length and width measurements [17].

For videography, nauplii were placed into small Petri dishes
(35 mm diameter) at ambient food levels. Experimental nauplii
ranged in size from 70 to 150 mm corresponding to developmen-
tal stages NI to NV. Spontaneous fast swims were recorded at
5000 fps with a high-speed video system (Olympus Industrial
i-SPEED) filmed through an inverted microscope (Olympus IX70)
with a 10! objective. Frames of the video files were converted into
bitmap image files (‘tiff’ format) and analysed using IMAGEJ
(Wayne Rasband; web page: rsbweb.nih.gov/ij/). Six swim epi-
sodes were analysed for appendage angles and location over
multiple power/return stroke cycles at 0.2 ms intervals. The angle
of eachappendagewasmeasuredusing themainaxis of thenauplius
as a reference, as shown in a scanning electron micrograph of an
earlynauplius (NI) in figure 1a. Locationwasdeterminedby tracking
the x- and y-coordinates of the anteriormedialmargin of the head in
each successive frame during the swim sequence. Five additional
swim episodes were analysed for location during rapid swims to
determine forward, backward and net displacements. Swims were
usually initiated from rest (figure 1b), which was characterized by
a stereotypical position for each appendage: first antenna (A1) point-
ing anteriorly (6–128), the second antenna (A2) pointing mostly
laterally (60–908) and the mandible (Md) posteriorly (105–1358).

2.2. Model formulation
To determine the extent to which observed locomotion of a nau-
plius could be accounted for based on observed appendage
movements and the assumptions of a low Re regime (see Intro-
duction), we employed a model of swimming with rigid
appendages adapted from one based on slender-body theory for
Stokes flow [19]. The aim of the model is to predict the position
of the body, as the angle of each leg changes over time. The
model provides us a reasonable approximation for long and slen-
der appendages paddling at low Re [21], which omits inertia, as
explained in the Introduction. It makes several additional simplify-
ing assumptions intrinsic to its formulation. The copepod nauplius
has a compact rounded body (figure 1) that is simplified in the
model as a sphere with a diameter that is the mean of the length
and width of its body. Using the more accurate prolate ellipsoid
shape instead made little difference in predicted displacements.
Naupliar appendages are relatively rigid elongate rods, slightly
tapering at both ends, again with rounded cross section. In the
model, they were simplified and represented as uniform cylinders,
with a single diameter. While the appendages are only an order of
magnitude greater in length compared with their thickness, for the
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Figure 1. Bestiolina similis nauplii. (a) Scanning electron micrograph of a first
nauplius (NI) showing angle measurements for first antenna (A1), second
antenna (A2) and mandible (Md). (b) Nauplius stage 3 (NIII) video image
showing position of appendages at rest. Scanning electron micrograph
courtesy of Jenn Kong. Appendage abbreviations, A1, A2 and Md, used in
all figures.
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Fig. 1. Scanning electron microscopy image of a larval copepod, courtesy
of Jenn Kong and reproduced from [1]. Copyright retained by the originator.

Here we present a general model swimmer consisting of
slender legs protruding radially outward in a two-dimensional
plane. In general the swimmer translates and rotates in the
plane, but with reflective symmetry the swimmer translates
along the line of symmetry. We explore the dynamics of
symmetric swimmers with an arbitrary number of pairs of
legs, focusing in particular on three pairs of legs, and analyze
the the abnormal strokes for that specific case.

II. MATHEMATICAL MODEL

A. General Model

We consider a simple body consisting of a point from
which m slender legs extend radially in the x − y plane
(Figure 2). The position of the point is denoted by x0 =
[x(t) , y(t)]T and the orientation angle with respect to the
x axis is denoted by φ(t). Below we derive a model that
predicts the position and orientation of the swimmer in terms
of the controllable angle θi(t) between the ith leg and the
swimmer’s orientation.

