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ABSTRACT

Food image segmentation plays a crucial role in image-based dietary
assessment and management. Successful methods for object seg-
mentation generally rely on a large amount of labeled data on the
pixel level. However, such training data are not yet available for
food images and expensive to obtain. In this paper, we describe a
weakly supervised convolutional neural network (CNN) which only
requires image level annotation. We propose a graph based segmen-
tation method which uses the class activation maps trained on food
datasets as a top-down saliency model. We evaluate the proposed
method for both classification and segmentation tasks. We achieve
competitive classification accuracy compared to the previously re-
ported results.

Index Terms— image segmentation, graph model, weakly su-
pervised learning, dietary assessment

1. INTRODUCTION

Six of the ten leading causes of death in the United States, includ-
ing cancer, diabetes, and heart disease, can be directly linked to diet.
Measuring accurate dietary intake is considered to be an open re-
search problem in the nutrition and health fields. We have developed
a mobile food record (mFR) system, also known as the Technology
Assisted Dietary Assessment (TADA) system [1, 2] to automatically
determine the food types and energy consumed by a person using
image analysis techniques [3]. The accurate estimate of energy and
nutrients using food image analysis is mostly based on the correctly
labeled food item and a sufficiently well-segmented region. Food
labeling per se relies on the correctness of interest region detection,
which makes food segmentation extremely crucial.

In recent years the concept of deep learning [4] has been gaining
widespread attention. As convolutional neural network (CNN) [5]
gradually becomes dominant in many computer vision related ar-
eas, various recognition and classification tasks have been improved
from the previous state-of-art methods [5, 6, 7]. Existing CNN mod-
els take advantage of labeled data which are used to learn which
features are effective in a task as opposed to manually designed fea-
tures. However, for more structured prediction, such as semantic
segmentation, obtaining the pixel-level training data or even labeled
bounding boxes is extremely time-consuming and expensive. For ex-
ample, fully the convolutional network [6] requires careful annota-
tion of the segmentation mask. Fast/Faster RCNN [7, 8] uses labeled
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data in the form of bounding boxes. Such dependency on fully su-
pervised training poses a major limitation on scalability with respect
to the number of classes or tasks [9].

In the field of food image analysis, there is no publicly avail-
able segmentation ground-truth image dataset. The bounding box
information provided in the UECFOOD256 dataset [10] is far from
sufficient. Im2Calorie [11] uses several CNN models to analyze
food intake, but the authors have not yet released their Food-201
dataset. Therefore, we would like to explore weakly supervised
learning where only image-level labels indicating the presence or
absence of objects are required.

Semantic image segmentation, i.e. assigning a semantic class
label to each pixel of an image, is an important topic in computer
vision. Collecting fully annotated training data poses a major bottle-
neck to improve the segmentation models, thus weakly supervised
training methods were proposed to reduce the annotation effort. Pre-
vious work [12, 13] on weakly supervised learning show that the
output from a classification network can not only predict labels but
also estimate object locations. In [14], a new loss function is pro-
posed that uses location, classes and boundary priors to improve a
segmentation system. Pourian [15] used a spectral clustering ap-
proach that groups coarse segmented image parts into communities.
A community-driven graph is then constructed that captures spatial
and feature relationships between communities while a label graph
captures correlations between image labels. Finally, mapping the im-
age level labels to appropriate communities is formulated as a con-
vex optimization problem. In [13], Class Activation Map (CAM) for
CNNs with global average pooling (GAP) are described. This en-
ables classification-trained CNNss to learn to localize visual objects
without using any bounding box annotations.

In this paper, we describe a graph based segmentation method
for food images that uses a weakly supervised saliency model as
prior knowledge. The contribution of this work is two-fold. First,
we improve the CAM as a top-down saliency model by introducing a
new pooling technique. Second, we incorporate the CAM trained on
food datasets in the Biased Normalized Cut (Biased Ncut) segmen-
tation method [16]. The proposed method shows promising results
using various testing datasets, and we believe it can also be used as
an initial step before manual ground-truthing.

2. NETWORK ARCHITECTURE FOR WEAKLY
SUPERVISED LEARNING

Our model uses the fully supervised network of [17], known as
VGG-16, that consists of 13 convolutional layers and 3 fully con-
nected layers. To adapt the VGG-16 architecture to weakly super-
vised learning, we introduce several modifications. First, we add
a 1024-channel convolutional layer and remove the first fully con-
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Fig. 1. Network architecture for weakly supervised learning.

nected layer in the VGG-16 network. Second, we replace the max
pooling layer before the fully connected layers with our proposed
Global Max-Average Pooling (GMAP) layer. Figure 1 illustrates
the proposed network architecture. We design the GMAP layer as
a cascade combination of a Global Max Pooling (GMP) layer and a
Global Average Pooling (GAP) layer. Furthermore, we extend the
capability of GMAP by allowing adaptive pooling kernels. Similar
to the ROI pooling layer [8], the size of pooling kernel varies based
on the desired output, so that the output can be connected to a fully
connected layer regardless of the size of the input images to the
network.

