ANASEN: the Array for Nuclear Astrophysics and Structure with Exotic Nuclei

E. Koshchiy^{a,c}, J.C. Blackmon^b, G.V. Rogachev^{a,c}, I. Wiedenhöver^c, L. Baby^c, P. Barber^c, D.W. Bardayan^d, J. Belarge^c, D. Caussyn^c, E.D. Johnson^c, K. Kemper^c, A.N. Kuchera^c, L.E. Linhardt^b, K.T. Macon^b, M. Matoš^d, B.S. Rasco^b, D. Santiago-Gonzalez^{b,c}

^aTexas A&M University, Department of Physics & Astronomy and Cyclotron Institute, College Station, TX 77843, USA
^bLouisiana State University, Department of Physics & Astronomy, Baton Rouge, LA 70803, USA
^cFlorida State University, Department of Physics, Tallahassee, FL 32306, USA
^dPhysics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

Abstract

An active target detector array, ANASEN, has been developed for nuclear reaction studies with rare isotope beams at low energies. It aims at measurements of the excitation functions for proton and α - particle elastic and inelastic scattering and direct measurements of (α,p) reactions with exotic nuclei in inverse kinematics. ANASEN is composed of three types of charged particle detectors. The length of the active area is 340 mm and the total covered area is 1300 cm² (almost 3π steradian solid angle coverage) providing high efficiency for experiments with low intensity radioactive beams. A mix of 78 conventional electronics channels (for Proportional Counter and CsI- detectors) and 480 dedicated high-density ASICs electronics channels for the silicon detector are used for readout. PACS 29.40.Cs Gas-filled counters: ionization chambers, proportional, and avalanche counters 29.40.Gx Tracking and position-sensitive detectors

Keywords: Active gas target; Charge particles detection; Multiwire position sensitive proportional counter; Silicon-strip detectors; CsI(Tl) detectors; Radioactive beams; Inverse kinematic

1. Introduction

11

12

13

15

17

19

20

21

23

Reactions involving radioactive nuclei play an important role in stellar explosions, but limited experimental information is available due to difficulties in producing and studying radioactive nuclei. The progress in development of radioactive nuclear beams (both in-flight and re-accelerated) provides greater access to these unstable isotopes, but the typical beam intensities are still much lower compared to stable beam facilities. That's why more efficient and selective techniques and devices are required to be able to study many important reactions of astrophysical interests.

For instance, novae and X-ray bursts are the most common stellar explosions in the Galaxy and result from thermonuclear explosions on the surface of compact stars in binary systems. The study of these processes is important to understand the structure and evolution of white dwarfs and neutron stars, as well as accretion and mixing mechanisms that play a crucial role in many astrophysical environments. So far our understanding of novae and X-ray bursts is limited in part by a lack of nuclear data regarding reactions that play a key role in the explosions, such as (p,γ) , (p,α) and (α,p) . The rates of these reactions are often determined by the properties of low-energy resonances that correspond to nuclear energy levels just above the proton $(or \alpha)$ threshold in corresponding compound nuclei. The large uncertainties that exist in most of these reaction rates are due to unknown properties of these low-energy resonances.

The Array for Nuclear Astrophysics and Structure with Exotic Nuclei (ANASEN), developed in a collaboration between Florida State University (FSU), Louisiana State University (LSU), and Texas A&M University (TAMU) was designed primarily to be used in measurements of (α,p) reactions and of proton and alpha elastic and inelastic scattering in inverse kinematic using radioactive ion beams and thick targets. The main philosophy was to construct a detector that employs the advantages of an extended gas target, has vertex reconstruction capability and can still be used with very high intensity radioactive beams (up to 10^9 pps) that will soon become available at the Facility for Radioactive Ion Beams (FRIB) at Michigan State University.

Measurements of proton elastic and inelastic scattering will indirectly determine the properties (energies, spin-parities and proton partial widths) of some of the nuclear levels that are important in (p,γ) and (α,p) reactions. While direct measurements of (p,γ) reactions are needed for the most important cases, such measurements are especially difficult, requiring both high radioactive beam intensities and substantial experimental infrastructure (e.g., large recoil separators). More straightforward studies like proton elastic and inelastic scattering are needed first to provide a basic picture of the energy level structure of these nuclei and to help identify what are, in fact, the most important resonances. Since such reaction rates depend exponentially on the resonance energy, such indirect studies can substantially reduce uncertainties in the nuclear reaction rates.

ANASEN is targeted towards measurements with the RESO-LUT radioactive ion beam facility at the John D. Fox Supercon-

ducting Accelerator Laboratory at FSU ([1]) and with the new 91 re-accelerated beam facility (ReA3) at the National Supercon- 92 ducting Cyclotron Laboratory at Michigan State University. 93

ANASEN has cylindrical geometry, that is well suited for 94 high efficiency inverse kinematics reaction studies. The target 95 gas is used as an active gas for a cylindrical gas proportional 96 counter array that provides position information on the reac- 97 tion products at one point close to the beam axis. The light 98 recoils (typically protons or α -particles) are detected by a posi- 99 tion sensitive silicon-strip detector array backed with CsI. The 100 particular geometry of the gas detector electrodes and the sili- 101 con detector array allows reconstruction of the track of each re- 102 action product on an event-by-event basis to allow the reaction, 103 center-of-mass energy, and final state to be determined. The use 104 of CsI allows high-energy protons to be detected as well.

ANASEN achieves its high sensitivity and efficiency by com- $_{106}$ bining a high areal-density target with a large solid angle de- $_{107}$ tector coverage, amounting to around $\sim 3\pi$ sr. Simultaneously, $_{108}$ it excludes the region of high ionization density induced by $_{109}$ the beam, which allows for relatively high-intensity radioactive- $_{110}$ beams to be used. Its design allows for an efficient measure- $_{111}$ ment of excitation functions over a large dynamic range of cross- $_{112}$ sections. These are the properties needed for the spectroscopy- $_{113}$ of astrophysical resonances and measurements of (α, p) reac- $_{114}$ tions.

The TRIUMF Annular Chamber for Tracking and Identifica-116 tion of Charged Particles (TACTIC) aims toward a similar goal₁₁₇ [2] but has very different design.

2. Array design

58

59

62

63

67

70

73

74

75

77

82

A schematic cross-section view of ANASEN is shown in 122 Fig. 1.

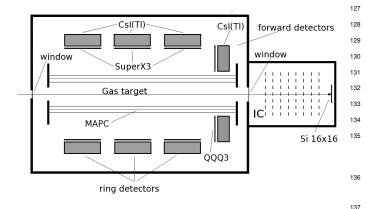


Figure 1: Schematic cross-section view of ANASEN

The detector follows a cylindrical design pattern, with three₁₄₀ layers of detector systems surrounding the beam axis. The in-₁₄₁ nermost layer is a multi-anode position-sensitive proportional₁₄₂ counter (MAPC), which enables the *active-target* mode. At₁₄₃

radii of 88 mm from the beam- axis, three identical rings of 12 rectangular Silicon strip detectors are surrounding the MAPC. For detecting particles at laboratory angles near 90°, a most effective "barrel" geometry that involves detectors arranged parallel to the incident beam direction (and more perpendicular to track of detected particles) has been selected. Angles near 90° are more important for measurements of (α,p) -reactions with an extended gas target to make it easier to reconstruct events that are emitted more perpendicular to the incident beam direction (a notable recent implementation of this detector geometry is ORRUBA ([3]) which has been developed for measurements of (d,p) reactions). The Silicon detectors of the Super-X3 design are backed by CsI(Tl) crystals of trapezoidal-bar geometry.

