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Abstract Burst-like synthesis of protein is a significant source of cell-to-cell vari-
ability in protein levels. Negative feedback is a common example of a regulatory
mechanism by which such stochasticity can be controlled. Here we consider a spe-
cific kind of negative feedback, which makes bursts smaller in the excess of protein.
Increasing the strength of the feedback may lead to dramatically different outcomes
depending on a key parameter, the noise load, which is defined as the squared coeffi-
cient of variation the protein exhibits in the absence of feedback. Combining stochastic
simulation with asymptotic analysis, we identify a critical value of noise load: for noise
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loads smaller than critical, the coefficient of variation remains bounded with increasing
feedback strength; contrastingly, if the noise load is larger than critical, the coefficient
of variation diverges to infinity in the limit of ever greater feedback strengths. Interest-
ingly, feedbacks with lower cooperativities have higher critical noise loads, suggesting
that they can be preferable for controlling noisy proteins.

Keywords Stochastic gene expression - Protein bursting - Negative feedback -
Delayed production - Asymptotic expansions

Mathematics Subject Classification 92C40 - 60K40 - 41A60

1 Introduction

Due to the low molecular copy numbers involved, gene expression at a single cell
level exhibits a considerable degree of noisiness (Blake et al. 2003; Elowitz et al.
2002). Noise in gene expression is transmitted downstream to the final product of gene
expression, the protein, whose concentration can fluctuate widely in time (Suter et al.
2011; Golding et al. 2005). The fluctuations are particularly pronounced if the protein
is produced in bursts of multiple molecule copies at a single time (Dar et al. 2012;
Ozbudak et al. 2002). The temporal fluctuation of protein concentration manifests
itself in a population of isogenic cells as a cell-to-cell variability (Taniguchi et al.
2010). Mathematical modelling can be used to analyse the impact of mechanisms
involved in gene expression on the population distribution of protein concentration
(Munsky et al. 2012; Shahrezaei and Swain 2008).

Many proteins control their own expression with negative feedback (Rosenfeld et al.
2002). By reducing the protein synthesis rate when the protein is in excess, negative
feedback reduces the mean protein level and can also decrease the protein noise (Thattai
and Oudenaarden 2001). Nevertheless, in the case of a strong negative feedback, any
decrease in noise due to improved regression to the mean can be eclipsed by an increase
due to low reaction frequencies and/or low copy numbers (Singh and Hespanha 2009).
Additionally, the noise-reducing effect of time-averaging of the downstream elements,
such as the promoter state or the mRNA copy number, can be cancelled under strong
feedback, thus enhancing bursting dynamics and increasing the protein noise even
further (Gronlund et al. 2013; Stekel and Jenkins 2008). Bursting in itself imposes
limitations on the noise-reducing ability of a strong negative feedback: individual
bursts can grow too large to remain under control of a strong feedback, which is
sensitive to small changes in protein copy numbers (Bokes and Singh 2017; Wang
et al. 2014; Scott et al. 2007).

Feedback in gene expression can operate on the transcriptional or post-
transcriptional level. In transcriptional feedback, the protein regulates the rate with
which its mRNA transcript is synthesised (Becskei and Serrano 2000). Provided that
the mRNA life span is short and the translation of mRNA is fast, the transcription of
an mRNA molecule is followed by a quick burst of protein translation (Cai et al.
2006). Transcriptional feedback thus regulates the rate, or frequency, with which
such translational bursts occur (Friedman et al. 2006). Post-transcriptional feedback,
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on the other hand, regulates the size of translational bursts (Schikora-Tamarit et al.
2016). As a specific example, RNA binding proteins reduce the size of translational
bursts by enhancing the degradation of their mRNA transcript (Schikora-Tamarit
et al. 2016; Swain 2004; Yates and Nomura 1981). Previous studies indicate that
post-transcriptional feedback outperforms transcriptional feedback in terms of its
noise-reducing capability (Bokes and Singh 2017; Singh 2011; Swain 2004). Here
we shall investigate a stochastic model for burst-like production of a protein which
controls its own burst size via a negative (post-transcriptional) feedback loop.

Synthesis of functional protein molecules requires the completion of many con-
secutive stages of gene expression (Alberts et al. 2002). Consequently, self-regulatory
proteins operate their feedback with a delay (Monk 2003). Deterministic models of
gene expression with high-cooperativity negative feedback exhibit sustained oscilla-
tions if supplied with a sufficient production delay (Griffith 1968). Stochastic models
with negative feedback become more variable upon the inclusion of a small delay
(Lafuerza and Toral 2011); they exhibit increasingly regular oscillations prior to the
onset of a Hopf bifurcation (Barrio et al. 2006). An infinitesimally small delay, it will be
argued below, is an integral part of our model for the feedback in burst size. The delay
will be shown to be responsible for a failure of the feedback to keep gene-expression
noise under control.

While some gene-expression models are exactly solvable (Dattani and Barahona
2017; Yang et al. 2017; Innocentini et al. 2016; Biancalani and Assaf 2015; Smith
and Shahrezaei 2015; Kumar et al. 2014), for tractable results one often has to turn to
numerical (Johnson and Munsky 2017; Cao et al. 2016; Lester et al. 2016) and asymp-
totic analysis (Dessalles et al. 2017; Popovic et al. 2016; Bruna et al. 2014; Leier
et al. 2014; Platini et al. 2011). A prominent role is played by small-noise approx-
imations, which linearise the model around a deterministic steady state, and WKB
approximations, which allow to capture slow transitions between these states or into
extinction (Be’er and Assaf 2016; Roberts et al. 2015; Newby 2015; Wang et al. 2014;
Komorowski et al. 2013; EIf and Ehrenberg 2003). An alternative approximation has
been used by Bokes and Singh (2017) in the regime of strong negative feedback. Here
we shall apply small-noise and strong-feedback approximations to a model for feed-
back in burst size, for which an exact distribution is, to our best knowledge, unavailable.

We adapt a popular framework which models the protein concentration by a
continuous-state drift-jump Markov process in which the deterministic drift repre-
sents protein decay and the stochastic jumps model the synthesis of protein in bursts
(Friedman et al. 2006). In its basic formulation, the decay of protein is exponential,
the jumps occur randomly in time with a given intensity, and their sizes are drawn at
random from an exponential distribution (Bokes et al. 2013; Lin and Doering 2016).
Extensions to the basic formulation include non-exponential decay (Soltani et al.
2015; Bokes and Singh 2015), non-exponential bursting distributions (Jedrak and
Ochab-Marcinek 2016b), multiple gene copies (Jedrak and Ochab-Marcinek 2016a),
transcriptional leakage (Ochab-Marcinek and Tabaka 2015), non-cooperative binding
(Ochab-Marcinek and Tabaka 2010), and multiple-component systems (Pajaro et al.
2017; Lin and Galla 2016). Most previous studies include feedback in burst frequency:
the jump intensity depends on the current level of protein. Bokes and Singh (2017)
introduced a particular form of feedback in burst size, in which the hazard rate for the
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termination of a growing burst depends on the current protein concentration. Here we
shall consider a different formulation, in which the protein concentration immediately
before a jump determines the mean jump size. We will argue that the two formula-
tions of burst-size feedback differ in the inclusion or omission of an infinitesimally
small delay in protein synthesis. As we shall see, the two formulations have strikingly
different noise-reduction capabilities in the strong-feedback regime.

