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SCORE Allocations for Bi-objective Ranking and Selection

GUY FELDMAN and SUSAN R. HUNTER, Purdue University

The bi-objective ranking and selection (R&S) problem is a special case of the multi-objective simulation op-

timization problem in which two conflicting objectives are known only through dependent Monte Carlo

estimators, the decision space or number of systems is finite, and each system can be sampled to some ex-

tent. The solution to the bi-objective R&S problem is a set of systems with non-dominated objective vectors,

called the set of Pareto systems. We exploit the special structure of the bi-objective problem to characterize

the asymptotically optimal simulation budget allocation, which accounts for dependence between the ob-

jectives and balances the probabilities associated with two types of misclassification error. Like much of the

R&S literature, our focus is on the case in which the simulation observations are bivariate normal. Assum-

ing normality, we then use a certain asymptotic limit to derive an easily-implementable Sampling Criteria

for Optimization using Rate Estimators (SCORE) sampling framework that approximates the optimal alloca-

tion and accounts for correlation between the objectives. Perhaps surprisingly, the limiting SCORE allocation

exclusively controls for misclassification-by-inclusion events, in which non-Pareto systems are falsely esti-

mated as Pareto. We also provide an iterative algorithm for implementation. Our numerical experience with

the resulting SCORE framework indicates that it is fast and accurate for problems having up to ten thousand

systems.
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1 INTRODUCTION

The simulation optimization (SO) problem is a nonlinear optimization problem in which the
objective and constraint functions can only be observed with error as output from a Monte Carlo
simulation. Such problems tend to arise when computer models are used to design complex
systems under uncertainty—an increasingly popular practice (Powers et al. 2012). Since the SO
formulation is quite general, SO problems arise frequently in a variety of application areas,
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including agriculture (Hunter and McClosky 2016), energy (Marmidis et al. 2008; Subramanyan
et al. 2011), and transportation (Osorio and Bierlaire 2013). For additional examples and a library
of SO problems, see the simopt.org website (Henderson and Pasupathy 2017).
Methods to solve the SO problem are often categorized by whether the feasible set contains

categorical, integer-ordered, or continuous decision variables (Pasupathy and Henderson 2006).
Further, solution methods can be categorized by the number of performance measures posed as
objectives and constraints. In the presence of a single objective and deterministic constraints, ma-
ture solution methods are available for all types of feasible sets. For an overview of these methods
and entry points into this literature, see Pasupathy and Ghosh (2013) and Fu (2015). Recently, so-
lution methods for a single objective with stochastic constraints have been proposed in the case
of categorical variables (Andradóttir and Kim 2010; Lee et al. 2012; Pasupathy et al. 2015) and
integer-ordered variables (Luo and Lim 2013; Nagaraj and Pasupathy 2016; Park and Kim 2015).
For methods with continuous variables, see, e.g., Ruszczyński and Shapiro (2003); Homem-de-
Mello and Bayraksan (2015), and references therein. However, despite its mature development in
the analogous deterministic context (Miettinen 1999, for example), few articles in the SO literature
provide solution methods in the presence of multiple simultaneous objectives—a problem we call
the multi-objective simulation optimization (MOSO) problem.
We formulate the MOSO problem as

ProblemM : minimizex∈X (IE[G1 (x, ξ )], . . . , IE[Gd (x, ξ )]),

where X ⊆ Rq is a known feasible set, ξ represents a random quantity, and each objective can be
estimated as output from a Monte Carlo simulation. Since there may not exist a single point x ∈ X
that minimizes all objectives simultaneously, the solution to ProblemM is called the efficient set or
the Pareto set. We let the efficient set be the set of decision points x ∈ X for which no other point
x
′ ∈ X, x � x

′ has objective values that are at least as good on all objectives, and strictly better on
at least one objective. We refer to the image of the efficient set as the Pareto set.
We consider the context of solving Problem M when the goal is to identify the entire efficient

set, the feasible set X is finite or composed of categorical variables, and there are two objectives.
Methods to solve SO problems in which X is finite are often called ranking and selection (R&S)
methods (see Kim and Nelson (2006) for an overview). Such methods require the feasible set to
be small enough to permit simulation of each decision point; the decision points are usually in-
dexed by their objective values and called systems. Henceforth, we refer to systems with objective
vectors in the Pareto set as Pareto systems (see Section 2.2 for terminology). R&S methods can be
divided into two types: methods that provide a fixed-precision guarantee on the optimality gap
of the returned systems, and methods that allocate a fixed simulation budget in a way that guar-
antees sampling efficiency (Hunter and Nelson 2017; Pasupathy and Ghosh 2013). We fall in the
latter category of fixed simulation budget methods; as such, we do not provide a fixed-precision
guarantee on the optimality gap of the returned systems.

1.1 Questions Answered

To explore what we mean by allocating a fixed simulation budget in a way that guarantees sam-
pling efficiency, consider a simple algorithm to solve Problem M : (a) allocate some non-zero pro-
portion of a total sampling budget to each system, (b) sample and construct estimators of the
objective vectors for each system, (c) return the indices of systems corresponding to the estimated
Pareto set. Ideally, the estimated Pareto systems at the end of this procedure will correspond to the
true Pareto systems; if not, then a misclassification occurs. Under mild regularity conditions, as the
total sampling budget tends to infinity, the probability of a misclassification decays to zero. Then,
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we ask, what proportion of the total sampling budget should be allocated to each system to maximize

the rate of decay of the probability of misclassification, as the sampling budget tends to infinity?

As may be expected given prior work in other SO contexts, notably, Glynn and Juneja (2004),
Szechtman and Yücesan (2008), Hunter and Pasupathy (2013), and Pasupathy et al. (2015),
we characterize the asymptotically optimal sampling allocation as the solution to a bi-level
optimization problem where the “outer” problem is concave maximization, and the “inner”
problems are convex minimization. Importantly, our allocation accounts for dependence between
the objectives and balances the probabilities associated with two types of misclassification error:
misclassification by exclusion (MCE), in which a Pareto system is falsely excluded from the set of
estimated Pareto systems, and misclassification by inclusion (MCI), in which a non-Pareto system
is falsely included in the set of estimated Pareto systems. Since solving for the optimal allocation
may be computationally burdensome, then we ask, What is the asymptotically optimal sampling

allocation when the number of non-Pareto systems is large?

As the number of non-Pareto systems tends to infinity in a certain rigorous sense, the Pareto
systems receive a larger proportion of the sampling budget than the non-Pareto systems, and
the optimal allocations for non-Pareto systems are inversely proportional to an intuitive measure
called the score. When the random vectors corresponding to the objectives are bivariate normal,
which is our focus, the score of a non-Pareto system is its squared standardized “distance” from
the Pareto frontier in the objective function space. As in Pasupathy et al. (2015), we determine
the relative allocations to the suboptimal systems by their scores. The sampling allocation we
propose based on the scores is called the bi-objective Sampling Criteria for Optimization using
Rate Estimators (SCORE) allocation.
We also highlight a key insight from this work that may be surprising:When the number of non-

Pareto systems is large relative to the number of Pareto systems, the optimal allocation exclusively

controls for the probability of an MCI event. To understand why this is true, for now, let MCE be the
event that a Pareto system is falsely excluded by another Pareto system, while MCI is the event
that a non-Pareto system is falsely included among the estimated Pareto systems, whether it is
estimated as excluding a Pareto system or not. Further, assumewe are in a theoretical framework in
which we have access to all information about the systems, including their classifications as Pareto
and non-Pareto. Then, loosely speaking, as the number of non-Pareto systems tends to infinity, the
Pareto systems each compete with more and more non-Pareto systems. Thus, the Pareto systems
receive a larger proportion of the total sampling budget than the non-Pareto systems. Indeed, they
receive so many more samples that the probability of a Pareto system falsely excluding another
Pareto system is small relative to the probability of a non-Pareto system being falsely included
among the estimated Pareto systems. Thus, the Pareto set appears “known” relative to the non-
Pareto set, and the optimal allocation exclusively controls for MCI events.
Since the SCORE allocation requires knowing the true system performances on both objectives,

which are unknown, we include a sequential sampling framework for implementation. We numer-
ically compare the performance of the SCORE allocation and the sequential sampling framework
with other popular allocations in the literature. We find that our implementation of the SCORE
allocation performs well numerically. SCORE appears to be a fast and accurate heuristic allocation
scheme for bi-objective R&S with 20 to 10,000 systems, inspired by theoretical allocations that
have limiting optimality guarantees on efficiency.

1.2 Other Relevant Work

When the goal of solving Problem M is to identify the entire efficient or Pareto set, few solution
methods have been proposed in the SO literature. Arguably, the most well-known and popular
method is the Multi-objective Optimal Computing Budget Allocation (MOCBA) (Lee et al. 2010),
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Table 1. The Table Provides a Categorization of Existing Papers on Multi-objective R&S by How Many

Objectives They Consider and Whether They Account for Dependence Between the Objectives

Dependence? Exactly Two Objectives Two or More Objectives
No Hunter and McClosky (2016) and

M-MOBA (Branke and Zhang 2015)
MOCBA (Lee et al. 2010)

Yes This article and its preliminary version,
Hunter and Feldman (2015)

Feldman et al. (2015)

which is a multi-objective version of the popular Optimal Computing Budget Allocation (Chen
et al. 2000) for a finite feasible set. Other recent work includes (a) M-MOBA (Branke and Zhang
2015; Branke et al. 2016), a multi-objective version of the small-sample expected value of informa-
tion (EVI) procedures in Chick et al. (2010) for a finite feasible set; (b) MO-COMPASS (Li et al. 2015),
which is a multi-objective version of COMPASS (Xu et al. 2010) for integer-ordered feasible sets;
(c) Huang and Zabinsky (2014), who provide a branch-and-bound algorithm for integer-ordered
or continuous feasible sets; and (d) Kim and Ryu (2011), Fliege and Xu (2011), and Bonnel and
Collonge (2014), who provide methods for continuous feasible sets. We note that Butler et al. (2001)
provide a utility function approach to multi-objective R&S and refer the reader to Hunter et al.
(2017) for an overview of the existing MOSO literature.
Given our context of finite feasible sets, the most appropriate competitors for our proposed

sequential algorithm are MOCBA and M-MOBA. We compare the performance of our sequential
algorithm with these methods in Section 8.

Remark 1. A preliminary version of this work appears in Hunter and Feldman (2015). Also,
Hunter and McClosky (2016) contains an asymptotically optimal allocation for the case of two
independent objectives in the context of a plant breeding application. This article is a significant
outgrowth of Hunter and Feldman (2015) and subsumes the allocation provided in Hunter and
McClosky (2016) for independent objectives. Neither Hunter and Feldman (2015) nor Hunter and
McClosky (2016) provides a limiting SCORE framework. Feldman et al. (2015) provides analogous
MOSO methods on finite sets for more than two objectives. Since the methods in Feldman et al.
(2015) are more computationally burdensome than those we propose, we do not advocate using the
methods of Feldman et al. (2015) in the bi-objective case. Thus, we do not include these methods in
numerical comparisons. Table 1 categorizes these articles according to some of their differences.

Remark 2. There is also work on the multi-objective multi-armed bandit problem, for example,
Yahyaa et al. (2014a, 2014b, 2014c).

2 PROBLEM SETTING AND FORMULATION

We now provide a formal problem statement, describe terminology and notational conventions,
and outline our assumptions. Due to space constraints, unless otherwise noted in the text, proofs
for all results appear in the Online Appendix.