In addition to the "ring"- assemblies, the beam-forward angles are covered by an annular configuration of four QQQ3design silicon strip detectors. Each QQQ3 detector is backed by the set of 4 segment shaped CsI(Tl) detectors. The "forward" assembly covers a wide angular range of polar angles from about 3° (at the maximum feasible length of 70 cm) up to $> 70^{\circ}$ in the lab frame, if the reaction occurs close to the forward QQQ3 detectors. The ANASEN elements are mounted inside a cylindrical stainless steel scattering chamber of 60 cm diameter and 100 cm length. An entrance window separates the ANASEN volume from the beamline vacuum. Depending on the experiment, a window as thin as 2 micron (Aramica, Asahi Chemical, Japan or Havar foil for the rare isotope beams that have intensity exceeding 10⁷⁻⁸ ions/sec) or thicker can be used. For example, the 7.5 micron Kapton (DuPont, USA) window with diameter of 10 mm allows to run safely at the gas pressure up to about 2000 Torr (see, for example: [4]) and take the most beams of interest with the beam current up to 100 pA.

A basic pump-out pressure at the level of 10^{-6} Torr is provided by assembly of turbo and scroll pumps (Leybold).

In addition to the detectors described above, a fast-counting ionization chamber (IC) can be attached to ANASEN at $\theta_{lab}=0^{\circ}$. The IC is an ancillary detector for experiments that require detection of the heavy recoils but it can also be used for beam tuning and diagnostics of beam composition. The IC consist of 20 parallel copper planes with 1mm spaced wire grid, supported by four isolated rods. The diameter of the entrance window is 6.4 cm. The chamber can be partitioned into several independent segments, providing for additional particle ID when needed. The three-segment configuration was used in the first experiments. The IC's maximum counting rate is about 10^5 pps. Some details can be found in [5].

3. Individual array components

The general view of the main components of ANASEN is shown in Fig. 2.

3.1. Multi-Anode Proportional Counter (MAPC)

The two basic requirements for the MAPC design are: i) high gain to be able to detect high energy protons that lose less than 10 keV in the active volume of the MAPC cell, and ii) good position resolution (within few mm range) for tracking. Both

138

120

121

124

125

QQQ3
Csl(Tl)

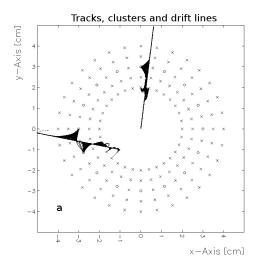
Csl(Tl)

176 mm

Figure 2: ANASEN elements: Top Panel: Multi-Anode position sensitive Proportional Counter (MAPC); Central panel: Forward detector array (one of QQQ3 Si detector has been removed in order to show the CsI(Tl) detectors lebelind it); Bottom panel: Ring array comprised of 12 Super-X3 backed by ScI(Tl).

requirements can be satisfied by proper selection of the anode material and detector geometry.

The optimized configuration of the proportional counter was determined using the computer code GARFIELD-9 [6]. Following the results of the simulation, the proportional counter was made with anodes arranged cylindrically with respect to the beam axis at the radial distance of 30 mm. Each anode is surrounded by 8 grounded cathodes, to form a trapezoidal pattern Faraday cage. This arrangement makes 19 independent "hexagonal" proportional counter cells with an effective thickness of 12.5 mm, as is shown in Fig. 3a and 3b. The outer and inner guard rings (Fig. 3) are used to suppress delta electrons produced in the area outside of the cells from drifting into the cells.


Several different techniques of position sensitivity were reviewed in [7], the simplest one of which is charge division over a resistive anode wire, with examples discussed in Refs. [8-10]. We chose this method for ANASEN, which made the choice of the anode wire material critical, with few materials providing the mechanical stability at the small diameter for the required proportional counter gain, combined with the high wire resistance for good position resolution. Alloy materials, such as Nichrom (0.8Ni+0.2Cr), Iron Alloy 875 (0.72Fe+0.225Cr+0.055Al), High Resistance Alloy (0.55Fe+0.375Cr+0.075Al) were considered, but show low resistances of 150-250 Ω /cm, while the Carbon- coated Quartz that has the highest resistance proved to be not durable enough. The solution was found in Carbon fiber filaments, whose performance was studied in [11, 12], and which has been used in several proportional counters [13-15]. Following the design of Ref.[7] a Carbon fiber material (Panex-35, ZOLTEK Co) with μ m thickness was chosen as the anode material for ANASEN.

For the cathode wires, two different materials were tested. The prototype was made from Silver- plated Copper with 75 μ m diameter. We experienced that the wires stretched with time, which led to instabilities. Instead, Gold- plated Tungsten wire of the same diameter was selected for the final design.

The total length of the active area of MAPC is 430 mm.

Pre-treated with a solvent in an ultrasonic bath, Carbon fiber filaments were pasted with conductive paint (Silver Print 2, GC Electronics) to the Nickel- plated Copper pins. The filaments were stretched between the two end plates (printed circuit boards), mounted to the Aluminum frame (see Fig. 2, MAPC) forming the body of wall-less counter. The qualified filaments that passed the mechanical strength test (0.08 N) were soldered to the end-plates. The mounting tension on the individual carbon fiber was about 0.05 N.

Gold-plated Tungsten cathode wires and guard-ring electrodes were spring-loaded at the upstream end-plate of the detector with a tension of around 0.35 N. The ends of the cathode wires were soldered to the MAPC board and grounded. The inner and outer guard-rings are mechanically attached in the same way, but they have independent feed circuits. As a result of the combined wire tensions, the total force on the end plates is about 30 N.

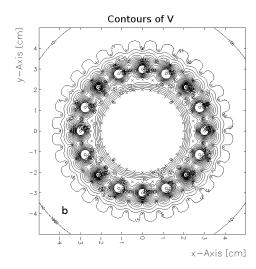


Figure 3: GARFIELD simulations **a**: cross section of multiwire proportional²²⁵ counter (\circ – anodes; \times – cathodes and "guard"- electrodes) with electron drift₂₂₆ lines from the tracks of 5 MeV protons; Methane, P=300 torr); **b**: Contours of electric field (V_{anode} =500V, both cathodes and "guard" electrodes - grounded)

3.2. Silicon detectors

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

Surrounding the proportional counter is a barrel of silicon detectors that was developed in conjunction with Micron Semiconductor. Silicon strip detectors were chosen for ANASEN because a large area can be covered while achieving good energy and position resolution. The Super X3 model is a doublesided, 75x40 mm silicon-strip resistive layer detector, segmented on both front and back sides. The Super-X3 design was adapted from the X3 detectors, used for ORRUBA [3]. The difference is that the back ohmic faces of the detector are segmented into four 18x40 mm² strips that are used to determine the energy, independent of position, and assist with position calibration of the resistive front strips. The front (junction) face of Super-X3 detector has four resistive strips that are 75 mm long and 10 mm wide. There are 12 signals, 8 front and 4 back, for each of these detectors. The Super X3 detector design is shown in Fig. 4.

