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In nature, microorganisms exhibit different volumes spanning 
six orders of magnitude1. Despite their capability to create dif-
ferent sizes, a clonal population in a given environment main-
tains a uniform size across individual cells. Recent studies in 
eukaryotic and bacterial organisms showed that this homoge-
neity in cell size can be accomplished by growing a constant 
size between two cell cycle events (that is, the adder model2–6).  
Demonstration of the adder model led to the hypothesis that 
this phenomenon is a consequence of convergent evolution. 
Given that archaeal cells share characteristics with both 
bacteria and eukaryotes, we investigated whether and how 
archaeal cells exhibit control over cell size. To this end, we 
developed a soft-lithography method of growing the archaeal 
cells to enable quantitative time-lapse imaging and single-cell 
analysis, which would be useful for other microorganisms. 
Using this method, we demonstrated that Halobacterium sali-
narum, a hypersaline-adapted archaeal organism, grows 
exponentially at the single-cell level and maintains a narrow-
size distribution by adding a constant length between cell 
division events. Interestingly, the archaeal cells exhibited 
greater variability in cell division placement and exponential 
growth rate across individual cells in a population relative to 
those observed in Escherichia coli6–9. Here, we present a theo-
retical framework that explains how these larger fluctuations 
in archaeal cell cycle events contribute to cell size variability 
and control.

Previous work suggests that individual cells within clonal popu-
lations maintain a uniform size at a steady state with typical coef-
ficients of variation (CV) of 10–20%10. Although the biological 
processes responsible for this homogeneity in cell size are not well 
understood, three prominent models provide a phenomenological 
explanation3 (see Supplementary Notes Section 1): (1) ‘sizer’, which 
proposes that cells grow to a critical size threshold prior to divi-
sion; (2) ‘timer’, which states that cells grow for a constant amount 
of time between birth and division; and (3) ‘adder’ (or ‘incre-
mental’) model, which proposes that cells add a constant volume 
between two cell cycle events. Recent studies have demonstrated 
that the adder model explains cell size control in several different 
bacterial organisms, including Escherichia coli2,4–6, Bacillus subti-
lis6, Pseudomonas aeruginosa1 and Desulfovibrio vulgaris11. In the 
case of the bacteria Caulobacter crescentus, it was established that 
growth is exponential5,12; however, whether its cell size control 
can be explained by the adder paradigm alone5, or by a mixture of 

adder and timer models, is currently under debate13. For eukary-
otes, it was shown that diploid daughter cells of the budding yeast 
Saccharomyces cerevisiae2 follow the adder model, whereas cells of 
the yeast Schizosaccharomyces pombe do not14. Together, these stud-
ies suggest that several evolutionarily divergent organisms have 
evolved the adder strategy, despite distinct underlying molecular 
mechanisms2. However, control of cell size in archaea, the third 
domain of life, remains unknown.

Here, we address cell size control in archaea, which resemble 
bacterial cells in terms of size and shape, whereas the cell cycle 
events (that is, DNA replication, cell growth and division) possess 
features that are hybrid between eukaryotes and prokaryotes15–21. 
For example, several archaeal proteins involved in replication, 
transcription and translation are homologous to eukaryotic coun-
terparts, whereas many archaeal genomes comprise single circular 
chromosomes and are organized into operons similar to bacterial 
genomes19. However, unlike bacterial chromosomes that harbour a 
single replication origin, archaeal chromosomes often have multiple 
origins, and their replication is initiated by Orc1–Cdc6, similar to 
eukaryotic cells17. Archaea display a mix of cell division and cyto-
skeletal proteins, depending on the phylum: the genome of repre-
sentatives of the crenarchaeal phylum and the Asgard superphylum 
encodes proteins homologous to endosomal sorting complexes 
required for transport (ESCRT) and actins in eukaryotes, whereas 
many species of the euryarchaeal phylum possess bacterial counter-
parts, such as ftsZ, minD and mreB18,19,22.

Given the ancestral nature of the archaeal domain, development 
of a phenomenological model of the cell cycle for this domain is 
critical for understanding the evolution and conservation of cell 
size and cell cycle control23. To this end, single-cell observations of 
growth and division are required; however, it has been difficult to 
obtain data with high temporal resolution due to the extreme con-
ditions that are required for cell viability of many archaeal model 
organisms (for example, near-saturating levels of salinity)16.