2.1 Problem Statement

We consider the MOSO problem with two objectives on a finite set. That is, we solve

Problem B : Find argmink ∈S (IE[G (xk , ξ )], IE[H (xk , ξ )]),

where S := {1, 2, . . . , r } is a finite set of system indices and ξ is a random quantity. Further, de-
fine дk := IE[G (xk , ξ )] and hk := IE[H (xk , ξ )] for all k ∈ S. The objective vectors (дk ,hk ) ∈ R2 are
unknown, but may be estimated by sample means. The solution to Problem B is the set of Pareto
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systems (see Section 2.2), P := {systems i : � system k ∈ S such that (дk ,hk ) � (дi ,hi )}, where a
vector (дk ,hk ) dominates (дi ,hi ), written as (дk ,hk ) � (дi ,hi ), if дk ≤ дi and hk < hi , or дk < дi
and hk ≤ hi .
Now, consider a method to solve Problem B in which we allocate a proportion αk > 0 of the total

sampling budget to each system k , where
∑r

k=1 αk = 1. Once the total sampling budget has been

expended, we return the set of estimated Pareto systems, P̂, constructed as follows. Let the vector
of sample means after n samples be (Ḡk (n), H̄k (n)) := ( 1

n

∑n
j=1Gk j ,

1
n

∑n
j=1Hk j ) for all k ∈ S, and

define (Ĝk , Ĥk ) := (Ḡ (αkn), H̄ (αkn)) as the estimators of дk and hk after scaling the total sample
size n by the proportional allocation to system k , αk > 0. Then, the set of estimated Pareto systems

is P̂ := {systems i : � system k ∈ S such that (Ĝk , Ĥk ) � (Ĝi , Ĥi )}.
If P̂ � P, then at least one system has been misclassified, that is, a Pareto system has been

falsely estimated as non-Pareto, or a non-Pareto system has been falsely estimated as Pareto. As
the sampling budget tends to infinity, the probability of misclassification tends to zero. Then, we
ask, What sampling budget α = (α1,α2, . . . ,αr ) maximizes the rate of decay of the probability of

misclassification?

Remark 3. While we focus on allocating the sample to maximize the rate of decay of the proba-
bility of misclassification, one could also allocate to minimize the expected number of misclassifi-
cations. Hunter and McClosky (2016) show that these two objectives result in identical asymptotic
allocations when the objective estimators are independent.We anticipate that a similar result holds
in the context of this article.

2.2 Terminology and Notational Conventions

In general, we prefer to call the solution to Problem M “the efficient set” and call its image “the
Pareto set” (see Ehrgott (2012) for a historical perspective on these terms). However, since R&S
methods assume no structure in the decision space, we may work almost entirely in the objective
space. Sincewework in the objective space and index the systems by their objective function values
in Section 3, we omit the term “efficient” in favor of the term “Pareto” throughout the article.
When it is reasonable to do so, uppercase letters denote random variables or matrices, lowercase

letters denote fixed quantities, script letters denote sets, and vectors are written in bold. For a set
C, the cardinality of C is denoted |C|. For a function f , let ∇f (x) be the gradient of f with respect
to x ∈ Rq , and f ′(x ) the derivative of f with respect to x ∈ R. For any 2-by-2 matrix A, let the
eigenvalues of A be λmin (A) and λmax (A). For any n-by-n matrices A and B, let A ◦ B denote their
element-wise, or Hadamard, product. For a sequence of real numbers {an }, we say that an = o(1) if
limn→∞{an } = 0 and an = O (1) if {an } is bounded, that is, if there exists c > 0 with |an | < c for all
n. Further, an = Θ(1) if 0 < lim inf an ≤ lim supan < ∞. We use iff for “if and only if.” Solutions
to optimization problems are usually denoted with an asterisk, e.g., x∗. We use I[·] to denote the
indicator function. Let f + : R→ R ∪ {∞} be a function such that f + (x ) = x if x ∈ {x ∈ R : x > 0}
and f + (x ) = ∞ if x ≤ 0. For a,b ∈ R, define min+[a,b] := min( f + (a), f + (b)).

2.3 Assumptions

In what follows, we assume that the set of non-Pareto systems is nonempty. To estimate the un-
known quantities дk and hk , we assume we obtain replicates of the random vector (Gk ,Hk ) from
each system. We also assume the following.

Assumption 1. Random vectors (Gk ,Hk ) are mutually independent for all k ∈ S.

That is, we develop a model to guide sampling that does not specifically account for correla-
tion between systems, such as the correlation that would arise with the use of common random
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7:6 G. Feldman and S. R. Hunter

numbers (CRN). However, our model does not preclude the use of CRN during implementation.We
also require the following technical assumption, which is standard in optimal allocation literature,
since it ensures all Pareto systems are distinguishable on each objective with a finite sample size.

Assumption 2. We assume дi � дk and hi � hk for all i ∈ P, k ∈ S such that k � i .

Sincewe employ a large deviations analysis in Section 3, we require the followingAssumptions 3
and 4, included here for completeness. We refer the reader to Dembo and Zeitouni (1998) for fur-

ther explanation. Let 〈·, ·〉 denote the dot product, and let Λ(n)
(Gk ,Hk )

(θ ) = log IE[e〈θ, (Ḡk (n),H̄k (n))〉],

Λ(n)
Gk

(θ ) = log IE[eθḠk (n)], and Λ(n)
Hk

(θ ) = log IE[eθ H̄k (n)] be the cumulant generating functions of

(Ḡk (n), H̄k (n)), Ḡk (n), and H̄k (n), respectively, where θ ∈ R2 and θ ∈ R. Let the effective domain
of f (·) beDf = {x : f (x ) < ∞}, and its interiorD◦

f
. We make the following standard assumption.

Assumption 3. For each system k ∈ S,

(1) the limitΛ(Gk ,Hk ) (θ ) = lim
n→∞

1
n
Λ(n)
(Gk ,Hk )

(nθ ) exists as an extended real number for all θ ∈ R2,

where ΛGk
(θ ) = lim

n→∞
1
n
Λ(n)
Gk

(nθ ) and ΛHk
(θ ) = lim

n→∞
1
n
Λ(n)
Hk

(nθ ) for all θ ∈ R;
(2) the origin belongs to the interior of DΛ(Gk ,Hk )

;

(3) Λ(Gk ,Hk ) (θ ) is strictly convex and C∞ on D◦Λ(Gk ,Hk )
;

(4) Λ(Gk ,Hk ) (θ ) is steep, that is, for any sequence {θn } ∈ DΛ(Gk ,Hk )
converging to a boundary

point of DΛ(Gk ,Hk )
, lim
n→∞
|∇Λ(Gk ,Hk ) (θn ) | = ∞.

Assumption 3 implies that by the Gärtner-Ellis theorem, the probability measure governing
(Ḡk (n), H̄k (n)) obeys the large deviations principle (LDP) with good, strictly convex rate func-
tion Ik (x ,y) = supθ ∈R2 {〈θ , (x ,y)〉 − Λ(Gk ,Hk ) (θ )} (Dembo and Zeitouni 1998, p. 44). Further, Ḡk (n)
and H̄k (n) obey the LDP with good, strictly convex rate functions Jk (x ) = supθ ∈R{θx − ΛGk

(θ )},
Kk (y) = supθ ∈R{θy − ΛHk

(θ )}. Let (x ,y) ∈ F ◦
(Gk ,Hk )

= int{∇Λ(Gk ,Hk ) (θ ) : θ ∈ D◦Λ(Gk ,Hk )
}, and let

F c
d
denote the closure of the convex hull of the set {(дk ,hk ) : (дk ,hk ) ∈ R2,k ∈ S}.

Assumption 4. The closure of the convex hull of all points (дk ,hk ) ∈ R2 is a subset of the inter-

section of the interiors of the effective domains of the rate functions Ik (x ,y) for all k ∈ S, that is,
F c
d
⊂ ∩r

k=1
F ◦
(Gk ,Hk )

.

3 CHARACTERIZATION OF THE OPTIMAL BUDGET ALLOCATION

Given that our goal is to determine the sample allocation α that maximizes the rate of decay of
the probability of misclassification, we first formulate the misclassification event in a way that
facilitates analysis. We then analyze the rate of decay of the probability of misclassification as a
function of α and provide a characterization of the optimal budget allocation as the solution to
a bi-level optimization problem. To avoid mathematical complications, we assume nαk > 1 for all
k ∈ S in this section.

3.1 Formulation of the Misclassification Event

Recall that a misclassification event occurs if, after expending a total of n samples, the set of esti-

mated Pareto systems, P̂, is not equal to the true set of Pareto systems, P. If P̂ � P, then at least
one of two events occurs: a Pareto system was falsely excluded from the set of estimated Pareto
systems (MCE), or a non-Pareto system was falsely included in the set of estimated Pareto systems
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Fig. 1. Pareto systems i − 1, i, i + 1 are solid black dots, i ∈ {2, . . . ,p − 1}. Phantom Pareto systems are solid

gray dots, � = i . If the Pareto set were known, then an MCE or MCI event would result from the non-Pareto

system j being falsely estimated in the dark or light gray region, respectively.

(MCI). Therefore, we can formulate the misclassification event as MC := MCE ∪MCI, where

MCE := ∪
i ∈P

∪
k ∈ S, k � i

(Ĝk ≤ Ĝi ) ∩ (Ĥk ≤ Ĥi )

︸�����������������������������������������������︷︷�����������������������������������������������︸
∃ i ∈ P dominated by some k ∈ S

; MCI := ∪
j ∈Pc

∩
k ∈ S, k � j

(Ĝ j ≤ Ĝk ) ∪ (Ĥj ≤ Ĥk ).

︸�������������������������������������������������︷︷�������������������������������������������������︸
∃ j ∈ Pc not dominated by any k ∈ S

As the union of pairwise exclusion events, the MCE event is easy to analyze. However, the MCI
event requires a non-Pareto system j to be falsely estimated as better than every system k on at
least one objective. This event contains dependence that is difficult to analyze. In this section, we
reformulate the MC event for easier analysis. First, we simplify the MCE event to consider only
exclusion events between Pareto systems,

MCEP := ∪
i ∈P

∪
i′ ∈ P, i ′ � i

(Ĝi′ ≤ Ĝi ) ∩ (Ĥi′ ≤ Ĥi ).

Then, we reformulate the MCI event so that it also appears as a union of pairwise exclusion events.
We combine these results into the statement of Theorem 3.1, which states the equivalence of the
MC and reformulated events.
To reformulate the MCI event as a union of pairwise exclusion events, first, we define new sys-

tems called phantom Pareto systems. To define these systems, reserve the indices 1, . . . ,p for the
Pareto systems, such that P = {1, . . . ,p}, |P | = p. Then, label the true Pareto systems by their
ordered objective values, д1 < д2 < · · · < дp−1 < дp < дp+1 and h0 > h1 > h2 > · · · > hp−1 > hp ,
where дp+1 := ∞, and h0 := ∞. Thus, the objective values for the true Pareto systems are (дi ,hi )
for all i ∈ P, where henceforth, we use i as an ordered index when we wish to refer to the ordered
Pareto systems. An example of this labeling appears in Figure 1.
Now, construct the objective value corresponding to the �th phantom Pareto system as the co-

ordinates (дi+1,hi ) for i = 0, 1, . . . ,p, where we also place phantom Pareto systems at (д1,∞) and
(∞,hp ) for a total of p + 1 phantom Pareto systems. Henceforth, we use Pph := {0, 1, . . . ,p} as the
set of indices corresponding to the phantom Pareto systems, and we use � as an ordered index
when we wish to emphasize the ordered phantom Pareto systems; notice our labeling is such that
� = i (see Figure 1). For the remainder of the article, the indices � and i are linked in this way.

To rewrite the MCI event using the phantom Pareto systems, we must estimate the objec-

tive values of the phantom Pareto systems. For the true Pareto systems, define Ĝ[i] as the ith

largest estimated first objective value and Ĥ[i] as the ith smallest estimated second objective value.

Thus, Ĝ[1] < · · · < Ĝ[p−1] < Ĝ[p] < Ĝ[p+1] and Ĥ[0] > Ĥ[1] > Ĥ[2] > · · · > Ĥ[p], where Ĝ[p+1] := ∞
and Ĥ[0] := ∞ for all n. Now, the estimated performances of the phantom Pareto systems are
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7:8 G. Feldman and S. R. Hunter

(Ĝ[i+1], Ĥ[i]) for i = 0, 1, . . . ,p. Define misclassification by dominating an estimated phantom
Pareto system as

MCIph := ∪
j ∈Pc

∪
�∈Pph, �=i

(Ĝ j ≤ Ĝ[i+1]) ∩ (Ĥj ≤ Ĥ[i]),

and rewrite the misclassification event as MCph := MCEP ∪MCIph. Theorem 3.1 states the equiv-
alence of the probability of an MC event and the probability of an MCph event. A similar theorem
was stated and proved in Hunter and McClosky (2016) under more restrictive assumptions.