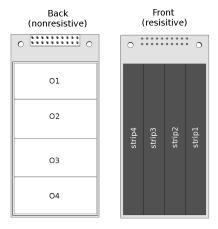


Figure 4: SuperX3 detector

Annular double sided silicon detectors were designed to cover a large fraction of the angular range for forward angles. The active area of each double-sided quadrant detector extends between radial distance of 55 mm to 99 mm. The forward detector set covers an area of 210 cm², with the largest radius possible using 4 pieces of silicon (using 15 cm wafer technology). The QQQ3 detector has 16 front rings and an inner a active area of 55 mm and 99 mm, respectively, 16 back segments with 4 quadrant detectors creating a complete set. The front rings and the back segments are shown in Fig. 5. Both of the segmented silicon detectors, Super X3 and QQQ3, are 1000- μ m- thick. This silicon thickness corresponds to the range of 12 MeV protons at normal incidence.

3.3. CsI(Tl) scintillator array

The outer layer of the array was composed from trapezoid shaped 26-mm- thick CsI(Tl) scintillator from SCIONIX. These detectors are used to identify and measure residual energy of particles that can penetrate through the silicon array (typically only high energy protons and deuterons).

217

218

219

220

221

222

223

229

230

231

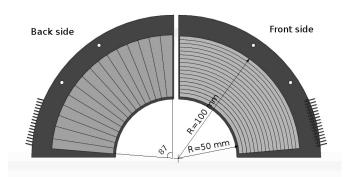


Figure 5: QQQ3 detector

There are two different geometries of CsI(Tl) detectors used in ANASEN, shown in Fig. 6. Type I detectors have been designed so that an arrangement of 16 crystals can fully cover the forward silicon detectors in pie shaped segments, four for each QQQ3 detector. Each CsI(Tl) crystal is wrapped in 2-\mum thick 276 aluminized mylar, and has a built-on preamplifier which is read 277 out by a single Hamamatsu 20x20 cm² S3204 PIN diode. Type 278 II CsI(Tl) detector has been designed to fit behind the Super-X3 279 detectors, covering the same solid angle.

The face of the Type II crystal covers the back side of the 281 SuperX3 silicon detector and extends 1.5 mm beyond its ac-282 tive area. It tapers outward with radius on the sides at an angle 283 of 13.5°. This geometry ensures that if a recoil particle that is₂₈₄ scattered at 90° with respect to the beam axis hits a SuperX3₂₈₅ Si detector then it cannot escape the CsI crystal. However, for 286 shallow trajectories the escape is still possible near the upstream₂₈₇ and downstream edges and has to be taken into account in the analysis. Scintillation from Type II detectors are read out by two pin-diodes from opposite sides of crystals, allowing to de-290 termine both total energy and Z-position of scintillation (along₂₉₁ the beam axis). Under optimal noise conditions, the energy, resolution with a ²⁴¹Am source is 5% for the Type I geome-₂₉₃ try crystals and 8% for the Type II. It is limited by variation in the efficiency of light collection due to geometry and uniformity₂₉₄ of scintillator light output throughout the volume. It is natural that the larger scintillator crystals (Type II) have worse energy 296 resolution on average.

3.4. Electronics

236

237

239

240

243

244

246

247

250

251

252

253

254

255

257

258

259

261

263

266

267

268

270

With the combination of the multichannel proportional₃₀₁ counter, silicon detectors, and CsI(Tl) detectors, there are₃₀₂ over 500 channels of electronics in the full configuration of₃₀₃ ANASEN. To deal with this high channel count in a cost effec-₃₀₄ tive manner, ANASEN utilizes Application-Specific Integrated₃₀₅ Circuits (ASICs) of the HINP16C design by Washington Uni-₃₀₆ versity [16] in combination with conventional MESYTEC elec-₃₀₇ tronics (for MAPC and Cs(I) detectors –136 channels total).

Each HINP16C ASIC handles the pulse-shaping, timing, and₃₀₉ triggering of 16 channels of data. The system as a whole has 2₃₁₀ ASICs HINP16C chips per board, with 16 boards in the system,₃₁₁

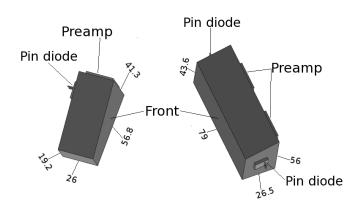


Figure 6: CAD rendering of CsI(Tl) detectors, Type I [left] and Type II [right].

handling up to 512 channels in one motherboard. Analog signals from all channels are multiplexed into XLM flash ADCs. ANASEN uses 2 motherboards and XLM modules. A VME-USB Wiener interface is used to send the collected digitized data from the front end processor using NSCL DAQ ([17]). External preamplifiers are used to optimize the energy resolution and dynamic range. A custom 72-channel preamplifier system for Si detectors has been developed based on the Indiana University's LASSA preamplifier chip; with a gain of 27 mV/MeV and a 30 μ s fall time that matches the shaping of the HINP16C ASICs [18].

With a complete ANASEN implementation comprising 560 signals from Si detectors, handling a high-density of electronics without losing resolution becomes a priority. We designed a circuit board feed-through to map 6 Super X3 detectors through regular density Insulation Displacement Connector (IDC) to high density IDC cabling to get the signals out of the vacuum. Another vacuum-tight circuit board was designed to feed 64 channels of two QQQ3-detectors with the same preamplifier box.

3.5. Gas handling system

It is well known (see, for example [19, 20]), that the gain of the proportional counter without gas flow changes significantly over time due to the gas deterioration. The origin of this effect may be an accumulation of electro-negative additives from polymers covering flat cables connecting detectors and construction elements, beam induced gas deterioration and the layering effect of gas mixtures. The latest is distinct in helium/carbon-dioxide gas mixture which is the working media for investigation of (α,p) - reactions. For the active gastarget mode, the gas handling system has to fit the requirements of high accuracy and stability to keep operating pressure and gas flow during runs of up to a few weeks, and meet safety specification for use of flammable gases (Hydrogen/Deuterium, Methane, Iso-Butane). The gas/vacuum handling system for ANASEN is shown schematically in Fig. 7.

The pressure and gas flow is controlled by an integrated pressure controller with π PC-99 (MKS instruments) mass flow me-

298

299

Figure 7: The scheme of gas the handling system.

312

313

315

316

317

319

320

321

323

324

325

327

328

330

331

332

333

334

335

336

337

339

340

341

342

343

347

349

350

351

ter. It was configured to be capable of controlling pressure in_{367} the range of 30 Torr to 1200 Torr with the accuracy of $\pm 1\%_{368}$ through TCP/IP protocol. A high accuracy ($\pm 0.05\%$) gas in- $_{369}$ dependent absolute pressure transducer MM series (OMEGA₃₇₀ Engineering) is set for the complementary monitoring of the₃₇₁ gas pressure. An extra pump is installed for evacuation of $_{372}$ flammable gases away from laboratory building through the $_{373}$ specific exhaust line. The gas sensor shuts the input line valve $_{374}$ and activates an alarm signal in case of exceeding the maximum $_{375}$ allowable content level of flammable gases. As a result of tests $_{376}$ it was found that the gas flow on the level greater than 100 sccm $_{377}$ is sufficient to maintain stable operation of the MAPC.