The modelling framework is first introduced in Sect. 2 for the simple case of a con-
stitutively expressed protein and then extended by feedback in burst size in Sect. 3. The
fundamental features of the model behaviour are illustrated in Sect. 4 using stochastic
simulations. Sections 5 and 6 contain a systematic asymptotic analysis of the model
behaviour in the small-noise and strong-feedback regimes. Section 7 elaborates on the
implicit presence of an infinitesimally small delay in the model. Section 8 compares
the current model to its alternatives in (Bokes and Singh 2017), and Sect. 9 concludes
with a summary and discussion of the main findings.

2 Constitutive Case

We model the dynamics of protein concentration x(#) by a Markovian drift-jump
process (Schuss 2009), whose trajectories look like the one in Fig. 1, left panel. Except
for a countable number of discontinuities, the process x(¢) decays deterministically
with a rate constant y. The jumps (bursts of protein expression) occur randomly in
time with a constant burst frequency a; the waiting time between two consecutive
bursts is exponentially distributed with mean 1/a. The size of the discontinuity (burst
size) is always positive and randomly chosen from an exponential distribution with
mean b (Friedman et al. 2006).

There are three-dimensional parameters in the model: decay rate constant y (units
of time™1), burst frequency a (units of time~!), and mean burst size b (units of con-
centration). The typical time scale of protein decay is 1/y, and the typical (or mean)
concentration scale is given by ab/y. Nondimensionalising the model by measuring
time and protein concentration in units of these typical scales is equivalent to setting
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Protein concentration =

0.0 ‘ == ,
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Fig. 1 (Color figure online) Left: a sample trajectory of the drift-jump process modelling the dynamics of
protein concentration. Right: Hill functions (1 + (x/K )%)~1 and their fixed points for selected values of K
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Fig. 2 Sample trajectories for a constitutively expressed protein for selected values of ¢

where ¢ is a positive dimensionless real number, which fully controls the qualitative
behaviour of the model (Fig. 2). Small values of ¢ lead to a limit scenario of small but
frequent bursts. We emphasise that small & does not necessarily imply physically small
bursts; rather, it implies that bursts are small in comparison with the mean protein level.

The probability density function (pdf) p(x, t) of the Markov process x (¢) satisfies
a master equation (cf. Schuss 2009)

b _dp) _ 1 </ B(x — x)p(x', ndx’ — p(x, r)) , )
Jat 0x e \Jo

where R

e ¢
B(S)IT (2)

is the exponential burst-size probability density function. The normalised stationary
solution to (1)—(2) is given by the gamma probability distribution (cf. Friedman et al.
2006)

px) oce_%xé_l. 3)

Here and elsewhere we shall use the same symbol for the independent variable of a
pdf and a random variable (or a stationary process) associated with the pdf. For the
gamma protein distribution in (3), the mean and variance are given by

(x) =1, Var(x)=ce. 4)
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We henceforth call € the noise load and say that the model operates in the small-noise
regime if ¢ < 1. We can normalise the protein concentration by writing

x =1+ et Q)
The stationary pdf, up to a proportionality factor, reduces as ¢ — 0 to

x—In(x)

poaxxle™ 5 o(1+4c8)7 e

_ J/eE—In(1+/E8) _&2
© =e¢ 7 +0We)

in terms of the normalised variable £. Thus, the protein concentration is approximately
normally distributed in the small-noise regime.

3 Feedback in Burst Size

We incorporate negative autoregulation of burst size into the model of Sect. 2 by
making the mean burst size b depend on the concentration x of the protein at the
time immediately before the burst occurs. Specifically, we shall consider a Hill-type
dependence (cf. Fig. 1, right panel)

&

e T SL

(6)

of the mean burst size on the protein concentration.! The critical concentration K,
which gives the amount of protein that is required to halve the expected burst size,
is a reciprocal measure of feedback strength; we say that the model operates in the
strong-feedback regime if K < 1. The cooperativity coefficient H determines how
steeply the feedback responds to changes in protein concentration.

The master equation for the pdf p(x, ) of the process x (#) with negative feedback
in burst size is given by

p 9 1/ (F
8_’: _ % =: </O B(x —x';x))p(x', Hdx' — p(x, t)) , (7
where » -
B(s;x) =& ' (14 (x//K)M)e e (1H/K) s (8)

1 Biologically, the mean size of a translational burst is equal to the ratio of the translation rate kp to the
mRNA decay rate ym (Friedman et al. 2006). We assume that the degradation of mRNA is catalysed by the
protein, such as in

mRNA 7% ¥, mRNA + H x protein RIS protein,

where y is the natural decay rate and y; measures the efficiency of the catalysis. The total rate of mRNA
decay is then given by ym = yo + yle, and the mean burst size is equal to kp /(yp + yle), which can be
turned into (6) by a suitable choice of unit concentration. The above reaction channels form the backbone
of a full discrete chemical kinetics model, which is examined and compared to our present continuous
formulation in “Appendix A”.
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Require: Parameter values (¢, H, K).

Return: A sample trajectory x(¢), ¢ > 0.

1: Initialise the current time and state: r < 0; x(0) < 0.

2: loop

3:  Draw u and u from the standardised uniform distribution.
4:  Sett <« —elnu.

5: Setx(t+s) < x(t)e S for0 <s < 7.

6: Setx(t+1) <« x(1)e” " — W&%.
7:  Update the current time ¢ <t 4 7.

8: end loop

Algorithm 1: Simulation algorithm

gives the burst-size density on condition of x” protein being present immediately before
the burst. Notably, the convolution on the right-hand side of (1) of the pdf with an
exponential density (2) is replaced in (7) by a more challenging integral kernel (8).
Being unaware of the availability or otherwise of explicit solutions to (7)—(8), we shall
turn in Sects. 5 and 6 to asymptotic methods to analyse its stationary solution in the
small-noise (¢ < 1) and strong-feedback (K « 1) regimes.

While solving the master equation becomes problematic after the inclusion of feed-
back in burst size, simulating stochastic trajectories remains extraordinarily simple.
Algorithm 1 loops over a basic procedure which consists of drawing the waiting time
7 until the next burst (Line 4), setting the trajectory to an exponential in between
the bursts (Line 5), and drawing the next burst’s size (Line 6). The waiting time and
burst size are both exponentially distributed and can be drawn using the inversion
sampling method by multiplying their respective mean values by —Inu, where u is
drawn independently of any other drawings from the uniform distribution in the unit
interval.