We studied the hypersaline-adapted model archaeon 
Halobacterium salinarum, which maintains rod shape when grown 
freely in liquid media with an optimum salt concentration across 
different growth phases (Supplementary Table  1). The rod shape 
of H. salinarum makes it possible to use length and two-dimen-
sional (2D) area as a proxy for volume. However, we noted that 
growth under even a moderately stiff agarose gel (2% w/v) causes 
H. salinarum rods to grow as flat polygons or amorphous shapes 
(Supplementary Fig.  1). This is unlike many bacterial and fungal 
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model organisms with rigid cell walls, suggesting that H. salinarum 
cells are more sensitive to mechanical stress. Because of this sensi-
tivity, we developed microfabricated agarose chambers to cultivate 
H. salinarum, allowing us to visualize and track hundreds of cells 
with high temporal and spatial resolution for up to four generations 
and up to eight total cell divisions per agarose chamber (Fig. 1a,b 
and Supplementary Video 1). Cells in agarose chambers maintained 
their rod shape and grew at a rate similar to aerated cells in batch 
culture (a mean doubling time of 6 h (±​1, s.d.) at 37 °C; 3 indepen-
dent trials with 5 replicates each). We also found that there were no 
systematic changes in the cell cycle that depend on the generations 
when grown in the agarose chambers (Supplementary Fig.  2a,b). 
Furthermore, we verified that there was no variation between the 
independent trials in the agarose chambers (Supplementary Table 2 
and Supplementary Fig. 3). In Supplementary Notes Section 6, we 
provide details of other cultivation methods that were attempted 
unsuccessfully.

We found the diameter CV to be small (12%; n =​ 92), which 
allowed us to use the length of rod-shaped cells as a proxy for cell 
volume. While we report our main findings here using measure-
ments of cell length, duplicate analysis using the 2D area data pro-
vides identical conclusions (Supplementary Fig. 4).

As understanding the growth pattern is critical for investigating 
size control, we first asked whether cells grow at a constant rate (lin-
ear) or at a rate that is proportional to their size (exponential). One 
method to determine exponential growth is to measure and plot the 
size of individual cells over time, and then fit an exponential func-
tion to hundreds of individual plots of single-cell growth8. Instead 
of this approach, which requires high measurement precision, we 
treated single-cell growth data as individual points in a scatter plot 
(Fig. 1c and Supplementary Fig. 4a), and used the entire data to fit 
only once to determine exponential growth (see below for details)2. 
Thus, this approach uses the power of statistics (that is, averaging) 
to negate the need for having a very high precision for cell size mea-
surements.

For an exponentially growing single cell, the time taken between 
divisions (that is, the interdivision time, td) and birth size (lbirth) are 
related to the division size (ldivision):

= λl l e (1)t
division birth

d

where λ is the exponential growth rate constant. Rearranging 
equation (1), we obtain:

λ=
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yielding a linear relationship with a slope of 1 and an intercept of 0.  
Fitting the data for cell length with equation (2) representing expo-
nential growth (Fig.  1c), we detected a significant relationship 
with a slope of 1.018 ±​ 0.007 (s.e.; P <​ 0.001, R2 =​ 0.978). Similarly, 
fitting the 2D area data (Supplementary Fig.  4a) gave a slope of 
0.992 ±​ 0.008 (s.e.; P <​ 0.0001). Furthermore, we found that the 
experimental setup using agarose chambers does not influence 
the exponential growth mode of H. salinarum (Supplementary 
Fig. 2c). Conversely, we found that a linear growth model does not 
fit the data well (Supplementary Fig.  5 and Supplementary Notes 
Section 7). Overall, these results demonstrated that single H. salina-
rum cells grow exponentially (Fig. 1c and Supplementary Fig. 4a), 
similar to certain bacterial and fungal cells8.

We then sought to determine whether and how cell size is con-
trolled in H. salinarum. Live-cell imaging indicated that cell length 
distributions at birth and division have a CV of 16% and 13%, 
respectively, suggesting that H. salinarum maintains cell size homo-
geneity during the exponential phase while roughly doubling in size 

10 μm 

Glass

4% agarose
Side view

1.3 μm 

Pillar

100 min per frame

a

b

c

d

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
λtd

ln
(l di

vi
si

on
/l

bi
rt

h)

ldivision

lbirth

0.0

0.1

0.2

0.3

0.4

2 3 4 5 6 7 8 9 10 11
Cell length (μm)