The model is based on slender body theory for Stokes
flow, a suitable approximation for slender legs generating
slow viscous flow at low Reynolds number [7]. Suppose the



Fig.2. Sketchofageneralswimmerpossessingmlegs.Thecenterpoint
oftheswimmerisdenotedbypositionx0andtheswimmerorientation
angleisdenotedbyφ.

ithlegisparametrizedby

xi(s)=x0+sni, (1)

wheres∈[0,1]istheparameteralongthedirectionvector
ni=[cos(αi),sin(αi)]

T withangleαi(t)=φ(t)+θi(t).
Weassumealllegshaveacommonlengthof1forsimplicity;
the modelcouldbereadilygeneralizedbyparametrizing
eachlegdifferentlytoaccountforlegswithdistinctlengths.
Accordingtoslenderbodytheory,thelocalvelocityẋand
forcedensityfhavealinearrelationship

ẋi(s)=C(I+nin
T
i)·fi(s) (2)

whereC =
log2

4πµ dependsonthefluidviscosityµand
thesmalldiameter-to-lengthratio oftheswimmer’slegs.
Combining(1)and(2)andsolvingforfigives

fi(s)=
1

C
I−
1

2
nin

T
i ẋ0 +ṡni (3)

withṅi=α̇itiandti=[−sin(αi),cos(αi)]
T.InStokes

flowthereisnonetforceortorqueontheswimmer:

i

1

0

fi(s)ds=0 (4)

andk̂· i
1

0
sni×fi(s)ds=0implies

i

1

0

sti·fi(s)ds=0 (5)

wherethesumisoveralllegswithdistinctanglesθi.Any
bundleoflegsorientedatthesameangleistreatedasoneleg.
Thisisbecausethebundleisapproximatedbyaneffective
legwithadifferentaspectratio,butthisratiohasonlya
weaklogarithmiceffectonCandfiappearinginthemodel.
Applying(4)to(3),integratingovers∈[0,1]andthen
combiningtheresultwith(5)gives

Mẋ=K (6)

whereẋ(t)=[̇x(t),̇y(t),̇φ(t)]Tcapturestherespectivetime
derivativesofthebody’spositionandorientation.M is
specifiedby



(1+sin2(α)) − sin(α)cos(α) − sin(α)

− sin(α)cos(α) (1+cos2(α)) cos(α)
− sin(α) cos(α) 2





andKisspecifiedby



θ̇sin(α)

− θ̇cos(α)

−23 θ̇





ThematrixMisoftenreferredtoastheresistancematrixof
thebodywhileitsinverseM−1iscalledthemobilitymatrix;
Theinstantaneousrateofworkdonebytheswimmeris
computedby

Ẇ =
i

1

0

ẋi(s)·fi(s)ds (7)

Wecansubstitute(3)into(7)tofind Ẇ = q̇T·E·̇q,
whereq=(x,y,φ,θ1···,θm)

Tforaswimmerwithmlegs
orientedatdistinctanglesand

E=
U V
VT S

. (8)

HereUisthe3×3matrix

m 1
2
( cos2αi)

1
2
SC 1

2
( sinαi)

1
2
SC m 1

2
( sin2αi)

1
2
( cosαi)

1
2
( sinαi)

1
2
( cosαi)

m
3

whereSC= sinαicosαiandVisthe3×mmatrix

1
2
sinα1

1
2
sinα2 ... 1

2
sinαm

1
2
cosα1

1
2
cosα2 ... 1

2
cosαm

1
3

1
3

... 1
3

andS= 1
3IwhereIisthem×m identitymatrix.Here

wefocusonswimmingalonga1dimensionalline,butthe
modelcouldbegeneralizedinthefuturetoaccountfor
swimmingin3dimensionsbyallowingeachlegtoorient
in3dimensionsandintroducingadditionalpositionand
orientationcoordinatestorepresentthestateoftheswimmer.

B.SymmetricCopepod

Hereafterwefocusonaswimmerwithatotalofm=2N
legs, whereN isthenumberofpairsoflegsactuated
symmetricallysuchthatθ2N−i+1=2π−θiandθ̇2N−i+1=
−θ̇i.Theupperhalfofthesymmetricbodyissketchedin
Figure3.Notethatduetothesymmetry,motioninone
directiononlycanberealized:y=φ≡0.Combiningthis
with(6)reducesthemodelto:

ẋ=

n
j=1θ̇jsinθj

n
j=1(1+sin

2θj)
. (9)

Asbefore,nistheeffectivenumberofpairsoflegs,where
anybundleoflegsorientedatthesameangleistreatedasa
singleleg.

