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ABSTRACT

Food image segmentation plays a crucial role in image-based dietary

assessment and management. Successful methods for object seg-

mentation generally rely on a large amount of labeled data on the

pixel level. However, such training data are not yet available for

food images and expensive to obtain. In this paper, we describe a

weakly supervised convolutional neural network (CNN) which only

requires image level annotation. We propose a graph based segmen-

tation method which uses the class activation maps trained on food

datasets as a top-down saliency model. We evaluate the proposed

method for both classification and segmentation tasks. We achieve

competitive classification accuracy compared to the previously re-

ported results.

Index Terms— image segmentation, graph model, weakly su-

pervised learning, dietary assessment

1. INTRODUCTION

Six of the ten leading causes of death in the United States, includ-

ing cancer, diabetes, and heart disease, can be directly linked to diet.

Measuring accurate dietary intake is considered to be an open re-

search problem in the nutrition and health fields. We have developed

a mobile food record (mFR) system, also known as the Technology

Assisted Dietary Assessment (TADA) system [1, 2] to automatically

determine the food types and energy consumed by a person using

image analysis techniques [3]. The accurate estimate of energy and

nutrients using food image analysis is mostly based on the correctly

labeled food item and a sufficiently well-segmented region. Food

labeling per se relies on the correctness of interest region detection,

which makes food segmentation extremely crucial.

In recent years the concept of deep learning [4] has been gaining

widespread attention. As convolutional neural network (CNN) [5]

gradually becomes dominant in many computer vision related ar-

eas, various recognition and classification tasks have been improved

from the previous state-of-art methods [5, 6, 7]. Existing CNN mod-

els take advantage of labeled data which are used to learn which

features are effective in a task as opposed to manually designed fea-

tures. However, for more structured prediction, such as semantic

segmentation, obtaining the pixel-level training data or even labeled

bounding boxes is extremely time-consuming and expensive. For ex-

ample, fully the convolutional network [6] requires careful annota-

tion of the segmentation mask. Fast/Faster RCNN [7, 8] uses labeled
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data in the form of bounding boxes. Such dependency on fully su-

pervised training poses a major limitation on scalability with respect

to the number of classes or tasks [9].

In the field of food image analysis, there is no publicly avail-

able segmentation ground-truth image dataset. The bounding box

information provided in the UECFOOD256 dataset [10] is far from

sufficient. Im2Calorie [11] uses several CNN models to analyze

food intake, but the authors have not yet released their Food-201

dataset. Therefore, we would like to explore weakly supervised

learning where only image-level labels indicating the presence or

absence of objects are required.

Semantic image segmentation, i.e. assigning a semantic class

label to each pixel of an image, is an important topic in computer

vision. Collecting fully annotated training data poses a major bottle-

neck to improve the segmentation models, thus weakly supervised

training methods were proposed to reduce the annotation effort. Pre-

vious work [12, 13] on weakly supervised learning show that the

output from a classification network can not only predict labels but

also estimate object locations. In [14], a new loss function is pro-

posed that uses location, classes and boundary priors to improve a

segmentation system. Pourian [15] used a spectral clustering ap-

proach that groups coarse segmented image parts into communities.

A community-driven graph is then constructed that captures spatial

and feature relationships between communities while a label graph

captures correlations between image labels. Finally, mapping the im-

age level labels to appropriate communities is formulated as a con-

vex optimization problem. In [13], Class Activation Map (CAM) for

CNNs with global average pooling (GAP) are described. This en-

ables classification-trained CNNs to learn to localize visual objects

without using any bounding box annotations.

In this paper, we describe a graph based segmentation method

for food images that uses a weakly supervised saliency model as

prior knowledge. The contribution of this work is two-fold. First,

we improve the CAM as a top-down saliency model by introducing a

new pooling technique. Second, we incorporate the CAM trained on

food datasets in the Biased Normalized Cut (Biased Ncut) segmen-

tation method [16]. The proposed method shows promising results

using various testing datasets, and we believe it can also be used as

an initial step before manual ground-truthing.