Because the current configuration does not support recycling,₃₇₉ the gas is stored in empty cylinders for further offline clean-₃₈₀ ing during experiments with isotope enriched target gases (deu-₃₈₁ terium, for example). During long lasting experiments, the₃₈₂ ANASEN chamber is refilled with fresh deuterium in certain₃₈₃ time intervals. The reliability of the system with respect to the₃₈₄ gas pressure stability has been demonstrated during several 3 - 4 week long runs.

The performance of the position sensitive proportional counter depends on the energy and type of radiation, counter geometry, composition and pressure of working gas and applied anode voltage (gas amplification) [10, 19]. For example, the position sensitive proportional counters with 7 μ m diameter Carbon fiber as resistive anode was extensively tested in [7] and references therein (mostly, for X-ray emission spectroscopy). It was shown that for the P-10 gas mixtures (90%Ar+ 10%CH₄) the minimum position resolution of 0.15 mm can be obtained with the highest pressure, i.e. 10 atm.

The gas composition and pressure are determined by the specific conditions of the experiment. Therefore the original tests were conducted with a standard P-10 gas to compare it with specific gases that could be used as target gases for ANASEN experiments (H₂, D₂, CH₄, He+CO₂) at the pressure in a range₃₈₅ of 100 to 1200 Torr.

4. Testing and calibration of detectors

4.1. Multi-anode proportional counter

Two different techniques have been employed for both en-391 ergy and position calibration. Initially, the MAPC was tested392

and calibrated independently from other ANASEN elements with an 241 Am α -source (intrinsic calibration), and then the final calibration was performed in the complete ANASEN setup with the silicon array using the 210 Po needle α -source (see Fig. 8).

For the intrinsic calibration a standard 241 Am α - source was mounted outside of the MAPC at the distance of 65 mm from its axis. The α - source was collimated by two pairs of slits so that the size of an irradiated area at the most distant anode does not exceed 1 mm. An exact positioning (mechanical accuracy of about 0.5 mm) of the α -source along the anode wires was run by a micrometer-motion mechanism. This technique allows to test and calibrate independently all anodes simultaneously. A positive high voltage was applied to both ends of anode wires. Signals from both ends of the MAPC wires are decoupled from the high voltage by capacitors and read out by charge sensitive preamplifiers and sent to the ADC through a spectroscopic amplifier (all electronics are fabricated by MESYTEC). Because of the wide energy range of detected reaction products, a MPR-LOG series preamplifier was used for the proportional counter readout. It provides a linear range that covers about 70% of the total, and the remaining 30% covers the high energy end logarithmically.

A pulser calibration of all electronic channels was made to provide the gain matching. This is especially important for determination of event position location at the MAPC anode and further recovery of vertex, because a position reconstruction technique is based on charge division method: X=(Up-Dn)/(Up+Dn), where X - position of signal with respect to the Upstream (Up) and Downstream (Dn) end of the resistive anode. Later this "Intrinsic" position is converted to "Global" 3D coordinates of total ANASEN setup (see below). The results of the position calibration for one of anodes is shown in the Fig. 9.

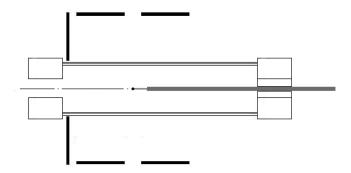


Figure 8: Schematic view of the testing setup. A sliding "needle" α - source placed at the ANASEN axis.

Extensive information on the properties of different gases suitable for proportional counters and drift chambers were accumulated (see, for example [19] end Ref. there). Typically the different mixtures of noble gases (helium, argon) with small additions of hydrocarbons (methane, butane) or organic (ethylor methylalcohol) provide the highest gas amplification. The resolution of the proportional counter (both energy and position) depends on gas composition, pressure and applied voltage. Be-

388

389

364

365

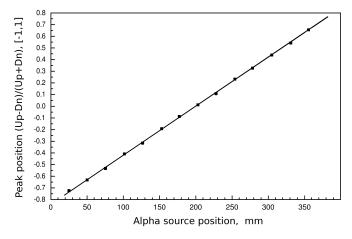


Figure 9: MAPC position calibration. Gas: P-10, P=30 torr. Solid squares - experiment. The measurement errors are within the size of squares.

cause ANASEN is an active target detector, it limits the selection of an appropriate gas and defines the working conditions.

The desired target gases for ANASEN are those that contain hydrogen and helium isotopes. Pure H₂ seems to be the best option for experiments with protons, but in this case high pressure has to be achieved to slow down or stop incident ions inside ANASEN, especially at high beam energy. Usually hydrocarbon gases (methane, iso-butane) can be used for proton scattering experiments. They combine characteristics which qualify them as a target gas in active target detector: high hydrogen concentration, sufficient stopping power and high gas amplification at low voltage. If helium is the desired target then it has to be quenched to reduce fluorescence from electron de-excitation that is competitive with the ionization process [21, 22]. The dependence of the position resolution on anode voltage is shown in Figs. 10 and 11 for different gas mixtures.

4.2. Super X3

As mentioned above, the Super X3 detectors have a total of 12 channels, where channels 0-3 correspond to the ohmic back segments and channels 4-11 to the downstream (4-7) and upstream (8-11) sides of the 4 resistive front strips. The energy is obtained from the back segments and the position from the front strips. Signals from a high-precision pulse generator are fed directly into the preamplifier in order to extract the electronics offset. In this section we explain the energy and position calibration procedures for the Super X3 detectors. More details on these procedures can be found in [23].

The energy calibration of each Super X3 detector is done in two steps: 1) align all the back-channel signals, 2) get the absolute energy calibration. Both steps require data from an alpha source such as 228 Th. In step 1, a reference channel is selected (usually one with high statistics). Then, proportional constants are found for the rest of the back channels so that the centroids of their peaks match the ones of the reference channel. In step 2, the energy spectra of all back channels is combined from which the energy calibration coefficients can be extracted, see Fig. 12. The typical energy resolution was found to be $\sim 50 \ \text{keV}$ (FWHM).

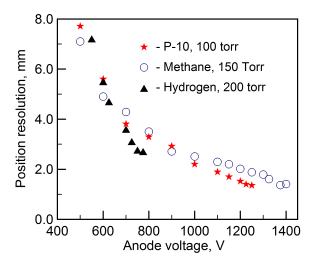


Figure 10: Position resolution as a function of anode bias for different gas mix-

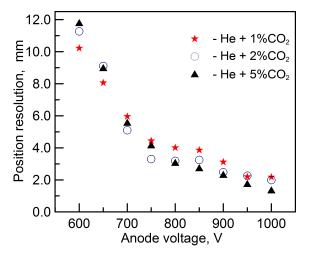
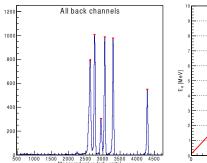



Figure 11: Position resolution as a function of anode bias for helium gas with different concentrations of CO₂ quenching gas

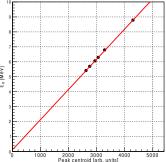


Figure 12: Left: Energy signals measured by a Super X3 detector from a 228 Th α source. Right: α particle energy as a function of the centroid of the peaks found in the left spectrum, the red line represents a linear fit.

