Analysis of efficient strokes for multi-legged microswimmers
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Abstract— We consider efficient controls for swimming with
multiple rigid legs at low Reynolds number. We derive equations
governing the translation and rotation of a general class
of multi-legged swimmers, and we formulate energy-efficient
controls of symmetric swimmers as a problem in geometric
control theory. We then focus on the case of symmetric
swimmers with multi pairs of legs. In the framework of sub-
Riemannian geometry, abnormal geodescics are analyzed and
shown to depend on the number of pairs of legs. Inspired
by larval copepods possessing three pairs of legs, we compute
various swimming strokes and explore optimal controls in that
specific situation. We also compare our results to experimental
measurements of larval copepod.

I. INTRODUCTION

Tiny marine organisms display diverse shapes and locomo-
tion strategies that are strikingly different from those of larger
organisms. For example, tiny crustaceans such as copepods,
arguably the most abundant group of animals on Earth, swim
by moving their numerous appendages or legs like the oars of
a boat, except that the leg movements are not synchronized
[1]. Given that swimming is critical to their survival, for
instance to find food particles and escape from predators,
one might expect the thriving copepod species to be efficient
swimmers following millions of years of evolution. To test
whether nature’s solutions to efficient swimming are optimal,
it is helpful to approach the problem from the perspective of
geometric control theory. This approach of finding optimal
controls also helps to identify suitable design principles for
tiny swimming robots in future medical, oceanography, and
technological applications.

Various different models of tiny swimmers and associated
optimization problems have been analyzed in the past. A
relatively well studied model is the minimal design consist-
ing of three linked rods known as Purcell’s swimmer [2]
[3]. Here we analyze a recent model [4] inspired by larval
copepods possessing three pairs of legs [1]. In fact, only
two pairs of rigid legs are needed for locomotion along a
straight line, and optimal strokes have been recently found
[5]. However, larval copepods curiously possess three pairs
of legs (Figure 1) and that number can increase as they
develop into adulthood. The number varies across species
and developmental stages of other crustaceans. Of interest
is a general mathematical framework for analyzing optimal
strokes of an arbitrary number of legs. In [6] the authors use
the maximum principle combined with numerical methods
to compute energy optimal periodic strokes for the so-called
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Purcell Three-link swimmer and in [5] a similar approach is
used for the symmetric copepod with two pairs of legs.
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Fig. 1. Scanning electron microscopy image of a larval copepod, courtesy
of Jenn Kong and reproduced from [1]. Copyright retained by the originator.

Here we present a general model swimmer consisting of
slender legs protruding radially outward in a two-dimensional
plane. In general the swimmer translates and rotates in the
plane, but with reflective symmetry the swimmer translates
along the line of symmetry. We explore the dynamics of
symmetric swimmers with an arbitrary number of pairs of
legs, focusing in particular on three pairs of legs, and analyze
the the abnormal strokes for that specific case.

II. MATHEMATICAL MODEL
A. General Model

We consider a simple body consisting of a point from
which m slender legs extend radially in the x — y plane
(Figure 2). The position of the point is denoted by xg =
[(t), y(t)]* and the orientation angle with respect to the
x axis is denoted by ¢(t). Below we derive a model that
predicts the position and orientation of the swimmer in terms
of the controllable angle 6;(¢) between the i*" leg and the
swimmer’s orientation.

The model is based on slender body theory for Stokes
flow, a suitable approximation for slender legs generating
slow viscous flow at low Reynolds number [7]. Suppose the
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Fig. 2 Sketch of a general swimmer possessing m legs. The center point
of the swimmer is denoed by position xp and the swimmer orientation
angle is denoted by &

i'" leg is parametrized by

Xi(s) = Xp + 51y, ()

where s € [0,1] is the parameter along the direction vector
n; = [cos(ay), sin(ay)|T with angle aq(t) = ¢(2) + 84(t).
We assume all legs have a common length of 1 for simplicity;
the model could be readily peneralized by parameirizing
each leg differently to account for legs with distinct lengths.
According to slender body theory, the local velocity x and
force density £ have a linear relationship

'M=Cﬂ+mEPMﬂ 2)

where O = h df:penﬂs on the fluid viscosity p and
the small diameter-to-length ratio « of the swimmer's legs.
Combining (1) and (2) and solving for f; pives

fi(s) = %(I ;n;n )(xu +sn1) 3)
with fl; = Crl'.-gt; and t; = [— si.n{crf},ms{cti}]T. In Stokes

flow there is no net force or torque on the swimmer:

1
> f fi(s)ds =0 )
1 0

and k-3, [ smy x fi(s)ds = 0 implies

1
Z_ﬁ sty - fy(s)ds =0 (5)
i

where the sum is over all legs with distinct angles &;. Any
bundle of legs oriented at the same angle is treated as one leg.
This is because the bundle is approximated by an effective
leg with a different aspect ratio ¢, but this ratio has only a
weak logarithmic effect on C' and f; appearing in the model.
Applying (4) to (3), integrating over s € [0,1] and then
combining the result with (3) gives

Mx = K (6)

where x(t) = [£(t), y(t), ¢r':-|[t]|]T captures the respective time
derivatives of the body’s position and orientation. M is
specified by

S(1 +sin’(@) Y sin(@)cos(@) — Y sin(a)
— Y sin(a)cos(@)  3(1+cos’(@)) Y cos(a)
~ ¥ sin(a) 3 cos(a) 2

and K is specified by
3 Osin(a)
— Y @ cos(a)
“3x0
The matrix M is often referred to as the resistance mairix of
the body while its inverse M1 is called the mobility marrix;

The instantaneous rate of work done by the swimmer is
computed by

1
W = an %¢(s) - fi(s) ds (T

We can substitute (3) mln q_) to find W = g7 - E - g,
where g = (,y, &, 0 - for a swimmer wnh m legs

oriented at distinct ang]f:s am:l

v v
E=(Vr S)' (8)

Here U7 is the 3x3 matrix

( m 2{2005 i) .
m [Zsm ct.} lI[EDDSCt.}
Q[Zsm o) :,(Za:s i) e
where SC' =% sinoy cosay and V' is the 3xm matrix

%siucn %sincm %siuorm
Leosoy %CEGQ'Q e Yrosan,
1 1 1

i5C (¥ sinay) )

2 2

3 3 3

and S = 1T where I is the m x m identity matrix. Here
we focus on swimming along a 1 dimensional line, but the
model could be generalized in the future to account for
swimming in 3 dimensions by allowing each leg to orient
in 3 dimensions and introducing additional position and
orientation coordinates to represent the state of the swimmer.
B. Symmetric Copepod

Hereafter we focus on a swimmer with a total of m = 2N
legs, where N is the number of pairs of legs actuated
symmetrically such that 8,y _,,y = 27 — 8 and By, =
—&i. The upper half of the symmeiric body is sketched in
Figure 3. Note that due to the symmetry, motion in one
direction only can be realized: y = ¢ = (. Combining this
with (6) reduces the model to:

n q
T = §J=l E.f anf.f . {g}
Eg:l{l +sim” ;)

As before, n is the effective number of pairs of legs, where
any bundle of legs oriented at the same angle is treated as a
single leg.

I1I. OPTIMAL STROKES

Introducing q = (x,#;--- , )", the symmetric copepod
can be written as a driftless control system

zjm
sin &

= fO 5 + 35> f(8) = sl imrsy and

the copepod is minimizing

£) Juy(t) (10)

where Fi(q)

u, = f,. As it is swimming,
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Fig. 3. Sketch of a symmetric swimmer possessing n pairs of legs. Figure
reproduced from [4].

what we refer to as the mechanical energy. The energy is
a quadratic form given by ¢” E¢ where E is a symmetric
matrix:

n—31(>cos?0;) —isinfy --- —1sind,
—%sin@l % 0
E = .
f%sinﬁn 0 0 %
1D

and the copepod is minimizing
T
win [ (OB}t (12)
0

Using the differential equation for x it can be written as a
quadratic function in the controls:

T n

[ Y aeomoune a3y

0 i<y g=1

where
1 sin 62
i) =5 - == — , 14
ail®) =3 22j=1(1+sm20j) (14
sin 6; sin 6

ii(0) =— ! J , 1 . 15
a]( ) Z?=1(1+Sln203) 7’75.] ( )
(16)

A. Maximum Principle

The Prontyagin Maximum Principle [8] implies that if
q(.) is a time optimal trajectory there exists an absolutely
continuous vector p(.) and a constant pg, (p(t),po) # 0 for
all t € [0, T7, called an adjoint vector, such that the following
conditions hold almost everywhere:

1= b a), b=~ )
q= ap p,q,u), p= dq pb,q,u

Z:’L:l ptFi(Q)ui +
Hamiltonian function,

A7)

where H(p,q,u) =
Po Z?ﬁj;i,j:l aij(ﬂ)uiuj is the
and the maximum condition holds:

H(p(t),q(¢),ut)) = max H(p(t),q(t),v) ~ (18)
with the domain U given by |0;| = |u;| < a where « is

a constant related to the angular velocity the copepod can
produce through its strokes. We assume for simplicity in the
sequel that w = 1 since this normalization does not modify
the structure of the optimal solutions. A triple (p, ¢, u) which

satisfies the maximum principle, in the sense just stated, is
called an extremal. Let us introduce H,; as the Hamiltonian
lift: H;(p,q) = (p, Fi(q)). The maximum principle provides
only necessary conditions, hence to complete the analysis
one must classify the behaviors of extremals of order zero
near the switching surface to analyze the possible con-
nections between singular arcs of order zero. Complicated
phenomenon can occur such as the Fuller phenomenon, see
[9]. A future objective, but out of the scope of this paper, is
to do this classification.

B. Normal Curves

Normal extremals correspond to a nonzero constant pg.
We can normalize that constant to py = —% and the
maximization condition gives us the following condition:

Ui Hl(p7 q)
: : 19)
Un H,(p,q)

which provide a closed form for the normal control in terms
of (p,q) since E is invertible. Plugging the expressions for
u; into H produces the true Hamiltonian in the normal case.
If we were to consider the flat metric as energy. i.e. F
is the identity matrix, we would obtain that: H,(p,q) =
13"  HZ(p.q). A normal stroke is a solution of H,
such that 6; are periodic with period 7. According to the
transversality conditions of the maximum principle we also
have that the dual variables p; to the angles 6; are periodic of
period T'. In this paper, we focus on the abnormal extremals,
but further numerical work will determine the normal optimal
strokes by testing conjugate points along such extremals. In
the normal case, the first conjugate point corresponds to the
first point where a normal geodesic ceases to be minimizing
with respect to the C'-topology on the set of curves and
they can be computed using the hampath software [10]. A
normal stroke is called C'-optimal on [0, 7] if there exists
no conjugate point on the interval ]0, T).

C. Abnormal Curves

Abnormal curves corresponds to po = 0. In this case, we
have

n
H(q,p,u) =) Hi(q,p)u; (20)
i=1
and the maximization conditions imposes that for all ¢ =
17 e 7n):
H;(q,p) = (p, Fi(q)) =0

along an abnormal arc. Differentiating once more we obtain:

O(q(t), p(t))u(t) =0

where the n x n skew-symmetric matrix O whose entries are
given by O;; = (p, [F}, F}](q)) :== H;;(q,p). The rank of the
matrix O determines the existence of abnormal controls. We
have here to distinguish cases depending on the parity of n.
Indeed, for an odd number of legs O is always singular. To
understand the abnormal curves, let us first determine the

2n

(22)



Lie algebra associated to the distribution D generated by the
vector fields F;(q). We have:

Fo Bl = (50) - L0 @)
where f;(0;) = %(91) = % Differentiating
once more provides:

15 B3] Fida) = (g 00) — Fuall) — £5(00)) 5 24
where fr; = ng 59, - A quick calculation shows that
Fus(0:) = 4 sin 0; sin 0 cos 0 sin 0}, cos 0y, 25)

(327=1(1+sin6;))3

We now consider both cases depending on the parity of the
control.

1) n is even: In that case, we have that the rank of O
is even (the eigenvalues are pure imaginary and come in
conjugate pairs). If the matrix O is of full rank it is invertible
and we obtain the control v = 0. This corresponds to a
stationary copepod and therefore is of no interest. Assume
the rank is even. In that case, there exists an orthogonal
matrix @) such that O = QX.Q7 where ¥ is a block matrix
of the form

0 Ay 0 0
=] -Xx 0 00 (26)
0 0. 00
with 2r the rank of O. It is equivalent to O = (01,0)

where O; is block component of the matrix that includes the
terms with the eigenvectors. The control is then computed
as follows. We introduce v = Qu = (v1,v7) with v; € R?",
and we have QX.Q%v = 0 which can be rewritten as

O1(q,p)v1 =0 (27

and implies v; = 0. The control is calculated using v =
QT(0,v2)T where vy is arbitrary. A special case corre-
sponds to the situation when rankO = 0. This means that
[Fi, F;](g) = 0 for all 7, j. The case of two pairs of legs can
be found in [5], in this paper we explicit the situation for
three pairs of legs below.