4 Critical Noise Load

Stochastic simulations by Algorithm 1 allow us to investigate the response of protein
noise to the strengthening of feedback in burst size. We choose to quantify protein
noise by the (squared) coefficient of variation (CV?), which is defined as the ratio of
variance over the mean squared, i.e.

In the absence of feedback (K — 00), the squared coefficient of variation reduces,
by (4), to the value ¢ of the noise load. The ratio of the CV? of a regulated protein to
¢, which we shall refer to as the relative CV2, gives the fold increase in protein noise
following the introduction of feedback.

Depending on whether the noise load ¢ is less or greater than a critical value
& = 1/2H (which is identified in Sect. 6 using asymptotic methods), we observe
two different responses of protein noise to strengthening feedback. If the noise load
is subcritical (¢ < &), the noise in protein concentration remains bounded however
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Fig.3 For subcritical noise loads, protein noise remains bounded even under stringent feedback conditions
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Fig. 4 For supercritical noise loads, protein noise diverges for increasingly strong feedback

strong the feedback may be (Fig. 3); for supercritical noise loads (¢ > ¢.), the noise
diverges as K tends to zero (Fig. 4). The vertical (concentration) axes in the panels
of Figs. 3 and 4 extend from zero to a constant multiple (set to 2 in Fig. 3 and to
10 in Fig. 4) of the protein mean; the apparent variability in the sample trajectory
then directly corresponds to the numerical value of the coefficient of variation, which
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we report in the inset of each panel. Each coefficient of variation is calculated from
a single run of simulation which is much longer than the short stretch shown in the
individual panels (see “Appendix B” for details).

As we shall demonstrate in Sect. 6 systematically using asymptotic analysis, the
protein mean (x), the mean square (x2), and the variance all tend to zero, in subcritical
and supercritical cases alike, as feedback strengthens. The increase of the coefficient
of variation occurs because in supercritical cases the squared mean (x)> converges
faster to zero than the mean square (x2) .

Steeper (more cooperative) feedbacks have lower critical noise loads. If we take
the cooperativity coefficient H to infinity, the critical noise load becomes zero: any
positive noise load is supercritical. The Hill function (6) formally reduces for H = oo
to a step function which is equal to ¢ for0 < x < K andis zero for x > K. Under such
step-wise regulation, nonzero bursts occur only if x is smaller than K (i.e. very small),
and their size is independent of K (i.e. large); after one such large burst no further
bursts can occur—or we may say that they still do but their size is necessarily zero—
until the protein concentration slowly decays back beneath K. Clearly, however small,
but fixed, ¢ may be, these infrequent but large bursts will drive the variability to infinity
if K is lowered sufficiently. However, for finite cooperativities a nonzero burst would
typically fire well before the concentration decays down to levels of O (K), and would
be of alesser size as aresult: it is exactly this mechanism that enables low-cooperativity
feedbacks to cope with ever increasing feedback strengths; the underlying scaling will
be identified and analysed by matched asymptotics in Sect. 6. Prior to doing that, we
perform in the following Sect. 5 a traditional small-noise analysis, obtaining explicit
mean and noise results, which are valid as ¢ — 0 for bounded ranges of K.

5 Small-Noise Asymptotics

The master equation (7) can succinctly be written as a continuity equation

d aJ 1 [* _a=xl
P L%y g= ‘/ p(x’', e 0 dx" — xp, 9)
at ox € Jo
where |
0x) = ——— 10
O =TT G/Rn (19)

gives the factor by which the mean burst size is reduced at protein concentration x due
to self-regulation. Being the product of the burst frequency ¢! and the mean burst
size (6), it can also be interpreted as the mean protein production rate. The function
6(x) has a (unique) fixed point x, i.e. a solution to

6(x0) = xo, (11)

which can be interpreted as the protein concentration at which its mean production
rate is equal to its rate of decay (cf. Fig. 1, right panel). It is shown below that in
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the small-noise regime the steady-state protein concentration is constrained with high
probability to a small neighbourhood of the fixed point.

The stationary distribution is the time-independent, zero-flux, and normalised solu-
tion p(x) to (9), i.e the normalised solution to the integral equation

1 x _ox—x
—f p(xe #0Hdx’ —xp = 0. (12)
€ Jo
In order to examine the behaviour of the solution p(x) = p(x;e) to (12) in the
small-noise regime (¢ < 1), we use the transformation
x =x0++e&, X' =x—cu, pxo+ &) =pE). (13)

The substitution for x reflects the (presumed) O (4/¢) scale of fluctuations of x around
the fixed point xg, cf. Eq. (5); the substitution for x’ reflects the O (¢) scale of individual
bursts. Inserting the substitutions (13) into the integral equation (12), we obtain

“o00” u
[ e = Vewe T - 30 - Ve =0, (14)
0

Having extended the upper integration boundary from x /¢ to infinity in (14), we have
introduced an error that is inconsequential (exponentially small) in the ¢ < 1 regime
(Hinch 1991). Inserting the expansions

-
PE — eu) = pE) — @é@) +0(e),

0/ (x)Eu
_ u 7l+«/5¢
e YGotvE—en —¢ 0 5+ 0(e)

= e_% (1 + \/5_0 (xoz)éu_) + 0(8)
X,

0

into (14) and carrying out the integration with respect to # we obtain
Ve(=x3 ') + (6'(x0) — DEP()) + O(e) =0, (15)

the O(1) terms having cancelled each other out. Dividing (15) by /¢ and neglecting
the small O(g)/+/¢ term, we arrive at a linear first-order differential equation for the
leading-order approximation to p, solving which yields

_(-0'()E?

pE) ~Ce 20, ek, (16)

where C is the normalisation constant. The result implies that & is approximately
normally distributed with mean zero and variance xé /(1 — 68'(xp)). Consequently
X = x0 + /€& has mean x( and variance exg/(l —0'(x0)), i.e.

CVv? 1 1
e 1—-0(xo) 1+H(I-x0)

{(x) ~ xo,

e K1, a7
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Fig. 5 (Color figure online) Protein concentration mean and the relative Ccv2in response to increasing
feedback strength for H = 5 and a selection of values of ¢, compared with the small-noise approximation
(SNA)

hold in the small-noise regime. Also, since the variance is O (¢), we obtain
(x%) = (x)> + Var(x) ~ x5, £ <1, (18)

for the mean square.

In Fig. 5, we compare for H = 5 the small-noise approximations (17) (SNAs;
dashed lines in Fig. 5) to the exact (i.e. not asymptotic) mean and relative CV? for
a range of values of K and three selected values of &: a subcritical ¢ = 0.05, the
critical ¢ = 0.1, and a supercritical ¢ = 0.2. The fixed point xo of the function 6 (x)
(10) was calculated in the Python programming language with the fixed point
routine of the scipy.optimize library. For each value of ¢, and for the range of
values of K, the exact mean and the CV? were estimated from the temporal average
of a single and long sample path generated by Algorithm 1, which we implemented
in the C programming language (see “Appendix B” for details).

