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Abstract

Better understanding of the dose-toxicity relationship is critical for safe dose 

escalation to improve local control in late-stage cervical cancer radiotherapy. 

In this study, we introduced a convolutional neural network (CNN) model 

to analyze rectum dose distribution and predict rectum toxicity. Forty-two 

cervical cancer patients treated with combined external beam radiotherapy 

(EBRT) and brachytherapy (BT) were retrospectively collected, including 

twelve toxicity patients and thirty non-toxicity patients. We adopted a transfer 

learning strategy to overcome the limited patient data issue. A 16-layers 

CNN developed by the visual geometry group (VGG-16) of the University 

of Oxford was pre-trained on a large-scale natural image database, ImageNet, 

and ine-tuned with patient rectum surface dose maps (RSDMs), which were 

accumulated EBRT  +  BT doses on the unfolded rectum surface. We used the 

adaptive synthetic sampling approach and the data augmentation method to 

address the two challenges, data imbalance and data scarcity. The gradient-

weighted class activation maps (Grad-CAM) were also generated to highlight 

the discriminative regions on the RSDM along with the prediction model. 

We compare different CNN coeficients ine-tuning strategies, and compare 

the predictive performance using the traditional dose volume parameters, 

e.g. D0.1/1/2cc, and the texture features extracted from the RSDM. Satisfactory 
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prediction performance was achieved with the proposed scheme, and we 

found that the mean Grad-CAM over the toxicity patient group has geometric 

consistence of distribution with the statistical analysis result, which indicates 

possible rectum toxicity location. The evaluation results have demonstrated 

the feasibility of building a CNN-based rectum dose-toxicity prediction 

model with transfer learning for cervical cancer radiotherapy.

Keywords: convolutional neural networks, deformable image registration, 

transfer learning, rectum toxicity prediction, rectum surface dose maps

(Some igures may appear in colour only in the online journal)

1. Introduction

Cervical cancer is the third most common cause of female cancer mortality worldwide (Torre 

et  al 2015). Locally advanced cervical cancer, a common presentation, (Al-Mansour and 

Verschraegen 2010) is usually treated with external beam radiotherapy (EBRT) followed by 

brachytherapy (BT) with and without chemotherapy. Randomized studies have shown excel-

lent treatment outcomes in early stage cervical cancer (Gray 2008, Haie-Meder et al 2010). 

However, treatment results are inferior in advanced stages, with a ive-year overall survival 

rate of 60–65% in stage IIB (Green et al 2001), 25–50% in stage IIIB (Montana et al 1986, 

Horiot et al 1988), and 20–35% in stage IV disease (Rose et al 2011).

Mounting clinical evidence correlates tumor control rate with dose. For instance, a retro-

spective study, RetroEMBRACE (Tanderup et al 2016), initiated by the GEC-ESTRO group, 

has shown that high risk clinical target volume (CTVHR) dose  ⩾85 Gy (EDQ210, D90) deliv-

ered in 7 weeks provides a 3-year local control rate  >94% in limited-size (20 cm3), >93% in 

intermediate-size (30 cm3), and  >86% in large-size CTVHR (70 cm3) tumors. It also concluded 

that increasing CTVHR volume by 10 cm3 requires an additional 5 Gy for equivalent local con-

trol. However, a high dose may substantially increase toxicity risks to nearby organs at risk 

(OARs), such as the rectum, sigmoid, bladder, and vagina. Late rectum morbidity is associated 

with high rectum volume dose (D2cc  >  75 Gy) (Mazeron et al 2016). Better understanding of 

the relationship between OAR toxicity and dose is critical for safe dose escalation to improve 

local control of large-size advanced-stage cervical cancer tumors.

A common limitation of current image-guided EBRT-BT techniques is that they utilize 

a static image during the computer tomography (CT) simulation scan and ignore anatomic 

variations throughout the treatment course. Even though such variations are captured by BT 

fractional CT scans, which are used for BT planning, the hotspots are assumed to be static. 

Relying on this static assumption, clinicians apply the worst-case addition method to evaluate 

OARs’ D0.1cc, D1cc, and D2cc (most exposed 0.1, 1, and 2cm3 volume) accumulative dose for 

toxicity prediction. Though the worst-case addition method protects OARs by overestimating 

OAR dose, it potentially prevents the delivery of possible high dose prescriptions to the target 

volume. Moreover, the reported dose volume values discard dose distribution information that 

may be crucial for adaptive BT planning, e.g. local characteristics of dose distribution on the 

rectum are related to rectum toxicity (Buettner et al 2009, Lee et al 2012, Wortel et al 2015, 

Drean et al 2016).

To study the correlation between received dose and induced OAR toxicity, three impor-

tant problems must be addressed: (1) how to account for inter-fractional organ deformations 

and accurately acquire the accumulative dose received by the OARs; (2) how to utilize the 

OARs’ spatial dose distribution information instead of merely using one dimensional (1D) 
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dose volume parameters such as D0.1/1/2cc; and (3) how to build an effective dose-toxicity pre-

diction model with a limited patient sample size.

A typical cervical cancer radiotherapy treatment course is composed of ~25 fractions 

EBRT treatments and ~4–6 fractions BT treatments. The substantial inter-fractional organ 

motion that occurs in BT treatment makes reporting the accurate cumulative dose over an 

entire treatment course a challenging task. It was reported that the OARs intra- and inter-

fraction D2cc uncertainties were 20–25% (including a small fraction of 5–11% contouring 

uncertainties), indicating that organ motion is the major contribution to OAR dose uncertain-

ties (Dinkla et al 2013, Lobefalo et al 2013, Tanderup et al 2013). Intensity-based approaches 

(e.g. Demons-based) (Thirion 1998, Christensen et al 2001, Wang et al 2005), may not pro-

vide an optimal method for deformable image registration (DIR) in the context of cervical 

radiotherapy, because of the potential for large deformations in the rectum, bladder, etc, as 

well as the poor contrast between these OARs and their surrounding tissues. In contrast, the 

feature-based DIR methods (e.g. inite element model-based) (Brock et al 2005, Xiong et al 

2006, Kaus et al 2007, Vasquez Osorio et al 2009, Bondar et al 2010, Andersen et al 2012, 

Wognum et al 2013), aided by organ contours or delineated features, are more favorable for 

accurate anatomical mapping, especially for hollow organs with substantial deformation, such 

as the rectum and bladder. Our recent work (Chen et al 2016) proposed an improved non-rigid 

point matching algorithm based on the ‘thin plate splines-robust point matching’ (TPS-RPM) 

framework (Chui and Rangarajan 2003). This novel approach was validated on a porcine blad-

der phantom embedded with iducial markers as baseline, and satisfactory DIR accuracies of 

3.7  ±  1.8 mm and 1.6  ±  0.8 mm were achieved for bladders with large and small deformation. 

It can be served as a practical tool for accurate surface matching for hollow organs.