Theorem 3.1. IP{MC} = IP{MCph}.

Henceforth, we use the notation IP{MC} without loss of clarity.

3.2 The Rate of Decay of the Probability of a Misclassification Event

Now that we have formulated the MC event into the union of two MCE-like events, we are ready
to analyze the rate of decay of IP{MC} as a function of the sampling allocation vector α . Notice
that for b = max(IP{MCEP}, IP{MCIph}), we have b ≤ IP{MC} ≤ 2b, which, assuming the limits
exist, implies

− lim
n→∞

1
n
log IP{MC} = min

(
− lim
n→∞

1
n
log IP{MCEP},− lim

n→∞
1
n
log IP{MCIph}

)
. (1)

In what follows, we analyze the rate of decay of IP{MCEP} and IP{MCIph} separately.
First, consider the rate of decay of IP{MCEP} in Equation (1), since it is the most straightforward.

For brevity, for all i, i ′ ∈ P, i ′ � i , define the rate function
Ri (αi ,αi′ ) := inf

xi′ ≤xi , yi′ ≤yi
αi Ii (xi ,yi ) + αi′Ik (xi′,yi′ ).

The following Lemma 3.2 states the rate of decay of IP{MCEP} in terms of the pairwise rates
Ri (αi ,αi′ ) corresponding to a Pareto system i ′ dominating another Pareto system i . We do not
provide a proof for Lemma 3.2; it follows from an analysis similar to those in Glynn and Juneja
(2004), Hunter (2011), Li (2012), and Feldman (2017).

Lemma 3.2. The rate of decay of IP{MCEP} is
− lim
n→∞

1
n
log IP{MCEP} = min

i ∈P
min

i′ ∈P,i′�i
Ri (αi ,αi′ ).

Lemma 3.2 states that the rate of decay of IP{MCEP} is the slowest among the pairwise rates
corresponding to one Pareto system falsely dominating another.
Now, let us turn our attention to the term corresponding to MCIph in Equation (1). The analysis

for the rate of decay of the probability of an MCIph event is a bit more involved: in addition to the
possibility that a non-Pareto system j is estimated as dominating a phantom Pareto system, the
Pareto systems themselves may be estimated as “out of order.” In what follows, we do not directly
state the rate of decay of IP{MCIph}. Instead, we show that the probability of events corresponding
to MCIph in which the Pareto systems are also estimated as out of order have rates of decay greater
than or equal to the rate of decay of IP{MCEP}, and thus can never be the unique minimum rate
in Equation (1).
To explicitly denote the ordering of the Pareto systems, we require the following notation. First,

recall that the Pareto systems are labeled “in order” from 1, 2 . . . ,p. Then, we define the ordered
list O := {(1, 1), (2, 2), . . . , (p,p)} as the positions of the true Pareto systems on each objective,
where the first objective is labeled from smallest to largest, and the second objective is labeled

from largest to smallest. Now, define Ô as the ordered list of estimated positions of the true Pareto

systems. Thus, the event that the Pareto systems are estimated in the correct order is Ô = O. De-
fine MCIph without order statistics as MCI∗ph := ∪j ∈Pc ∪�∈Pph, �=i (Ĝ j ≤ Ĝi+1) ∩ (Ĥj ≤ Ĥi ), where
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Ĝp+1 := ∞, Ĥ0 := ∞ for all n. Then, the event MCI∗ph ∩ Ô = O is the event that the Pareto systems

are estimated in order, and a non-Pareto system is falsely included in the set of estimated Pareto
systems. The following lemma states that only the rate of decay of the probability of this event
can be a binding minimum in the overall rate of decay of IP{MC} in Equation (1).

Lemma 3.3. The rate of decay of IP{MC} is

− lim
n→∞

1
n
log IP{MC} = min

(
− lim
n→∞

1
n
log IP{MCEP},− lim

n→∞
1
n
log IP{MCI∗ph ∩ Ô = O}

)
.

Again, because the Pareto systems being estimated out of order has a rate of decay that is greater
than or equal to the rate of decay of IP{MCEP}, the rate of decay of IP{MC} can be simplified to a
rate involving only pairs of non-Pareto systems and phantom Pareto systems. For all non-Pareto
systems j ∈ Pc and all phantom Pareto systems � ∈ Pph = {0, 1, . . . ,p}, recall that � = i and define
the rate function

R j� (α j ,αi ,αi+1)

:=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

inf
x j ≤x1

α j Ij (x j ,yj ) + α1 J1 (x1) if � = 0,

inf
x j ≤xi+1, yj ≤yi

α j Ij (x j ,yj ) + αiKi (yi ) + αi+1 Ji+1 (xi+1) if � ∈ {1, . . . ,p − 1},

inf
yj ≤yp

α j Ij (x j ,yj ) + αpKp (yp ) if � = p,

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

inf
x

α j Jj (x ) + α1 J1 (x ) if � = 0,

inf
x j ≤xi+1, yj ≤yi

α j Ij (x j ,yj ) + αiKi (yi ) + αi+1 Ji+1 (xi+1) if � ∈ {1, . . . ,p − 1},

inf
y

α jKj (y) + αpKp (y) if � = p,

where α0 := 1, αp+1 := 1, and equality of these two rates is explained in the Online Appendix. The
following Theorem 3.4 states the rate of decay of the probability of misclassification, IP{MC}.

Theorem 3.4. The rate of decay of the probability of misclassification is

− lim
n→∞

1
n
log IP{MC} = min

(
min
i ∈P

min
i′ ∈P,i′�i

Ri (αi ,αi′ ), min
j ∈Pc

min
�∈Pph, �=i

R j� (α j ,αi ,αi+1)

)
.

According to Theorem 3.4, we can retrieve the overall rate of decay of the probability of mis-
classification by calculating (a) the slowest among all pairwise false exclusion rates between the
Pareto systems i, i ′ ∈ P, i � i ′, and (b) the slowest among the pairwise false inclusion rates be-
tween non-Pareto systems j ∈ Pc and phantom Pareto systems � ∈ Pph. Therefore, the rate of
decay of IP{MC} is determined by the most likely misclassification event between two Pareto sys-
tems or between a non-Pareto system and a phantom Pareto system. We remind the reader that
the rate in Theorem 3.4 accounts for dependence between the objectives.

3.3 Optimal Allocation Strategy

To determine the asymptotically optimal sampling allocation that maximizes the rate of decay of
the probability of misclassification, IP{MC}, we consider the rate of decay of IP{MC} in Theorem 3.4
as a function of the sampling allocationα . To determine the best value of α , we maximize the rate
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7:10 G. Feldman and S. R. Hunter

of decay of IP{MC} by solving the following Problem Q , defined as

Problem Q : maximize z s.t.

Ri (αi ,αi′ ) ≥ z for all i, i ′ ∈ P such that i ′ � i,

R j� (α j ,αi ,αi+1) ≥ z for all j ∈ Pc , � ∈ Pph, � = i,∑r
k=1 αk = 1, αk ≥ 0 for all k ∈ S.

Thus, at optimality in ProblemQ ,α ∗ is the sampling allocation that maximizes the rate of decay of
the probability of misclassification. The optimal rate is represented by z∗. Given a value of (αi ,αi′ ),
the value of Ri (αi ,αi′ ) is obtained by solving

Problem RMCE
ii′ : minimize αi Ii (xi ,yi ) + αi′Ii′ (xi′,yi′ ) s.t. xi′ ≤ xi , yi′ ≤ yi ,

and given a value of (α j ,αi ,αi+1), the value of R j� (α j ,αi ,αi+1) is obtained by solving

Problem RMCI
j� : minimize α j Ij (x j ,yj ) + αiKi (yi )I[��0] + αi+1 Ji+1 (xi+1)I[��p]

s.t. (x j − xi+1)I[��p] ≤ 0, (yj − yi )I[��0] ≤ 0,

where, for ease of notation, we write Problem RMCI
j�

in its unsimplified form. We distinguish Prob-

lems RMCE
ii′ and RMCI

j�
as strictly convex optimization problems in (xi ,yi ,xi′,yi′ ) and (x j ,yj ,yi ,xi+1),

respectively, while Ri (αi ,αi′ ) and R j� (α j ,αi ,αi+1) are their respective objective values at optimal-

ity. In the sections that follow, Problem RMCI
j�

plays a prominent role. Thus, we briefly discuss the

properties of ProblemQ . Then, we provide a more in-depth look at the properties of Problem RMCI
j�

.

3.3.1 Properties of ProblemQ . ProblemQ has p × (p − 1) constraints corresponding to control-
ling the rate of decay of IP{MCEP} and (r − p) × (p + 1) constraints corresponding to controlling
the rate of decay of IP{MCIph}. Also, each Ri (αi ,αi′ ) and R j� (α j ,αi ,αi+1) are concave functions of
(αi ,αi′ ) and (α j ,αi ,αi+1), respectively (Boyd and Vandenberghe 2004, p. 81). Thus, ProblemQ is a
concave maximization problem. We emphasize the following important property of the rate z as
a function of the allocation α : If αk = 0 for any system k in Problem Q , then the rate z = 0. Since
equal allocation is feasible and results in a rate z > 0, at optimality in Problem Q , we have z∗ > 0
and α∗

k
> 0 for all systems k ∈ S.

3.3.2 Properties of Problem RMCI
j�

. Along with primal feasibility, the following KKT con-

ditions are necessary and sufficient for global optimality in the strictly convex Prob-
lem RMCI

j�
. Let (x∗j ,y

∗
j ,y
∗
i ,x
∗
i+1) be the solution to Problem RMCI

j�
, where y∗0 := 0, x∗p+1 := 0.

Letting λx ≥ 0 and λy ≥ 0 be dual variables, we have complementary slackness conditions
λx (x

∗
j − x∗i+1) = 0 if � � p, λy (y∗j − y∗i ) = 0 if � � 0, and stationarity conditions

α j
∂Ij (x

∗
j ,y
∗
j )

∂x j
+ λx I[��p] = 0, α j

∂Ij (x
∗
j ,y
∗
j )

∂yj
+ λy I[��0] = 0, (2)

αi+1
∂ Ji+1 (x

∗
i+1 )

∂xi+1
− λx = 0 if � � p, αi

∂Ki (y
∗
i )

∂yi
− λy = 0 if � � 0. (3)

In the solution to Problem RMCI
j�

, the variables x∗j ,y
∗
j ,y
∗
i , and x

∗
i+1 are each functions of the pro-

portional allocations to non-Pareto system j and Pareto systems i and i + 1, (α j ,αi ,αi+1). When
this dependence must explicitly be denoted, for brevity, define

z∗j (α j ,αi ,αi+1) := (x∗j (α j ,αi ,αi+1),y
∗
j (α j ,αi ,αi+1)).
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Now, notice that under Assumptions 2–4, from the KKT conditions for Problem RMCI
j�

, the value of

the rate function Ij (z
∗
j (α j ,αi ,αi+1)) > 0 at optimality in ProblemRMCI

j�
. This result is stated formally

in Lemma 3.5; we omit the proof.

Lemma 3.5. If α j > 0,αi > 0,αi+1 > 0, then Ij (z
∗
j (α j ,αi ,αi+1)) > 0 in Problem RMCI

j�
for all non-

Pareto systems j ∈ Pc and all phantom Pareto systems � ∈ Pph, � = i .

A lemma regarding the locations of the solutions to Problem RMCI
j�

appears in the Online

Appendix.