2) n is odd: An odd skew-symmetric matrix is always
singular since the rank must be even. The matrix O can be
put in a block-form similarly than in the even case with
at least one row and one colum of zeroes. The rest of the
procedure to compute the control is similar. Let us look at
the specific case n = 3. By definition, we have:

0 Hi2  His
O=| —Hiz2 0  Hy (28)
—Hi3 —Hx 0

If the rank is O, then H;; = 0 for all ¢, j. Since we are
in four dimension and that H;; = (p, [F;, F;|(¢)) it implies
that [F;, F}](¢) = 0. Indeed, otherwise we would have a
contradiction with the fact that p # 0 along an abnormal

curve since H;(p,q) = 0 and rank{F;, [F;, F};|}; ; is four.
Along such abnormal curve we have:

2sin 6; sin 0 (cos 0; — cos ;)
(251 (1 + sin* 6;))2

for all 4, j, and the curve belongs to the vertex and edges of
the set defined by:

{0; 01 <6, <03, 6, €[0,7]}.

(29)

(30)

More precisely, the following equalities must be satisfied:

sin 6y sin 65 (cos 61 — cos ) = 0, (31)
sin 0 sin f5(cos 1 — cosf3) = 0, (32)
sin 05 sin f3(cos O3 — cosf3) = 0. (33)

We can consider 4 cases.

1) There exists ¢ # j such that sin¢; = sin; = 0. To-
gether with constraint (30) it implies that the possible
solutions are (0,0,0(t)), (0,0(¢),7) and (0(t),w, )
where 0(t) € [0, 7]. This corresponds to the case when
two legs are fixed at one of the boundary value and the
third one moves.

2) We have cos@; = cosf; and sin¢, = 0 for a triplet
i # j # k. That implies that the possible solutions
are given by (0,0(t),0(t)) and (6(t),0(t), ) where
0(t) € [0, 7]. In this case one leg is static at one of the
boundary value and the two others move together.

3) We have cosf; = cosf; and sin6; = 0, where i # j.
Thus, 0; = 6; and sin6; = sinf; = 0 which reduces
to case 1.

4) We have cos 0y = cos 6y = cos 83 for . Thus 61 = 05 =
03, so the solution is (6(¢),0(t), 0(t)) where 0 € [0, 7].
This is the case when the three legs are identified a
single one.

On Fig. 4 we display the set (30) which is formed by the
interior and boundary of the domain, and the abnormal arcs
are the edges of this domain. An abnormal stroke is a 27-
periodic motion formed by a concatenation of motions along
the edges of the domain. Let us look at these specific strokes.
Based on our analysis motions along the edges corresponds
to fixing one or more angle to the extremity of the interval
[0, 7] and move the other angles simultaneously.

Assume the initial configuration of the legs to be
(01(0),62(0),05(0)) = (0,0,0), see Fig 5 (a). To create
an abnormal stroke we must first bring all the legs to the
opposite extremity of the interval: §; = m. This can be
done in three ways moving one leg at a time; moving two
legs together and then one leg; or moving the three legs
simultaneously. Consider the copepod’s displacement in the
variable x in each of these cases.

e Case la. Only one leg 6#; moves from time ?;

to to, and by construction the other legs stay
both at 0 or 7 . Thus 6;(t;) = 0,6;(t2) = =
and Z(t) %. Integrating we obtain
w(ta) () = 7 SRR dr = [ 5200 ar.

Introduce w = cosb;(t ), then we have that



Fig. 4. This figure represents the domain 0 < 01 < 02 < 03 < 7.
The abnormal arcs corresponding to rankO = 0 are on the vertices and the
edges. The arrows indicates the periodic stroke seen in Figure 5.

1 du g
w(ts) —a(h) = [, 5% = (),

e Case 1b. Only one leg 6; moves from time ¢; to
to, and by construction the other legs stay one at
0 and another at 7. Thus 6;(t;) = 0,0;(t2) = «
and z(t) = %. Integrating we obtain
x(ty) —x(tr) =

t2 sin 0; (¢)6; () t2 sin 0; (¢)6; (t)
t12 3+sin? 0, (t) dt = t12 4—cos? 0;(t) dt.

Introduce u = cosf;(t), then we have  that
1 u
x(t) —z(t) = [, 7% = $1n(3).
e Case 2. Two legs move simultaneously. Then
0:i(t) = 0;(t) and @(t) = Srei). Then as in
case la, x(ty) — x(t]) = \1[ ln(§+i)

e Case 3. Three legs
. _ in«%(t)f),y
#(t) = ﬁT’z‘em

x(tg — X tl

move simultaneously. Then,
Similar calculations shows that

Siatie = 5 0.