Several groups have also investigated spatial dose distribution and rectal toxicity in prostate 

cancer radiotherapy (Meijer et al 1999, Heemsbergen et al 2005, Tucker et al 2006, Munbodh 

et  al 2008, Buettner et  al 2009, 2012, Wortel et  al 2015). Most of these reported studies 

utilized a three-dimensional (3D) to two-dimensional (2D) mapping approach to obtain a 

rectum surface dose map (RSDM) for spatial dose feature extraction. For example, Munbodh 

et al (2008) sought to identify dosimetric and anatomic indicators of late rectal toxicity by 

using the RSDM in prostate cancer patients treated with intensity modulated radiation therapy 

(IMRT). Buettner et al (2012) studied the dose response of the anal sphincter region from 

the constructed RSDM and correlated 3D dose distributions with various side effects. Wortel 

et al (2015) found substantial relationships between acute rectal toxicity and local dose dis-

tributions through RSDM in prostate cancer patients who received IMRT and 3D-conformal 

radiotherapy (3D-CRT). Recently, an expert system based on machine learning technic was 

developed to address dosimetric uncertainties caused by motion of hollow organs (e.g. rectum, 

bladder) for prostate cancer radiation therapy(Guidi et al 2017). These limited but innovative 

studies have demonstrated the great potential of employing RSDM for rectum dose-toxicity 

relationship analysis.

Although most current studies focus on statistical analysis of the underlying relationship 

between the OARs’ toxicity and the extracted 1D dose volume parameters (ICRU 2013), or 

2D/3D localized dose distribution features (Wortel et al 2015, Drean et al 2016), our ultimate 

interest lies in the possibility of employing the dose distribution information for induced OAR 

toxicity prediction. The recent revival of deep learning techniques highlighted by the success 

of deep convolutional neural networks (CNN) (LeCun et al 2015) has brought more alterna-

tives and opportunities for dose-toxicity prediction modeling. The CNN irst gained popular-

ity in the computer vision community and is now thriving in the medical image processing 

domain (Tajbakhsh et al 2016). However, training the CNN from scratch is dificult not only 

because of the extensive computational requirements for the training process, but also because 
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of the lack of large-scale annotated medical image training datasets and the potential risk of 

over-itting. In contrast with training the CNN from scratch, transfer learning ine-tunes the 

CNN which is pre-trained on a large labeled dataset from a different application. Recently, 

promising results have been reported that transfer learning can have superior, or at least, the 

same performance as the CNN trained from scratch for medical image classiication (Shin 

et al 2016, Tajbakhsh et al 2016).

In this study, we introduced a CNN model to analyze rectum dose distribution and predict 

rectum toxicity. We adopt a transfer learning strategy to overcome the limited patient data 

issue by pre-training a VGG-16 CNN on a large-scale natural image database, and then ine-

tuned with the patient RSDMs. A gradient-weighted class activation method that highlights 

the discriminative regions on the RSDM was used to correlate dose distribution and rectum 

toxicity when the VGG-16 CNN completes a prediction. The general algorithm worklow is 

depicted in igure 1.

2. Methods and materials

2.1. Patient cohort

We retrospectively collected data of 42 cervical cancer patients treated with 25 fractions  

(2 Gy per fraction) EBRT followed by 4 (7 Gy per fraction) or 5 fractions (6 Gy per fraction) 

BT. The collected data include planning images and treatment plans. The patient was scheduled 

for follow-up examine every 2–3 months after treatment. Patients complaining of hematochezia 

were further examined by colonoscopy. Patients’ rectum toxicity Grades were collected as a 

clinical parameter in this study, where twelve with Grade  ⩾2 rectum toxicity were character-

ized as toxicity patients and thirty patients with Grade 0–1 toxicity as non-toxicity patients. To 

account for biologic effects of different fractionation schemes, both the BT and EBRT physical 

doses were converted to EQD2 doses using a linear quadratic model (Bentzen et al 2012) with 

an α/β ratio of 3 for rectum (Michalski et al 2010, Moulton et al 2016).

2.2. Rectum surface meshing and DIR

A rectum surface mesh was generated using rectum contours in consecutive CT slices via a 

particle-based surface meshing approach (Zhong et al 2013). Given the initial rectum contour 

Figure 1. Algorithm worklow.
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points, a high-quality isotropic triangular surface meshing was obtained by solving an inter-

particle energy function with the quasi-Newton L-BFGS optimizer.

For each patient, the rectum surface meshes in each BT fraction were generated using the 

physician delineated rectum contours via the above particle-based surface meshing approach. 

The obtained rectum surface mesh in the irst BT fraction was used as a reference, while 

those rectum surface meshes from other fractions were registered to the reference domain 

via a recently developed topography-preserved point-matching deformable image registration 

(TOP-DIR) algorithm (Chen et al 2016). The TOP-DIR is a local topography-preserved robust 

point-matching algorithm designed for accurate dose accumulation on a hollow organ wall. 

TOP-DIR can ind point-to-point correspondence on an organ wall by introducing local ana-

tomic information into the iterative update of correspondence matrix computation in the ‘thin 

plate splines-robust point matching’ (TPS-RPM) scheme (Chui and Rangarajan 2003). Once 

the deformation vector ields (DVFs) on the rectum surface were generated by TOP-DIR, inal 

DVFs deined on each voxel of the dose matrix were estimated by B-spline approximation 

(Zhen et al 2015).

We used the inal DVFs to deform and sum all the fractional BT doses to the reference 

domain (the irst BT fraction) to yield a deformable cumulative BT dose. Since patients in 

the study cohort received a homogenous EBRT dose in the pelvic region, the EBRT dose was 

added to the BT cumulative dose without deformation. The inal accumulative EBRT  +  BT 

rectum surface dose was employed for the subsequent dose-toxicity prediction study.

2.3. Rectum unfolding

For each evaluated patient, we generated a 2D RSDM to represent dose distribution on the 

rectum surface. We used a mapping procedure proposed by Tucker et al (2006) to unfold the 

rectum surface onto a rectangle in a plane. Speciically, the rectum contour centroid on each 

CT slice was calculated, and n rays were emitted from the centroid at evenly spaced intervals. 

We recorded the intersection coordinates between the rectal contour and the emanating rays 

and extracted the dose on each intersection point of the rectum wall. We then cut the rectum 

at the posterior-most position on all the zCT slices and unfolded it to form a lat rectangular 
n × z matrix representing dose distribution on the rectum surface. Rectum unfolding is illus-

trated in igure 3.

2.4. Convolutional neural network (CNN)

We employed the lattened 2D RSDMs to train the CNN as the prediction model. The CNN is 

a deep learning architecture with multiple convolutional layers responsible for detecting local 

features of the inputs. A convolution layer is composed of several convolution kernels that 

compute different feature maps. To enable local feature detection, each neuron of a feature 

map is connected to a small neighborhood of outputs from the previous layer. The feature map 

is generated by convolving the input with a learned kernel and connected to an element-wise 

nonlinear activation function. A pooling layer is usually placed between two convolution lay-

ers to reduce computational complexity and achieve shift-invariance. The pooling layer takes 

a small neighborhood from the convolutional layer and subsamples it to produce a single 

output (e.g. average or maximum) from that neighborhood.

For image classiication, the unknown network weights W of a given CNN can be learned 

with a labeled training image set S = {(xi, yi)} , i = 1, . . . , m by solving the optimization 

problem: minW

∑m

i=1
�( f (W; xi) , yi), where xi is an input image, yi is the corresponding label, 
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f (W; xi) is the prediction with network weight W  for input xi, and � is a negative log-likeli-

hood loss function deined in terms of the normalized soft-max probability. This optimization 

problem is typically solved by a stochastic gradient descent scheme. In each iteration, given 

a shufled ixed size mini-batch It ∈ S, the weight update is given by W(t+1) = W(t) + Z(t+1) 

where Z(t+1) = µZ(t)
− λ∇W

(
∑

i∈Γt
�( f

(

W(t) + µZ(t); xi

)

, yi)
)

. The free parameter µ 

denotes the momentum that indicates the contribution from the previous weight update, and 

λ denotes the learning rate.