The position of a hit in the SuperX3 detector is determined using a ratio of the calibrated signals from one side of the front strip to the signal of the back segment: Up (or Down) / Total. The decision on what side of the front strip to be used for a specific event is based on the information of which back segment has fired and allows to always chose the side that received more charge. This procedure is implemented to minimize the effective energy threshold in position measurement.

In order to calibrate the Super X3 internal position to an actual physical length we used data from the charge-sharing events from hits between n-type contacts on the detector. These are particle hits that occur at the border between the two back segments, triggering two back channels with relatively large signals. These hits correspond to about 0.4% of all hits, thus we had to sort large amounts of data to achieve reasonable statistics. Since locations of these regions (three for Super X3) are known, accurate position calibration can be achieved. Fig. 13 shows how the position calibration coefficients are extracted. For 5 MeV α -particles the Super X3 detectors showed a position resolution of 1.2 mm (FWHM).

The energy dependence of the hit position for the charge sharing events in the Super X3 detector is shown in Fig. 14. The plot shows a marked degradation of position resolution for the events with the energy below 2 MeV. This energy threshold was used for the data analysis (see Fig. 13).

5. Test of ANASEN performance in active target mode

The first two commissioning runs were designed to test ANASEN performance in experiments where excitation functions for α elastic scattering and (α,p) reactions are measured. The rare isotope beam of 6 He ions was used for the former and the stable 14 N beam with intensity degraded down to 10^7 pps for the later.

5.1. Measurement of excitation function for $^6He+\alpha$ elastic scattering

The $^6\text{He}+\alpha$ excitation function was measured recently in [24] in the energy range from 2.0 to 6.0 MeV in c.m. using the AT-TPC active target detector. We have repeated this measurement with ANASEN and extended the measured energy range to 8



Figure 13: Charge-sharing events from hits between n-type contacts on the detector. (a) and (b) show the position calibration for the down-stream and up-stream sides, respectively. The blue circles represent the position of the centroids of the peaks observed in (c) and (d), which contain the histogram of the down-stream and up-stream calibrated signal over the total signal. The 2 MeV energy cutoff was applied for the back segments (total energy). The data are taken from the $^{17}\mathrm{O}(\mathrm{d,p})$ reaction test run at $\mathrm{E}(^{17}\mathrm{O}) = 55$ MeV (see [23]).

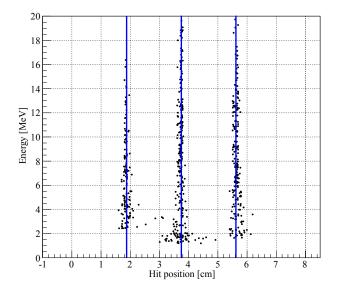


Figure 14: Energy vs position in Super X3 detector for $^{17}O(d,p)$ reaction at E=55 MeV. The vertical solid lines indicate a position of back segments in Super X3 detector. The dots represent the proton hit position.

MeV in the c.m. In addition to testing the performance of the detector, this experiment had a goal of searching for α -cluster excited states in 10 Be at higher excitation energy than in Ref. [24].

471 472

473

474

475

478

479

480

481

482

483

485

486

487

489

490

493

494

495

497

498

500

501

503

504

A ⁶He beam was produced at Florida State University's John D. Fox Superconducting Linear Accelerator Laboratory using the radioactive beam facility, RESOLUT ([1]). This beam was produced in flight by a (d, ³He) reaction with a stable ⁷Li beam. The primary beam was accelerated by the tandem and superconducting linear accelerators and impinged on the target gas cell containing deuterium gas cooled to ≈ 75 K at a pressure of ≈ 350 torr. ⁶He beams between 7 and 29 MeV entering the chamber were used which covered center-of-mass energies between 2.2 and 8 MeV. We used 7.5 μ m thick Kapton entrance foil. The energy loss of the ⁶He beam in the entrance foil varied from 300 keV for the highest energy to 1 MeV for the lowest energy. Typical intensity of the ⁶He beam was 10^4 pps. α -particles were the main beam contaminants, contributing at the level of 50-70 % (depending on energy of $^6{\rm He}$ beam). The events that correspond to the $\alpha+\alpha$ elastic scattering are clearly visible in Fig. 16 as a band above the ${}^{6}\text{He}+\alpha$ elastic scattering events (indicated by the red gate). We used 8 different energy steps507 to cover the range of c.m. energies from 2.2 to 8 MeV in c.m.508 The c.m. energy intervals covered varied from 300 keV for the 509 lowest energy to 1 MeV for the highest energy. To obtain the510 lowest beam energies (below 19 MeV), plastic degrading foils511 of various thickness (from 40 μm to 117.5 μm) were placed at₅₁₂ the entrance window to ANASEN. The beam energy spread was513 about 1 % at the highest beam energy (29 MeV) deteriorating⁵¹⁴ to about 15 % at the lowest beam energy due to energy loss515 straggling and non-uniformity of the degrading foils.

The target gas was a mixture containing helium and carbon⁵¹⁷ dioxide (CO_2) gasses with the CO_2 between 5 and 10 percent of the composition (depending on the energy of ⁶He beam). The⁵¹⁹ gas pressures ranged from 160 to 700 Torr with the lower pres-⁵²⁰ sures used for the lower beam energies.

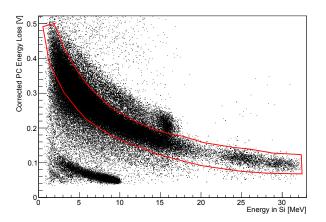


Figure 15: $\Delta E - E$ spectrum with red contour showing the selection of α parti-598 cles. This figure is adapted from [25].

Events of interest were selected from the $\Delta E - E$ particle₅₄₁ identification plots produced from the energy losses in the pro-₅₄₂

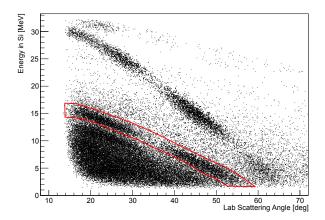


Figure 16: Recoil energy detected in silicon detectors plotted as a function of scattering angle with red contour showing the selection of ${}^{6}\text{He}+\alpha$ events. The locus above the reg contour corresponds to $\alpha+\alpha$ elastic scattering events and the group below the red contour is ${}^{6}\text{He}+\alpha$ inelastic scattering and breakup. This figure is adopted from [25].