4 LIMITING APPROXIMATION TO THE OPTIMAL ALLOCATION

Since ProblemQ is a bi-level optimization problem, it may take some time to solve for the optimal
allocation when the number of systems is large. While the computational time could be reduced
by solving the inner problems in parallel, we believe it is useful to see if the optimal allocation
can be simplified for large problem instances. In this section, we send the number of non-Pareto
systems to infinity while keeping the number of Pareto systems finite and equal to p. This limiting
regime enables us to write the relative allocations between the non-Pareto systems in closed form.
Before proceeding, we emphasize two key points about our limiting regime. First, we do not

intend that the SCORE framework be implemented as-written when the number of systems is in-
finite. We are, after all, providing optimal allocations for R&S problems in which the number of
systems is finite. We seek only a simplifying framework that would be a good approximation to
the asymptotically optimal allocation when the number of non-Pareto systems is large relative
to the number of Pareto systems. Further, it may seem natural that if the number of non-Pareto
systems tends to infinity, the number of Pareto systems should also tend to infinity, but perhaps at
a slower rate. While such a regime may be intuitively appealing, it is not clear how the Pareto sys-
tems should be added to achieve a meaningful limiting allocation framework in a large deviations
regime. Thus, in what follows, we keep the number of Pareto systems finite and equal to p. We also
remind the reader that, like much of the R&S literature, our emphasis is on the case in which the
underlying distributions are normal. Thus, we make a normality assumption in Section 4.1. This
assumption simplifies the proofs and assists our intuition regarding dependence by allowing us to
model the dependence between the objectives as correlation.

4.1 Preliminaries for the Limiting Allocation

Recall that r = |S| = p + |Pc | is the total number of systems, and in what follows, only |Pc | will
tend to infinity while p remains constant.

4.1.1 Assumptions. We make four assumptions on the way non-Pareto systems are added to
ensure a meaningful limiting allocation.

Assumption 5. There exists a compact set C1 ⊂ R2 such that (дk ,hk ) ∈ C1 for all k ∈ S, and such
that C1 ⊂ F c

d
. (See Assumption 4 for notation.)

Since all rate functions are strictly convex with a unique minimum at the location of the mean,
there exists another compact set C ⊇ C1 that contains the locations of the solutions to all Prob-
lems RMCI

j�
. Let β be the diameter of a circle that covers C; β appears in the Online Appendix.

Assumption 6. For all k ∈ S, the rate functions Ik (x ,y) have the quadratic form Ik (x ,y) =
1
2 [

дk − x
hk − y ]

ᵀΣ−1
k
[
дk − x
hk − y ] for all (x ,y) ∈ R

2, where Σk := [
σ 2
дk

ρkσдk σhk
ρkσдk σhk σ 2

hk

]. Further, there exist con-

stants ca < 1 and cb > 1 such that the eigenvalues of Σk are bounded as 0 < ca ≤ λmin (Σk ) ≤
λmax (Σk ) ≤ cb < ∞ for all k ∈ S.
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7:12 G. Feldman and S. R. Hunter

Fig. 2. Under Assumption 8, for each Pareto system i ∈ {2, . . . ,p − 1}, there exists at least one non-Pareto
system j outside the shaded region.

Assumption 6 implies Jk (x ) = (x − дk )2/(2σ 2
дk
), Kk (y) = (y − hk )2/(2σ 2

hk
) for all k ∈ S.

Assumption 7. There exists ϵ > 0 such that (дj ,hj ) satisfies (a) inf {|hj − hi | : i ∈ P} > ϵ ,
inf {|дj − дi | : i ∈ P} > ϵ , and (b) inf {|(hj − hi )/σhj − ρ j (дj − дi+1)/σдj | : i ∈ P} > ϵ, inf {|(дj −
дi+1)/σдj − ρ j (hj − hi )/σhj | : i ∈ P} > ϵ for all j ∈ Pc .

Assumption 8. For all Pareto systems i ∈ P, there exists a non-Pareto system j ∈ Pc such that

hj ≤ hi−1 or дj ≤ дi+1.

Assumption 5 ensures that the systems that are added continue to compete with the Pareto
systems and do not become irrelevant in the limit. Assumption 7 ensures the non-Pareto systems
j ∈ Pc are added to C1 so that they do not systematically approach the Pareto front, and so that they
do not approach the linesy = hi + ρ j (σhj /σдj ) (x − дi+1) andy = hi + (1/ρ j ) (σhj /σдj ) (x − дi+1) for
all i ∈ P. Notice that Assumption 7(b) follows from Assumption 7(a) and Assumption 6 when the
correlation ρ j = 0. Assumptions 5 and 7 are analogous to assumptions in Pasupathy et al. (2015).

We differ from Pasupathy et al. (2015) in Assumptions 6 and 8. While Pasupathy et al. (2015)
assume the rate functions have upper and lower bounding quadratics on a compact set (a mild
assumption), we simplify the analysis by assuming the rate functions are quadratic. Sufficient
conditions to ensure we have appropriate quadratic rate functions are (a) we obtain i.i.d. replicates
of the bivariate normal random vector (Gk ,Hk ) with parameters (дk ,hk ,σ

2
дk
,σ 2

hk
, ρk ) for all k ∈ S

whereσ 2
дk
,σ 2

hk
denote variance, ρk denotes correlation between the objectives, and (b) the variance

and correlation values are uniformly bounded as 0 < σ 2
a ≤ σ 2

дk
≤ σ 2

b
< ∞, 0 < σ 2

a ≤ σ 2
hk
≤ σ 2

b
< ∞

for σ 2
a < 1, σ 2

b
> 1, and |ρk | ≤ ρb for ρb ∈ (0.5, 1). (Note that the existence of such bounds follows

from the condition on the eigenvalues of Σk . The independence of the replicates can be relaxed
under the conditions in Assumption 3.) Thus, we require that the systems be added to C1 in such a
way that their corresponding rate functions cannot become too shallow (less than σ 2

a ) or too steep
(larger than σ 2

b
), and so that they cannot degenerate to a single dimension (|ρk | approaching 1).

We conjecture that our analysis holds in the case of bounding quadratics, but we do not show it.
Finally, Assumption 8 implies that there does not exist a Pareto system i ∈ {2, . . . ,p − 1} such

that Pareto systems i − 1, i, and i + 1 dominate all of the non-Pareto systems (see Figure 2);
note that the assumption always holds for i ∈ {1,p}. Assumption 8 ensures that when we relax
Problem Q to contain only constraints corresponding to MCI in Section 4.2, Pareto system i
receives a positive sample allocation at optimality for all i ∈ P. To see why, suppose there are
three Pareto systems i − 1, i, and i + 1, and suppose all non-Pareto systems are in the shaded
region of Figure 2. Further, suppose all variances associated with Pareto systems i − 1, i + 1 and
the non-Pareto systems are relatively small, while the variances associated with Pareto system i
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are relatively large. Then, it is expedient for Pareto systems i − 1 and i + 1 to do all the work of
excluding the non-Pareto systems. If there exists a non-Pareto system j outside the shaded region,
then Pareto systems i − 1 and i + 1 can no longer do all the work of excluding the non-Pareto
systems; hence, Pareto system i receives positive sample allocation. We view Assumption 8 as
mild for two reasons. First, in Section 4.2, we send the cardinality of non-Pareto systems to
infinity in an “even” way under Assumption 9. Thus, we view Assumption 8 as requiring an initial
level of evenness among the non-Pareto systems. Second, at optimality in Problem Q , all Pareto
systems receive positive allocation due to the constraints corresponding to MCE, regardless of
the system configuration. Since the SCORE framework in Section 5 includes the MCE constraints,
this assumption does not impact implementation.

4.1.2 Rate Functions Under the Normality Assumption. We write R j� (α j ,αi ,αi+1) under As-

sumption 6 in the following Proposition 4.1. For brevity, define the indicators I
д

j�
:= I[λx >0, ��p]

and Ih
j�
:= I[λy>0, ��0] at optimality in Problem RMCI

j�
. Recalling that � = i , intuitively, I

д

j�
> 0 means

that non-Pareto system j “competes” with Pareto system i + 1 on the д objective via the phantom
Pareto system �, and Ih

j�
> 0 means that non-Pareto system j “competes” with Pareto system i on

the h objective via phantom Pareto system � (see Figure 2). To further simplify the rate function,
when α j > 0,αi > 0,αi+1 > 0, for all j ∈ Pc and phantom Pareto systems � ∈ Pph, � = i , define

wд (α j ,αi+1) :=
σ 2
дj
/α j

σ 2
дj
/α j+σ

2
дi+1

/αi+1
if � � p and wh (α j ,αi ) :=

σ 2
hj

/α j

σ 2
hj

/α j+σ
2
hi

/αi
if � � 0,

where 0 < wд (α j ,αi+1) < 1 and 0 < wh (α j ,αi ) < 1 can be interpreted as weights. For readability
and compactness, we often denote these weights aswд andwh , respectively, where the appropriate
dependencies can be deduced from context.
Notice that the expression for R j� (α j ,αi ,αi+1) in Proposition 4.1 simplifies to one of three cases:

the one-dimensional rate corresponding to system j being estimated as better than Pareto sys-
tem i + 1 on objective д, the one-dimensional rate corresponding to system j being estimated as
better than Pareto system i on objective h, or a bivariate rate of j dominating the phantom Pareto

system �. Since Ĝi+1 and Ĥi are independent, only ρ j appears in the rate. Further, in the expressions
that follow, onlywд andwh are functions of (α j ,αi ,αi+1).

Proposition 4.1. Under Assumption 6, for each non-Pareto system j ∈ Pc and phantom Pareto

system � ∈ Pph, � = i , if α j > 0,αi > 0,αi+1 > 0, then

(1) the rate function R j� (α j ,αi ,αi+1) is

R j� (α j ,αi ,αi+1) =
α j

2

⎡⎢⎢⎢⎢⎣
(дj − дi+1)Iдj�
(hj − hi )Ihj�

⎤⎥⎥⎥⎥⎦
ᵀ ⎡⎢⎢⎢⎢⎣

σ 2
дj
/wд ρ jσдjσhj I

д

j�
I
h
j�

ρ jσдjσhj I
д

j�
I
h
j�

σ 2
hj
/wh

⎤⎥⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎢⎣

(дj − дi+1)Iдj�
(hj − hi )Ihj�

⎤⎥⎥⎥⎥⎦
=

α j

2(1−ρ2
jwдwh I

д

j�
I
h
j�
)

(
(дj−дi+1 )2

σ 2
дj

wдI
д

j�
− 2ρ j (дj−дi+1 )(hj−hi )

σдj σhj
wдwhI

д

j�
I
h
j�
+

(hj−hi )2
σ 2
hj

whI
h
j�

)
,

where I
д

j�
> 0, Ihj� = 0 iff � � p,дj > дi+1,

(hj−hi )
σhj

≤ ρ j
(дj−дi+1 )

σдj
wд ,

I
д

j�
= 0, Ihj� > 0 iff � � 0,hj > hi ,

(дj−дi+1 )
σдj

≤ ρ j
(hj−hi )
σhj

wh , and

I
д

j�
I
h
j� > 0 iff � � {0,p}, (дj−дi+1 )

σдj
> ρ j

(hj−hi )
σhj

wh ,
(hj−hi )
σhj

> ρ j
(дj−дi+1 )

σдj
wд ;
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(2) the rate functions in R j� (α j ,αi ,αi+1) corresponding to systems j, i , and i + 1 are

Ij (z
∗
j (α j ,αi ,αi+1)) =

(1−ρ2
jwh (2−wh )I

h
j�
)

2(1−ρ2
jwдwh I

д

j�
I
h
j�
)2

(дj−дi+1 )2
σ 2
дj

w2
дI

д

j�
+

(1−ρ2
jwд (2−wд )I

д

j�
)

2(1−ρ2
jwдwh I

д

j�
I
h
j�
)2

(hj−hi )2
σ 2
hj

w2
h
I
h
j�

− ρ j
[(1−ρ2

j )wдwh−(1−wд )(1−wh )]

(1−ρ2
jwдwh I

д

j�
I
h
j�
)2

(дj−дi+1 )(hj−hi )
σдj σhj

wдwhI
д

j�
I
h
j�
,

Ki (y
∗
i (α j ,αi ,αi+1)) = I

h
j�

(1−wh )
2

2[1−ρ2
jwдwh I

д

j�
]2

σ 2
hj

σ 2
hi

[
(hj−hi )
σhj

− Iд
j�
ρ j

(дj−дi+1 )
σдj

wд

]2
,

Ji+1 (x
∗
i+1 (α j ,αi ,αi+1)) = I

д

j�

(1−wд )
2

2[1−ρ2
jwдwh I

h
j�
]2

σ 2
дj

σ 2
дi+1

[
(дj−дi+1 )

σдj
− Ih

j�
ρ j

(hj−hi )
σhj

wh

]2
.