2.5. Transfer learning

Considering the limited number of patient data in this study, training a large CNN from 

scratch with random initialization would be impractical and could easily lead to over-itting. 

As an alternative, we opted to utilize the learned knowledge from a pre-trained network and 

apply the trained parameters to a new classiication task in a process called transfer learning 

(Shin et al 2016, Tajbakhsh et al 2016). Transfer learning begins by initializing the network 

with pre-trained weights from a network of the same architecture and then ine-tunes the 

parameters to accommodate the target application. Depending on the class number of the new 

classiication task, the last fully connected layer is usually replaced with as many neurons as 

the new class number. In this study, we substituted the last fully connected layer with two 

neurons, corresponding to toxicity and non-toxicity.

We used the state-of-the-art VGG-16 (Simonyan and Zisserman 2014) as our network 

architecture. This CNN achieved substantially improved performance over the other networks 

in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012 (Russakovsky 

et al 2015). The VGG-16 network (igure 1) is a deep CNN that consists of 16 layers, includ-

ing 13 convolution layers and 3 fully-connected layers (termed fc6–fc8). All the convolution 

layers are built with ixed ilters with a size of 3 × 3, and the stride and padding are ixed at 

1. There are 5 groups of convolution layers (termed conv1~conv5), each of which is followed 

by a max pooling layer with a window size of 2 × 2 that down-samples the images to reduce 

computational burden and control over-itting. The ilter numbers of conv1–conv5 are 64, 128, 

256, 512, and 512. We pre-trained the VGG-16 CNN with the ImageNet (Deng et al 2009), 

which is currently the largest image dataset, with more than 1.2 million natural images of 

1000 object categories. These 1000 object categories represent objects that we come across in 

our day-to-day lives, such as species of dogs, cats, various household objects, vehicle types 

etc. Given an input test image, the ImageNet-trained VGG-16 CNN generates the test image’s 

probabilities (or label) belonging to each of the 1000 object class. Options to utilize the pre-

trained parameters in VGG-16 include: (1) ‘shallow tuning’: ine-tune only the last few fully 

connected layers; and (2) ‘deep tuning’: ine-tune all the network layers. In this study, con-

sidering the substantial difference between the source application (natural image) and target 

application (dose image), we opted to ine-tune all layers in VGG-16 and compare its gains 

over the ‘shallow tuning’.

2.6. Gradient-weighted class activation map (Grad-CAM)

In addition to predicting rectum toxicity using VGG-16 CNN, we would like to under-

stand what features have been learned and where these features are located. To identify and 

locate the learned features that distinguish toxicity from non-toxicity, we used the gradi-

ent-weighted class activation mapping (Grad-CAM) (Ramprasaath et al 2016) to highlight 
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discriminative regions on the RSDM when VGG-16 completes prediction. Denote the last 

convolutional layer produce K feature maps Ak
∈ Ru×v of size u × v and a Grad-CAM map 

Lc
Grad-CAM ∈ Ru×v. To obtain the Grad-CAM map, the gradient of score yc with respect to 

feature maps Ak  of a convolutional layer, i.e. ∂yc

∂Ak
ij

, is lowed back and global-average-pooled 

to obtain the weights ac
k  by ac

k = 1/Z
∑

i

∑
j
∂yc

∂Ak
ij

. The Grad-CAM map Lc
Grad-CAM is calculated 

as Lc
Grad-CAM = ReLU

(
∑

k ac
kAk

)

, where ReLU (·) is the rectiied linear unit. The inal Grad-

CAM map is obtained by up-sampling Lc
Grad-CAM to the size of the input image.

2.7. Strategies to avoid over-itting

Though training the large VGG-16 from scratch is resolved by utilizing transfer learning, 

we still need to ine-tune the million-parameter network, which is challenging. To reduce 

the chance of over-itting, two issues, including data imbalance and data scarcity, need to be 

addressed. The training patient cohort in this study is limited and not balanced, where the tox-

icity cases constitute only a small minority of the data. Learning from imbalanced data is risky 

because the network may tend to predict more often on the majority non-toxicity class to score 

an overall high accuracy, and scarify the sensitivity of identifying the minority toxicity cases.

As for data imbalance, we employed the adaptive synthetic sampling approach (ADASYN) 

(He et al 2008) to generate synthetic minority toxicity data to balance the training data set. The 

ADASYN determines a weighted distribution for different minority class samples according 

to their level of dificulty in learning. For each minority class sample, the more adjacent major-

ity samples it has in a certain neighboring range, the more synthetic examples will be created. 

Speciically, given the labeled training set S = {(xi, yi)} , i = 1, . . . , m with a minority class 

Smin ∈ S and a majority class Smaj ∈ S , the number of data needed to synthesize is determined 

by G = (ml − ms)× β, where ml  and ms represent the numbers of minority and majority class 

samples, respectively, and β ∈ [0, 1] is a parameter used to specify the desired balance level 

after generating the synthetic data. For each xi ∈ Smin, we can ind K  nearest neighbors based 

on the Euclidean distance and calculate the density distribution ri =
∆i/K

Z
, i = 1, . . . , ms, 

where ∆i is the number of examples in the K  nearest neighbors of xi that belongs to the major-

ity class, and Z  is a normalized constant so that 
∑

ri = 1. The number of synthetic samples 

needed for each minority sample xi ∈ Smin is given by gi = ri × G. For each of the gi synthetic 

data of xi ∈ Smin, one minority example xzi  is chosen at random from the K  nearest neighbors 

of xi, and the synthetic data can be generated by si = xi + (xzi − xi)× λ, where λ is a random 

number λ ∈ [0, 1].
As for data scarcity, data augmentation was employed to artiicially increase the size of 

the training dataset. Random geometric image transformation, including translation, rotation, 

scaling, lipping, as well as augmenting image intensity values, such as blurring and noise 

addition, were applied to the ADASYN balanced data prior to each ine-tuning iteration to 

increase the training image dataset to 10 times of its original size. This data augmentation 

strategy has been shown to be helpful for avoiding over-itting and successful generalization 

(Ronneberger et al 2015, Milletari et al 2016, Kayalibay et al 2017).

To even further reduce the chance of getting over-itting, we opted to only ‘slightly’ ine-

tune the VGG-16 CNN with the augmented training dataset, i.e. a minimal number of training 

epoch of one was used for ine-tuning, intending to maintain the classiication capability that 

mostly learned from the large natural image dataset ImageNet, and also adapt the network 

with the lexibility to the new application on the dose image.
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2.8. Implementation details

For all patients, the rectum was extracted between the level of the ischial tuberosity and the 

rectosigmoid junction, with rectum length ranging from 6 cm to 9 cm in the patient cohort. 