2. NETWORK ARCHITECTURE FOR WEAKLY

SUPERVISED LEARNING

Our model uses the fully supervised network of [17], known as

VGG-16, that consists of 13 convolutional layers and 3 fully con-

nected layers. To adapt the VGG-16 architecture to weakly super-

vised learning, we introduce several modifications. First, we add

a 1024-channel convolutional layer and remove the first fully con-



Fig. 1. Network architecture for weakly supervised learning.

nected layer in the VGG-16 network. Second, we replace the max

pooling layer before the fully connected layers with our proposed

Global Max-Average Pooling (GMAP) layer. Figure 1 illustrates

the proposed network architecture. We design the GMAP layer as

a cascade combination of a Global Max Pooling (GMP) layer and a

Global Average Pooling (GAP) layer. Furthermore, we extend the

capability of GMAP by allowing adaptive pooling kernels. Similar

to the ROI pooling layer [8], the size of pooling kernel varies based

on the desired output, so that the output can be connected to a fully

connected layer regardless of the size of the input images to the

network.

Global Max-Average Pooling. As discussed in [13], the GAP

layer outputs the spatial average of the feature map at the last con-

volutional layer. For example, if there are 1024 feature maps at the

last convolutional layer, the GAP will generate a 1024 dimensional

vector. We adopt the Class Activation Map [13], which is essentially

a weighted sum of the feature maps of the last convolutional layer.

GMP and GAP has been successfully used in previous stud-

ies [14]. However, they both have their disadvantages. GMP tends

to underestimate the regions of objects as the max pooling technique

encourages the response from the single location of the highest ac-

tivation. And GAP is more prone to overestimate object sizes, be-

cause it takes all the activations into account. To overcome these

disadvantages in the context of semantic segmentation, we propose

a new pooling technique, namely GMAP. The cascade structure of

max and average pooling can be viewed as a generalized pooling

layer of GAP and GMP,
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⌉
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where W ×W is the dimension of a feature map, fα is the window

function of size α, β represents the stride of the max pooling kernel,

and N = ⌊(W − α)/β⌋2. From Equation 1, we can see that F
becomes GAP if we let α = β = 1 and it becomes GMP if we let

α = W . At this point, the proposed network as shown in Figure 1

takes 224× 224 RGB images as input and generates a 1× 1× 1024
vector after the GMAP layer and finally outputs a 1× 1×N vector

of confidence scores. N is the total number of classes.

Adaptive Kernel and multi-label classification. Region of Inter-

est (ROI) pooling was first introduced in [8], which is essentially a

simplified version of Spatial Pyramid Pooling (SPP) layer [18]. The

goal of the ROI pooling layer or SPP layer is to adapt the various

size of ROIs in the region proposal based networks. To complete

the design of GMAP layer, we adopt the idea of the adaptive kernel.

In other words, α in Equation 1 can be a function of W . Besides,

the proposed network can also be extended to multi-label classifica-

tion using multi-scale sliding window training as introduced in [12].

However, applying the adaptive kernel and multi-label training is not

Fig. 2. From left to right: the original image, its class activation map

and saliency map [19].

the focus of this paper. As shown in Section 4, we assume that one

image only contains a single category of object.

3. GRAPH BASED SEGMENTATION

With the class activation map (CAM), the challenge is to use the

prior knowledge for segmentation. It seems intuitive to incorpo-

rate salient stimuli [19] or fine-grained region proposals [20] into

a graph model for the segmentation task. In [19] both bottom-up

salient stimuli and object-level shape prior were integrated into min

cut/max flow optimization. Such energy minimization is initial-

ized with saliency map which is computed through context analysis

based on multi-scale superpixels. Object-level shape prior is then

extracted combining saliency with object boundary information.

In [20], Cheng et al. implemented an iterative GrabCut [21] method

which replaces user inputs with thresholded saliency maps.