By Fig. 5, left panel, the small-noise approximation of the mean agrees well with the
exact mean, decreasing monotonically from one in the absence of regulation (K = 00)
to zero under stringent regulation (K — 0). Contrastingly, the small-noise approxi-
mation of the CV? agrees with the exact CV2 only if ¢ is subcritical or K is sufficiently
large; in particular, if & is low and subcritical, the exact relative CV? remains close,
as K — 0, to the small-noise approximation limit value of 1/(H 4+ 1) ~ 0.167. For
supercritical noise loads, however, simulations suggest divergence, as K tends to zero,
of the exact CV? to infinity, which the small-noise approximation fails to predict.

6 Strong-Feedback Asymptotics

In the small-noise analysis presented in the previous section, we tacitly assumed that
the fixed point x¢ of the Hill function (10) is of order one. However, xo becomes
increasingly small as K tends to zero; more precisely, the dominant balance in the
fixed-point equation x, T=1+ (xo/K yH is found between the Xy ! and the (xo/K Vi
terms, the equating of which yields a power-law relationship
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xo~ KT, K <1, (19)

between the fixed point xo and the critical concentration K in the strong-feedback
regime. As xo becomes increasingly small, the terms which have been neglected in
the small-noise approximation procedure become significant, and the approximation
leads to incorrect predictions; in particular, it fails to predict the grow-up of noise
under supercritical noise-load conditions (Fig. 5, right panel).

In order to obtain a truthful characterisation of the model behaviour in the strong-
feedback regime, we consider the steady-state protein probability density function in
this section as a function of K which tends to zero, whereby the value of ¢ is fixed
and not necessarily small.

By (12) and (10), the steady-state protein probability density function p(x) =
p(x; K) satisfies the integral equation

1 [ =)+ /K
xpx; K) = g/ P K)e~ T dx’. (20)
0

Inserting an ansatz
p(x; K) =e—%P(K*HL+1x) Q1)

H H
into (20) and substituting x = K#+Ty and x’ = K#+1y’, we find that P(y) has to
satisfy a simpler equation

_o=Hoh#

1 [y
YPO) = - fo PGy P dy (22)

in order for (21) to satisfy (20). Notably, Eq. (22) is independent of the parameter K,
and so is its solution P(y).

While we are unable to find an explicit formula for a solution to (22), we will show
that it satisfies

ye! ify < 1, (23a)

P(y)N{ L
ny T ify > 1, (23b)

where 7 is a positive constant dependent on ¢ and H. Relations (23) imply that

_He -y . _H_
ot K) ~ K~ HFT x& if x <« K#+T, (24a)
? 571 X —_
nKTfTH e—zx_#_l if x > KH[?,H ) (24b)

hold for the solution (21) to the original integral equation (20).

In order to prove (23a), we note that for y < 1 the exponential in the integrand
in (22) is close to one, implying that P(y) ~ ¢(y), where ¢ (y) satisfies yp(y) =
% foy #(y)dy', ie. ¢(y) = Cy'/*~L; for uniqueness and algebraic simplicity, we fix
the arbitrary constant C to one, which yields (23a).
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In order to prove (23b), we substitute y(y')? /e = z in the integral in (22), finding
that

1 1 yH+1 1 1 1
gﬁ_ly_ﬁ e ez \ H gﬁzl+ﬁ 1
yP(y) = —/ Pl(—= exp|—z+ ————)z7 'dz. (25)
H 0 y y1+ﬁ

Since (ez/ y)% becomes increasingly small as y — o0, we can approximate the
unknown part of the integrand in (25) using (23a), i.e.

b B2
y y

Inserting (26) into (25), at the same time as extending the upper integration limit in
(25) to oo and neglecting the O(y’l’l/ Y small term in the exponential in (25), we
find that

JR NS R

e IH 2§ 00

& € 1

YP(y) ~ —y/ e %z dg,
H 0

from which (23b) follows, whereby

SSLH_IF 1 27
n=—g <m) (27)

defines the dependence of the prefactor 1 in (23b) on the model parameters ¢ and H.

Approximating the moments The n-th moment is defined by

o
m, = / p(x; K)x"dx. (28)
0
Using (24b), we obtain

e lan “lin

e _+H o [ S S | e _+H . 1
my ~ nK H+H e ex""eH dx = u, K HFT | ifn > —, 29)
0 eH

= T LY@ (L ! (30)
= ne'" ¢ n——»= [ n— —
Ho =10 eH o \eH eH

is finite if n > 1/e H and does not depend on K.

where
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Ifn <1/eH, thex = O (KH/(H+1D) boundary layer of the solution (21) becomes
important, and (29) cannot be used. Instead, we write

(n+1)H

o H ina [0 KHL-H
my, = / e /ep (K_Tﬂx) x"dx = K HHI f e YEP(y)y"dy
0 0

KUPE i < 31)
~ + ) < —,
Vn ifn oH

where ~
by = /0 P(y)y"dy (32)

is finite if n < 1/¢H owing to (23) and does not depend on K. If n = 1/eH, the
x = O(1) domain and the x = O (K #/(H+D) boundary layer are equally important
in contributing to the leading-order asymptotics of the n-th moment (see “Appendix
C’?)‘

Normalisation The normalised steady-state protein pdf is obtained by dividing the
solution p(x) by its norm mgy = fooo p(x)dx. Combining (24) and (31) forn = 0, we
arrive at asymptotic approximations

Nt 1 . _H
p(x) Vo K eHFD x& if x « K&+ s (33a)
27~ .

3 1
mo nvo_lKlg-l+le_§x_m_

L ifx > K7 (33b)

We refer to (33a) and (33b) as the inner and outer scalings, respectively. Figure 6
shows an excellent agreement between the theoretical scalings (33) and probability
distributions estimated by extensive kinetic Monte Carlo simulation with Algorithm
1. Numerically, the probabilities are calculated from 10 sample paths (ensemble
average). After the random process reaches stationarity (which we set to be 250 units
of time), we record the state of sample paths every unit of time for another 1750 units
of time (temporal average), and use the cumulated data to compute the stationary
distributions. The low values of K used in Fig. 6 and elsewhere have been chosen
so as to numerically cross-validate the asymptotic analysis; they are not necessarily
meant to represent biologically realisable situations.

Approximating the protein mean and CV? Using the asymptotic results (29) and (31)
for the moments mg, m 1, and m,, we can also derive approximations for the mean and
the mean square, which are given by the ratios

(x)=—, (7)) =—. (34)
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Fig.6 (Color figure online) Protein distributions for selected parameter sets with H = 5. Natural-logarithm
scales on both axes are used. Discrete markers: probability distributions estimated by kinetic Monte Carlo
simulation with Algorithm 1; dashed line: the critical concentration K; solid lines: theoretical predictions
for the inner (33a) (purple colour) and outer (33b) (orange colour) scalings of the probability distributions
with manually tuned prefactors v, - O(1). The simulation data were estimated from 10° sample paths
after the stationarities of the process were reached

The mean satisfies, as K — 0,

Vi

H

— K #H+1

Vo
(x) ~

—1
&K IE1+1

Vo

if e >

(35a)

(35b)

|-

By (35a), under low-noise conditions (¢ < 1/H), the mean exhibits the same power-
law decrease as K — 0 as its small-noise prediction xq (19), albeit with a prefactor
which is different from one. As ¢ exceeds the threshold 1/H, the exponent of the
power law (35b) becomes smaller with increasing &, implying a slower decrease of
the mean as K — 0 as that predicted by the small-noise approximation.