Global Max-Average Pooling.  As discussed in [13], the GAP
layer outputs the spatial average of the feature map at the last con-
volutional layer. For example, if there are 1024 feature maps at the
last convolutional layer, the GAP will generate a 1024 dimensional
vector. We adopt the Class Activation Map [13], which is essentially
a weighted sum of the feature maps of the last convolutional layer.

GMP and GAP has been successfully used in previous stud-
ies [14]. However, they both have their disadvantages. GMP tends
to underestimate the regions of objects as the max pooling technique
encourages the response from the single location of the highest ac-
tivation. And GAP is more prone to overestimate object sizes, be-
cause it takes all the activations into account. To overcome these
disadvantages in the context of semantic segmentation, we propose
a new pooling technique, namely GMAP. The cascade structure of
max and average pooling can be viewed as a generalized pooling
layer of GAP and GMP,
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where W x W is the dimension of a feature map, fo is the window
function of size «, /3 represents the stride of the max pooling kernel,
and N = | (W —a)/B)?. From Equation 1, we can see that F
becomes GAP if we let @« = 8 = 1 and it becomes GMP if we let
a = W. At this point, the proposed network as shown in Figure 1
takes 224 x 224 RGB images as input and generates a 1 x 1 x 1024
vector after the GMAP layer and finally outputsa 1 x 1 x N vector
of confidence scores. IV is the total number of classes.

Adaptive Kernel and multi-label classification. Region of Inter-
est (ROI) pooling was first introduced in [8], which is essentially a
simplified version of Spatial Pyramid Pooling (SPP) layer [18]. The
goal of the ROI pooling layer or SPP layer is to adapt the various
size of ROIs in the region proposal based networks. To complete
the design of GMAP layer, we adopt the idea of the adaptive kernel.
In other words, « in Equation 1 can be a function of . Besides,
the proposed network can also be extended to multi-label classifica-
tion using multi-scale sliding window training as introduced in [12].
However, applying the adaptive kernel and multi-label training is not
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Fig. 2. From left to right: the original image, its class activation map
and saliency map [19].

the focus of this paper. As shown in Section 4, we assume that one
image only contains a single category of object.

3. GRAPH BASED SEGMENTATION

With the class activation map (CAM), the challenge is to use the
prior knowledge for segmentation. It seems intuitive to incorpo-
rate salient stimuli [19] or fine-grained region proposals [20] into
a graph model for the segmentation task. In [19] both bottom-up
salient stimuli and object-level shape prior were integrated into min
cut/max flow optimization. Such energy minimization is initial-
ized with saliency map which is computed through context analysis
based on multi-scale superpixels. Object-level shape prior is then
extracted combining saliency with object boundary information.
In [20], Cheng et al. implemented an iterative GrabCut [21] method
which replaces user inputs with thresholded saliency maps.

In this paper, we incorporate the sampled CAM as a top-down
constraint in Biased Normalized Cut (Biased Ncut) [16]. Compared
to a saliency map [19] as shown in Figure 2, the weakly trained CAM
is better at localizing the object of interest. Given a region of interest
in the image, i.e. the CAM in our case, we would like to segment
the image so that the segment is biased towards the specified region.
The image is modeled as a weighted undirected graph G = (V, E).
The weight, w, on any edge, E, is a similarity measure between the
end nodes of the edge. A region is modeled as a subset 7' € V, of
the vertices of the image. We are interested in the cut (S, S), which
not only minimizes the normalized cut value, N cut(SS), but achieves
sufficient correlation with the region specified by 7", where
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Belief Propogation. From Figure 2(b), we can see that the CAM
peaks at where the network believes in showing the most prominent



feature of a specific class in the image. However, it may not identify
a part of the object as prominent even though the part of the object
shares similar color and texture as its surroundings. To deal with this
issue, we propose to use a multi-scale superpixel method to distribute
the confidence that the network puts on certain regions in the image
to their surroundings with similar color and texture.

Given an image, let [S1, ..., Sp, ...Sp] be the superpixel mask at
different scales, where P indicates the number of scales we use and
let B be the initial CAM. For any pixel (&, §) of a certain superpixel
in S,,, we define its belief as follows,

_ Z(z,y)esp (B)

where ||Sp|| represents the total number of pixels in the superpixel.
So, if the superpixel is larger or the resolution of the superpixel mask
is coarser, the belief is diffused more. We compensate the diffusal
by introducing finer superpixel masks. Local variation [22] is used
as the primary superpixel method because it is fast and relatively
good at preserving edges. Finally, the new CAM is obtained by nor-
malizing the original CAM and the propagated belief across all the
superpixel scales,
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where Z is a normalization term that makes sure B’ (z,y) € [0, 1].

Gassian Mixture Model and Sampling. We use a Gaussian Mix-
ture Model in the new CAM to generate a trimap [23]. A trimap nor-
mally partitions an image into three regions: a definite foreground,
a definite background and an unknown region. Then the foreground
is uniformly sampled with a fixed step, P, and these sampled points
are used as seeds, s, in the Biased Normalized Cut [16]. Given
the graph G = (V, E), the Laplacian of G, L and the normalized
Laplacian, L¢ are defined as follows,

L = D¢ — A 3
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where D¢ and Ag are the adjacency matrix and diagonal degree
matrix of GG. Finally, the optimal cut, xx, is obtained by combining
the eigenvectors of L¢ in the following way,
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where \; represents the i smallest eigenvalue, w; is the correspond-
ing eigenvector and +y is a correlation parameter [16].