In this paper, we incorporate the sampled CAM as a top-down

constraint in Biased Normalized Cut (Biased Ncut) [16]. Compared

to a saliency map [19] as shown in Figure 2, the weakly trained CAM

is better at localizing the object of interest. Given a region of interest

in the image, i.e. the CAM in our case, we would like to segment

the image so that the segment is biased towards the specified region.

The image is modeled as a weighted undirected graph G = (V,E).
The weight, w, on any edge, E, is a similarity measure between the

end nodes of the edge. A region is modeled as a subset T ∈ V , of

the vertices of the image. We are interested in the cut (S, S̄), which

not only minimizes the normalized cut value, Ncut(S), but achieves

sufficient correlation with the region specified by T , where

Ncut(S)
def
=

cut(S, S̄)

vol(S)
+

cut(S, S̄)

vol(S̄)
(2)

S̄
def
= V \S (3)

cut(S, S̄)
def
=

∑

i∈S,j∈S̄

w(i, j) (4)

vol(S)
def
=

∑

i∈S,j∈V

w(i, j) (5)

Belief Propogation. From Figure 2(b), we can see that the CAM

peaks at where the network believes in showing the most prominent



feature of a specific class in the image. However, it may not identify

a part of the object as prominent even though the part of the object

shares similar color and texture as its surroundings. To deal with this

issue, we propose to use a multi-scale superpixel method to distribute

the confidence that the network puts on certain regions in the image

to their surroundings with similar color and texture.

Given an image, let [S1, ..., Sp, ...SP ] be the superpixel mask at

different scales, where P indicates the number of scales we use and

let B be the initial CAM. For any pixel (x̂, ŷ) of a certain superpixel

in Sp, we define its belief as follows,

Bp(x̂, ŷ) =

∑

(x,y)∈Sp
(B)

||Sp||
(6)

where ||Sp|| represents the total number of pixels in the superpixel.

So, if the superpixel is larger or the resolution of the superpixel mask

is coarser, the belief is diffused more. We compensate the diffusal

by introducing finer superpixel masks. Local variation [22] is used

as the primary superpixel method because it is fast and relatively

good at preserving edges. Finally, the new CAM is obtained by nor-

malizing the original CAM and the propagated belief across all the

superpixel scales,

B′(x, y) =
B +

∑

p(Bp(x, y))

Z
(7)

where Z is a normalization term that makes sure B′(x, y) ∈ [0, 1].

Gassian Mixture Model and Sampling. We use a Gaussian Mix-

ture Model in the new CAM to generate a trimap [23]. A trimap nor-

mally partitions an image into three regions: a definite foreground,

a definite background and an unknown region. Then the foreground

is uniformly sampled with a fixed step, P , and these sampled points

are used as seeds, sT , in the Biased Normalized Cut [16]. Given

the graph G = (V,E), the Laplacian of G, LG and the normalized

Laplacian, LG are defined as follows,

LG = DG −AG (8)

LG = D
− 1

2

G LGD
− 1

2

G (9)

where DG and AG are the adjacency matrix and diagonal degree

matrix of G. Finally, the optimal cut, x∗, is obtained by combining

the eigenvectors of LG in the following way,

x∗ ∝
K
∑

i=2

uT
i DGsTui

λi − γ
(10)

where λi represents the ith smallest eigenvalue, ui is the correspond-

ing eigenvector and γ is a correlation parameter [16].

4. EXPERIMENTAL RESULTS

In this section, we describe our classification and segmentation ex-

periments where we use several datasets to validate the proposed

method, and we assume that one image only contains a single cate-

gory of object.

Classification. To validate the proposed pooling method, we trained

various models using Caltech-256 [24], UECFOOD-256 [10] and

Food-101 [25]. Caltech-256 [24] contains 30607 images of 256 ob-

ject categories. UECFOOD-256 [10] consists of more than 31,000

Table 1. Comparison of different pooling methods.