For the mean square, we obtain in the small-K regime the asymptotics

1%) 2H
—— K H+I

Vo
M2

Vo

(x?) ~

o1

K

ife <

if e >

L

2 (36a)

(36b)

-
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Thus, for small values of &, the mean square (x2) decreases as K — 0 with the same
exponent 2H /(H + 1) as its small-noise prediction xé (18). The alternative, slower,
exponent ¢ "' /(H + 1) applies if & exceeds the threshold 1/2H, which is half the
threshold in (36) for the mean and which we previously in Sect. 4 referred to as the
critical noise load.

The coefficient of variation can be approximated for small values of K by

V20 .
_v% -1 ife < ﬁ, (37a)

2 2H-1
Csz%—lw R0 =Tt if L <
X Ul

<4, (37b)

™

V ol
ROk ife > 4. (37¢)

H
M1

Asymptotic approximations (37) prove the observations made in Sect. 4: CV? con-
verges to a constant value as K — 0 for subcritical noise loads (¢ < 1/2H). For
supercritical noise loads (¢ > 1/2H), the CV? exhibits a power-law increase as K
decreases to zero. Additionally, approximations (37) imply that as € increases beyond
the critical value 1/2H, the absolute value of the exponent of the power law in (37b)
first increases, reaching a maximum of H/(H + 1) for e = 1/ H; after ¢ exceeds 1/H,
the exponent of the power law in (37¢) begins to decrease in absolute value. Thus, the
fastest grow-up in the coefficient of variation as K — 0 is achieved fore = 1/H by a
combination of a relatively fast decrease in the mean and a relatively slow decrease in
the variance. Under excessive noise conditions (¢ >> 1/H), feedback plays a limited
role, which is evidenced by low grow-up rates of CV2.

For numerical analysis, we fixed H = 5, used a selection of 20 values for € ranging
from 0.05 to 1, and a geometric sequence of 5 values for K ranging from 10~ to 1073,
For each of the 20 x 5 parameter combinations from the (H, ¢, K) parameter space of
the model, we estimated the steady-state mean concentration value (x) and the mean
square value (x2) by generating 10® sample paths using Algorithm 1. The ensemble
average of the first and the second moments were measured after stationarity of the
process was reached, after which time the moments were measured every unit of time
for another 1750 units of time to perform an additional temporal averaging.

The simulation results are visualised in Fig. 7, where we show the squared mean (x
(Fig. 7, top left), the mean square (x2) (Fig. 7, top right), and the CV? (Fig. 7, centre
left) as functions of the critical concentration K. We use (decimal) logarithmic scale
for both axes in all panels; any power-law relationship then appears as a straight line
with slope which is equal to the power-law’s exponent. Using simple linear regression,
we estimate the power-law exponents (Fig. 7, bottom, shown as triangular and square
markers) and compare the estimates to the asymptotic predictions (35)—(37) (Fig. 7,
bottom, black lines).

While the simulation-based exponent estimates in Fig. 7 are in a general agreement
with the asymptotic results for (x) in (35) and (x?) in (36), some discrepancies are
observed around the critical values of & (which are ¢ = 0.2 for (x)2 and ¢ = 0.1

>2
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Fig. 7 The squared mean (top left), the mean square (top right) and the CV2 (centre left), obtained by
stochastic simulation (Algorithm 1), as functions of critical concentrations K < 1 for H = 5 and a selection
of values of ¢ (centre right). The discrete markers are the numerically measured results. The exponents of
the power-law dependence on K of (x)2, (xz) (bottom left), and cv? (bottom right), obtained by linear
regression (solid lines in top left, top right, and centre left) and asymptotic analysis (35)—(37), as functions
of the inverse noise load £~!

for (x2)). We attribute these errors to logarithmic correction terms which appear in
the leading-order asymptotic approximations for the moments at critical values (see
“Appendix C”). The exponent for the CV? is given by the difference of the exponents
for (x2) and that for (x)2. The deviations of the simulation-based exponents from
the asymptotic predictions become more pronounced after taking the difference. An
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additional source of discrepancy is in the neglecting of the constant term —1 in the
asymptotic approximations (37b) and (37c), which becomes important if the absolute
value of the exponent is low. Despite these differences, the simulation-based results for
the CV? are in qualitative agreement with the leading-order asymptotic predictions:
the CV? remains bounded if & < 0.1 and exhibits the fastest grow-up for ¢ = 0.2.

7 Infinitesimal Delay

In our present model for feedback in burst size, the concentration of protein immedi-
ately before a burst occurs determines the expected size of the burst. The distribution
of burst sizes is exponential, whose defining property is its memorylessness: at any
stage of the growth of a burst, the amount of protein yet to be produced is independent
of how much has already been produced. Such lack of self-control on a single-burst
level implies that our model implicitly includes a delaying step, which newly produced
molecules have to undergo before they can take part in the self-regulation.

Here we would like to discuss, without delving deeply into the intricacies of
the underlying multi-scale analysis, how this delay compares with other time-scales
explicitly or implicitly present in the model. It is useful to think of the protein bursting
model as a singular limit of a piecewise deterministic Markov process (PDMP) with
two internal states O and 1, indicating, for definiteness, the absence or presence of
an mRNA transcript (Lin and Doering 2016). The limit is achieved by making the
1 to O transition very fast (i.e. considering short mRNA lifetimes) while assuming
that in state 1 protein concentration grows rapidly (i.e. translation is fast). Regulation
of burst size, as suggested previously in Sect. 3, can be modelled by making the 1
to O transition rate depend on the protein concentration. However, a straightforward
implementation of such a scheme implies that newly produced proteins immediately
engage in feedback (Bokes and Singh 2017), including within the same burst, which
is at odds with our current assumption of memoryless burst sizes.

In order to avoid immediate regulation, we need to distinguish between immature
proteins that are unable to partake in feedback and mature proteins and consider an
(exponential) delaying step required for protein maturation. We expect that our current
bursting model can be recovered as a singular limit of such a two-component PDMP
provided that

mRNA lifetime < maturation delay « waiting time until the next burst ~ (38)

hold. (We expect that the two components decouple due to time-scale separation
and that we end up with our one-component bursting model for mature proteins.)
Since the maturation delay is by (38) assumed to be much larger that the typical
waiting time of any 1 to O transition, the delay will carry over any single episode of
translational activity; only those proteins that have been present at its beginning can
regulate how much will be produced during it. On the other hand, since the maturation
delay is by (38) assumed to be much shorter than the expected waiting time until the
next translational burst, all proteins produced in previous bursts will have matured
before the next burst occurs, thanks to which the limiting model is one-component
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and Markovian. The maturation delay in the limiting model is infinitesimally small,
yet it bestows crucial qualitative features, as will become apparent in the next section
from a comparison to a non-delayed model. The PDMP model itself can be thought of
as an asymptotic reduction of a fine-grained discrete chemical kinetics model, which
we examine in “Appendix A”.