Re
la

tiv
e 

fr
eq

ue
nc

y 

2 4 6 8 10 12 14 16 18

Fig. 1 | H. salinarum cells grow exponentially, and their lengths at birth 
and division are narrowly distributed. a, Schematic of the architecture and 
dimensions of the agarose microchambers. The microchambers contained 
a relatively much softer low-melting agarose (0.3% w/v) to restrict 
free swimming of H. salinarum cells. b, Montage of a typical time-lapse 
(see Supplementary Video 1) taken using microchambers (video taken 
every 5 min; not all frames are shown). This montage represents three 
experiments. Scale bar, 5 μ​m. c, Single H. salinarum cells grow exponentially. 
We pooled data from three independent trials. The ratio of lbirth and ldivision 
after natural log transformation was plotted against td normalized by λ 
(0.117 h−1), which was independently measured by bulk culture growth 
measurements rather than being a fitted parameter. Unless otherwise 
noted, experimental data acquired using microchambers are visualized as 
combinations of scatter plots and probability density heatmaps. The colour 
bar inset shows the densities for the heatmap. Data points after binning 
along the x axis are overlaid: the mean and standard deviation of each bin 
are plotted as pink circles and error bars, respectively. Linear regression 
of raw data (red solid line) yields a slope of 1.018 ±​ 0.007 (s.e.; n =​ 418, 
P <​ 0.001 for the null hypothesis that the slope is zero). A black dashed line 
with a slope of 1 is overlaid for comparison. d, Histogram of H. salinarum cell 
lengths show narrow distributions (pooled from three experiments) around 
the mean of 3.5 μ​m (CV =​ 16%; n =​ 418) and 6.5 μ​m (CV =​ 13%; n =​ 418) for 
birth and division, respectively.
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from birth to division, similar to bacteria and fungi (Fig.  1d). To 
determine which model of the three models—timer, sizer or adder—
best described the data for H. salinarum, we examined the relation-
ship between cell lengths at birth and division. If the sizer model was 
true, lbirth and ldivision would be uncorrelated, yielding a slope of 0 from 
simple linear regression4. By contrast, the adder model predicts that 
cell size at birth is linearly related to the size at division with a slope 
of 1, because a constant length (∆​) is added between cell birth and 
division4, as described by the following equation:

Δ= +l l (3)division birth

In the timer model, one could assume that a newborn cell grows 
for one doubling time (that is, the constant time due to the exponen-
tial growth of single cells) before division. In this regime, we would 
expect a slope of 2 when a simple linear regression is applied to the 
birth size and division size, while infinitely broadening the cell size 
distributions4 (see Supplementary Notes Section 1 for more details). 
Regression analysis of the cell length data (Fig. 2a) using equation 
(3) yielded a slope of 0.88 ±​ 0.06 (s.e.; P <​ 0.001), and regression of 
the 2D area data (Supplementary Fig. 4b) gave a slope of 0.98 ±​ 0.07 
(s.e.; P <​ 0.001). These results suggest that the adder model best 
describes cell size control in H. salinarum.

Furthermore, we found that birth length and interdivision time 
are negatively correlated (Fig. 2b). In fact, the adder model predicts 
this negative relationship between birth size and interdivision time 
(Fig. 2b). The prediction from the adder paradigm and experimental 
data are well aligned for both cell length (Fig. 2b) and 2D area data 
(Supplementary Fig. 4c). As expected, we also found that the added 
size (Δ​) between birth and division remains unchanged, regardless of 
the birth size (Fig. 2c and Supplementary Fig. 4c), further supporting  

the adder model. From the analysis in Fig. 2 and additional experi-
mental evidence (Supplementary Figs. 4 and 6), we concluded that 
cell size control in H. salinarum follows the adder model.

While the adder model best describes the H. salinarum data 
(Fig.  2 and Supplementary Fig.  4), single-cell imaging data also 
revealed important biological fluctuations in the archaeal cell cycle 
that affect size control (Fig. 3a). In particular, we found that the cell 
division placement is noisier in H. salinarum cells than in E. coli (that 
is, the standard deviations of division ratio distributions are 0.03 
and 0.01, for H. salinarum and E. coli, respectively), indicating that 
division placement is more likely to deviate from the exact midpoint 
of archaeal cells (Fig. 3b,c). The distribution of exponential growth 
rate of individual H. salinarum cells was also broader than that of 
E. coli cells (Fig. 3d). The CV of the exponential growth rate distri-
bution was 17% for H. salinarum, whereas the CV for E. coli distri-
bution is reported to be as low as 8% in fast growth environments6. 
The latter quantity is reported to be as low as 10% in a microfluidics 
setup, showing that the statistics are comparable between different 
experimental setups (see Supplementary Notes Section 8 for further 
data and discussion). Together, these data demonstrate that rela-
tive magnitudes of the noise in cell division ratio and growth rate 
of H. salinarum are 2–3-fold larger than those of E. coli. Although 
these differences in the noise terms might initially seem negligible, 
we found that they influence cell size control in H. salinarum.