portional counter (corrected for the trajectory length in the active volume of the proportional counter cells) and the energy deposited in the Si detectors shown in Fig. 15. By selecting the band corresponding to the scattered α particles the kinematic curves (total energy vs scattering angle) could be determined allowing the ⁶He+⁴He reaction channel to be identified as shown in Fig. 16. From the selected reaction of interest, in this case the elastic scattering channel, the differential cross sections were determined. Multiple segments of the excitation function were pieced together to make the continuous spectrum. The angle-integrated spectrum is shown in Fig. 17, compared to the similar spectrum measured in Ref. [24] Details of the analysis procedure can be found in [25]. The overall absolute normalization in this specific run was performed using elastic scattering of ⁶He on ¹²C and ¹⁶O of the gas mixture CO₂ component. These events have different kinematics than the $^6{\rm He}{+}\alpha$ events and can be clearly identified in the 2D energy vs lab. scattering angle scatter plot (similar to Fig. 16) after gaiting on ⁶He (events above the red gate in Fig. 15). Due to uncertainties in optical model potentials that are used to calculate ⁶He+¹⁶O and ⁶He+¹²C elastic scattering cross sections and uncertainties in the composition of the gas mixture the overall uncertainty of the normalization procedure was about 20%. The recent upgrade of ANASEN detector includes a thin scintillator foil and two PMTs in front of the entrance window - making normalization much more accurate and straightforward. This new configuration has already been used in recent run with ReA3 beam at the National Superconducting Cyclotron Laboratory at Michigan State University and will be described in a forthcoming publication. There is a general agreement in the overlapping energy range between Ref. [24] and this work, and the observed deviation can be related to the somewhat different angular range covered and also to the about a factor of two difference in absolute magnitude of the cross section measured at scattering angles below 90° degrees (Fig. 18). The agreement for scattering angles above 90° is nearly perfect (Fig. 19). The

522

523

524

526

527

528

529

530

531

532

534

535

low energy part of the excitation function (3.0 MeV and below) was obtain using the lowest ⁶He beam energy of 8 MeV, which had an energy spread of about 1 MeV (FWHM) due to a thick absorber. As a result, energy resolution of the low energy part of the excitation function is 150 keV in c.m., compared to 50 keV at the highest energies.

545

546

547

549

550

551

553

554

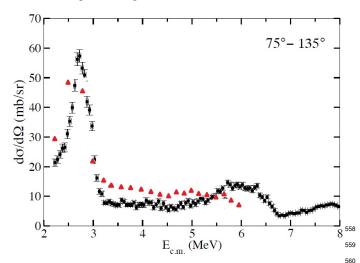


Figure 17: Angle-integrated excitation function for $^6\mathrm{He}+\alpha$ elastic scattering. 561 The data from this work are shown by the filled circles. Red triangles - data from [24] (65 -135° in c.m.). The uncertainties shown are purely statistical. This figure is adopted from [25] with addition of data points from cite- 563 SuzukiPRC.

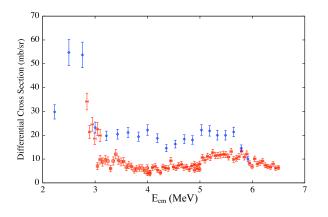


Figure 18: Excitation function for $^6\mathrm{He}+\alpha$ elastic scattering at 75° -85° scattering angles. The data from this work are shown in red and data from [24] are in blue (open diamonds). At energies below 3 MeV our data is limited to scattering angles above 80° in c.m. due to effective detector energy threshold. 582

The dominant feature in the excitation function is the reso-584 nance at 2.7 MeV. This state has been previously observed and 585 its spin-parity has been reported to be 3^- [26] and more recently 586 4^+ [24, 27]. The angular distribution determined from this work 587 is consistent with a $J^{\pi} = 4^+$ assignment shown by the angular 588 distribution at the peak energy of the 2.7 MeV resonance in Fig. 589 20. The alternative, 3^- spin-parity assignment, disagrees with 590 the experimental data, as demonstrated by the bottom part of 591 Fig. 20.

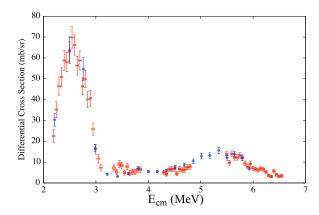


Figure 19: Excitation function for $^6\text{He}+\alpha$ elastic scattering at 85°-95° scattering angles. The data from this work are shown in red and data from [24] are in blue (open diamonds).

This peak is considered to be a member of the α :2n: α molecular-type rotational band [27]. Beyond this peak, the excitation function is relatively flat with the exception of a broad structure (\approx 1000 keV wide) at $E_{c.m.} \approx$ 6.1 MeV. The origin of this feature is not clear and further investigation, especially at scattering angles close to 180° in c.m. are necessary to determine if this is the next 6⁺ member of the α :2n: α rotational band in 10 Be.

5.2. Measurement of excitation function for $^{14}N(\alpha,p)$ reaction

Measuring excitation functions for the astrophysically relevant (α,p) reactions that involve proton rich nuclei is one of the main goals of ANASEN detector. Therefore, it is important to test the performance of ANASEN for the (α,p) reactions using a well-known case. The excitation function for the $^{14}\text{N}(\alpha,p)^{17}\text{O}(\text{g.s.})$ reaction is known from the time-reverse $^{17}\text{O}(\text{p},\alpha)$ measurement Ref. [28] to which the excitation function measured by ANASEN can be compared directly. Of course, the ANASEN measurements have to be performed in inverse kinematics to emulate the rare isotope beam experiment.

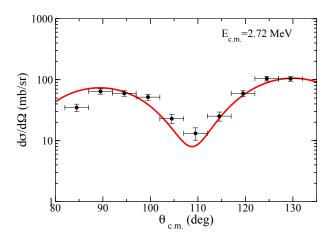
The beam of ¹⁴N ions with an energy of 35.6 MeV was accelerated by the Tandem at the John D. Fox Superconducting Linear Accelerator Laboratory. A mixture of helium with carbon dioxide gas (99% of He and 1 % of CO₂ by volume) at a pressure of 350 Torr was used for these measurements. The selection of the $^{14}N(\alpha,p)^{17}O(g.s.)$ events was performed using the following steps. First, we identified the events associated with protons using the ΔE -E cut in the 2D plot of energy loss in the proportional counter (corrected for the trajectory length in the active volume of the proportional counter cells) vs total energy deposited in the silicon detector (see Fig. 21). Second, we calculated the Q-value of the reaction using recoil proton energy, scattering angle and energy of the ¹⁴N beam. The two latter values are established from the proton trajectory reconstruction using the position sensitivity of the silicon array and the proportional counters. We then gate on the Q-value of the

565

567

570

571


573

574

575

576

577

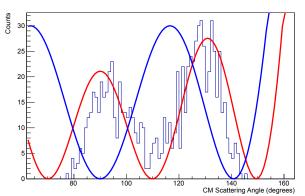


Figure 20: Angular distribution at 2.72 MeV. The solid red curve in the top figure is an R-Matrix fit with 4^+ spin-parity assignment of the resonance at 2.72 MeV. The dramatic difference between the 3^- (blue curve) and the 4^+ (red curve) spin-parity assignments is demonstrated in the bottom figure by comparing the P_3^2 and P_4^2 Legendre polynomials squared to the experimental angular distribution. The upper panel of the figure is adopted from [25].

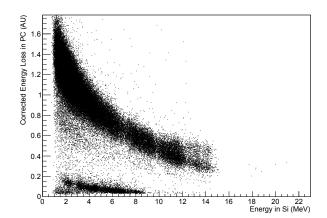


Figure 21: The Δ E-E spectrum showing particle ID for the light recoils. The figure 21: The Δ E-E spectrum showing particle ID for the light recoils. The figure 21: The Δ E-E spectrum showing particle ID for the light recoils. The figure 21: The Δ E-E spectrum showing particle ID for the light recoils.