Biologically, maturation delays can easily be accounted by the time it takes to
complete the synthesis of a gene product. As a specific example, translational bursts in
prokaryotes occur when a short-lived mRNA is transcribed from a gene and repeatedly
translated before it is degraded (McAdams and Arkin 1997). Each translation begins
when the mRNA is bound by a ribosome and continues by the ribosome sliding down
the mRNA molecule. As it moves along the mRNA, the ribosome forms an elongating
chain of amino acids, which is to become a protein after the ribosome reaches the end
of the mRNA code. Since the binding of new ribosome molecules occurs while the
previous ones are still elongating, the proteins whose translation initiated earlier cannot
inhibit those initiated later within a single burst. Other examples of processes which
can be the source of a sufficiently large production delay include post-translational
modifications, folding to the functional secondary structure, and assembly into protein
complexes.

8 Comparison with Previous Results

In an alternative version of our model for feedback in burst size, which was analysed in
aprevious paper (Bokes and Singh 2017), the growth of a burst depends on the current
value of the protein concentration, including the molecules already synthesised within
the same burst, rather than on its pre-burst level. Consequently, the distribution of burst
sizes is not exponential and harder to draw random variates from, which complicates
the implementation of a fast and exact simulation algorithm. On the other hand, the
model in (Bokes and Singh 2017) is considerably easier to treat analytically: the master
equation of the undelayed model reads

x X

op + o 0, J= ! / p(x', t)e_%fx’ 1Oy — xp, (39)
ot 0x e Jo

where 0 (x) = (1+(x/K)")~is the Hill function. The integral term in the probability
flux J can be recognised as the variation-of-constants solution f (x) to the differential
equationd f/dx + f/e6 = p subject to f(0) = 0. Applying the differential operator
d/dx + 1/€6 on the steady state equation J = 0 transforms this integral equation
into an ordinary differential equation (Lin and Doering 2016), solving which yields
an explicit steady-state probability density function

' _L( CH1 +x)
p(x) = Cxele *\w+nxA ™)

where C is a normalisation constant. Steady-state protein moments can be evaluated
by numerical integration of the density or by asymptotic approximation of the integrals
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of burst size of burst size of burst frequency
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Fig. 8 (Color figure online) The relative CcV2ofa protein produced in bursts subject to different types of
feedback in response to increasing feedback strength K —1 We fix H = 5 and use a selection of values of &
which are given in the legend within the central panel. Exact numerical/simulational results are compared
to the small-noise approximation (SNA)

in the small-noise and strong-feedback regimes (Bokes and Singh 2017). In the small-
noise limit, the results that follow are identical with (17) obtained for the current model
(Fig. 8, left and central panels, dashed lines). However, the non-delayed model exhibits
a monotonic decrease in the coefficient of variation as feedback strengthens for any
combination of ¢ and H (Fig. 8, central panel, coloured lines). The loss of control over
protein noise, which occurs for supercritical noise loads in the strong-feedback regime
of our current model (Fig. 8, left panel, coloured lines), can therefore be attributed to
the infinitesimal delay which carries over the bursting time scale.

While we have so far focused exclusively on feedback in burst size, more attention
has traditionally been paid in the literature to feedback in burst frequency. If one
adheres to the fundamentals of the model of Sect. 2, but uses the Hill function to
reduce the burst frequency in the excess of protein, rather than reducing the expected
burst size, one arrives at a model for negative feedback in burst frequency which was
also analysed in (Bokes and Singh 2017). The master equation of the model reads

a aJ 1 [ x—
—p — =0, J = _/ p(x’,t)@(x’)e_de’—xp, (40)
ar  0x e Jo

which admits an explicit steady-state solution, see (Lin and Doering 2016; Bokes and
Singh 2017; Friedman et al. 2006), given by

Ceixr 11+ (x/K)H)~7m,

where C is a normalisation constant. In the small-noise limit, the steady-state mean
converges to the fixed point xo of the Hill function 6(x) = (1 + (x/K Y=L consult
Bokes and Singh (2017) for details, which is the same value as was obtained in (17)
for feedback in burst size. The squared coefficient of variation, on the other hand, was
found in (Bokes and Singh 2017) to be larger by a factor of 1/x¢ than the value (17)
obtained for feedback in burst size. We should note, however, that, even in the absence
of any regulation, the squared coefficient of variation is inversely proportional to the
burst frequency (cf. Sect. 2). The increase in the coefficient of variation in the small-
noise limit can therefore be attributed to the a decrease in the overall (time-averaged)
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burst frequency from the unregulated value of 1/¢ to the regulated value of (x)/e
rather than to a loss of control over protein noise by the regulation of burst frequency.

Adjusting for the decrease in the overall burst frequency, Bokes and Singh (2017)
defined the relative coefficient of variation as the ratio of the coefficient of variation of
the self-regulating protein and that of a constitutively expressed protein with the same
overall, time-averaged, frequency of bursts. While for the feedback in burst size this
definition trivially reduces to CVr2e1 = CV?/e, for feedback in burst frequency, the
relative coefficient of variation is given by Cerl = (x)CV?/¢. Interestingly, the latter
definition yields an expression that is proportional to the Fano factor, a noise metric
that is popular in particular in discrete stochastic systems. In the small-noise limit, both
feedback types yield the same approximation for the relative coefficient of variation,
which decreases monotonically with increasing feedback strength (Fig. 8, dashed
lines). For feedback in burst frequency, the relative coefficient of variation diverges
for K < 1 from the small-noise prediction, but in a manner which is qualitatively
different from the one which we identified in this paper to occur for feedback in burst
size (Fig. 8, left and right panels, coloured lines).

Consistently with the small-noise prediction, the relative coefficient of variation
initially decreases from the value of one as feedback in burst frequency strengthens,
until the critical concentration K drops to O(¢g) levels, at which point the relative
coefficient of variation begins to increase again, converging back to one as K tends to
zero (Fig. 8, right panel; consult Bokes and Singh (2017) for asymptotics). Although
at lower noise loads the turnaround occurs at higher feedback strengths, a critical
noise load below which the small-noise approximation would be uniform does not
exist, and an eventual loss of control over noise is inevitable in the small-K limit
(Fig. 8, right panel). On the other hand, a protein which regulates its burst frequency
is never noisier than a constitutively expressed with the same average burst frequency,
whereas a protein with feedback in burst size will indeed be noisier if subjected to
supercritical noise loads. Bokes and Singh (2017) previously compared the noise-
reduction performance of feedback in burst frequency and (undelayed) feedback in
burst size, reporting that the latter always performs better. In light of the present
results, we conclude that depending on parametric conditions such as indicated above,
either (delayed) feedback in burst size or in burst frequency can be optimal in terms
of minimising the noise. In the present work, we focus exclusively on the effects
of vanishingly small delays. If feedback in burst frequency is delayed by a positive
finite amount of time, then a number of successive bursts may occur before the burst
frequency drops. While we expect that this particular effect will vanish in the limit of
very small delays, additional bursts following shortly after the first one are expected
to lead to an increase in the reported level of noise.