III.OPTIMALSTROKES

Introducingq=(x,θ1···,θn)
t,thesymmetriccopepod

canbewrittenasadriftlesscontrolsystem

q̇(t)=
n

i=1

Fi(q(t))ui(t) (10)

whereFi(q)=f(θi)
∂
∂x+

∂
∂θi
,f(θ)= sinθ

n
j=1(1+sin

2θj)
and

ui= θ̇i.Asitisswimming,thecopepodisminimizing



Fig. 3. Sketch of a symmetric swimmer possessing n pairs of legs. Figure
reproduced from [4].

what we refer to as the mechanical energy. The energy is
a quadratic form given by q̇TEq̇ where E is a symmetric
matrix:

E =


n− 1

2 (
∑

cos2 θi) − 1
2 sin θ1 · · · − 1

2 sin θn
− 1

2 sin θ1
1
3 · · · 0

...
... · · ·

...
− 1

2 sin θn 0 0 1
3


(11)

and the copepod is minimizing

min

∫ T

0

q̇t(t)E(q(t))q̇(t)dt (12)

Using the differential equation for x it can be written as a
quadratic function in the controls:∫ T

0

n∑
i≤j;i,j=1

aij(θ(t))ui(t)uj(t)dt (13)

where

aii(θ) =
1

3
− sin θ2i

2
∑n
j=1(1 + sin2 θj

), (14)

aij(θ) = − sin θi sin θj∑n
j=1(1 + sin2 θj

), i 6= j. (15)

(16)

A. Maximum Principle

The Prontyagin Maximum Principle [8] implies that if
q(.) is a time optimal trajectory there exists an absolutely
continuous vector p(.) and a constant p0, (p(t), p0) 6= 0 for
all t ∈ [0, T ], called an adjoint vector, such that the following
conditions hold almost everywhere:

q̇ =
∂H

∂p
(p, q, u), ṗ = −∂H

∂q
(p, q, u) (17)

where H(p, q, u) =
∑n
i=1 p

tFi(q)ui +
p0
∑n
i≤j;i,j=1 aij(θ)uiuj is the Hamiltonian function,

and the maximum condition holds:

H(p(t), q(t), u(t)) = max
v∈U

H(p(t), q(t), v) (18)

with the domain U given by |θ̇i| = |ui| ≤ α where α is
a constant related to the angular velocity the copepod can
produce through its strokes. We assume for simplicity in the
sequel that α = 1 since this normalization does not modify
the structure of the optimal solutions. A triple (p, q, u) which

satisfies the maximum principle, in the sense just stated, is
called an extremal. Let us introduce Hi as the Hamiltonian
lift: Hi(p, q) = 〈p, Fi(q)〉. The maximum principle provides
only necessary conditions, hence to complete the analysis
one must classify the behaviors of extremals of order zero
near the switching surface to analyze the possible con-
nections between singular arcs of order zero. Complicated
phenomenon can occur such as the Fuller phenomenon, see
[9]. A future objective, but out of the scope of this paper, is
to do this classification.

B. Normal Curves

Normal extremals correspond to a nonzero constant p0.
We can normalize that constant to p0 = − 1

2 and the
maximization condition gives us the following condition:

E(θ)

 u1
...
un

 =

 H1(p, q)
...

Hn(p, q)

 (19)

which provide a closed form for the normal control in terms
of (p, q) since E is invertible. Plugging the expressions for
ui into H produces the true Hamiltonian in the normal case.
If we were to consider the flat metric as energy. i.e. E
is the identity matrix, we would obtain that: Hn(p, q) =
1
2

∑n
i=1H

2
i (p, q). A normal stroke is a solution of

−→
Hn

such that θi are periodic with period T . According to the
transversality conditions of the maximum principle we also
have that the dual variables pi to the angles θi are periodic of
period T . In this paper, we focus on the abnormal extremals,
but further numerical work will determine the normal optimal
strokes by testing conjugate points along such extremals. In
the normal case, the first conjugate point corresponds to the
first point where a normal geodesic ceases to be minimizing
with respect to the C1-topology on the set of curves and
they can be computed using the hampath software [10]. A
normal stroke is called C1-optimal on [0, T ] if there exists
no conjugate point on the interval ]0, T ].