In what follows, we work with α directly, instead of working with wд and wh . However, we
preview the result of our limiting regime here: by sending the number of non-Pareto systems to
infinity,wд → 1 andwh → 1 in R j� (α j ,αi ,αi+1) for all j ∈ Pc , � ∈ Pph, � = i .

While the value of Ij (z
∗
j (α j ,αi ,αi+1)) is always strictly positive at optimality by Lemma 3.5, it

may be that Ki (y
∗
i (α j ,αi ,αi+1)) = 0 or Ji+1 (x

∗
i+1 (α j ,αi ,αi+1)) = 0, in which case either Pareto sys-

tem i or Pareto system i + 1 does not appear in the rate function in ProblemRMCI
j�

, respectively. This

fact raises the possibility that a particular Pareto system i does not appear in the rate function for
Problem RMCI

j�−1 or Problem RMCI
j�

, in which case the non-Pareto system j does not compete with the

Pareto system i at all (see Figure 2). The following Lemma 4.2 states that such a case is impossible.

Lemma 4.2. Under Assumption 6, if the allocations α j > 0, αi−1 > 0, αi > 0, and αi+1 > 0, then
max(Ji (x

∗
i (α j ,αi−1,αi )),Ki (y

∗
i (α j ,αi ,αi+1))) > 0 for all j ∈ Pc , i ∈ P.

4.2 Allocation to Non-Pareto Systems

Since we send the number of non-Pareto systems to infinity, we relax the constraints in ProblemQ
that pertain only to Pareto systems and MCE events. Thus, in this section, we concern ourselves
not with Problem Q , but with its relaxation:

Problem Q̃ : maximize z̃ s.t.

R j� (α̃ j , α̃i , α̃i+1) ≥ z̃ for all j ∈ Pc , � ∈ Pph, � = i,∑r
k=1 α̃k = 1, α̃k ≥ 0 for all k ∈ S.

Under our assumptions, the KKT conditions are necessary and sufficient for global optimality in

Problem Q̃ . We first use Problem Q̃ to derive insights on the optimal allocation as the number of
non-Pareto systems tends to infinity. In Section 4.4, we show that under mild conditions, for a

large enough set of non-Pareto systems, the solutions to Problems Q and Q̃ are equal. Since they

play a prominent role in the results that follow, we present the KKT conditions for Problem Q̃ in
Theorem 4.3.

Theorem 4.3. Let λj� ≥ 0 for all j ∈ Pc and all � ∈ {0, 1, . . . ,p} be dual variables associated with
Problem Q̃ , and recall that the phantom Pareto labels are � = i for all i ∈ P. Under Assumptions 6

and 8, at optimality in Problem Q̃ , α̃∗
k
> 0 for all k ∈ S and

(1) for each non-Pareto system j ∈ Pc , there exists a phantom Pareto system �∗ ∈ Pph, �∗ = i∗

such that λj�∗ > 0, which implies that the rate z̃∗ = R j�∗ (α̃
∗
j , α̃
∗
i∗ , α̃

∗
i∗+1) > 0;

(2) for each Pareto system i ∈ P, there exists a non-Pareto system j∗ ∈ Pc such that the quantities

λj∗�−1 Ji (x
∗
i (α̃
∗
j∗ , α̃

∗
i−1, α̃

∗
i )) > 0 or λj∗�Ki (y

∗
i (α̃
∗
j∗ , α̃

∗
i , α̃

∗
i+1)) > 0, which implies that the rate

z̃∗ = min(R j∗�−1 (α̃
∗
j∗ , α̃

∗
i−1, α̃

∗
i ), R j∗� (α̃

∗
j∗ , α̃

∗
i , α̃

∗
i+1)) > 0;
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(3) for all non-Pareto systems j, j ′ ∈ Pc ,∑
�∈Pph, �=i λj�Ij (z

∗
j (α̃
∗
j , α̃
∗
i , α̃

∗
i+1))∑

�∈Pph, �=i λj′�Ij′ (z
∗
j′ (α̃

∗
j′, α̃

∗
i , α̃

∗
i+1))

= 1; (4)

(4) for all Pareto systems i, i ′ ∈ P, letting the phantom Pareto label for i ′ be �′,∑
j ∈Pc λj�−1 Ji (x

∗
i (α̃
∗
j , α̃
∗
i−1, α̃

∗
i )) + λj�Ki (y

∗
i (α̃
∗
j , α̃
∗
i , α̃

∗
i+1))∑

j ∈Pc λj�′−1 Ji′ (x
∗
i′ (α̃

∗
j , α̃
∗
i′−1, α̃

∗
i′ )) + λj�′Ki′ (y∗i′ (α̃

∗
j , α̃
∗
i′, α̃

∗
i′+1))

= 1; (5)

(5) for all Pareto systems i ∈ P,
∑

j ∈Pc

λj�−1 Ji (x
∗
i (α̃
∗
j , α̃
∗
i−1, α̃

∗
i )) + λj�Ki (y

∗
i (α̃
∗
j , α̃
∗
i , α̃

∗
i+1))∑

�′ ∈Pph, �′=i′ λj�′Ij (z
∗
j (α̃
∗
j , α̃
∗
i′, α̃

∗
i′+1))

= 1. (6)

Proof. Let ν and λj� ≥ 0 for all j ∈ Pc , � ∈ Pph be dual variables. Then, we have the comple-

mentary slackness conditions λj� (R j� (α̃
∗
j , α̃
∗
i , α̃

∗
i+1) − z̃∗) = 0 for all j ∈ Pc , � ∈ Pph, � = i, and the

(simplified) stationarity conditions∑
j ∈Pc [λj�−1 Ji (x

∗
i (α̃
∗
j , α̃
∗
i−1, α̃

∗
i )) + λj�Ki (y

∗
i (α̃
∗
j , α̃
∗
i , α̃

∗
i+1))] = ν ∀i ∈ P; (7)∑

�∈Pph, �=i λj�Ij (z
∗
j (α̃
∗
j , α̃
∗
i , α̃

∗
i+1)) = ν ∀j ∈ Pc ; (8)∑

j ∈Pc
∑

�∈Pph λj� = 1. (9)

See the Online Appendix for a complete proof. �

In Theorem 4.3, Parts (1) and (2) ensure the existence of a binding constraint in Problem Q̃ for
each non-Pareto system j and Pareto system i , respectively. Parts (3) and (4) determine the relative
allocations between the non-Pareto systems and between the Pareto systems, respectively. Part (5)
determines the relative allocation between a Pareto system i and the non-Pareto systems j that
compete with it.
Observe that as the number of non-Pareto systems added according to Assumptions 5–8 grows,

the overall rate of decay of IP{MCIph} in Problem Q̃ will decrease. If this fact is not intuitive, then
it can be seen by noticing that adding non-Pareto systems that compete with the Pareto systems

in a non-trivial way implies that we are adding binding constraints to Problem Q̃ that decrease its
optimal value. Thus, under our assumptions, as |Pc | → ∞, z̃∗ → 0. (Notice that now, we consider a

sequence of Problems Q̃ (r ) that are indexed by r , and quantities such as z̃∗, λj� for all j ∈ Pc and � ∈
Pph, and α̃∗

k
for all k ∈ S are functions of r and could be denoted as z̃∗ (r ), λj� (r ) and α̃

∗
k
(r ), respec-

tively. We often suppress this notation unless it is helpful for clarity.) Proposition 4.5 states the rate
at which z̃∗ → 0. Before we state the proposition, we present Lemma 4.4, which provides bounds
on R j� (α̃

∗
j , α̃
∗
i , α̃

∗
i+1) and the rate functions that comprise it; these bounds are useful in the proofs of

several subsequent results. The constants used in Lemma 4.4 are defined in the Online Appendix.

Lemma 4.4. Let κLR ,κ
U
R
be positive, finite constants that do not depend on the system indices, and let

min+ be an operator that returns the smallest positive element in a list (see Section 2.2 for a definition).

Under Assumptions 5–8, for each j ∈ Pc and � ∈ Pph, � = i ,

α̃∗j κ
L
R min+

[
I
д

j�

1+α̃ ∗j /α̃
∗
i
,

I
h
j�

1+α̃ ∗j /α̃
∗
i+1

]
≤ R j� (α̃

∗
j , α̃
∗
i , α̃

∗
i+1) ≤ α̃∗j κ

U
R

[
I
h
j�

1+α̃ ∗j /α̃
∗
i
+

I
д

j�

1+α̃ ∗j /α̃
∗
i+1

]
, (10)

κLR min+
[

I
д

j�

(1+α̃ ∗j /α̃
∗
i )

2 ,
I
h
j�

(1+α̃ ∗j /α̃
∗
i+1 )

2

]
≤ Ij (z∗j (α̃∗j , α̃∗i , α̃∗i+1))≤κUR

[
I
h
j�

(1+α̃ ∗j /α̃
∗
i )

2 +
I
д

j�

(1+α̃ ∗j /α̃
∗
i+1 )

2

]
, (11)

κLR
I
h
j�

(1+α̃ ∗i /α̃
∗
j )

2 ≤ Ki (y
∗
i (α̃
∗
j , α̃
∗
i , α̃

∗
i+1)) ≤ κU

R

I
h
j�

(1+α̃ ∗i /α̃
∗
j )

2 , (12)
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κLR
I
д

j�

(1+α̃ ∗i+1/α̃
∗
j )

2 ≤ Ji+1 (x
∗
i+1 (α̃

∗
j , α̃
∗
i , α̃

∗
i+1)) ≤ κU

R

I
д

j�

(1+α̃ ∗i+1/α̃
∗
j )

2 . (13)

Proposition 4.5. Under Assumptions 5–8, as |Pc | → ∞, z̃∗ = O (1/|Pc |).

Thus, by Proposition 4.5, as the number of non-Pareto systems grows, the asymptotically opti-
mal rate of decay of the probability of MC decreases to zero as O (1/|Pc |).
For each Pareto system i ∈ P and for each value of the total number of systems r , let Pc (i, r )

denote the set of non-Pareto systems j that have a binding constraint with Pareto system i in

Problem Q̃ (r ); here, we explicitly denote the dependence of Problem Q̃ on r . That is, for all Pareto
systems i ∈ P and all r , define

Pc (i, r ) := {j ∈ Pc : λj�−1 (r ) Ji (x
∗
i (α̃
∗
j , α̃
∗
i−1, α̃

∗
i )) + λj� (r )Ki (y

∗
i (α̃
∗
j , α̃
∗
i , α̃

∗
i+1)) > 0}.

In Problem Q̃ (r ), we say that non-Pareto system j and Pareto system i bind with each other if j ∈
Pc (i, r ), and we say that non-Pareto system j and phantom Pareto system � bind with each other
if λj� (r ) > 0. Notice that the interior expression in the definition of Pc (i, r ) equals the expression
in the numerator of Equation (6). Equation (6) determines the relative allocation between a Pareto
system i and the non-Pareto systems j that bind with it via phantom Pareto system � − 1 or �. By
Theorem 4.3, at least one non-Pareto system binds with each Pareto system, so that |Pc (i, r ) | ≥ 1
for all i ∈ P and all r . Also by Theorem 4.3, each non-Pareto system binds with at least one Pareto
system, so that each j ∈ Pc belongs to at least one set Pc (i, r ) for all r .
We make the following additional observations about the set Pc (i, r ). First, since α̃∗

k
> 0

for all k ∈ S by Theorem 4.3, then for all j ∈ Pc , i ∈ P, a rate function term corresponding to
Pareto system i must appear in one of R j�−1 (α̃

∗
j , α̃
∗
i−1, α̃

∗
i ) or R j� (α̃

∗
j , α̃
∗
i , α̃

∗
i+1) by Lemma 4.2.