Specifically, we computed Pearson correlation coefficients 
between different cell cycle parameters (Supplementary Table 3) for 
H. salinarum. Previously, theoretical4 and experimental5,6 studies for 
E. coli cells showed that the correlation between lbirth and ldivision is 0.5 
for the adder model (Supplementary Table 4), assuming a perfectly 
symmetrical cell division and accounting for random noise in 
interdivision time. Thus, for E. coli, the variances of growth rate 
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Fig. 2 | H. salinarum cells effectively add a constant length between generations, consistent with the adder model. a, Cell lengths at birth and division 
are linearly related, and linear regression of the raw data (red solid line) yields a slope of 0.88 ±​ 0.06 (s.e.; 95% CI : 0.8–1, n =​ 418, P <​ 0.001 for the null 
hypothesis that the slope is zero). A black dashed line with a slope of 1 represents the theoretical line for the adder model. Grey dashed lines with a slope 
of 2 and 0 are shown to represent the theoretical lines for the timer and sizer models, respectively. b, Given the exponential growth at the single-cell level 
(Fig. 1c and Supplementary Fig. 4a), equation (2) can be expressed as: = +

λ
Δt ln(1 )

ld
1

birth
 (referred to hereafter as equation (7)) after substituting in equation 

(3). By inserting independently determined λ and ∆​ into equation (7), we arrive at a precise inverse relationship between lbirth and td. Birth length and 
interdivision time are negatively correlated, and the binned data closely match the theoretical prediction for the adder model (black dashed line) (equation 
(7)), which has no adjustable parameters. Theoretical lines for the timer and sizer models are shown as grey dashed lines. The line for the timer model has a 
slope of 0. For the sizer model, =

λ
< >t ln( )l

ld
1 division

birth
 was plotted. c, A constant length is added regardless of the birth length. Pearson correlation coefficient 

of birth length and added length was −​0.1 (n =​ 418, 95% CI: −​0.2 to −​0.0004). The small magnitude of the coefficient indicates that there were no 
significant relationships between these parameters. As expected, the binned data closely match the theoretical prediction for the adder model (black dashed 
line). Theoretical lines for the timer and sizer models are shown as grey dashed lines. The line for the timer model has a slope of 1, assuming that the cell 
doubles in size to keep a constant doubling time. For the sizer model, Δ = < >−l ldivision birth was plotted. For all panels, data are visualized as combinations 
of scatter plots and probability density heatmaps. The colour bar inset shows the densities for the heatmap. Data points after binning along the x axis are 
overlaid: the mean and standard deviation of each bin are plotted as pink circles and error bars, respectively. We pooled data from three independent trials.
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and division ratio distributions are small enough that the simpler 
framework requiring interdivision time noise only was sufficient to 
capture experimentally observed correlations through simulations 
(Supplementary Table  4). By contrast, this and other correlations 
for H. salinarum were found to deviate from the model predictions 
(Supplementary Table  3), indicating that the previously proposed 
framework2,4 is insufficient to capture the larger biological noise 
observed in the H. salinarum cell cycle (Fig. 3) and that the higher 
magnitude of the noises affect the correlations between different cell 
cycle parameters.

Thus, we developed a theoretical framework (see Methods and 
Supplementary Notes Sections 2 and 3 for details) that includes two 
additional stochastic variables; namely, the variables included were 
noise in division ratio, interdivision time and exponential growth 
rate (Fig.  4a). Noise in division ratio (σ​ratio) describes the experi-
mental observation that the division placement of H. salinarum cells 
is not always at the exact midpoint of the cell (Fig.  3). Similarly, 
each newborn cell would have its exponential growth rate randomly 
drawn from a distribution whose variance is described with the noise 
in exponential growth rate (σ​λ) (for example, Fig.  3d). The third 
noise variable in the model is σ​time, which describes the spread of the 
distribution for time noise (tnoise). In theoretical frameworks pub-
lished previously2,4, this was the only noise term that was required 
to adequately explain experimental data for E. coli (Supplementary 
Table 4). The actual interdivision time measured for a given cell can 
be described as the sum of a target interdivision time necessary to 
precisely add a constant volume (∆​) plus some time noise, which 
causes the actual interdivision time to deviate slightly from the tar-
get interdivision time (ttarget)4.