9 Discussion

The synthesis of protein molecules has been shown to occur in bursts of rapid produc-
tion which alternate with periods of inactivity. In a minimalistic model for burst-like
protein expression, bursts are represented by randomly occurring, randomly sized, dis-
continuous jumps in protein concentration; these are counterbalanced by deterministic
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decay of the concentration due dilution by cell growth and/or active degradation. We
extended this minimalistic model by a specific kind of negative feedback, making the
expected burst size decrease with increasing protein concentration. We investigated
the ability of such kind of negative feedback to control stochastic variability in protein
levels.

We should cautiously remark that the assumptions of continuity of concentration
and instantaneity of bursts do not generally hold in real biological systems. In particu-
lar, under strong (self-)repression the effects of discrete protein copy numbers can be
significant, such as indicated by the analysis of “Appendix A”. Also, uncontrolled large
bursts can take substantially longer to accumulate than smaller controlled ones. From
a standpoint of mathematical modelling, we nevertheless believe that it is important to
classify in detail the qualitative behaviour of simple models such as presented herein.
More detailed models, after all, are bound to exhibit the same or similar qualitative
features in intermediate asymptotic regimes (Barenblatt 1996).

Three positive dimensionless parameters—the noise load ¢, the cooperativity coeffi-
cient H, and the critical protein concentration K—completely determine the behaviour
of the model at steady state. The noise load ¢ is equal to the squared coefficient of
variation the protein exhibits without any feedback. Its reciprocal ¢! is equal to the
average number of bursts per protein lifetime. The cooperativity coefficient H mea-
sures the steepness of decrease in the expected burst size in response to increasing
protein concentration. Biologically, a positive integer value of H means that H protein
molecules interact to form a complex which interferes with translation machinery to
reduce the burst size. The critical concentration K, measured in the units of the protein
concentration mean in the absence of regulation, gives the threshold value which is
required to reduce the expected burst size by half. We use the parameter K as an inverse
measure of feedback strength: the lower the threshold for efficient self-repression, the
stronger the feedback.

The central result of the paper lies in characterising the response of the steady-
state protein statistics—the coefficient of variation in particular—to the strengthening
of feedback, i.e. to decreasing K, while keeping the noise load ¢ and the coopera-
tivity coefficient H constant. We found dramatically different responses depending
on whether the noise load is less than or greater than a critical value e = 1/2H.
For subcritical noise loads, the coefficient of variation remains bounded with increas-
ing feedback strength. Contrastingly, for supercritical noise loads, the coefficient of
variation diverges to infinity as a power of K with a negative exponent.

Our results have implications for the role of high cooperativity in negative feedback
systems. Using a standard small-noise (¢ < 1) approximation approach, we have
shown that feedback in burst size can reduce the squared coefficient of variation by
a factor of 1/(H + 1), thus confirming previous reports that cooperativity leads to
improved attenuation of noise (Singh and Hespanha 2009). This observation is not
specific to feedback in burst size but also holds for feedback in burst frequency (Bokes
and Singh 2017) provided that one compensates for the decrease in the overall (time-
averaged) burst frequency. However, using an alternative strong-feedback (K < 1)
approximation approach, we have identified, specifically for feedback in burst size,
an adverse effect of cooperativity on protein noise: high cooperativity can lead to a
significant amplification of protein noise in response to increasing feedback strength
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even if the underlying noise load is relatively low but supercritical (¢ > ¢. = 1/2H). It
is well known that high-cooperativity feedbacks are prone to instability if they operate
with a sufficiently large delay (Murray 2003). Interestingly, the loss of control over
noise in our present model can also be attributed to a delay, albeit an infinitesimally
small one: it has been introduced into the model by assuming that the mean burst
size is determined by the protein concentration immediately before the burst starts so
that within-burst feedback does not take place. We expect that the interesting interplay
between bursting noise, cooperativity, and delay, which we have illustrated here within
a minimalistic modelling framework, will have implications in other, more complex,
systems also.

Acknowledgements We thank an anonymous referee for useful comments and important insights, in
particular those leading to the analysis of “Appendix A”.

Appendix A: Discrete Model

Here we compare the results of the Main Text to a fine-grained chemical kinetics
model consisting of three discrete species (mMRNA, PreProtein, and Protein) that are
subject to reaction channels

1 1 Protein
@ < mRNA, mRNA > @, mRNA + Protein %> Protein,
1 £Q
Protein —1> (), PreProtein N Protein, mRNA —5 mRNA + PreProtein.

(41)

These six reactions represent the following processes: (i) mRNA synthesis (burst
initiation); (ii) natural mRNA decay; (iii) mRNA decay catalysed by the protein;
(iv) protein decay (v) protein maturation; (vi) translation. We restrict ourselves, for
simplicity, to non-cooperative feedback in the third reaction, i.e. H = 1 in the sense of
the Main Text. The reaction constants in (41) are parameterised in a manner that relates
the discrete model to its continuous counterpart of the Main Text. In addition to the
familiar parameters ¢ (noise load) and K (critical concentration), three new parameters
appear: the system-size parameter €2 gives the number of protein molecules in a unit
of concentration; § and A give the mRNA lifetime and the mean protein maturation
delay, respectively, in units of the protein lifetime.

While a systematic asymptotic analysis of (41) is beyond the scope of this paper,
we expect that in the limit of Q — oo, the discrete model reduces to a piecewise
deterministic Markov process (PDMP), with one discrete species (mMRNA) and two
continuous species (pre-protein and mature protein). In the limit of § — 0, whilst
keeping A finite positive, mRNA is adiabatically eliminated from the model, and
pre-protein is produced in instantaneous bursts. The size of a burst is drawn from a
geometric distribution, the mean of which decreases with the amount of mature protein
in the system. If one additionally takes A — O after the limit of § — O has already
been taken, then the system features an infinitesimal delay in the sense of Sect. 7.
Combining the above limits of 2 — oo and § — 0 before A — 0, one expects to
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Fig.9 (Color figure online) Noise (CV2 /¢) as function of feedback strength (K —1). We use the continuous-
state drift-jump model with infinitesimal delay (solid black) or without infinitesimal delay (dashed black),
and the discrete model (41) (coloured circles). Shaded bands indicate 95% confidence intervals

arrive at the continuous-state bursting model with infinitesimal delay, on which we
focused throughout the Main Text.