Thus, Ji (x
∗
i (α̃
∗
j , α̃
∗
i−1, α̃

∗
i )) + Ki (y

∗
i (α̃
∗
j , α̃
∗
i , α̃

∗
i+1)) > 0, which implies I

д

j�−1 (r ) + I
h
j�
(r ) > 0, for all

i ∈ P, j ∈ Pc , and all r . If we also have non-Pareto system j ∈ Pc (i, r ), then λj�−1 (r )I
д

j�−1 (r ) +

λj� (r )I
h
j�
(r ) > 0. This result follows because for a non-Pareto system j to bind with a Pareto sys-

tem i , we require a rate function corresponding to system i to appear in the binding constraint in

Problem Q̃ (r ).
To make statements about the limiting relative allocations as |Pc | → ∞, we require notions of

the limiting allegiances between non-Pareto systems and Pareto systems. (In what follows, the
reader may find it helpful to consult Figure 1 or 2.) First, notice that when a new non-Pareto

system j enters Problem Q̃ (r ), it will bind with one or more Pareto systems i via its phantom
Pareto systems � − 1 or �. Among these phantom Pareto systems, we require that there exists one
primary phantom Pareto system for each non-Pareto system j, defined as follows.

Definition 4.6. Let non-Pareto system j ∈ Pc enter Problem Q̃ (r ) at r = r j0 < ∞. The phantom
Pareto system �∗ ∈ Pph is the primary phantom Pareto system for j if λj�∗ (r ) > 0 for all r ≥ r j0, and

λj� (r ) = o(λj�∗ (r )) for all other phantom Pareto systems � ∈ Pph, � � �∗.

The first condition ensures that the non-Pareto system j binds with the phantom Pareto sys-
tem �∗ for all r ≥ r j0, so that j ∈ Pc (i∗, r ) or j ∈ Pc (i∗ + 1, r ) for all r ≥ r j0. Using the shadow

price interpretation of λj� ’s in Problem Q̃ , the second condition implies that the greatest gain to
the rate z̃∗ will be achieved by perturbing the MCI rate constraint associated with system j and
phantom �∗, by more than a constant. Since the primary phantom Pareto system �∗ is a function
of the non-Pareto system j ∈ Pc , we denote it as �∗ (j ) whenever this notation is helpful for clarity.
Otherwise, the dependency on system j is implied.

While the assumption that each non-Pareto j has a primary phantom Pareto �∗ may feel
somewhat artificial, we believe that it will arise naturally, for example, when non-Pareto systems
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are added according to a uniform distribution (provided our assumptions are maintained). To
understand why, consider what it means for one non-Pareto system j to bind with more than
one phantom Pareto system �. In a scenario with multiple Pareto systems (p ≥ 2) and only one
non-Pareto system j1, the non-Pareto system j1 will bind with all of the Pareto systems i ∈ P via
at least one of their phantoms � − 1, �, due to Theorem 4.3. However, as new non-Pareto systems
are added uniformly across the set C1, the new non-Pareto systems bind with the Pareto systems
“closest” to them, and j1 will cease to bind with Pareto systems that are “far away” from it—those
Pareto systems will bind with other, closer, non-Pareto systems. Therefore, intuitively, non-Pareto
systems binding with multiple Pareto systems, and thus multiple phantom Pareto systems, may
arise when (a) there are not verymany non-Pareto systems, or (b) when the non-Pareto systems are
not “evenly distributed,” as might arise when all non-Pareto systems are uniquely dominated by
the same Pareto system. Therefore, we anticipate that the number of non-Pareto systems binding
with multiple phantom Pareto systems � decreases as non-Pareto systems are added “evenly.”
In addition to assuming each non-Pareto system has a primary phantom Pareto system, we

also require that the number of non-Pareto systems binding with each Pareto system increase to
infinity. Specifically, for all Pareto systems i ∈ P, define Pc (i ) as

Pc (i ) := {j ∈ Pc : j ∈ Pc (i, r ) for all r ≥ r j0 and �
∗ (j ) ∈ {� − 1, �}}.

The set Pc (i ) contains the non-Pareto systems j ∈ Pc that bind with Pareto system i ∈ P, via
phantom Pareto �∗ (j ) ∈ {� − 1, �}, in every Problem Q̃ (r ) after r j0. For each Pareto system i ∈
{2, . . . ,p − 1}, we further require that there exists at least one j∗ ∈ Pc (i ) such that (дj∗ ,hj∗ ) is
non-dominated by Pareto systems i − 1 and i + 1 for all r ; that is, j∗ is outside the shaded region
in Figure 2.
In what follows, we send |Pc (i ) | → ∞ for all i ∈ P. This condition ensures that the number of

non-Pareto systems binding with each Pareto system i in Problem Q̃ (r ) goes to infinity with r . To
ensure evenness of the non-Pareto systems in C1, the cardinality of each set Pc (i ) must remain
within a constant of the total number of non-Pareto systems. We formalize these assumptions
in Assumption 9, where {r } denotes the sequence of the total number of competing systems. We
numerically evaluate such a regime in Section 4.5.

Assumption 9. We assume that (a) for each non-Pareto system j ∈ Pc , there exists a primary

phantom Pareto system �∗ (j ) ∈ Pph, (b) for each Pareto system i ∈ P, there exists a non-Pareto sys-

tem j∗ ∈ Pc (i ) such that hj∗ ≤ hi−1 or дj∗ ≤ дi+1 for all r , and (c) there exists κ ∈ (0,∞) such that

|Pc (i ) | ≥ κ |Pc | for all Pareto systems i ∈ P and all r .

Under the regularity conditions in Assumption 9, we ensure that each system receives nonzero
sample in the limit. Theorem 4.7 provides results on the limiting allocations.

Theorem 4.7. Under Assumptions 5–9, as |Pc (i ) | → ∞ for all Pareto systems i ∈ P:

(1) There exists κ1 > 0 such that Ij (z
∗
j (α̃
∗
j , α̃
∗
i∗ (j ), α̃

∗
i∗ (j )+1)) ≥ κ1 for all j ∈ Pc with primary

phantom Pareto system �∗ (j ) ∈ Pph, �∗ (j ) = i∗ (j ), and all r ≥ r j0.
(2) The allocation α̃∗j = Θ(z̃∗) for all j ∈ Pc .

(3) The dual variables ν = Θ(1/|Pc |) and λj�∗ (j ) = Θ(1/|Pc |) for all j ∈ Pc with primary

phantom Pareto system �∗ (j ) ∈ Pph.

(4) There exists κ4 ∈ (0,∞) such that α̃∗i /α̃
∗
j∗ > κ4 for all i ∈ P, j∗ ∈ Pc (i ) such that hj∗ ≤ hi−1

or дj∗ ≤ дi+1, and all r ≥ r j∗0.
(5) There exists κ2 < ∞ such that κ1/z̃

∗ ≤ 1/α̃∗j + 1/α̃
∗
i ≤ κ2/z̃

∗ for all i ∈ P, j ∈ Pc , r ≥ r j0.

(6) There exists κ6 ∈ (0,∞) such that α̃∗i /α̃
∗
i′ < κ6 for all i, i

′ ∈ P, and all r .
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(7) For all i ∈ P, j ∈ Pc , the ratio of squared allocations α̃∗2j /α̃
∗2
i = Θ(1/|Pc |).

(8) The rate z̃∗ = Θ(1/|Pc |) and the allocations α̃∗j = Θ(1/|Pc |) for all j ∈ Pc .

(9) In R j� (α̃
∗
j , α̃
∗
i , α̃

∗
i+1), the rate function Ki (y

∗
i (α̃
∗
j , α̃
∗
i , α̃

∗
i+1)) = Θ(1/|Pc |) and the rate func-

tion Ji+1 (x
∗
i+1 (α̃

∗
j , α̃
∗
i , α̃

∗
i+1)) = Θ(1/|Pc |) for all j ∈ Pc , � ∈ Pph, � = i .

(10) In Problem RMCI
j�

, y∗i → hi if � � 0 and x∗i+1 → дi+1 if � � p for all j ∈ Pc , � ∈ Pph, � = i .

The primary results in Theorem 4.7 appear in Parts (7)–(10). Because each Pareto system is
competing with an increasingly large number of non-Pareto systems, Parts (7) and (8) state that
in the limit, each Pareto system i will receive many more samples than the non-Pareto systems j.
Parts (9) and (10) state that in the limit in Problem RMCI

j�
, the rate functions corresponding to both

Pareto systems i and i + 1 tend to zero, while we know the rate function corresponding to system j
remains positive by Part (1). Thus, in the limit, the rate function corresponding to j is evaluated
over the region in which non-Pareto system j would dominate the phantom Pareto system �, x j ≤
дi+1,yj ≤ hi . Loosely speaking, in this asymptotic regime, the Pareto systems receive so many
samples that, relative to the non-Pareto systems, the Pareto systems appear known.
This last result leads us directly to the main result of the article, presented in Theorem 4.8. We

do not provide a proof; notice that it follows by applying Theorem 4.7.

Theorem 4.8. Under Assumptions 5–9, as |Pc (i ) | → ∞ for all i ∈ P,
R j� (α̃

∗
j , α̃
∗
i , α̃

∗
i+1)/α̃

∗
j = infx j ≤дi+1, yj ≤hi Ij (x j ,yj ) for all j ∈ Pc , � ∈ Pph, � = i .

To see the implications of Theorem 4.8, define the score Sj as

Sj := min�∈Pph, �=i

(
infx j ≤дi+1, yj ≤hi Ij (x j ,yj )

)
for all j ∈ Pc .

Then, it follows that in the limit, z̃∗ = min�∈Pph, �=i R j� (α̃
∗
j , α̃
∗
i , α̃

∗
i+1) for all j ∈ Pc , and we have

z̃∗/α̃∗j = min�∈Pph, �=i (infx j ≤дi+1, yj ≤hi Ij (x j ,yj )) for all j ∈ Pc . Therefore, the relative allocations

between the non-Pareto systems are determined by the score, which is written formally in the
following Theorem 4.9.

Theorem 4.9. Under Assumptions 5–9, as |Pc (i ) | → ∞ for all i ∈ P, then

α̃∗j′

α̃∗j
=
Sj

Sj′
=

min�∈Pph, �=i

(
infx j ≤дi+1, yj ≤hi Ij (x j ,yj )

)
min�∈Pph, �=i

(
infx j′ ≤дi+1, yj′ ≤hi Ij (x j ,yj )

) for all j, j ′ ∈ Pc .

Under Assumption 6, finding each infx j ≤дi+1, yj ≤hi Ij (x j ,yj ) is a quadratic program with box
constraints. The following proposition presents its closed form solution. We do not provide a proof
of this result, since it is a special case of previous results.

Proposition 4.10. Under Assumption 6, for all non-Pareto systems j ∈ Pc , the score is calculated

as Sj = min�∈Pph Sj (�), where recalling that � = i ,

Sj (�) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Jj (дi+1) iff � � p, (дj−дi+1 )
σj

> 0,
(hj−hi )
σhj

≤ ρ j
(дj−дi+1 )

σдj
;

Kj (hi ) iff � � 0,
(hj−hi )
σhj

> 0,
(дj−дi+1 )

σдj
≤ ρ j

(hj−hi )
σhj

;

Ij (дi+1,hi ) iff � � {0,p}, (дj−дi+1 )
σдj

> ρ j
(hj−hi )
σhj
,

(hj−hi )
σhj

> ρ j
(дj−дi+1 )

σдj
.