Simulated correlation coefficients based on our framework 
matched well to experimental coefficients measured for H. sali-
narum (Fig.  4b, Supplementary Table  3 and Supplementary 
Notes Section  5). The dramatically improved agreement relative 
to previous instantiations of the adder model2,4,24–26 (Fig.  4b and 
Supplementary Table  3) demonstrates a more general use of our 
extended framework for capturing relevant biological fluctuations 
across a wide diversity of species than previous models. In addition, 
this result indicates that noise in division ratio, interdivision time 
and exponential growth rate appreciably influence the adder model 
and cell size distributions. Interestingly, the correlation between the 
birth size of mother and the birth size of daughter cells was the only 
relationship unaffected by the presence of any of the noise terms 
(Supplementary Table 3 and Supplementary Notes Section 3).

To further examine the validity of our framework, we tested 
the prediction that the standard deviations of cell size distribu-
tions are equivalent to the standard deviation in interdivision 
time after appropriate scaling (see Supplementary Notes Section 2 
for derivations). Indeed, these distributions from H. salinarum 
data collapsed after accounting for σ​time, σ​ratio and σ​λ (Fig.  4c 
and Supplementary Fig. 7). This prediction is in contrast to the 
experimental and theoretical evidence for E. coli cells, whose 
interdivision and cell size distributions could be scaled using 
σ​time alone2,4,6. Thus, our coarse-grained framework showed that 
the adder model could accommodate several different biological 
fluctuations to maintain cell size homogeneity. This framework 
could be used as a diagnostic tool not only to recognize the imple-
mentation of the adder model in other organisms but also to help 
understand which noise terms prominently affect the correla-
tions between different cell cycle parameters for the adder model. 
Interestingly, a recent study showed that mycobacteria actively 
control asymmetric division to create a more diverse population, 
making them less susceptible to antibiotics27. Similarly, the vari-
ous noise terms we studied here may have implications for the 
population growth.

In conclusion, our study demonstrates that an archaeal organ-
ism controls its cell size by adding a constant length between two 
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H. salinarum cells are broader than those of E. coli. a, Noisy symmetric 
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An example montage of division events is shown. Longer daughter cells are 
indicated by orange arrows. Scale bar, 5 μ​m. b, Schematic explaining how 
noisy divisions were quantified using the division ratio. A perfectly symmetric 
division would give a ratio of 0.5. c, Histograms depict the division ratio 
distributions of H. salinarum cells (blue; pooled from three trials) and E. coli 
cells (red; data from ref. 9). Gaussian fit of each distribution gave standard 
deviations of 0.03 and 0.01, for H. salinarum (light blue dashed line) and E. coli 
(orange dashed line), respectively (n =​ 418 for H. salinarum, R2  =​ 0.99 for both 
organisms). d, Histograms depict the distribution of exponential growth rates 
of individual H. salinarum cells (blue; CV of 17%; pooled from three trials) and 
E. coli cells (red; CV of 8%; analysed published data7). The CV for E. coli is 
similar to previous studies6,8. Gaussian fit of each distribution gave standard 
deviations of 0.16 and 0.08, for H. salinarum (light blue dashed line) and E. coli 
(orange dashed line), respectively (n =​ 418 for H. salinarum, R2 =​ 0.96 and 0.99 
for H. salinarum and E. coli, respectively). The growth rates were uncorrelated 
between mother and daughter cells in H. salinarum, similar to previous studies 
in E. coli33 (Pearson correlation coefficient: −​0.1, 95% CI: −​0.2 to 0.01, P =​ 0.1).
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cell cycle events (Fig. 2 and Supplementary Fig. 4), but with higher 
variance in cell cycle parameters relative to bacteria (Fig. 3). This 
finding expands the list of organisms that implement the adder 
model for size control across all domains of life, despite the differ-
ences in terms of cell shape, cell wall, membrane, DNA replication, 
transcription, translation, cell division and cell cycle control15–21. It 
remains to be determined which molecular players and cell cycle 
events (for example, cell division or DNA replication initiation) 
implement the adder strategy in H. salinarum. Several studies in 
E. coli have suggested that cell cycle control occurs at the initiation 
of DNA replication rather than at cell division, which was recently 
shown to be consistent with the adder model28,29. It is possible that 
initiation events are also important in H. salinarum. Given the 
unique evolutionary position of archaea blending characteristics of 
both bacteria and eukaryotes, our results serve as a useful founda-
tion for understanding the molecular mechanisms and evolution of 
cell cycle control.

Methods
Strain used and general growth conditions. H. salinarum NRC-1 (ATCC700922) 
was used for all experiments. Cultures were prepared prior to microscopy at 42 °C 
with shaking at 200 rpm. Cells were grown at 37 °C in agarose chambers during 
live-cell microscopy. As a nutrient-rich medium, we used Complete Media (CM): 
250 g NaCl, 20 g MgSO4·7H2O, 3 g trisodium citrate·2H2O, 2 g KCl and 10 g  
Oxoid peptone.