 $^{14}{\rm N}(\alpha,{\rm p})^{17}{\rm O}({\rm g.s.})$ reaction (-0.8 MeV) (see Fig. 22). The Q-value resolution is between 0.9 MeV and 1.1 MeV depending on angle and excitation.

594

595

596

598

599

600

602

603

604

605

606

607

610

611

612

The 2D plot of energy vs angle dependence, shown in Fig. 23 for the selected events, clearly demonstrates kinematic bands that correspond to the ¹⁸F excited states observed in $^{14}N(\alpha,p)^{17}O(g.s.)$ reaction. Gaps in the spectrum are associated with the gaps between the groups of Si detectors. The excitation function for the $^{14}N(\alpha,p)^{17}O(g.s.)$ reaction measured by the forward segment of ANASEN detector is shown in Fig. 24. It is scaled to compare to the direct kinematics measurement with an implanted ¹⁴N target [29]. (No accurate absolute normalization was performed in this stable beam test run.) There is also good data on the ground state branch from the time-reverse reaction $^{17}O(p,\alpha)$ [28] that covers narrow excitation energy of ¹⁸F from 7.2 MeV to 8.2 MeV. All major resonances observed in [28] using traditional direct kinematics measurements can be clearly identified. The energy resolution of the (α,p) spectrum was measured by ANASEN to be 80 keV in c.m. for θ_{lab} < 25°. The energy resolution is observed to degrade at larger laboratory angles, and changes are being implemented to improve the performance at large angles.

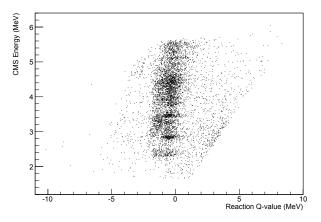


Figure 22: CM energy of recoil protons vs reaction Q-value calculated from the scattering angle and energy of the recoil proton under the assumption of binary kinematics and $^{14}\text{N}+\alpha$ entrance channel. The vertical band at -0.8 MeV corresponds to the $^{14}\text{N}(\alpha,p)^{17}\text{O}(\text{g.s.})$ reaction.

6. Conclusion

The new detector, Array for Nuclear Astrophysics and Structure with Exotic Nuclei (ANASEN) has been constructed and commissioned for experiments with rare isotope beams that target nuclear astrophysics and structure of exotic nuclei. We described the general outline and each component of the detector individually. The detector can be used as a stand alone Si+CsI array with zero degrees ionization chamber and as an active target detector, providing high efficiency and tracking capabilities for experiments with low intensity beams of exotic ions. The performance of the detector in active target mode was tested by measuring the $\alpha(^6\mathrm{He},\alpha)$ and $^{14}\mathrm{N}(\alpha,\mathrm{p})^{17}\mathrm{O}(\mathrm{g.s.})$ excitation func-

615

616

618

619

620

621

tions and comparing the results to the previously available experimental data. An important feature of this detector is that the high ionization beam axis region is naturally isolated and therefore future high-intensity FRIB radioactive beams can also be used with ANASEN in active target mode without any further modification. We expect that this detector will be used extensively with the rare isotope beams provided by ReA3(6) at NSCL or RESOLUT at Florida State University to explore structure of exotic nuclei, and to constrain reactions relevant for nuclear astrophysics using direct and indirect methods.

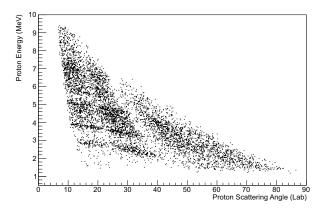


Figure 23: Kinematic dependence of recoil protons energy on scattering angle₆₇₁ after the reaction Q-value cut.

Acknowledgements

629

630

631

632

633

634

635

637

639

640

641

642

644

645

647

648

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

666

ANASEN detector was funded by a Major Research In-679 strumentation (MRI) Grants No. PHY-0821308 and PHY-680 0820941 awarded by the National Science Foundation (NSF) to 681 682 Louisiana State University and Florida State University. This 683 work was also partially supported by NSF Grant No. PHY-684 456463. The authors G.V.R. and E.K. acknowledge partial 685 support by the U.S. Department of Energy, Office of Sci-687 ence, Office of Nuclear Science, under Award No. DE-FG02-688 93ER40773. The author G.V.R. also acknowledge the support 689 of the Welsh Foundation (Grant. No. A-1853).

- [1] I. Wiedenhöver, L.T. Baby, D. Santiago-Gonzalez, A. Rojas, J.C. Black-692 mon, G.V. Rogachev, J. Belarge, E. Koshchiy, A.N. Kuchera, L.E. Lin-693 hardt, J. Lai, K.T. Macon, M. Matos, and B.C. Rascol. Studies of Exotic694 Nuclei at the RESOLUT Facility of Florida State University. Proceed-695 ings of the 5th International Conference on "Fission and properties of 696 neutron-rich nuclei" (ICFN5), pages 144–151, 2014.
- [2] A. M. Laird, P. Amaudruz, L. Buchmann, S. P. Fox, B. R. Fulton,698 D. Gigliotti, T. Kirchner, P. D. Mumby-Croft, R. Openshaw, M. M. Pavan,699 J.Pearson, G. Ruprecht, G. Sheffer, and P. Walden. Status of TACTIC: A700 detector for nuclear astrophysics. Nuclear Instruments and Methods in701 Physics Research Section A: Accelerators, Spectrometers, Detectors and702 Associated Equipment, 573(12):306 – 309, 2007. Proceedings of the 7th703 International Conference on Position-Sensitive Detectors.PSD-77th Inter-704 national Conference on Position-Sensitive Detectors.
- S. D. Pain, D. W. Bardayan, J. C. Blackmon, K. Y. Chae, K. A. Chipps,706
 J. A. Cizewski, R. Hatarik, M. S. Johnson, K. L. Jones, R. Kapler,707
 R. L. Kozub, R. J. Livesay, C. Matei, B. H. Moazen, C. D. Nesaraja,708
 P. O'Malley, M. S. Smith, T. Swan, J. S. Thomas, and G. L. Wilson. De-709
 velopment of ORRUBA: A Silicon Array for the Measurement of Trans-710

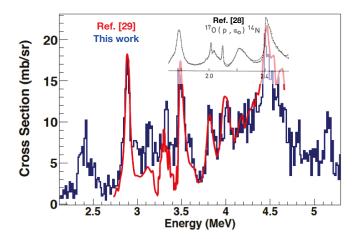


Figure 24: Excitation function for the 14 N(α ,p) 17 O(g.s.) for forward detectors compared to the data from [29] and the data on time-reverse reaction 17 O(g.s.)(p, α) 14 N from [28]. The integrated 14 N beam flux is about 2×10^{11} ions.