Thus, in our asymptotic regime, the relative allocations between the non-Pareto systems can be
expressed in closed form, where the allocation to a particular non-Pareto system is inversely pro-
portional to its scaled distance from the Pareto frontier in the objective function space. Notice that
the value of Sj (�) in Proposition 4.10 is identical to the value of R j� (α j ,αi ,αi+1) in Proposition 4.1
whenwд = 1 andwh = 1.
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4.3 Allocation to Pareto Systems

While we express the relative allocations between the non-Pareto systems in closed form, we also
require a sense of howmuch sample to allocate to the Pareto systems. The following Theorem 4.11
states that as the number of non-Pareto systems tends to infinity, the allocations to the Pareto
systems also tend to zero, but at a much slower rate than the allocations to the non-Pareto systems.

Theorem 4.11. Under Assumptions 5–9, as |Pc (i ) | → ∞ for all i ∈ P, α̃∗i = Θ(1/
√
|Pc |) for all

Pareto systems i ∈ P.

Theorem 4.11 only gives us a sense of the allocation to the Pareto systems in the limit. To solve
for a specific allocation to each of the Pareto systems, we require heuristics, discussed in Section 5.

4.4 Equivalence of Allocations When the Number of Non-Pareto Systems is Large

Recall that all results presented in Sections 4.2 and 4.3 pertain to Problem Q̃ and not to the
original characterization of the optimal allocation as the solution to Problem Q . The following
Theorem 4.12 states that as the number of non-Pareto systems grows, the optimal allocation pro-

vided by Problem Q̃ is equal to that provided by Problem Q .

Theorem 4.12. Under Assumptions 5–9, for large enough |Pc |, α̃ ∗ = α ∗.

Intuitively, Theorem 4.12 holds, because in the limiting regime, the Pareto systems receive so
many more samples than the non-Pareto systems that MCE events between Pareto systems cannot
be the unique minimum in the rate of decay of the IP{MC}.

4.5 Numerical Evaluation of the Limiting Regime

We have shown that under some conditions, as the number of non-Pareto systems tends to infinity,
the rate of decay of IP{MCEP} becomes non-binding in ProblemQ . Now, we numerically evaluate
this effect on a set of randomly-generated test problems.
To create the test problems, first, we place five Pareto systems at equally spaced angles on a

circle of radius six. This spacing guarantees the minimum separation between Pareto systems on
both objectives is greater than 0.5, so that |дi − дi′ | > 0.5, |hi − hi′ | > 0.5 for all i, i ′ ∈ P. Then, we
generate non-Pareto systems by one of two methods: uniform or normal. In the uniform method,
non-Pareto systems are generated uniformly in a circle centered at (100,100) with radius six. In the
normal method, non-Pareto systems are generated according to an independent bivariate normal
distribution with both means equal to 100 and both standard deviations equal to three. Thus, the
majority of systems are within six units of the mean. In both methods, non-Pareto systems less
than 0.25 units away from the Pareto frontier are rejected. This condition ensures Assumption 7 is
satisfied, and that the rate is large enough for us to obtain the optimal allocation numerically from
Problem Q . Figures 3 and 6 show example problem instances in which 445 non-Pareto systems
are added according to the uniform and normal methods, respectively. All systems have bivariate
normal rate functions under Assumption 6 with independent objectives and unit variance.
As non-Pareto systems are added to 50 problem instances of each type, uniform and normal,

we solve ProblemQ for the optimal allocation. We then create two types of plots: Figures 4 and 7,
which show the percentage of problem instances with binding MCE constraints, and Figures 5
and 8, which show box plots of the percentage of the dual variable values associated with MCE
constraints at optimality in Problem Q . To better understand what we mean by the percentage
of dual variable values associated with MCE constraints, in Problem Q , let λPii′ for all i, i

′ ∈ P
be the dual variables corresponding to MCE constraints and λP

c

j�
for all j ∈ Pc , � ∈ Pph be the

dual variables corresponding to MCI constraints. Then, the percentage of dual variable values
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Fig. 3. The figure shows an

example uniform problem

with 445 non-Paretos gen-

erated uniformly in a circle

of radius six.

Fig. 4. The percentage of 50

uniform problems with MCE

constraints binding in ProblemQ
decreases as systems increase.

Fig. 5. The percentage of dual

variable value associated with

MCE constraints, across 50 uni-

form problems, decreases as sys-

tems increase.

Fig. 6. The figure shows an

example normal problem with

445 non-Paretos generated via

a bivariate normal.

Fig. 7. The percentage of 50

normal problems with MCE

constraints binding in ProblemQ
decreases as systems increase.

Fig. 8. The percentage of dual

variable value associated with

MCE constraints, across 50 nor-

mal problems, decreases as sys-

tems increase.

associated with MCE constraints is
∑

i ∈P
∑

i′ ∈P,i′�i λ
P
ik
/(
∑

i ∈P
∑

i′ ∈P,i′�i λ
P
ii′ +
∑

�∈Pph

∑
j ∈Pc λ

Pc
j�

)

at optimality.
While one could argue that our problems are somewhat artificial, given the nicely spaced Pareto

frontier and its buffer away from the non-Pareto systems, we believe there is an important message
in Figures 3–8. If the systems can be viewed as coming from a distribution, then the distribution
will affect the rate at which the limiting regime kicks in. When the systems are generated accord-
ing to the normal method, they cluster together near the mean at (100,100). Thus, many of the
non-Pareto systems are some distance away from the Pareto frontier, and the limit kicks in slower.
When the systems are generated according to the uniformmethod, the systems are more dispersed
in their “allegiances” to Pareto systems and closer to the Pareto frontier, and the limit kicks in
faster.

5 THE SCORE ALLOCATION

In this section, we describe a heuristic allocation for implementation based on the theory in
Section 4 called the SCORE allocation. As in Pasupathy et al. (2015), we use Theorem 4.9 to
determine the relative allocations among the non-Pareto systems. We now describe the method
by which we determine the remainder of the allocations.
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First, notice that if we let the rate of decay of IP{MCIph} be determined by the limiting
rates in Theorem 4.8, and let the primary phantom Pareto be determined by the scores as �∗ =

argmin�∈Pph Sj (�), then there exists a version of Problem Q̃ in which there is exactly one bind-
ing constraint corresponding to MCI for each non-Pareto system j ∈ Pc . Thus, the dual vari-
ables λj� = 0 for all � ∈ Pph such that � � �∗. Then, for all non-Pareto systems j, j ′ ∈ Pc , the KKT
condition in Equation (4) implies that as |Pc (i ) | → ∞, for all Pareto systems i ∈ P, λj�∗/λj′�′∗=
Ij′ (z

∗
j′ (α

∗
j′,α

∗
i′∗ ,α

∗
i′∗+1))/Ij (z

∗
j (α
∗
j ,α
∗
i∗ ,α

∗
i∗+1)) = Sj′/Sj = α∗j /α

∗
j′, so that λSj := α∗j /

∑
j′ ∈Pc α

∗
j′ = S

−1
j /∑

j′ ∈Pc S
−1
j′ is the proportion of the “non-Pareto simulation budget” allocated to system j for

all non-Pareto systems j ∈ Pc . Then, we write the allocation to a non-Pareto system j as α∗j =

λSj (1 −
∑p

i=1 α
∗
i ).

It is tempting to create a heuristic allocation by solving a reduced version of Problem Q̃ that
only includes one constraint for each non-Pareto system j and its primary phantom Pareto �∗.
However, there are some drawbacks of this approach. First, the assumptions of the limiting score
regime may not be satisfied, and some Pareto systems may receive a falsely low allocation by not
including constraints corresponding toMCE. Since constraints corresponding toMCE involve only
Pareto systems, including these constraints in the allocation heuristic may yield better allocations

without adding much computational complexity. Second, while such a version of Problem Q̃ has
reduced complexity, when the number of Pareto systems is large, the number of constraints still
grows with the number of non-Pareto systems. We avoid these issues by creating a new reduced
version of Problem Q , called Problem QS, that includes at least one constraint corresponding to
MCI for each Pareto system and includes all constraints corresponding to MCE, as follows.
For each phantom Pareto system � ∈ Pph, � = i , find the “closest” non-Pareto systems

j∗i (�) := argminj ∈Pc {Sj (�) : Sj (�) ∈ {Kj (hi ), Ij (дi+1,hi )}} if � � 0,

j∗i+1 (�) := argminj ∈Pc {Sj (�) : Sj (�) ∈ {Jj (дi+1), Ij (дi+1,hi )}} if � � p,

and let J∗ (�) := {j∗i (�)} ∪ {j∗i+1 (�)}, where {j∗0 (0)} := ∅ and {j∗p+1 (p)} := ∅. The set J∗ (�) contains
up to two of the “closest” non-Pareto systems to phantom Pareto system �, as determined by the
scores. Because it is possible for a non-Pareto system j to bind with only one of the Pareto systems i
or i + 1 through the phantom Pareto system �, we ensure that we retain at least one non-Pareto sys-
tem that binds with each Pareto system i and i + 1 in the set J∗ (�). Then, the SCORE allocation we
recommend results from solving the following reduced problem for the Pareto system allocations:

Problem QS : maximize z s.t.

Ri (αi ,αi′ ) ≥ z for all i, i ′ ∈ P such that i ′ � i,

R j∗� (λ
S

j∗ (1 −
∑p

i=1 αi ),αi ,αi+1) ≥ z for all j∗ ∈ J ∗ (�), � ∈ Pph, � = i,∑p
i=1 αi ≤ 1, αi ≥ 0 for all i ∈ P .

Since we have at most two constraints corresponding to MCI for each phantom Pareto system,
the complexity of Problem QS depends only on the number of Pareto systems.

To speed up the computation in ProblemQS, we use closed form expressions of the rate functions
corresponding to MCI, presented in Proposition 4.1. The following Proposition 5.1 provides corre-
sponding closed form expressions for the rate functions corresponding to MCE, written without
weights. Notice that the correlations for both systems, ρi and ρi′ , appear in the rate.
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Proposition 5.1. Under Assumption 6, the rate function corresponding to the MCEP event for

systems i, i ′ ∈ P is

Ri (αi ,αi′ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(дi′−дi )2
2(σ 2

дi
/αi+σ

2
дi′ /αi′ )

iff дi′ > дi , hi′ ≤ hi + (дi′ − дi )
( ρiσдi σhi /αi+ρi′σдi′ σhi′ /αi′

σ 2
дi
/αi+σ

2
дi′ /αi′

)
(hi′−hi )2

2(σ 2
hi

/αi+σ
2
hi′

/αi′ )
iff hi′ > hi , дi′ ≤ дi + (hi′ − hi )

( ρiσдi σhi /αi+ρi′σдi′ σhi′ /αi′
σ 2
hi

/αi+σ
2
hi′

/αi′

)
[
σ 2
дi
αi
+
σ 2
дi′
αi′

]
(hi′−hi )2−2

[ ρi′σдi′ σhi′
αi′

+
ρi σдi σhi

αi

]
(дi′−дi )(hi′−hi )+

[ σ 2
hi
αi
+
σ 2
hi′
αi′

]
(дi′−дi )2

2

[
(σ 2
дi
/αi+σ

2
дi′ /αi′ )(σ

2
hi

/αi+σ
2
hi′

/αi′ )−(ρiσдi σhi /αi+ρi′σдi′ σhi′ /αi′ )
2

]
otherwise.