C. Abnormal Curves

Abnormal curves corresponds to p0 = 0. In this case, we
have

H(q, p, u) =
n∑
i=1

Hi(q, p)ui (20)

and the maximization conditions imposes that for all i =
1, · · · , n):

Hi(q, p) = 〈p, Fi(q)〉 = 0 (21)

along an abnormal arc. Differentiating once more we obtain:

O(q(t), p(t))u(t) = 0 (22)

where the n×n skew-symmetric matrix O whose entries are
given by Oij = 〈p, [Fi, Fj ](q)〉 := Hij(q, p). The rank of the
matrix O determines the existence of abnormal controls. We
have here to distinguish cases depending on the parity of n.
Indeed, for an odd number of legs O is always singular. To
understand the abnormal curves, let us first determine the



Lie algebra associated to the distribution D generated by the
vector fields Fi(q). We have:

[Fi, Fj ](q) = (fj(θi)− fi(θj))
∂

∂x
(23)

where fj(θi) = ∂f
∂θj

(θi) =
2 sin θi sin θj cos θj
(
∑n
j=1(1+sin2 θj))2

. Differentiating
once more provides:

[[Fi, Fj ], Fk](q) = (fkj(θi)− fki(θj)− fj(θk))
∂

∂x
(24)

where fkj = ∂2f
∂θk∂θi

. A quick calculation shows that

fkj(θi) =
4 sin θi sin θj cos θj sin θk cos θk

(
∑n
j=1(1 + sin2 θj))3

(25)

We now consider both cases depending on the parity of the
control.

1) n is even: In that case, we have that the rank of O
is even (the eigenvalues are pure imaginary and come in
conjugate pairs). If the matrix O is of full rank it is invertible
and we obtain the control u = 0. This corresponds to a
stationary copepod and therefore is of no interest. Assume
the rank is even. In that case, there exists an orthogonal
matrix Q such that O = QΣQT where Σ is a block matrix
of the form

Σ =

 0 λ1 0 0
−λ1 0 0 0

0 0... 0 0

 (26)

with 2r the rank of O. It is equivalent to O = (O1, 0)
where O1 is block component of the matrix that includes the
terms with the eigenvectors. The control is then computed
as follows. We introduce v = Qu = (v1, v2) with v1 ∈ R2r,
and we have QΣQtv = 0 which can be rewritten as

O1(q, p)v1 = 0 (27)

and implies v1 = 0. The control is calculated using u =
QT (0, v2)T where v2 is arbitrary. A special case corre-
sponds to the situation when rankO = 0. This means that
[Fi, Fj ](q) = 0 for all i, j. The case of two pairs of legs can
be found in [5], in this paper we explicit the situation for
three pairs of legs below.

2) n is odd: An odd skew-symmetric matrix is always
singular since the rank must be even. The matrix O can be
put in a block-form similarly than in the even case with
at least one row and one colum of zeroes. The rest of the
procedure to compute the control is similar. Let us look at
the specific case n = 3. By definition, we have:

O =

 0 H12 H13

−H12 0 H23

−H13 −H23 0

 (28)

If the rank is 0, then Hij = 0 for all i, j. Since we are
in four dimension and that Hij = 〈p, [Fi, Fj ](q)〉 it implies
that [Fi, Fj ](q) = 0. Indeed, otherwise we would have a
contradiction with the fact that p 6= 0 along an abnormal

curve since Hj(p, q) = 0 and rank{Fi, [Fi, Fj ]}i,j is four.
Along such abnormal curve we have:

2 sin θi sin θj(cos θj − cos θi)

(
∑n
j=1(1 + sin2 θj))2

(29)

for all i, j, and the curve belongs to the vertex and edges of
the set defined by:

{θ; θ1 ≤ θ2 ≤ θ3, θi ∈ [0, π]}. (30)

More precisely, the following equalities must be satisfied:

sin θ1 sin θ2(cos θ1 − cos θ2) = 0, (31)
sin θ1 sin θ3(cos θ1 − cos θ3) = 0, (32)
sin θ2 sin θ3(cos θ2 − cos θ3) = 0. (33)

We can consider 4 cases.
1) There exists i 6= j such that sin θi = sin θj = 0. To-

gether with constraint (30) it implies that the possible
solutions are (0, 0, θ(t)), (0, θ(t), π) and (θ(t), π, π)
where θ(t) ∈ [0, π]. This corresponds to the case when
two legs are fixed at one of the boundary value and the
third one moves.