Measuring distributions of cell sizes for Supplementary Table 1. Liquid cultures 
were grown in CM (2 ml) from single colonies until saturation. Cells were then 
diluted to an optical density at 600 nm (OD600) of 0.05 in CM to grow the cells to 
the stages indicated in Supplementary Table 1. For imaging, 2 μ​l culture aliquots 
were immobilized on No. 1.5 cover glass under an agar pad (2% w/v). Phase-
contrast images (200 ms exposure) were collected on a Nikon TI microscope 
equipped with a 6.45-μ​m-pixel Photometrics HQ2 camera and a Nikon ×​100 
numerical aperture (NA) 1.4 objective.

To segment phase-contrast images of cells, the MATLAB-based software 
Morphometrics30 was used with the phase-contrast setting. The cell contours 
obtained were visually inspected, and any erroneous contours were removed. After 
segmentation of cells, two filters were created to eliminate any non-rod-shaped 
cells. A rod shape was defined as a cell that possesses two poles. Cells that were 
bent, instead of being straight rods, were detected by calculating the distance 
between two poles. For a straight rod cell, this distance should be the same as the 
cell length computed by Morphometrics. For the first filter, a threshold of 650 nm 
was placed on the absolute difference between the pole-to-pole distance and the 
cell length from Morphometrics, to identify bent rods that exceeded this threshold. 
A second filter was created to detect spherical or amorphous-shaped cells: the 
percentage of ‘flat’ regions (that is, very small local curvature) in the perimeter of 
each cell was calculated. This percentage was required to be >​10% for a cell to be 
classified as a rod.

Fabrication of agarose microchambers. For microscopy analysis of H. salinarum 
single-cell growth, microchambers of 10 ×​ 10 µ​m2 squares with a 2 ×​ 2 µ​m2 post 
at the centre of the microchamber were designed and constructed (Fig. 1a). We 
used CleWin (Delta Mask) to design the chambers, and repeated the design to a 
total of 40,000 chambers per array replica. We previously described the process 
for fabricating microchannels and rod-to-sphere microchambers31. Briefly, silicon 
dioxide wafers were cleaned with isopropanol and acetone and repeatedly rinsed 
in double-distilled water (ddH2O). A 10:1 solution of hexadimethylsiloxane:i
sopropanol was incubated on top of the clean wafer for 10 min. The solution 
was then spincoated, and the wafer was activated at 95 °C for 10 min to improve 
adhesion of photoresist. We then spincoated positive Shipley photoresist 1813 
(MicroChem) and processed the photoresist film according to the manufacturer’s 
instructions to obtain a layer thickness of 1.3 µ​m. The microchamber patterns 
were directly written onto the photoresists by applying laser lithography (µ​PG 101, 
Heidelberg Instruments). After exposure, the patterns were promptly developed 
by application of a small drop of MF-321 (MicroChem) for ~2 min on top of 
the array. The master was silanized overnight at room temperature by vapour 
deposition of heptadecafluoro-1,1,2,2-tetrahydrodecyl trichlorosilane (Gelest Inc.). 
Using soft lithography, the array pattern was replicated into polydimethylsiloxane 
(PDMS) (Sylgard 184) using a ratio of 10:1 (base:curing agent). The pattern 
was cured overnight in an oven at 65 °C while degassing, then peeled off from 
the silicon wafer. This PDMS mould was then used repeatedly to create agarose 
microchambers. We cleaned the mould from dust with adhesive tape and poured 
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Fig. 4 | Noise in interdivision time, division placement and exponential growth rate significantly affect the archaeal cell size distribution. a, Schematic 
illustrating our theoretical framework. The cell growth cycle for two generations is depicted, with time on the x axis and the log of cell length at any given 
time on the y axis. The total interdivision time is the sum of an ideal interdivision time that is necessary to precisely add a constant length plus some time 
noise. Noise terms for division ratio, exponential growth rate and interdivision time are indicated by σ​ratio, σ​λ and σ​time, respectively. Red double-headed 
arrows indicate how each noise term leads to individual cells having different division ratio, exponential growth rate and interdivision time. For σ​ratio, 
we have drawn a rod-shaped cell and its division placement to illustrate how this term governs how noisy the cell divisions are. Assuming the sample 
distribution shown in Fig. 3c accurately represents the true population distribution, every dividing cell would have its division ratio randomly drawn from 
a distribution like the one in Fig. 3c. Because of the fluctuations in division placement, the CV of birth length (16%) is bigger than the division length 
(13%) (Fig. 1d). For σ​λ, we show two cells with different growth rates (that is, the slope from lbirth to ldivision is steeper for cell 2), which contribute to different 
interdivision times. b, We used correlation coefficients as a sensitive metric to evaluate our theoretical framework. Different pairs of interdivision time and 
cell length parameters used for correlation calculations are listed on the y axis. Subscripts b and d indicate birth and division, respectively. Superscripts 
m, d and s indicate generational relationships: mother, daughter and sister, respectively. Correlation coefficients from stochastic simulations (in black 
squares) incorporating σ​time, σ​ratio and σ​λ match well with the values derived from experimental data (n =​ 418 after pooling from three trials; error bars 
indicate 95% CI). Coefficients from a simulation that took only σ​time into account are shown in grey circles for comparison (based on the theory from ref. 4). 
The exact values for simulation and experimental correlation coefficients are tabulated in Supplementary Table 2. c, Length distributions can be collapsed 
with the td distribution after accounting for σ​time, σ​ratio and σ​λ, as predicted by the theory (n =​ 418; see Methods and Supplementary Notes Section 2 for 
details). The td distribution was fitted using a Gaussian fit (R2 =​ 0.97). For this plot, we pooled the data from three trials.
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a hot solution of agarose (4% w/v in water) to a thickness of ~5 mm. After the 
agarose was polymerized, a slab of agarose containing the microchamber arrays 
was cut (~1.5 ×​ 1.5 cm2) and dialysed in 25 ml of CM with gentle agitation 
overnight to equilibrate the slab with growth media.