Therefore, in case 1 after all three legs move to (w7, m),
the displacement of the copepod is £ In(3) + fl (?*1)

2.07, in case 2 it is %ln(‘/g“) ~ 1.52 and in case 3

V3-1
we have % ln(gﬂ) ~ 1.25. Note that our computations

demonstrate that the x-displacement does not depend on time
and that the most efficient way to go forward is to move
one leg at a time. A periodic stroke involves bringing back
the legs to the initial configuration, and to produce a final
maximum net displacement we use the case 3. The total
displacement is then 2.07 — 1.25 = 0.82. This motion is
illustrated in Figure 5 with the sequence of abnormal arcs,
and in Figure 4 where the stroke discussed above is denoted
using the arrows. In case of two pairs of legs, it was shown
that the displacement is of the order of 0.3.

(a) Initial position (b) Leg 0, moves

N N

X B - X

(c) Leg 6> moves (d) Leg 63 moves

(e) All three legs move back

Fig. 5. Concatenation of abnormal strokes.

Let us look at the case when rank O = 2. We then must
have H;; # 0 for all 7, j. Indeed, if for instance Hi = 0
either sinf; = 0, sinfly = 0 or cosf; = cosfy. In the
first and second scenario it would respectively mean that
Hys_( (resp. Hos = 0) which contradicts the rank of the
matrix and in the third caser it would imply that 67 = 6,
and ug = 0 which corresponds to having only one pair of
legs and produces no motion. Assuming that H;; # 0 we
have to solve the following system of equations:

Higug + Hizuz =0 (34)

—Hiouy + Hazuz =0 (35)

—Hyzuy — Hagug =0 (36)

We obtain a one-parameter family of solutions. If we

parametrize the solution using us an abnormal control is
given by:
(37

Uy = us, U2 = — 77— U3

Hiy Hyy

Computing, and using the following feedback transformation

_ sin 63
Uy = sin 61 sin 02 (cos 62 —cos 91)u3 we have:
u1 = sin 63 (cos 3 — cos )3 (38)
ug = sin @y (cos O3 — cos 6,3 (39)

It can be shown that since with three pairs of legs we obtain
a one parameter family no displacement can be produced
using these abnormal extremals. Indeed, see Figure 6 for
an example. It clearly demonstrates that if the strokes is
parametrized by 63 then the horizontal displacement is zero.
The conclusion is that for three pairs of legs these strokes can
be neglected since they do not produce any net displacement.
Note that for more pairs of legs the situation is different
because we will have two angles parametrizing the abnormal
strokes when rank O is not zero and net displacement can
be then produced.
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@ 61():0,20] = [om]~ ®) 6:() < 0,2n] =
(@ 03(.) : [0,27] — [07r]  (b) z(.) : [0,27] — [O7]

Fig. 6. This example shows to an abnormal strokes parametrized by 6(.).
It can be observed that there is zero horizontal displacement.

IV. DISCUSSION

In this last section, we compare our results to experimental
observations of a larval copepod (stage 5 nauplius). Figure 7
shows how it swims using three pairs of legs, each leg pair
performing a sequence of power strokes and then all legs
returning together in unison.

From observations, the nauplius displays physical con-
straints on the positioning of his legs. More precisely, the two
front legs (Al) on Figure 7 show a variation € [5°,130°].
The second pair of legs’ constraint is that 6 € [40°,135°]
(A2), and 63 € [110°,160°] (Md). On Figure 7, we see the
appendage angles and timing of power and return strokes
during 1.5 cycles of swim sequence. It can be observed that
03 starts moving toward 180° at first while the other two
pairs of legs position themselves to maximize the amplitude
they will use (this is equivalent to Fig. 5 (b) for our model).
Once 05, 03 reach their constraint (first for the second pair of
legs) they start moving toward the back of the nauplius (Fig.
5 (c) and (d)). The three pairs of legs move with a phase shift
to create the maximal displacement forward. Since the third
pair of legs (Md) arrives to its physical constraint first it then
await the other two legs to reach their physical constraints.
The return stroke is done by coordinating the three legs
(especially 6; = 65) for a good fraction of the stroke which
is what we have in Fig 5 (e) for our computational model.
The correlation with our work is that the larval copepod uses
the same strategy than the one with the abnormal strokes on
the edges of the angles domain, the main differences are
that: first the physical domain has limitation in terms of the
amplitude of the motion of each pair of legs; and second
there is a breaking mechanism in the larva copepod.
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