2) We have cos θi = cos θj and sin θk = 0 for a triplet
i 6= j 6= k. That implies that the possible solutions
are given by (0, θ(t), θ(t)) and (θ(t), θ(t), π) where
θ(t) ∈ [0, π]. In this case one leg is static at one of the
boundary value and the two others move together.

3) We have cos θi = cos θj and sin θi = 0, where i 6= j.
Thus, θi = θj and sin θi = sin θj = 0 which reduces
to case 1.

4) We have cos θ1 = cos θ2 = cos θ3 for . Thus θ1 = θ2 =
θ3, so the solution is (θ(t), θ(t), θ(t)) where θ ∈ [0, π].
This is the case when the three legs are identified a
single one.

On Fig. 4 we display the set (30) which is formed by the
interior and boundary of the domain, and the abnormal arcs
are the edges of this domain. An abnormal stroke is a 2π-
periodic motion formed by a concatenation of motions along
the edges of the domain. Let us look at these specific strokes.
Based on our analysis motions along the edges corresponds
to fixing one or more angle to the extremity of the interval
[0, π] and move the other angles simultaneously.

Assume the initial configuration of the legs to be
(θ1(0), θ2(0), θ3(0)) = (0, 0, 0), see Fig 5 (a). To create
an abnormal stroke we must first bring all the legs to the
opposite extremity of the interval: θi = π. This can be
done in three ways moving one leg at a time; moving two
legs together and then one leg; or moving the three legs
simultaneously. Consider the copepod’s displacement in the
variable x in each of these cases.
• Case 1a. Only one leg θi moves from time t1

to t2, and by construction the other legs stay
both at 0 or π . Thus θi(t1) = 0, θi(t2) = π

and ẋ(t) = sin θi(t)θ̇i(t)
2+sin2 θi(t)

. Integrating we obtain

x(t2)−x(t1) =
∫ t2
t1

sin θi(t)θ̇i(t)
2+sin2 θi(t)

dt =
∫ t2
t1

sin θi(t)θ̇i(t)
3−cos2 θi(t) dt.

Introduce u = cos θi(t), then we have that



Fig. 4. This figure represents the domain 0 ≤ θ1 ≤ θ2 ≤ θ3 ≤ π.
The abnormal arcs corresponding to rankO = 0 are on the vertices and the
edges. The arrows indicates the periodic stroke seen in Figure 5.

x(t2)− x(t1) =
∫ 1

−1
du

3−u2 = 1√
3

ln(
√
3+1√
3−1 ).

• Case 1b. Only one leg θi moves from time t1 to
t2, and by construction the other legs stay one at
0 and another at π. Thus θi(t1) = 0, θi(t2) = π

and ẋ(t) = sin θi(t)θ̇i(t)
3+sin2 θi(t)

. Integrating we obtain

x(t2)−x(t1) =
∫ t2
t1

sin θi(t)θ̇i(t)
3+sin2 θi(t)

dt =
∫ t2
t1

sin θi(t)θ̇i(t)
4−cos2 θi(t) dt.

Introduce u = cos θi(t), then we have that
x(t2)− x(t1) =

∫ 1

−1
du

4−u2 = 1
2 ln(3).

• Case 2. Two legs move simultaneously. Then
θi(t) = θj(t) and ẋ(t) = sin θi(t)θ̇i(t)

2+sin2 θi(t)
. Then as in

case 1a, x(t2)− x(t1) = 1√
3

ln(
√
3+1√
3−1 ).

• Case 3. Three legs move simultaneously. Then,
ẋ(t) = sin θi(t)θ̇i

1+sin2 θi(t)
. Similar calculations shows that

x(t2)− x(t1) =
∫ 1

−1
du

2−u2 = 1√
2

ln(
√
2+1√
2−1 ).