For rectum surface meshing, a region of interest (ROI) with a size of 200  ×  200  ×  100 

(234 mm  ×  234 mm  ×  200 mm) encompassing the rectum was extracted, and the segmented 

rectums in each BT fraction were converted to surface meshes with 1500 vertices for the sub-

sequent TOP-DIR surface point matching. For rectum surface unfolding, n = 30 rays were 

emitted from the centroid at a spaced interval of 12°. The lattened RSDM had a size of 30 × z, 

where z is a sampling number along the superior-inferior direction. We set z = 35, which 

approximates the resolution of ~0.5 cm in the SI direction. To accommodate the VGG-16 

architecture designed for color image inputs, the lattened grey-scale 2D RSDMs were coded 

to RGB images with a red-blue colormap, where the two extrema, red and blue, correspond 

to the maximum 90 Gy and the minimum 50 Gy in EQD2 doses (biologic equivalent dose 

in 2 Gy fractions). The colorized RSDMs were resampled to 224 × 224 before being fed to 

VGG-16. For all of the evaluations, a learning rate λ = 0.0001 were empirically chosen with 

a training mini-batch size of 5.

The rectum surface meshing was programmed under the Microsoft Visual C++ 2010 plat-

form. The TOP-DIR was implemented on the compute uniied device architecture (CUDA) 

programming environment, and the rectum unfolding and the ADASYN algorithm were coded 

in Matlab R2015b. The VGG-16 was built on Python 2.7 equipped with two machine learn-

ing libraries: Lasagne (Dieleman et al 2015) and Theano (Theano Development Team 2016).

2.9. Prediction quantiication and comparisons with predictions via D0.1/1/2cc and texture 

features

To quantitatively evaluate the registration accuracy of the rectum surface, we employed four 

similarity metrics (Chen et al 2015b, 2016): the Dice’s coeficient (DC), the percent error 

(PE), the mean vertex-to-vertex distance (VVD), and the Hausdorff distance (HD). Higher DC 

or lower PE, VVD, and HD indicate better results.

The prediction performance was quantiied by the mean accuracy 

(ACC = (TP + TN)/(TP + FP + FN + TN)), sensitivity (SEN = TP/ (TP + FN)), speciic-

ity (SPE = TN/(TN + FP)), and the area under the receiver operating characteristic curve 

(AUC), where TP is true positive, TN is true negative, FP is false positive, and FN is false 

negative. The repeated stratiied 10-fold cross validation (CV) and the leave-one-out cross 

validation (LOOCV) method were used to assess the prediction performance.

For comparison, we evaluated the advantage of the proposed model over using the dose 

volume parameters, i.e. D0.1cc, D1cc, and D2cc (most exposed 0.1, 1, and 2 cm3 volume), for 

toxicity prediction. The D0.1/1/2cc were irst computed from the EBRT  +  BT EQD2 dose by 

the ‘worst-case scenario’ (WS) addition method (ICRU 2013), and a logistic regression was 

performed on the extracted D0.1/1/2cc to calculate the toxicity probability.

We also extract 43 texture features from the RSDM, including 3 irst-order gray level sta-

tistical features, 9 gray level co-occurence matrix (GLCM) texture features, 13 gray level 

run-length matrix (GLRLM) texture features, 13 gray level size zone matrix (GLSZM) tex-

ture features, and 5 neighborhood gray-tone difference matrix (NGTDM) texture features 

(Vallieres et al 2015). Statistical analysis was irst performed to screen out those features with 

statistical signiicance, on which logistic regression was performed to estimate toxicity.

We used the Mann–Whitney test to perform the statistical analyses in this study. Results 

were considered to be statistically signiicant if p < 0.05.
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3. Results

3.1. Rectum DIR

Though substantial deformation usually occurs between two fractional rectums, the TOP-DIR 

can still produce satisfactory registration results (as example cases shown in igure 2). For all 

42 evaluated patients, there are 198 BT fractions in total, and 156 DIRs have been performed. 

The average DC, PE, VVD, and HD before and after TOP-DIR registration over the patient 

group are summarized in table 1. The mean DC increases from 0.71 to 0.86, and the mean PE, 

VVD, and HD decrease from 0.62, 1.5 mm, and 7.0 mm to 0.26, 0.7 mm, and 3.9 mm, respec-

tively. These quantitative results indicate that the TOP-DIR based rectum surface registration 

achieved high DIR accuracy.

3.2. Rectum unfolding

An example case of a rectum surface dose rendered in 3D and the corresponding unfolded 

2D RSDM may be seen in igures 3(a) and (b), respectively. The cut is positioned along the 

posterior-most end of the rectum, and therefore, the horizontal axis of the lattened surface 

dose map denotes the position along the contour circumference, starting clockwise (view from 

rectum top to bottom) in the directional order of ‘posterior’, ‘left’, ‘anterior’, ‘right’, and ‘pos-

terior’. The vertical axis lies along the superior and inferior direction.

The averaged RSDMs for patients with and without toxicity are shown in igures 6(b) and 

(c), respectively. These igures show that the high dose region is at the top part of the rec-

tum in patients who developed toxicity. This observation is analogous to those reported by 

Heemsbergen et al (2005) and Munbodh et al (2008), who studied rectum toxicity in prostate 

cancer patients with EBRT and also observed similar upward shift of the high dose region. We 

Figure 2. Six example cases of rectum surface meshes before (irst row) and after 
(second row) TOP-DIR. Red: rectum in reference fraction; yellow: rectum in other 
fractions.

Table 1. The mean (±SD) DC, PE, VVD and HD before and after rectum surface 
registration by TOP-DIR.

DC PE VVD (mm) HD (mm)

Before TOP-DIR 0.71  ±  0.04 0.62  ±  0.12 1.5  ±  0.2 7.0  ±  1.3

After TOP-DIR 0.86  ±  0.02 0.26  ±  0.03 0.7  ±  0.1 3.9  ±  0.7
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can also see from igures 6(b) and (c) that the average dose is higher in the high dose region 

of the toxicity group and covers a larger rectum region. However, as pointed out by Munbodh 

et al (2008), the high dose region in the average RSDM should be interpreted with caution: the 

larger high dose region found in the average toxicity group RSDM does not necessarily mean 

that individual RSDMs of each toxicity patient will show a larger high dose region. One pos-

sible explanation for this phenomenon is that the high dose regions in the non-toxicity group 

are more dispersed and therefore appear smaller in the averaged RSDM.

A pixel-wise Mann–Whitney test performed on the RSDMs between the toxicity and non-

toxicity groups generated a pixel-wise p-value map; only small p values (< 0.05) are shown 

in igure  6(a). The region that shows an evident statistical difference (p < 0.01, arrow in  

igure 6(a)) is located on the upper high dose region of the rectum.

3.3. Prediction performance comparisons

Table 2 lists the prediction results by logistic regression on the cumulative D0.1/1/2cc EQD2 

doses extracted from the rectum surface via the WS addition method. Though the mean 

D0.1/1/2cc on the toxicity group are generally higher than the non-toxicity group, the prediction 

capability of the logistic regression on the D0.1/1/2cc is only moderate, with SEN: 56.7% and 

52.8%, SPE: 50% and 60.0%, and AUC: 0.47 and 0.58 in LOOCV and 10-fold CV, respec-

tively. These results suggest that the 1D dose volume parameters D0.1/1/2cc, which exclude 

spatial dose information, are not powerful rectum toxicity predictors.