- fer Reactions in Inverse Kinematics. In Proc. 4th. Intern. Conf. Fission and Properties of Neutron-Rich Nuclei, 2008.
- [4] Wayne Faszer. Window material test. http://lin12.triumf.ca/ stinson/faszer_report2.ps, 2003.
- [5] Laura Pratt. Study of ¹⁸Ne Using the Array for Nuclear Astrophysics and Structure with Exotic Nuclei. http://etd.lsu.edu/docs/available/etd-04142014-132956/unrestricted/PrattDissertation3.pdf, 2014.
- [6] Rob Veenhof. GARFIELD: computer code. http://garfield.web.cern.ch/garfield, 1998.
- [7] D. Ohsawa, S. Masaoka, R. Katano, and Y. Isozumi. Resolution of a position-sensitive proportional-counter with a resistive anode wire of carbon fiber. *Applied Radiation and Isotopes*, 52(4):943 – 954, 2000.
- [8] G. P. Westphal, H. Pirker, and C. M. Fleck. A new pulse dividing circuit and its application to a position sensitive 10BF3 proportional counter. *Nuclear Instruments and Methods*, 96(2):333 – 339, 1971.
- [9] G. L. Miller, N. Williams, A. Senator, R. Stensgaard, and J. Fischer. A position sensitive detector for a magnetic spectrograph. *Nuclear Instruments and Methods*, 91(3):389 – 396, 1971.
- [10] V. Radeka. Signal, Noise and Resolution in Position-Sensitive Detectors. IEEE Transactions on Nuclear Science, 21(1):51–64, 1971.
- [11] K. Hasegawa, K. Mochiki, M. Koike, Y. Satow, H. Hashizume, and Y. IItaka. High-count rate position-sensitive detectors for synchrotron radiation experiments. *Nuclear Instruments and Methods in Physics Re*search Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 252(23):158 – 168, 1986.
- [12] F. Bird, S. Shapiro, V. Ashford, D. McShurley, R. Reif, D. W.G.S. Leith, and S. Williams. Charge Division Using Carbon Filaments for Obtaining Coordinate Information from Detection of Single Electrons. *IEEE Transactions on Nuclear Science*, 33(1):261 266, 1986.
- [13] D. Ohsawa, R. Katano, Y. Ito, and Y. Isozumi. A simple crystal spectrometer for low-energy photons emitted from radioactive sources, Part {II}. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 390 (12):183 190, 1997.
- [14] T. Iwazumi, K. Kobayashi, S. Kishimoto, T. Nakamura, S. Nanao, D. Ohsawa, R. Katano, and Y. Isozumi. Magnetic resonance effect in x-ray resonant raman scattering. *Phys. Rev. B*, 56:R14267–R14270, 1997.
- [15] T. Nakamura, S. Nanao, T. Iwazumi, K. Kobayashi, S. Kishimoto, D. Ohsawa, R. Katano, and Y. Isozumi. X-ray magnetic circular dichroism of multielectron excitation by fluorescence spectroscopy. *Journal of Electron Spectroscopy and Related Phenomena*, 92(13):261 264, 1998.
- [16] G. L. Engel, M. Sadasivam, M. Nethi, J. M.Elson, L. G. Sobotka, and R. J. Charity. A multi-channel integrated circuit for use in low- and

667

668

669

670

673

674

- intermediate-energy nuclear physics hinp16c. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 573(3):418 426, 2007.
- 714 [17] NSCL Data Acquisition. http://docs.nscl.msu.edu/daq/index.
 715 php.
- B. Davin, R. T de Souza, R. Yanez, Y. Larochelle, R. Alfaro, H. S Xu, 716 A. Alexander, K. Bastin, L. Beaulieu, J. Dorsett, G. Fleener, L. Gelovani, 717 T. Lefort, J. Poehlman, R. J. Charity, L. G. Sobotka, J. Elson, A. Wagner, 718 T. X. Liu, X. D. Liu, W. G. Lynch, L. Morris, R. Shomin, W. P. Tan, 719 M. B. Tsang, G. Verde, and J. Yurkon. LASSA: a large area silicon strip 720 array for isotopic identification of charged particles. Nuclear Instruments 721 and Methods in Physics Research Section A: Accelerators, Spectrometers, 722 Detectors and Associated Equipment, 473(3):302 - 318, 2001. 723
 - [19] G Charpak and F Sauli. High-resolution electronic particle detectors. Annual Review of Nuclear and Particle Science, 34(1):285–350, 1984.
 - [20] A Romaniuk. Atlas note. ATL-INDET-98-211, 1998.

724

725

726

727

728

- [21] J. A. Sawicki, B. D. Sawicka, and J. Stanek. Conversion electron mössbauer spectroscopy at low temperatures. *Nuclear Instruments and Methods*, 138(3):565 – 566, 1976.
- [22] Y. Isozumi, M. Kurakado, and R. Katano. A proportional counter for resonance-electron Mössbauer spectroscopy at low temperatures down to 77.3 K. Nuclear Instruments and Methods in Physics Research, 204(23): 571 575, 1983.
- 734 [23] Daniel Santiago-Gonzales. Experimental Investigation on the Nuclear Structure of the Neutron-rich Nuclides ⁴⁴S and ²⁰O. https://publications.nscl.msu.edu/thesis/
 737 Santiago-Gonzalez2014_367.pdf, 2013.
- [24] D. Suzuki, A. Shore, W. Mittig, J. J. Kolata, D. Bazin, M. Ford, T. Ahn,
 F. D. Becchetti, S. Beceiro Novo, D. Ben Ali, B. Bucher, J. Browne,
 X. Fang, M. Febbraro, A. Fritsch, E. Galyaev, A. M. Howard, N. Keeley,
 W. G. Lynch, M. Ojaruega, A. L. Roberts, and X. D. Tang. Resonant α
 scattering of ⁶He: Limits of clustering in ¹⁰Be. *Phys.Rev. C*, 87:054301,
 2013.
- 744 [25] Anthony Nicholas Kuchera. Clustering Phenomena in the a=10 T=1
 745 Isobaric Multiplet. http://diginole.lib.fsu.edu/etd/8585:
 746 ElectronicThesis, TreatisesandDissertations.Paper8585,
 747 2013.
- 748 [26] N. Curtis, D. D. Caussyn, N. R. Fletcher, F. Marechal, N. Fay, and
 749 D. Robson. Decay Angular Correlations and Spectroscopy for ¹⁰Be* →
 750 ⁴He + ⁶He. *Phys.Rev.*, C64:044604, 2001.
- [27] M. Freer, E. Casarejos, L. Achouri, C. Angulo, N. I. Ashwood, N. Curtis, P. Demaret, C. Harlin, B. Laurent, M. Milin, N. A. Orr, D. Price,
 R. Raabe, N. Soic, and V. A. Ziman. α:2n:α Molecular Band in ¹⁰Be.
 Phys.Rev.Lett., 96:042501, 2006.
- 755 [28] J. C. Sens, S. M. Refaei, and A. Pape. Search for Simple Configurations in
 756 18 F. II. The 17 O(p, α_0) 14 N, 17 O(p, $p_1\gamma$) 17 O, and 17 O(p, γ) 18 F Reactions.
 757 7 Phys.Rev., C18:2007, 1978.
- 758 [29] J. Terwagne, G. Genard, M. Yedji, and G. G. Ross. Cross-section Measurements of the 14 N $(\alpha, p)^{17}$ O and 14 N $(\alpha, \alpha)^{14}$ N Reactions between 3.5 and 6 MeV. *Journal of Applied Physics*, 104:084909, 2008.