Time-lapse microscopy using agarose microchambers. Liquid cultures were 
grown from single colonies (2 ml CM at 42 °C with shaking at 200 rpm) until 
saturation, then diluted to an optical density of 0.05 in CM, and grown until 
exponential growth phase (OD600 of ~0.7). At this point, we made a solution 
of low-melting agarose (4% w/v in water; Invitrogen, Cat. no. 15517-022) and 
kept this at 55 °C. We took 70 μ​l of cell culture, pre-incubated it at 55 °C for 
exactly 1 min and then mixed in 6 μ​l of the warm agarose solution (the final 
concentration of agarose was 0.32% w/v, and the final concentration of NaCl was 
4.4 M). The agarose drop was placed on the tube sidewall to avoid cell lysis due 
to low osmolarity, and was mixed with cell suspension by vortexing. We then 
immediately spotted a 1 µ​l of the suspension on top of the patterned agarose 
slab and turned patterned-side down onto a cell culture dish with a glass bottom 
(MatTek, Cat. no. P50G-1.5–30-F) to trap cells inside the microchambers for 
time-lapse imaging. Cells inside the microchambers were imaged at 37 °C in a 
heated incubator that enclosed the microscope body. The total exposure time 
was 200 ms (100 ms exposure; 2 frames were collected and averaged), and the 
time interval was 5 min for the time-lapse (an average total duration of 20 h). 
Approximately 400 microchambers were imaged per trial, although not all 
chambers contained cells.

Image analysis of time-lapse movies to extract cell cycle parameters. To 
avoid imaging artefacts from phase-bright gas vesicles inside H. salinarum cells, 
individual cells were segmented manually using Fiji (ImageJ version 1.48r, NIH). 
Raw movies were cropped to one agarose chamber per image file. Cells were 
then segmented manually when they were born (that is, division of a mother 
cell) using the polygon tool in Fiji. Every segmentation was saved as a region of 
interest (ROI) using the ROI manager tool. These collections of ROIs for individual 
movies were then used as a template to generate artificial images that were fed into 
Morphometrics in MATLAB (R2012b).

Using Morphometrics, various cell shape parameters, including cell contour, 
length, width, area, pole locations and local curvature were calculated, and a 
unique ID was assigned for each cell to keep track of the ID of its mother and 
sibling cell. As described earlier, non-rod-shaped cells (that is, round and bent 
cells) were detected and excluded from the analysis, because the misshapen cells 
often underwent morphogenesis to become rods and were suspected to have 
different physiology from rod-shaped cells. When analysing growth, the length of 
rod-shaped cells can be used as a proxy for cell volume, as the change in the rod 
diameter during growth is small (CV of 12%; n =​ 92). The cell size of a mother cell 
at division was calculated by adding the cell sizes of its two daughter cells, and the 
division ratio was calculated by dividing the mother cell size by the cell size of a 
larger daughter cell. The cell size added was calculated by subtracting the birth size 
of the mother cell from its division cell size. The time taken from birth to division 
was calculated by subtracting the movie frame number at which birth happened 
from the frame number at which division occurred, and multiplying this by the 
acquisition rate of the movie (5 min between frames). The final data set of 418 
mother cells was made by pooling the analysis from 3 independent trials.