4. EXPERIMENTAL RESULTS

In this section, we describe our classification and segmentation ex-
periments where we use several datasets to validate the proposed
method, and we assume that one image only contains a single cate-
gory of object.

Classification. To validate the proposed pooling method, we trained
various models using Caltech-256 [24], UECFOOD-256 [10] and
Food-101 [25]. Caltech-256 [24] contains 30607 images of 256 ob-
ject categories. UECFOOD-256 [10] consists of more than 31,000

Table 1. Comparison of different pooling methods.

Accuracy (%) | Caltech-256 | UECFOOD-256 | Food-101
GMP 81.05 63.97 72.75
GAP 81.09 64.01 72.78

GMAP-2-2 81.20 64.80 73.81
GMAP-3-3 81.05 64.01 73.55
GMAP-4-2 81.53 64.89 74.02

images from 256 food categories, most of which are popular foods
in Japan and other Asian countries. Food-101 [25] contains 101 food
categories, each of which has 1000 images. Each dataset is randomly
split in the 70/10/20 fashion for train/validation/test sets. We used a
pretrained VGG-16 network to initialize the first 13 layers in our
model and all the experiments were done in the Tensorflow [26].

=

Fig. 3. Class activation maps using different pooling methods.

Original GAP GMP
Table 1 compares the Top 1 classification acurracy of different
pooling methods in the proposed network. Training the model with
GAP was performed with stochastic gradient descent with learn-
ing rate of 0.01 and momentum of 0.9 while learning rate of 0.002
and momentum of 0.9 were used for the other pooling methods.
GMAP — o — B represents GMAP with a @ X « max pooling
kernel and stride of 5. As shown in the table, the network with
G M AP—4—2 shows slightly better results across the three datasets.
Figure 3 illustrates the visual differences of the CAMs when differ-
ent pooling methods are used. Recently Yanai ez al. reported 67.57%
on the UECFOOD-256 using a modified AlexNet [27] and the best
result, 78.11%, on the Food-101 is achieved using GoogleNet by
Ao et al. [28]. Compared to their work, our model demonstrates
comparable accuracy despite using a much simpler network archi-
tecture. Furthermore, we picked the images of 31 food categories

lasagna

sandwiches

TADA

UECFOOD256 Food-101

Fig. 4. Examples from different datasets.



from Food-101 [25] that are common in UECFOOD-256 and we
named it the Food-31 dataset. We wanted to test the proposed model
with GM AP — 4 — 2 trained on UECFOOD-256 [10] using the
Food-31 dataset, since the images from these two datasets were ini-
tially collected from different sources and thus they should occupy
slightly different domains in the feature space. As shown in Figure 4,
the images of the same category look quite different in the different
datasets. We achieved 85.8% accuracy over the 31,000 images in the
Food-31 dataset without any fine-tuning.

Segmentation. To evaluate the segmentation accuracy on the food
images, we use a free-living study [29] from the TADA system. It
consists of 1453 images of 56 commonly eaten food taken by 45
participants within a week, and we have manually ground-truthed
over 900 food segments with labels. To our knowledge, there is no
publicly available segmentation ground-truth for dataset food images
yet and we would like to release our data for the academic use soon.
Nine out of the 56 food categories in the free-living study have the
same counterparts in the Food-101 [25] (see Figure 5) and there are
317 ground-truth in total.
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Fig. 5. TADA groundtruth statistics of 9 selected food categories
which are common in the Food-101 dataset.

Based on our experiment, we choose P = 40, K = 16 and
v = le — 4 as discussed in Section 3. Figure 6 shows an example
image from the free-living dataset. Seeds in Figure 6(c) are sampled
from a trimap generated from Figure 6(b). Figure 6(d) represents the
combination of the reshaped eigenvectors as discussed in Section 3.

The final segmentation masks are obtained by binarizing the bi-
ased normalized cut. We use a region based metric [30] to evalu-
ate the segmentation masks. Figure 7 shows the precision and re-
call [31] when various thresholds are used. Compared to our previ-
ous work, i.e. SNcut [32], the biased normalized cut based on the
belief-propagated CAM demonstrates superior performance. More
examples are shown in Figure 8.

5. CONCLUSION AND FUTURE WORK

In this paper we described a weakly supervised CNN model with
a new pooling technique and incorporate a class activation map for
graph based segmentation. Our experiments shows promising re-
sults for both classification and segmentation tasks. In the future, we
would like to test our model using a larger dataset and investigate
multi-food segmentation.

d
Fig. 6. (a) Original image. (b) The belief-propogated class activa-
tion map. (c) Seeds, st as discussed in Section 3. (d) The biased

normalized cut.
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Fig. 7. Precision and recall of the segmentation results. Blue: Biased
Ncut with the CAM prior. Red: SNcut
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Fig. 8. Example segmentation masks.
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