Accuracy (%) Caltech-256 UECFOOD-256 Food-101

GMP 81.05 63.97 72.75

GAP 81.09 64.01 72.78

GMAP-2-2 81.20 64.80 73.81

GMAP-3-3 81.05 64.01 73.55

GMAP-4-2 81.53 64.89 74.02

images from 256 food categories, most of which are popular foods

in Japan and other Asian countries. Food-101 [25] contains 101 food

categories, each of which has 1000 images. Each dataset is randomly

split in the 70/10/20 fashion for train/validation/test sets. We used a

pretrained VGG-16 network to initialize the first 13 layers in our

model and all the experiments were done in the Tensorflow [26].

Fig. 3. Class activation maps using different pooling methods.

Table 1 compares the Top 1 classification acurracy of different

pooling methods in the proposed network. Training the model with

GAP was performed with stochastic gradient descent with learn-

ing rate of 0.01 and momentum of 0.9 while learning rate of 0.002

and momentum of 0.9 were used for the other pooling methods.

GMAP − α − β represents GMAP with a α × α max pooling

kernel and stride of β. As shown in the table, the network with

GMAP−4−2 shows slightly better results across the three datasets.

Figure 3 illustrates the visual differences of the CAMs when differ-

ent pooling methods are used. Recently Yanai et al. reported 67.57%

on the UECFOOD-256 using a modified AlexNet [27] and the best

result, 78.11%, on the Food-101 is achieved using GoogleNet by

Ao et al. [28]. Compared to their work, our model demonstrates

comparable accuracy despite using a much simpler network archi-

tecture. Furthermore, we picked the images of 31 food categories

Fig. 4. Examples from different datasets.



from Food-101 [25] that are common in UECFOOD-256 and we

named it the Food-31 dataset. We wanted to test the proposed model

with GMAP − 4 − 2 trained on UECFOOD-256 [10] using the

Food-31 dataset, since the images from these two datasets were ini-

tially collected from different sources and thus they should occupy

slightly different domains in the feature space. As shown in Figure 4,

the images of the same category look quite different in the different

datasets. We achieved 85.8% accuracy over the 31,000 images in the

Food-31 dataset without any fine-tuning.

Segmentation. To evaluate the segmentation accuracy on the food

images, we use a free-living study [29] from the TADA system. It

consists of 1453 images of 56 commonly eaten food taken by 45

participants within a week, and we have manually ground-truthed

over 900 food segments with labels. To our knowledge, there is no

publicly available segmentation ground-truth for dataset food images

yet and we would like to release our data for the academic use soon.

Nine out of the 56 food categories in the free-living study have the

same counterparts in the Food-101 [25] (see Figure 5) and there are

317 ground-truth in total.

Fig. 5. TADA groundtruth statistics of 9 selected food categories

which are common in the Food-101 dataset.

Based on our experiment, we choose P = 40, K = 16 and

γ = 1e − 4 as discussed in Section 3. Figure 6 shows an example

image from the free-living dataset. Seeds in Figure 6(c) are sampled

from a trimap generated from Figure 6(b). Figure 6(d) represents the

combination of the reshaped eigenvectors as discussed in Section 3.

The final segmentation masks are obtained by binarizing the bi-

ased normalized cut. We use a region based metric [30] to evalu-

ate the segmentation masks. Figure 7 shows the precision and re-

call [31] when various thresholds are used. Compared to our previ-

ous work, i.e. SNcut [32], the biased normalized cut based on the

belief-propagated CAM demonstrates superior performance. More

examples are shown in Figure 8.

5. CONCLUSION AND FUTURE WORK

In this paper we described a weakly supervised CNN model with

a new pooling technique and incorporate a class activation map for

graph based segmentation. Our experiments shows promising re-

sults for both classification and segmentation tasks. In the future, we

would like to test our model using a larger dataset and investigate

multi-food segmentation.

(a) (b)

(c) (d)

Fig. 6. (a) Original image. (b) The belief-propogated class activa-

tion map. (c) Seeds, sT as discussed in Section 3. (d) The biased

normalized cut.
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