Forty-three texture features were extracted from the RSDM, and only four features were 

found to be statistical signiicant (p < 0.05), including two GLCM (contrast, correlation) and 

two NGTDM (coarseness, complexity), which were further used for toxicity prediction by 

logistic regression. As summarized in table 3, texture features from the RSDM can generate 

better predictive performance than the D0.1/1/2cc, with SEN: 72.1% and 70.8%, SPE: 59.0% 

and 58.0%, and AUC: 0.7 and 0.7 for 10-fold CV and LOOCV, respectively. This implied that 

features from the 2D RSDM might offer more useful dosimetric information to correlate rectal 

toxicity and dose distribution.

Figure 3. Example of unfolding (a) the 3D rectum surface dose to (b) the 2D RSDM. 
The abbreviations in (b) indicate the directions of ‘superior’, ‘inferior’, ‘posterior’, 
‘anterior’, ‘right’, and ‘left’.
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For the propose model, we have compared different ine-tuning strategies and validated 

the gains of transfer learning over training the VGG-16 from scratch. The comparison results 

are summarized in table 4 and igures 4 and 5. The VGG-16 network was either ‘shallowly’ 
ine-tuned on the last few fully connected layers (e.g. only fc8, or fc7/fc6–fc8), or ine-tuned 

‘deeper’ on all the layers (e.g. conv1–fc8). The VGG-16 performs moderately when trained 

from scratch or with only the last few fully connected layers ine-tuned. Incremental perfor-

mance may be observed when more convolutional layers are included in ine-tuning. The 

ROC analysis for LOOCV (igure 4) also favors the inclusion of more layers for ine-tuning, 

and similar trends were also observed in 10-fold CV. Furthermore, decreased prediction per-

formances were seen when more training epochs were used (igure 5), implying a tendency 

of getting over-itting. Therefore, we opted to ine-tune all layers of VGG-16 with a small 

training epoch number of one for the rest of the evaluations in this study. Fully ine-tuning all 

layers of VGG-16 achieves satisfactory prediction results, with an SEN: 61.1% and 75%, SPE: 

70% and 83.3%, and AUC: 0.70 and 0.89 respectively for 10-fold CV and LOOCV.

Better performance was seen in the LOOCV than the 10-fold CV, this might attribute to 

the smaller size of training dataset used in each fold of validation in the10-fold CV, where 

such performance discrepancy can be evident in a small sample scenario. Though 10-fold CV 

is a well-accepted validation procedure in the data mining ield with large sample size, the 

LOOCV can also produce unbiased validation when the available data are rare, especially in 

the medical domain where only limited data samples are available (Refaeilzadeh et al 2009).

3.4. Grad-CAM map

In LOOCV, for each testing RSDM input into the inal trained VGG-16, a Grad-CAM map is 

generated along with the output prediction. The Grad-CAM map is resampled to the size of 

the input image and normalized to [0, 1], with higher values representing greater importance 

in making the prediction decision. The Grad-CAM map can help understand how the network 

scores the input RSDM with learned features (e.g. dose distribution pattern) from different 

regions of the input RSDM. Generally, regions of the Grad-CAM map with larger values 

Table 2. The accumulative D0.1/1/2cc EQD2 doses (Gy, mean (µ)  ±  SD (σ)) obtained by 
the ‘worst-case scenario’ addition method and the corresponding prediction by logistic 
regression.

Patient Cohort
Predictive model 
evaluation 
method

Logistic regression

Toxicity
Non-
toxicity SEN SPE AUC

µ 

(σ)

D0.1cc 85.6  ±  11.9 81.8  ±  8.1 10-fold CV 56.7% 50.0% 0.47

D1cc 72.8  ±  8.1 70.2  ±  4.7 LOOCV 52.8% 60.0% 0.58

D2cc 66.8  ±  6.9 64.4  ±  3.8

Table 3. Prediction on statistical signiicant texture features by logistic regression.

Texture features with p < 0.05

Predictive model 
evaluation method

Logistic Regression

SEN SPE AUC

GLCM(contrast, correlation); 

NGTDM (coarseness, complexity)

10-fold CV 72.1% 59.0% 0.70

LOOCV 70.8% 58.0% 0.70
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correspond to regions in the RSDM whose learned features are more important for toxicity 

prediction.

Figures 6(d) and (e), respectively, show the average Grad-CAM maps of the toxicity and 

non-toxicity patients. For the toxicity group, the salient regions of the Grad-CAM are located 

on the upper rectum, which corresponds to the high dose regions in the RSDM. In contrast, the 

salient regions in the non-toxicity group are mostly located in the low dose regions in RSDM. 

The mean dose comparisons of different salient regions between the two groups are shown in 

igure 6(f). The Grad-CAM maps suggest that the VGG-16 network utilizes learned features 

from the high and low dose regions in the input RSDM to yield a inal prediction score. In 

addition, the salient regions of the average Grad-CAM of the toxicity group (igure 6(d)) have 

a similar distribution with the p-value map (igure 6(a)), especially in the regions with small 

p < 0.01 (arrow in igures 6(a) and (d)), suggesting that dose features from these regions in 

the RSDM are critical for discriminating toxicity from non-toxicity. When comparing the 

average toxicity Grad-CAM with the average non-toxicity Grad-CAM, the salient regions 

of the toxicity group may be found mainly in the high dose regions. In contrast, the salient 

Table 4. Prediction performance by training from scratch or ine-tuning different layers 
of VGG-16.

Fine-tuning strategy

10-fold CV LOOCV

SEN SPE AUC SEN SPE AUC

Train from scratch 55.6% 67.7% 0.67 33.3% 63.3% 0.56

Fine-tune only fc8 41.7% 77.4% 0.66 66.7% 43.3% 0.52

Fine-tune fc7–fc8 41.7% 80.4% 0.66 50.0% 46.0% 0.51

Fine-tune fc6–fc8 43.5% 82.2% 0.71 50.0% 50.0% 0.55

Fine-tune conv1~fc8 61.1% 70% 0.70 75% 83.3% 0.89

Figure 4. ROC analysis of VGG-16 trained from scratch or ine-tuned with different 
layers using LOOCV.
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regions of the non-toxicity group spread out across the low dose regions. This implies that the 

VGG-16 CNN used dose features from the high and low dose regions to make prediction deci-

sions, and such features could be geometric features, such as shape, location, area, perimeter 

(or perhaps their ratios), etc, from the high and low dose regions of the rectum.

4. Discussion and conclusions

In this paper, we have successfully developed a rectum toxicity prediction model by apply-

ing a pre-trained CNN network to unfolded RSDMs from cervical cancer patients treated 

with combined BT and EBRT. A state-of-the-art VGG-16 CNN pre-trained on a large-scale 

natural image dataset, ImageNet, was used as the network structure and was further ine-tuned 

on the training RSDMs cohort to adapt to our medical application. Satisfactory prediction 

results achieved in this work have demonstrated the feasibility of transferring the learned 

CNN knowledge from natural image to medical image, even though the substantial difference 

between the two applications suggests that such transfer may be impossible. To the best of 

our knowledge, this is the irst attempt to apply the transfer learning of CNN to radiation dose 

distribution analysis.

The irst step toward estimating an accumulative EBRT  +  BT dose is to accurately align 

the underlying anatomy. Therefore, the total EBRT  +  BT dose is ideally obtained by DIR, 

which provides means for accumulating dose at tissue voxel level and theoretically can predict 

 

LOOCV

10-fold CV

Figure 5. Prediction performance versus ine-tuning on different layers and using 
different number of training epochs.