6 TIME TO SOLVE FOR THE SCORE ALLOCATION VERSUS OPTIMALITY GAP

In practice, a decision-maker’s choice of simulation budget allocation method is influenced by
the amount of time it takes to solve for the allocation, as well as how close that allocation is to
the optimal allocation. We now give a sense of how our proposed allocations perform on these
metrics as the number of systems increases. (In this section, we assume all rate functions are
known.)
For a population of ten problems generated according to the uniform method from Section 4.5,

Table 2 reports the average wall-clock time to solve for each allocation, the average rate z achieved
by the resulting allocation, and the average optimality gap. We keep the same Pareto systems as
in Section 4.5, but instead of rejecting non-Pareto systems that are less than 0.25 units away, we
reject non-Pareto systems that are less than 0.05 units away. Thus, the problems are more realistic
while keeping the full Problem Q solvable for up to a thousand systems. We also let all systems
have bivariate normal rate functions with correlated objectives and unit variances. Within each
of the 10 problem instances, all systems share the same correlation between the objectives. The
correlations between the objectives for the ten problems, rounded to the second digit, are −0.81,
−0.51,−0.36,−0.21,−0.08, 0.23, 0.26, 0.46, 0.55, 0.80. The specified allocation models in Table 2
are BVN True, in which we solve the full Problem Q for the asymptotically optimal allocation
α ∗; BVN Independent, in which we solve the full Problem Q , except we model the correlation
between the objectives for all systems as ρk = 0 for all k ∈ S; SCORE; the non-sequential MOCBA
allocations (Lee et al. 2010, p. 661, Lemmas 4 and 5); M-MOBA; and equal allocation.
The timings reported in Table 2 approximate how long it takes to perform one sample allocation

update in the sequential algorithm (see Section 7, Algorithm 1, Step 3). Note that M-MOBA is a
myopic procedure for which asymptotic allocations are not provided, so we are unable to report
its rate. Further, the MOCBA allocations in Lee et al. (2010, p. 661, Lemmas 4 and 5) do not always
ensure the allocations to all systems are positive. If there exists a system k such that αk = 0,
then the rate is z = 0. This fact may be responsible for its relatively large theoretical optimality
gap.
Interestingly, from Table 2, the BVN Independent allocation is much slower to calculate than

SCORE. Further, it often yields an average optimality gap larger than SCORE, which emphasizes
the usefulness of incorporating correlation into the allocation model. Since the BVN Independent
allocation is not a competitive allocation relative to the others, we do not include the BVN
Independent allocation in further numerical experiments. Table 2 also seems to show that SCORE
is an extremely competitive allocation scheme whether the number of systems is small, e.g., on the
order of 20 systems, or very large, e.g., on the order of 10,000 systems. Further, SCORE is fast—on
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Table 2. For Ten Problems Randomly Generated Via the Uniform Method of Section 4.5, the Table

Reports the Average Wall-clock Time to Solve for each Allocation, as well as the Average

Rate of Decay of the Probability of Misclassification, z, and the Average Optimality Gap,

z (α ∗) − z (α ), for α Specified by Each Allocation

r Metric BVN True BVN Indep. SCORE MOCBA† M-MOBA‡ Equal
20 Time 0.07s 0.06s 0.04s 0.01s 0.06s 0s

Rate z × 104 54.96 44.63 52.52 0.04 13.43
Opt. Gap ×104 0 a 10.33 2.44 54.92 41.53

100 Time 0.53s 0.47s 0.06s 0.02s 0.25s 0s
Rate z × 104 12.97 11.83 11.31 2.47 0.66

Opt. Gap ×104 0 1.14 1.66 10.50 12.31
500 Time 43.16s 25.06s 0.08s 0.42s 1.30s 0s

Rate z × 104 1.65 1.37 1.46 0.13 0.021
Opt. Gap ×104 0 0.28 0.19 1.52 1.63

1,000 Time 18.09min 12.31min 0.13s 1.67s 2.64s 0s
Rate z × 104 0.95 0.81 0.82 0.02 0.009

Opt. Gap ×104 0 0.14 0.13 0.93 0.94
2,000 Time > 6h > 6h 0.22s 6.71s 5.46s 0s

Rate z × 104 — b — 0.45 0.005 0.004
Opt. Gap ×104 0 — — — —

5,000 Time > 6h > 6h 0.48s 42.49s 14.80s 0s
Rate z × 104 — — 0.22 0.0004 0.001

Opt. Gap ×104 0 — — — —
10,000 Time > 6h > 6h 0.92s 2.90min 33.68s 0s

Rate z × 104 — — 0.11 0.0002 0.0006
Opt. Gap ×104 0 — — — —

Note: We perform all computing on a 2.5GHz Intel Core i7 processor with 16GB 1600MHz DDR3 memory. The algo-

rithms for BVN True, BVN Independent, SCORE, and M-MOBA are written in MATLAB and run in MATLAB R2015b.

The algorithm that calculates MOCBA is written in C++.
†We compare with Lee et al. (2010, p. 661, Lemmas 4 and 5), which may allocate αk = 0 for some k ∈ S, implying z = 0.
‡We do not report a rate for M-MOBA, since it is a myopic procedure.
aThe optimality gap is to the precision of the solver.
bThe symbol “—” indicates that data is unavailable due to the large computational time.

average, it takes less than a second to solve for the SCORE allocation in a problem with 10,000
systems.

7 A SEQUENTIAL ALGORITHM FOR IMPLEMENTATION

Since the SCORE allocation framework requires knowledge of rate functions that we do not know
in advance, we present sequential Algorithm 1 for implementation. The broad idea of Algorithm 1
is: (a) obtain an initial sample of size δ0 ≥ 2 from each system to estimate the SCORE alloca-
tion; (b) use the estimated SCORE allocation as a probability distribution from which to obtain
the next δ ≥ 1 samples; (c) update the estimated optimal allocation and return to step (b). The
minimum-sample proportion αε > 0, which should be small relative to 1/r , ensures that each sys-
tem is sampled infinitely often as the sequential algorithm progresses. This algorithm proceeds
until some total sampling budget specified by the user has been expended. Since implementing
such a stopping rule is trivial, we write the sequential algorithm as non-terminating.
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ALGORITHM 1: A Sequential Algorithm to Sample from Systems Using the Proposed Allocations

Require: Initial sample size δ0 ≥ 2; sample size between allocation vector updates δ ≥ 1; and a

minimum-sample proportion 0 < αε < 1/r that is small relative to 1/r .
1: Initialize: collect δ0 simulation replications from each system k ∈ S; set n = r × δ0, nk = δ0 for all k ∈ S.
2: Estimate: Update the parameter estimators Ĥk , Ĝk , σ̂

2
дk
, σ̂ 2

hk
, and ρ̂k for all k ∈ S; use these estimators

to construct estimated rate functions Îk (xk ,yk ) for all k ∈ S;
3: Calculate: Solve an estimated version of Problem Q or QS using Step 2 estimators to obtain estimated

optimal or SCORE allocations, α̂ ∗n .
4: form = 1, 2, . . . ,δ do

5: Sample: Select a system Km from which to obtain the next simulation replication, where each Km is

an i.i.d. random variable with probability mass function α̂ ∗n and support S.
6: Simulate: Collect one simulation replication from system Km and set nKm = nKm + 1.
7: end for

8: Set n = n + δ and update ᾱn = {n1/n,n2/n, . . . ,nr /n}. Set δ+ = 0.

9: for k = 1, 2, . . . , r do
10: If nk/n < αε , then collect one simulation replication from system k . Then, set nk = nk + 1 and

δ+ = δ+ + 1.
11: end for

12: Set n = n + δ+ and go to Step 2.

8 NUMERICAL PERFORMANCE OF SEQUENTIAL ALLOCATIONS

In this section, we evaluate the performance of sequential versions of the proposed allocations on
several test problems.

8.1 Test Problems

We construct six problems to test our algorithm. First, we generate two problem instances, 1 and 2,
of true system performances by uniformly generating 100 systems in a circle of radius six, centered
at (100, 100). A listing of the (дk ,hk ) values for all k ∈ S is provided in the Online Appendix. We
create sub-problems A, B, and C by setting the variances to one and the correlations to ρk = −0.8,
ρk = 0, and ρk = 0.8 for allk ∈ S, respectively. The system objective values in the first test problem
set correspond to the circle centers in Figures 9–11. This test problem set has a high percentage
of dual variable values associated with MCE constraints. The second test problem set has a low
percentage of dual variable values associated with MCE constraints. Due to space constraints, the
second test problem set and results appear in the Online Appendix.
Note that in Figures 9–11, the asymptotically optimal allocations are proportional to the size

of the circle. While there is no obvious visible difference in the optimal allocations with different
correlations, the allocations do differ slightly.

8.2 Estimated Expected Number of Misclassifications

For each algorithm BVN True, SCORE, MOCBA, M-MOBA, and equal allocation, we run 10, 000
independent sample paths on each of the test problems 1A, 1B, and 1C. For each algorithm, we
calculate the average number of misclassifications, false exclusions, and false inclusions across the
sample paths, as a function of sample size. For a particular sample path, the sequence containing
the number of misclassifications as a function of the sample size n is autocorrelated.
In all implementations of Algorithm 1, which include all sample paths of the BVN True and

SCORE allocations, we use parameter settings δ0 = 5, δ = 20, andαε = 10−8. In our implementation
of MOCBA (Lee et al. 2010), we use parameter settings N0 = δ0 = 5, Δ = δ = 20, and τ = Δ/2 = 10,
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Fig. 9. Test 1A: r = 100, |P | = 9,

ρk = −0.8 for all k ∈ S, % dual to

MCE = 74.5, z∗ = 3.46 × 10−4.

Fig. 10. Test 1B: r = 100, |P | = 9,

ρk = 0 for all k ∈ S, % dual to

MCE = 74.0, z∗ = 3.44 × 10−4.

Fig. 11. Test 1C: r = 100, |P | = 9,

ρk = 0.8 for all k ∈ S, % dual to

MCE = 73.4, z∗ = 3.42 × 10−4.

Fig. 12. Test 1A: For 10,000 sample paths per algorithm, the graphs show the average % of systems misclas-

sified (MC), % of Paretos falsely excluded (FE), and % of non-Paretos falsely included (FI), respectively.

Fig. 13. Test 1B: For 10,000 sample paths per algorithm, the graphs show the average % of systems misclas-

sified (MC), % of Paretos falsely excluded (FE), and % of non-Paretos falsely included (FI), respectively.

where τ is the maximum number of samples one system can receive in a given iteration. In our
implementation of M-MOBA (Branke and Zhang 2015), we set n0 = δ0 = 5 and τ = δ = 20, where
here, τ is the amount of sample given to the alternative with the largest probability of changing
the set of Pareto systems. Our stopping rule in M-MOBA is the sampling budget rule. We have
chosen δ = 20 as a reasonable sampling update schedule that is computationally feasible for all
algorithms. M-MOBA, however, is designed for δ = 1, since all of the samples between updates are
allocated to a single system. Ideally, we would run all algorithms with δ = 1, unfortunately, doing
so would require significant computational resources. The resulting performances are reported in
Figures 12–14.

Considering the overall percentage of systems misclassified, all algorithms exhibit close perfor-
mance in Figures 12–14. (They exhibit even closer performance on the second test problem set in
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Fig. 14. Test 1C: For 10,000 sample paths per algorithm, the graphs show the average % of systems misclas-

sified (MC), % of Paretos falsely excluded (FE), and % of non-Paretos falsely included (FI), respectively.

the Online Appendix.) We notice that MOCBA seems to perform particularly well at preventing
false exclusions of Pareto systems, but performs less well at preventing false inclusions of non-
Pareto systems.
Since the optimality guarantees on the BVN True allocation are asymptotic, it is not clear that

allocating according to BVN True will perform better than other allocation schemes for finite
n. However, BVN True seems to perform about as well as its peers, and the performance of the
SCORE allocation tracks the BVN True allocation closely. Importantly, since Test Problems 1A–
1C have a high percentage of dual constraints to MCE—implying the assumptions required in
the limiting SCORE framework may not hold—we do not notice a loss of quality in the SCORE
allocation relative to BVN True in Figures 12–14. We remind the reader that these test problems
were randomly generated; performance of the algorithms on other problems may vary.

9 CONCLUDING REMARKS

SCORE is a fast, approximately optimal allocation for bi-objective R&S that accounts for correla-
tion between the objectives and is derived from an asymptotically optimal allocation framework.
We are aware of issues with estimating rate functions in a general context (Glynn and Juneja
2011, 2015). However, our numerical experience in the case of normal rate functions has been
overwhelmingly positive (Hunter and McClosky 2016; Pasupathy et al. 2015). Finally, it remains
to be seen whether our methods for bi-objective R&S extend cleanly to multi-objective R&S. We
rely heavily on the phantom Pareto systems, which are easily constructed only in two objectives.
Feldman et al. (2015) and Feldman (2017) provide further insights to the multi-objective case.

ELECTRONIC APPENDIX

The online appendices are available as supplementary materials in the online version.
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