The species means and standard deviations were calculated using Stochpy’s (Maar-
leveld et al. 2013) implementation of Gillespie’s direct method (Gillespie 1976). We
skipped the first 30 units of time to reach stationarity and used the next 10 itera-
tions to estimate the moments. The moments were used, in particular, to estimate the
protein coefficient of variation. The procedure was repeated ten times to improve preci-
sion by additional ensemble averaging and to obtain approximate confidence intervals
(assuming asymptotic normality).

In the present simulation, we fixed ¢ = 1, H = 1, and varied K between 102 and
102. The noise load ¢ = 1 exceeds the critical value &. = 1/2H = 0.5. Comparing
the results of the full discrete and continuous bursting simulation in Fig. 9, we are able
to draw the following conclusions:

— Finiteness of 1/A reduces the noise. It takes A units of time, on average, for a
pre-protein to mature. The intrinsic variability of maturation times attenuates the
effective burst size and reduces protein noise. Finiteness of 1/A is responsible, in
particular, for the relative decrease of noise in weak feedback conditions (Fig. 9,
blue and orange markers). Under strong-feedback conditions, other effects, which
are listed below, dominate.

— Finiteness of A/ also reduces the noise. Large values of 1. /§ mean that few proteins
will have matured over the duration of a single burst. Nevertheless, if feedback
is strong, these few proteins may suffice to stop the burst and ameliorate noise
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(Fig. 9, blue markers). An additional increase in 1 /§ is required to offset the effect
(Fig. 9, orange markers).

— Finiteness of 2 increases the noise. A unit of concentration comprises 2 copies
of protein. Strong feedback decreases the mean protein concentration, making the
low-copy-number Poissonian noise increasingly more important. We attribute to
this effect, in particular, the excess noise exhibited by the discrete model under
strong-feedback conditions (Fig. 9, orange and green markers).

Aside from exhibiting the aforementioned additional effects, the discrete model reflects
the essential features of the continuous bursting descriptions of the Main Text, in par-
ticular with respect to the interaction between the bursting and maturation timescales,
and their effect on protein noise.

Appendix B: Estimating Protein Moments from Simulations

We can estimate the n-th steady-state moment by the time average % fOT x"(r)dt,
where 7' > 1, of a sample trajectory x(¢) generated by Algorithm 1 and raised to the
power of n. Since x(¢) is piecewise exponential, we have

| (T | V=D | Nl
n _ n,—nty, _ _— ne1 _ Tl
7/0 x(t)dt_TiZ(;/O xle dt_nTiZ(;xi(l e TNy, (42)

where x;, i > 1, is the protein concentration immediately after the i-th burst, xq is the
initial protein concentration, t;, i > 1, is the waiting time from the i-th burst until the
(i + 1)-th burst, 7¢ is the waiting time from the initial time until the first burst, and
T = Z,N: _01 7;, where N is a large integer. By Algorithm 1, the values of x; and t; are
obtained by

elnu;
14 (xje~ % /K)H’

—T;

Xi4+1 = X;¢€ )C():O, r,-:—slnu,-, i=0,1,...,

(43)
where u; and i;,i = 0, 1, . . ., are random variates drawn independently of each other
from the uniform distribution in the unit interval.

Inserting T ~ ¢ N, which holds by the law of large numbers, into (42), and shifting
the time frame to reduce the effect of the transient behaviour, we arrive at an estimate

o 1 N+M—-1
() =— > x(l—e"), (44)
enN gy’

where x; and t; are given by (43). We used (44) with N = 10° and M = 107 to
estimate the theoretical value of (x") in Figs. 3, 4, 5 and 8. In the strong-feedback
limit (Figs. 6, 7), ensemble averaging across a large number of sample paths was
needed for more precise measurements of the power-law exponents.
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Appendix C: Strong-Feedback Asymptotics in Critical Cases

The dominant contribution to the n-th moment of a solution p(x) to (20) comes
exclusively from the inner O (K# /(H+1)y concentration scale if n < 1/eH or from
the outer O (1) concentration scale if n > 1/¢ H. In the borderline case of n = 1/eH,
which we explore in this Appendix, the inner and outer regions both contribute to
the leading-order behaviour of the n-th moment. The individual contributions can be
identified by splitting the range of integration (Hinch 1991),

[ee) ) [ee)
my, =/ p(x)x"dx =/ p(x)x"dx +/ p(x)x"dx, (45)
0 0 b

where § is a value taken from an intermediate scale (K #/(H+D « § « 1).
In the first integral on the right-hand side of (45), we substitute x = K /(H+Dy,
and, neglecting the slowly decaying exponential in (21), we obtain

s L) K HALS
/ p(x)x"dx ~ K H¥T / P(y)y"dy. (46)
0 0

Since 8 > K H#/(H+D the upper integration limit of the integral on the right-hand side
of (46) is large. The integral itself diverges to infinity, since n = 1 /e H together with
(23b) imply that P(y)y" ~ ny~! for y > 1. Extricating the divergent part from the
integral in (46), we obtain an asymptotic approximation

__H_ _H

[(’HLH,S K H+I§ K H+I§ dy
P(y)y"d :/ (P ——)d + / —
/0 »my"dy A My" 1 y+n YA

N/OO(P(y)y"— 7 )dy— MK 4 oins. @7)
0 y+1 H+1

In the second integral on the right-hand side of (45), we approximate the integrand
with (24b), finding that

o0 nqe (n+DH é N hH 3
px)x"dx ~ nK HFT E; nK H+T (—Ind 4 Ine — y), (48)
Ky &

where E(t) is the exponential integral and y = 0.577... is the Euler—Mascheroni
constant (Abramowitz and Stegun 1972).
Combining (45)—(48), we find that the n-the moment can be expanded into

K St / P(y) 7_)d InK + (1 )). (49)
~ - — n ne — .
" 0 Y y+1 Yo H+1 nine =y

Although the logarithmic term in (49) asymptotically dominates, as K tends to zero,
the neighbouring constant terms, in practice the magnitudes of the logarithm and the
constant terms are similar so the latter cannot be neglected.
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As aparticular application of the expansion (49), we evaluate the small- K behaviour
of the protein coefficient of variation subject to a critical noise load ¢ = 1/2H.
The leading-order approximations to mq and m involve contributions from the inner
O (K H/(H+DYy scale only and are given by (31). On the other hand, the leading-order
approximation to m, combines contributions from both inner and outer scales and is
given by (49). For the coefficient of variation we obtain

momog Vo o 1
CV? = -1~ = / (P 2——)d
m v%< o POV T amg )@

InK In2 +InH + y |
2H(1+ H) 2H? '

In the Main Text, we showed that the coefficient of variation remains bounded as K
goes to zero if ¢ < 1/2H and increases polynomially if ¢ > 1/2H. The above result
implies that in the critical case ¢ = 1/2H exhibits a slow logarithmic increase as K
tends to zero.
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