Calculation of measurement precision and its effect on the division placement 
noise. To measure the precision of manual segmentation, we compared two sets 
of traces drawn for 74 individual cells. One set of traces was made in late 2015, 
and the other set in early 2017. The discrepancy between the two sets (that is, the 
measurement precision) was calculated to be 0.004 μ​m2 for 2D cell area, and 0.01 μ​m 
for cell length. We also confirmed that the two sets of traces were statistically 
identical by performing the Wilcoxon matched-pair test (two-tailed; P >​ 0.6 for both 
2D area and length), suggesting that the measurement noise is negligible.

In terms of the measurement precision for the automated segmentation in 
Morphometrics, we refer to two articles32,33 that had developed the algorithm (that 
is, the subpixel cell detection algorithm) used in Morphometrics. The reported 
precision of the subpixel method is 0.0016 pixels2 (6.6 nm2), which is three orders 
of magnitude smaller than the manual segmentation noise. Thus, the overall 
measurement noise is approximately 0.004 μ​m2 for 2D cell area and 0.01 μ​m for  
cell length.

Development of an analytical framework for the adder model with noisy 
symmetric divisions and noisy growth rates. The framework postulated that 
cells attempt to add a constant length from birth to division (equation (3)). The 
framework considered three sources of stochasticity: a time-additive noise in the 
time to division with standard deviation, σ​timeτ, noisy symmetric divisions with 
standard deviation σ​ratio, and noisy growth rates with standard deviation, σ​λlog2/τ. 
Here, τ is the average doubling time.

We analytically obtained approximate distributions given by the model to the 
lowest order in the noise variables (see Supplementary Information for details). In 
particular, the CVs of cell size at birth, cell size at division and interdivision time 
were given by:
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coefficients between different cell cycle variables were also analytically 
approximated (see Supplementary Notes Section 3 for details). We extracted σ​ratio, 
σ​x, σ​y and σtd from experimental data. We used the CV of cell length at division, 
together with σ​ratio to extract σ​time using equation (5). Extracting σ​time from CV of 
cell length at birth using equation (4) and σ​ratio produced a consistent value for this 
noise term. We extracted σ​λ using equation (6) with the measured CV of generation 
times (see Supplementary Notes Section 2 for details).

Simulation of H. salinarum. cell size distributions. We used numerical 
simulations (Python 2.7) of the stochastic model above to find H. salinarum 
cell length distributions and their CV. Simulations tracked lbirth, ldivision and td of a 
growing and dividing cell for 10,000 generations. The starting cell had an initial 
cell length of 1, but the initial condition did not matter because the simulation 
reaches and maintains cell size homeostasis4 Supplementary Fig. 6c). A simulated 
cell divided after growing for a time, λ ξ= + ∕ + σΔ( )t ln 1

ld timebirth
, where 

ξ is a normally distributed noise term with zero mean and unit variance. At 
division, the cell divided into two with a division ratio, ξ+ σ1

2 ratio . Only one 
cell was kept for the next generation, which grew with a rate, ξ+ σ .

τ λ
ln2  We set 

∆​ =​ τ =​ 1 because we were interested in only dimensionless quantities, such as 
CVs and correlation coefficients. Note that all noise terms are independent (see 
Supplementary Notes Section 4).

Analysis of published data on E. coli. cell cycle. Single-cell growth data for 
the E. coli strain MG1655 from a published study7 were analysed according to 
published protocols, except that all data points whose cell size at birth was more 
than two standard deviations away from the mean were removed. The growth rate 
of a cell was then calculated as ∕ .( )ln tl

l d
division

birth
 Correlation coefficients between 

cell cycle variables for E. coli were calculated using data from four independent 
published experiments7. We used only the first 50 generations of cell growth to 
avoid ageing effects, and discarded the first 10 of the 50 generations to ensure 
steady state. The raw data contained a few outliers that strongly influenced Pearson 
correlation coefficients. We removed these outliers as shown in Supplementary 
Fig. 9. For each pair of variables, the correlation coefficients for each of the four 
experiments were computed independently, and averages and standard deviations 
of the four calculations are shown in Supplementary Table 4.

Life Sciences Reporting Summary. Further information on experimental design is 
available in the Life Sciences Reporting Summary.

Code availability. Python and MATLAB scripts used in this study have been 
deposited in the following url: https://bitbucket.org/garnerlab/.

Data availability. The data sets generated during this study are available from the 
corresponding authors (A.A. and E.C.G.) upon request.
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