Therefore, in case 1 after all three legs move to (π, π, π),
the displacement of the copepod is 1

2 ln(3)+ 2√
3

ln(
√
3+1√
3−1 ) ≈

2.07, in case 2 it is 2√
3

ln(
√
3+1√
3−1 ) ≈ 1.52 and in case 3

we have 1√
2

ln(
√
2+1√
2−1 ) ≈ 1.25. Note that our computations

demonstrate that the x-displacement does not depend on time
and that the most efficient way to go forward is to move
one leg at a time. A periodic stroke involves bringing back
the legs to the initial configuration, and to produce a final
maximum net displacement we use the case 3. The total
displacement is then 2.07 − 1.25 = 0.82. This motion is
illustrated in Figure 5 with the sequence of abnormal arcs,
and in Figure 4 where the stroke discussed above is denoted
using the arrows. In case of two pairs of legs, it was shown
that the displacement is of the order of 0.3.

x0 21 x0 210.76

(a) Initial position (b) Leg θ1 moves

x0 21 1.31 x0 21 2.07

(c) Leg θ2 moves (d) Leg θ3 moves

x0 210.82

(e) All three legs move back
Fig. 5. Concatenation of abnormal strokes.

Let us look at the case when rank O = 2. We then must
have Hij 6= 0 for all i, j. Indeed, if for instance H12 = 0
either sin θ1 = 0, sin θ2 = 0 or cos θ1 = cos θ2. In the
first and second scenario it would respectively mean that
H13=0 (resp. H23 = 0) which contradicts the rank of the
matrix and in the third caser it would imply that θ1 = θ2
and u3 = 0 which corresponds to having only one pair of
legs and produces no motion. Assuming that Hij 6= 0 we
have to solve the following system of equations:

H12u2 +H13u3 = 0 (34)
−H12u1 +H23u3 = 0 (35)
−H13u1 −H23u2 = 0 (36)

We obtain a one-parameter family of solutions. If we
parametrize the solution using u3 an abnormal control is
given by:

u1 =
H23

H12
u3, u2 = −H13

H12
u3 (37)

Computing, and using the following feedback transformation
û3 = sin θ3

sin θ1 sin θ2(cos θ2−cos θ1)u3 we have:

u1 = sin θ2(cos θ3 − cos θ2)û3, (38)
u2 = sin θ1(cos θ3 − cos θ1)û3. (39)

It can be shown that since with three pairs of legs we obtain
a one parameter family no displacement can be produced
using these abnormal extremals. Indeed, see Figure 6 for
an example. It clearly demonstrates that if the strokes is
parametrized by θ3 then the horizontal displacement is zero.
The conclusion is that for three pairs of legs these strokes can
be neglected since they do not produce any net displacement.
Note that for more pairs of legs the situation is different
because we will have two angles parametrizing the abnormal
strokes when rank O is not zero and net displacement can
be then produced.



(a) θ1(.) : [0, 2π]→ [0π] (b) θ2(.) : [0, 2π]→ [0π]

(a) θ3(.) : [0, 2π]→ [0π] (b) x(.) : [0, 2π]→ [0π]

Fig. 6. This example shows to an abnormal strokes parametrized by θ(.).
It can be observed that there is zero horizontal displacement.

IV. DISCUSSION

In this last section, we compare our results to experimental
observations of a larval copepod (stage 5 nauplius). Figure 7
shows how it swims using three pairs of legs, each leg pair
performing a sequence of power strokes and then all legs
returning together in unison.

From observations, the nauplius displays physical con-
straints on the positioning of his legs. More precisely, the two
front legs (A1) on Figure 7 show a variation ∈ [5◦, 130◦].
The second pair of legs’ constraint is that θ2 ∈ [40◦, 135◦]
(A2), and θ3 ∈ [110◦, 160◦] (Md). On Figure 7, we see the
appendage angles and timing of power and return strokes
during 1.5 cycles of swim sequence. It can be observed that
θ3 starts moving toward 180◦ at first while the other two
pairs of legs position themselves to maximize the amplitude
they will use (this is equivalent to Fig. 5 (b) for our model).
Once θ2, θ3 reach their constraint (first for the second pair of
legs) they start moving toward the back of the nauplius (Fig.
5 (c) and (d)). The three pairs of legs move with a phase shift
to create the maximal displacement forward. Since the third
pair of legs (Md) arrives to its physical constraint first it then
await the other two legs to reach their physical constraints.
The return stroke is done by coordinating the three legs
(especially θ1 = θ2) for a good fraction of the stroke which
is what we have in Fig 5 (e) for our computational model.
The correlation with our work is that the larval copepod uses
the same strategy than the one with the abnormal strokes on
the edges of the angles domain, the main differences are
that: first the physical domain has limitation in terms of the
amplitude of the motion of each pair of legs; and second
there is a breaking mechanism in the larva copepod.
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