X Zhen et alPhys. Med. Biol. 62 (2017) 8246



8259

accurate dose absorption and patient’s response to a course of treatment. In our EBRT treat-

ment plan regimen, a homogenous dose distribution (hot spot  <107%) often covers the entire 

pelvic region. Under this scenario, even if the rectum has a large motion, it still receives 

almost the same dose as planned. On the other hand, DIR between EBRT and BT CTs is a 

non-trivial task because of the clinical use of the intracavitary applicator in BT. Registering 

the BT CT image with applicator to the EBRT CT image without applicator (or vice versa) 

is dificult, if not impossible, since the point-to-point correspondence assumption is usually 

violated in most DIR algorithms. There are several reported attempts to address this issue 

(Berendsen et al 2013, Vásquez Osorio et al 2015), for example, Berendsen et al (2013) pro-

posed a DIR with penalty term that minimizes the volume of the missing structure for cervical 

MR images with and without applicator. Vásquez Osorio et al (2015) validated a structure-

wise registration with vector ield integration to map the largely deformed anatomies between 

EBRT and BT. However, these novel approaches need comprehensive validations before they 

can be conidently applied in a clinical setting. Thus adding EBRT to BT without deformation 

is a good approximation without knowing the uncertainties brought by the EBRT-BT DIR.

The hollow anatomic structure of the rectum makes it possible to take advantage of the 

CNN, which takes 2D images as input. The lattened 2D RSDM contains the spatial dose 

distribution information and is intrinsically superior to the 1D dose volume parameters, e.g. 

D0.1/1/2cc, in revealing the dose-toxicity relationship, as shown by the superior prediction per-

formance achieved via the proposed model compared to the prediction using logistic regres-

sion on D0.1/1/2cc. Furthermore, the proposed model can easily extend its application to other 

critical organs with hollow structures, such as the bladder, vagina, etc.

 

Toxicity

(b) (c)

Non-ToxicityP-value Map

(a)

Non-Toxicity Grad-CAM

(e)

Toxicity Grad-CAM

(d) (f)

Mean Dose of Salient Region in 

Grad-CAM

Figure 6. (a): Pixel-wise p-value map (Mann–Whitney test) with small p  <  0.05 
between (b) and (c): the average rectum RSDM of the toxicity and non-toxicity patients. 
The arrow in (a) indicates regions with p  <  0.01. (d) and (e): Average Grad-CAM map 
of the toxicity and non-toxicity groups. The arrow indicates the salient region. (f ): Box 
plot of the mean dose in different salient regions extracted from the Grad-CAM map. 
The boxes run from the 25th to 75th percentile; the two ends of the whiskers represent 
the 5% and 95% of the data, and the horizontal line in the box represents the median 
value. The circles represent outliers.
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In this study, we used VGG-16 as the CNN architecture mainly because of its outstand-

ing performance in the large scale natural images classiication challenge (Simonyan and 

Zisserman 2014). Other state-of-the-art CNN structures, such as CifarNet (Krizhevsky 2009), 

AlexNet (Krizhevsky et al 2012), GoogLeNet (Szegedy et al 2014), etc, may yield even bet-

ter prediction results. Nevertheless, we did not validate these networks, since the purpose 

of this study was to demonstrate the possibility of transferring learned knowledge between 

two distinct applications, instead of comparing prediction performances among the currently 

available CNNs.

Though recent studies have demonstrated the successful application of transfer learning in 

medical ields with different image modalities, such as x-ray, CT, ultrasound, colonoscopy, 

etc, (Bar et al 2015, Chen et al 2015a, Ginneken et al 2015, Shin et al 2016, Tajbakhsh et al 

2016), the rationale for its effectiveness is still under investigation. The ‘transferability’ of 

knowledge imbedded in a pre-trained network depends on the difference between the two 

databases: the one on which the CNN was trained and the one to which the learned knowledge 

will be transferred (Tajbakhsh et al 2016). The difference between natural images and textured 

medical images (e.g. CT, MR) is considerable, and the difference between natural images and 

radiation dose images is even greater. As a result, ine-tuning all of the CNN layers might be 

necessary (Tajbakhsh et al 2016). The experimental results in this study support the claim that 

the CNN tends to behave more stably when lower convolutional layers are also ine-tuned.

This work also demonstrates the gain of transfer learning over training from scratch. Given 

the relatively small patient sample size, training a CNN from scratch is dificult, if not impos-

sible, because a small sample size might not be suficient to train a large number of network 

parameters in a deep CNN. For transfer learning, in contrast, the network parameters have 

been initialized and only need further ine-tuning. Previous studies have shown that trans-

ferring features followed by further ine-tuning can result in networks that generalize better 

than those trained directly on the target dataset (Yosinski et al 2014). One thing we should 

emphasize is that the dose-toxicity prediction model established in this study is preliminary, 

since limited patient data was used. A large dataset is a necessity to obtain a more powerful 

and accurate prediction model.

In this study, we also try the Grad-CAM to reveal the possible location of rectal toxicity. We 

found that the small p-value regions on the RSDM (igure 6(a)), which indicate the difference 

between the toxicity and non-toxicity RSDMs, coincide with the salient regions of the aver-

age Grad-CAM of the toxicity group. Each Grad-CAM map was generated by the prediction 

model along with every input testing RSDM, so the salient region of the averaged Grad-CAM 

map informs us where those important dose features come from when the prediction model 

makes classiication decisions. The small p-value regions on RSDM and the salient region of 

the toxicity group’s Grad-CAM both point to the superior part of the rectum, suggesting that 

the superior rectum might imply a possible positional explanation for rectum toxicity. This 

observation accords with those reported by Heemsbergen et al (2005) and Munbodh et al 

(2008), who found that the high dose was shifted upward to the top part of the rectum in their 

studies of rectum toxicity in prostate cancer patients. However, further in-depth investigations 

are still needed to provide more solid clinical evidence to support the claim that the superior 

rectum is mainly responsible for rectum toxicity.

Acknowledgments

This work was supported by Varian Medical Systems, Inc. (#OTD-109235), the National 

Science Foundation (NSF) ACI-1657364, the National Natural Science Foundation of China 

(81728016 and 81571771). We thank Dr Jonathan Feinberg for editing the manuscript.

X Zhen et alPhys. Med. Biol. 62 (2017) 8246



8261

References

Al-Mansour Z and Verschraegen C 2010 Locally advanced cervical cancer: what is the standard of care? 
Curr. Opin. Oncol. 22 503–12

Andersen E S, Muren L P, Sorensen T S, Noe K O, Thor M, Petersen J B, Hoyer M, Bentzen L and 
Tanderup  K 2012 Bladder dose accumulation based on a biomechanical deformable image 
registration algorithm in volumetric modulated arc therapy for prostate cancer Phys. Med. Biol. 
57 7089–100

Bar Y, Diamant I, Wolf L, Lieberman S, Konen E and Greenspan H 2015 Chest pathology detection 
using deep learning with non-medical training 2015 IEEE 12th Int. Symp. on Biomedical Imaging 
(ISBI) pp 294–7

Bentzen S M, Dorr W, Gahbauer R, Howell R W, Joiner M C, Jones B, Jones D T, van der Kogel A J, 
Wambersie  A and Whitmore  G 2012 Bioeffect modeling and equieffective dose concepts in 
radiation oncology—terminology, quantities and units Radiother. Oncol. 105 266–8

Berendsen F F, Kotte A N T J, de Leeuw A A C, Viergever M A and Pluim J P W 2013 Abdominal 
imaging. computation and clinical applications Proc., 5th Int. Workshop, Held in Conjunction with 
MICCAI 2013 (Nagoya, Japan, 22 September 2013) ed H  Yoshida et  al (Berlin: Springer) pp 
136–44

Bondar L, Hoogeman M S, Vasquez Osorio E M and Heijmen B J 2010 A symmetric nonrigid registration 
method to handle large organ deformations in cervical cancer patients Med. Phys. 37 3760–72

Brock K K, Sharpe M B, Dawson L A, Kim S M and Jaffray D A 2005 Accuracy of inite element model-
based multi-organ deformable image registration Med. Phys. 32 1647–59

Buettner  F, Gulliford  S  L, Webb  S, Sydes  M  R, Dearnaley  D  P and Partridge  M 2009 Assessing 
correlations between the spatial distribution of the dose to the rectal wall and late rectal toxicity 
after prostate radiotherapy: an analysis of data from the MRC RT01 trial (ISRCTN 47772397) 
Phys. Med. Biol. 54 6535–48

Buettner F, Gulliford S L, Webb S, Sydes M R, Dearnaley D P and Partridge M 2012 The dose-response 
of the anal sphincter region—an analysis of data from the MRC RT01 trial Radiother. Oncol. 
103 347–52

Chen H, Ni D, Qin J, Li S, Yang X, Wang T and Heng P A 2015a Standard plane localization in fetal 
ultrasound via domain transferred deep neural networks IEEE J. Biomed. Health Inf. 19 1627–36

Chen  H, Zhen  X, Gu  X, Yan  H, Cervino  L, Xiao  Y and Zhou  L 2015b SPARSE: seed point auto-
generation for random walks segmentation enhancement in medical inhomogeneous targets 
delineation of morphological MR and CT images J. Appl. Clin. Med. Phys. 16 387–402

Chen H, Zhong Z, Liao Y, Pompos A, Hrycushko B, Albuquerque K, Zhen X, Zhou L and Gu X 2016 
A non-rigid point matching method with local topology preservation for accurate bladder dose 
summation in high dose rate cervical brachytherapy Phys. Med. Biol. 61 1217–37

Christensen G E et al 2001 Image-based dose planning of intracavitary brachytherapy: registration of 
serial-imaging studies using deformable anatomic templates Int. J. Radiat. Oncol. Biol. Phys. 
51 227–43

Chui H and Rangarajan A 2003 A new point matching algorithm for non-rigid registration Comput. Vis. 
Image Underst. 89 114–41

Deng J, Dong W, Socher R, Li L-J, Li K and Fei-Fei L 2009 ImageNet: a large-scale hierarchical image 
database CVPR09 (www.image-net.org/)

Dieleman S et al 2015 Lasagne: First release (https://doi.org/10.5281/zenodo.27878)
Dinkla A M, Pieters B R, Koedooder K, Meijnen P, van Wieringen N, van der Laarse R, van der Grient J N, 

Rasch C R and Bel A 2013 Deviations from the planned dose during 48 hours of stepping source 
prostate brachytherapy caused by anatomical variations Radiother. Oncol. 107 106–11

Drean G et al 2016 Identiication of a rectal subregion highly predictive of rectal bleeding in prostate 
cancer IMRT Radiother. Oncol. 119 388–97

Ginneken B V, Setio A A A, Jacobs C and Ciompi F 2015 Off-the-shelf convolutional neural network 
features for pulmonary nodule detection in computed tomography scans 2015 IEEE 12th Int. Symp. 
on Biomedical Imaging (ISBI) pp 286–9

Gray H J 2008 Primary management of early stage cervical cancer (IA1-IB) and appropriate selection of 
adjuvant therapy J. Natl Compr. Cancer Netw. 6 47–52

Green J A, Kirwan J M, Tierney J F, Symonds P, Fresco L, Collingwood M and Williams C J 2001 
Survival and recurrence after concomitant chemotherapy and radiotherapy for cancer of the uterine 
cervix: a systematic review and meta-analysis Lancet 358 781–6

X Zhen et alPhys. Med. Biol. 62 (2017) 8246



8262

Guidi  G, Maffei  N, Vecchi  C, Gottardi  G, Ciarmatori  A, Mistretta  G  M, Mazzeo  E, Giacobazzi  P, 
Lohr F and Costi T 2017 Expert system classiier for adaptive radiation therapy in prostate cancer 
Australas. Phys. Eng. Sci. Med. 40 337–48

Haie-Meder C, Morice P, Castiglione M and Group E G W 2010 Cervical cancer: ESMO clinical practice 
guidelines for diagnosis, treatment and follow-up Ann. Oncol. 21 v37–40

He H, Bai Y, Garcia E A and Li S 2008 ADASYN: adaptive synthetic sampling approach for imbalanced 
learning 2008 IEEE Int. Joint Conf. on Neural Networks (IEEE World Congress on Computational 
Intelligence) pp 1322–8

Heemsbergen W D, Hoogeman M S, Hart G A, Lebesque J V and Koper P C 2005 Gastrointestinal 
toxicity and its relation to dose distributions in the anorectal region of prostate cancer patients 
treated with radiotherapy Int. J. Radiat. Oncol. Biol. Phys. 61 1011–8

Horiot J C, Pigneux J, Pourquier H, Schraub S, Achille E, Keiling R, Combes P, Rozan R, Vrousos C 
and Daly N 1988 Radiotherapy alone in carcinoma of the intact uterine cervix according to G H 
Fletcher guidelines: a French cooperative study of 1383 cases Int. J. Radiat. Oncol. Biol. Phys. 
14 605–11

ICRU 2013 ICRU REPORT 89: prescribing, recording, and reporting brachytherapy for cancer of the 
cervix J. ICRU 13 79–88

Kaus M R, Brock K K, Pekar V, Dawson L A, Nichol A M and Jaffray D A 2007 Assessment of a model-
based deformable image registration approach for radiation therapy planning Int. J. Radiat. Oncol. 
Biol. Phys. 68 572–80

Kayalibay B, Jensen G and van der Smagt P 2017 CNN-based segmentation of medical imaging data 
CoRR (arXiv:1701.03056)

Krizhevsky A 2009 Learning Multiple Layers of Features from Tiny Images (Toronto: University of 
Toronto)

Krizhevsky A, Sutskever I and Hinton G E 2012 ImageNet classiication with deep convolutional neural 
networks Advances in Neural Information Processing Systems vol 25 (Red Hook, NY: Curran 
Associates, Inc.) pp 1097–105

LeCun Y, Bengio Y and Hinton G 2015 Deep learning Nature 521 436–44
Lee R, Chan E K, Kosztyla R, Liu M and Moiseenko V 2012 Dose-distance metric that predicts late 

rectal bleeding in patients receiving radical prostate external-beam radiotherapy Phys. Med. Biol. 
57 8297–307

Lobefalo F et al 2013 Dosimetric impact of inter-observer variability for 3D conformal radiotherapy 
and volumetric modulated arc therapy: the rectal tumor target deinition case Radiat. Oncol. 8 176

Mazeron R et al 2016 Dose-volume effect relationships for late rectal morbidity in patients treated with 
chemoradiation and MRI-guided adaptive brachytherapy for locally advanced cervical cancer: 
results from the prospective multicenter EMBRACE study Radiother. Oncol. 120 412–9

Meijer G J, van den Brink M, Hoogeman M S, Meinders J and Lebesque J V 1999 Dose-wall histograms 
and normalized dose-surface histograms for the rectum: a new method to analyze the dose 
distribution over the rectum in conformal radiotherapy Int. J. Radiat. Oncol. Biol. Phys. 45 1073–80

Michalski J M, Gay H, Jackson A, Tucker S L and Deasy J O 2010 Radiation dose-volume effects in 
radiation-induced rectal injury Int. J. Radiat. Oncol. Biol. Phys. 76 S123–9

Milletari F, Navab N and Ahmadi S-A 2016 V-Net: fully convolutional neural networks for volumetric 
medical image segmentation CoRR (arXiv:1606.04797)

Montana G S, Fowler W C, Varia M A, Walton L A, Mack Y and Shemanski L 1986 Carcinoma of the 
cervix, stage III. Results of radiation therapy Cancer 57 148–54

Moulton C R, House M J, Lye V, Tang C I, Krawiec M, Joseph D J, Denham J W and Ebert M A 2016 
Prostate external beam radiotherapy combined with high-dose-rate brachytherapy: dose-volume 
parameters from deformably-registered plans correlate with late gastrointestinal complications 
Radiat. Oncol. 11 144

Munbodh R, Jackson A, Bauer J, Schmidtlein C R and Zelefsky M J 2008 Dosimetric and anatomic 
indicators of late rectal toxicity after high-dose intensity modulated radiation therapy for prostate 
cancer Med. Phys. 35 2137–50

Ramprasaath R S, Abhishek D, Ramakrishna V, Michael C, Devi P and Dhruv B 2016 Grad-CAM: why 
did you say that? visual explanations from deep networks via gradient-based localization CVPR 
2016 (arXiv:1610.02391)

Refaeilzadeh P, Tang L and Liu H 2009 Encyclopedia of Database Systems ed L Liu and M T ÖZsu 
(Berlin: Springer) pp 532–8

X Zhen et alPhys. Med. Biol. 62 (2017) 8246



8263

Ronneberger  O, Fischer  P and Brox  T 2015 U-Net: convolutional networks for biomedical image 
segmentation CoRR (arXiv:1505.04597)

Rose P G, Ali S, Whitney C W, Lanciano R and Stehman F B 2011 Outcome of stage IVA cervical cancer 
patients with disease limited to the pelvis in the era of chemoradiation: a gynecologic oncology 
group study Gynecol. Oncol. 121 542–5

Russakovsky  O et  al 2015 ImageNet large scale visual recognition challenge Int. J. Comput. Vis. 
115 211–52

Shin  H  C, Roth  H  R, Gao  M, Lu  L, Xu  Z, Nogues  I, Yao  J, Mollura  D and Summers  R  M 2016 
Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset 
characteristics and transfer learning IEEE Trans. Med. Imaging 35 1285–98

Simonyan K and Zisserman A 2014 Very deep convolutional networks for large-scale image recognition 
CoRR (arXiv:1409.1556)

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V and Rabinovich A 
2014 Going deeper with convolutions arXiv e-prints (arXiv:1409.4842)

Tajbakhsh N, Shin J Y, Gurudu S R, Hurst R T, Kendall C B, Gotway M B and Liang J 2016 Convolutional 
neural networks for medical image analysis: full training or ine tuning? IEEE Trans Med Imaging 
35 1299–312

Tanderup K et al 2016 Effect of tumor dose, volume and overall treatment time on local control after 
radiochemotherapy including MRI guided brachytherapy of locally advanced cervical cancer 
Radiother. Oncol. 120 441–6

Tanderup K, Nesvacil N, Potter R and Kirisits C 2013 Uncertainties in image guided adaptive cervix 
cancer brachytherapy: impact on planning and prescription Radiother. Oncol. 107 1–5

Theano Development Team 2016 Theano: a python framework for fast computation of mathematical 
expressions (arXiv:1605.02688)

Thirion J P 1998 Image matching as a diffusion process: an analogy with Maxwell’s demons Med. Image 
Anal. 2 243–60

Torre L A, Bray F, Siegel R L, Ferlay J, Lortet-Tieulent J and Jemal A 2015 Global cancer statistics, 
2012 CA: Cancer J. Clin. 65 87–108

Tucker S L, Zhang M, Dong L, Mohan R, Kuban D and Thames H D 2006 Cluster model analysis of 
late rectal bleeding after IMRT of prostate cancer: a case-control study Int. J. Radiat. Oncol. Biol. 
Phys. 64 1255–64

Vallieres M, Freeman C R, Skamene S R and El Naqa  I 2015 A radiomics model from joint FDG-
PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the 
extremities Phys. Med. Biol. 60 5471–96

Vasquez Osorio E M, Hoogeman M S, Bondar L, Levendag P C and Heijmen B J 2009 A novel lexible 
framework with automatic feature correspondence optimization for nonrigid registration in 
radiotherapy Med. Phys. 36 2848–59

Vásquez Osorio E M, Kolkman-Deurloo I-K K, Schuring-Pereira M, Zolnay A, Heijmen B J M and 
Hoogeman M S 2015 Improving anatomical mapping of complexly deformed anatomy for external 
beam radiotherapy and brachytherapy dose accumulation in cervical cancer Med. Phys. 42 206–20

Wang H, Dong L, Lii M F, Lee A L, de Crevoisier R, Mohan R, Cox J D, Kuban D A and Cheung R 
2005 Implementation and validation of a three-dimensional deformable registration algorithm for 
targeted prostate cancer radiotherapy Int. J. Radiat. Oncol. Biol. Phys. 61 725–35

Wognum S, Bondar L, Zolnay A G, Chai X, Hulshof M C, Hoogeman M S and Bel A 2013 Control over 
structure-speciic lexibility improves anatomical accuracy for point-based deformable registration 
in bladder cancer radiotherapy Med. Phys. 40 021702

Wortel  R  C, Witte  M  G, van der Heide  U  A, Pos  F  J, Lebesque  J  V, van Herk  M, Incrocci  L and 
Heemsbergen W D 2015 Dose-surface maps identifying local dose-effects for acute gastrointestinal 
toxicity after radiotherapy for prostate cancer Radiother. Oncol. 117 515–20

Xiong L, Viswanathan A, Stewart A J, Haker S, Tempany C M, Chin L M and Cormack R A 2006 
Deformable structure registration of bladder through surface mapping Med. Phys. 33 1848–56

Yosinski J, Clune J, Bengio Y and Lipson H 2014 How transferable are features in deep neural networks? 
Advances in Neural Information Processing Systems vol 27 (Red Hook, NY: Curran Associates, 
Inc.) pp 3320–8

Zhen X, Chen H, Yan H, Zhou L, Mell L K, Yashar C M, Jiang S, Jia X, Gu X and Cervino L 2015 A 
segmentation and point-matching enhanced eficient deformable image registration method for 
dose accumulation between HDR CT images Phys. Med. Biol. 60 2981–3002

Zhong Z, Guo X, Wang W, Levy B, Sun F, Liu Y and Mao W 2013 Particle-based anisotropic surface 
meshing ACM Trans. Graph. 32 1–14

X Zhen et alPhys. Med. Biol. 62 (2017) 8246


