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We consider linear structural equation models that are associated with mixed graphs. The structural
equations in these models only involve observed variables, but their idiosyncratic error terms are allowed
to be correlated and non-Gaussian. We propose empirical likelihood (EL) procedures for inference,
and suggest several modifications, including a profile likelihood, in order to improve tractability and
performance of the resulting methods. Through simulations, we show that when the error distributions
are non-Gaussian, the use of EL and the proposed modifications may increase statistical efficiency and
improve assessment of significance. Copyright c⃝ 2017 John Wiley & Sons, Ltd.
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1. Introduction
Structural equation models (SEMs) are multivariate statistical models in which each considered variable is a
function of other variables and a stochastic error term. Often, some of these other variables are latent (Bollen,
1989). This paper, however, focuses on SEMs in which the effects of latent variables are summarized. Adopting
the dominant linear paradigm, we will thus be concerned with models in which linear functions relate only observed
variables, but error terms may be dependent. Such models are sometimes referred to as semi-Markovian (Shpitser
& Pearl, 2006). Avoiding any explicit specification of latent confounding, the models play an important role in
exploration of cause-effect structures (Colombo et al., 2012; Pearl, 2009; Richardson & Spirtes, 2002; Spirtes
et al., 2000; Wermuth, 2011). Much insight about the models can be gained from a natural graphical representation
by mixed graphs/path diagrams that originates in work of Wright (1921).
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Formally, let Y1, . . . , Yn be a multivariate sample with each observation indexed by a set V . So, Yi = (Yv i)v∈V with
each Yv i real-valued. Now consider the system of structural equations

Yv i = µv +
∑
u∈V \v

βvuYui + ϵv i , v ∈ V, i = 1, . . . , n, (1)

where the µv and βvu are unknown parameters and the ϵv i are random errors. Define vectors ϵi = (ϵv i)v∈V
and µ = (µv )v∈V , and a matrix B = (βvu)v,u∈V with βvu = 0 if v = u. We assume that the error vectors ϵi are
independent and identically distributed, have zero means, and have covariance matrix E

(
ϵiϵ
t
i

)
= Ω = (ωvu).

However, we do not specify any parametric form for their distribution. For each i , the equations in (1) can be written
as Yi = µ+ BYi + ϵi . If (I − B) is non-singular, then this system is solved uniquely by Yi = (I − B)−1(µ+ ϵi). This
solution has mean vector (I − B)−1µ and covariance matrix

Σ(B,Ω) := (I − B)−1Ω(I − B)−t . (2)

Specific models are now obtained by hypothesizing that a particular collection of coefficients βvu and error
covariances ωvu is zero.

An SEM can be represented conveniently by a path diagram/mixed graph G = (V, E→, E↔). Here, the vertex set
V yields a correspondence between the nodes of the graph and the observed variables. The set E→ is a set of
directed edges u → v , which encode that variable u may have a direct effect on variable v . The set E↔ comprises
bidirected edges u ↔ v that indicate that the errors ϵui and ϵv i may be correlated. Define the set of parents of
node v as pa(v) = {u ∈ V : u → v ∈ E→}. Similarly, define a set of siblings as sib(v) = {u ∈ V : u ↔ v ∈ E↔}.
Bidirected edges have no orientation, and v ∈ sib(u) if and only if u ∈ sib(v). Now, the graph G induces a model
through the requirement that

B ∈ B(G) :=
{
B ∈ RV×V : det(I − B) ̸= 0, βvu = 0 if u ̸∈ pa(v)

}
, (3)

Ω ∈ W(G) :=
{
Ω ∈ RV×V : Ω pos. def., ωvu = ωuv = 0 if v ̸∈ sib(u)

}
. (4)

We emphasize that our treatment allows the model to have feedback loops, that is, G may have directed cycles.

1.1. Related Work
Frequently, the errors in a SEM, and consequently also the observations Yi , are assumed to be multivariate
Gaussian which yield maximum likelihood estimates (MLEs). The Gaussian likelihood is often maximized using
generic optimization methods; as done in the popular packages sem (Fox et al., 2017) and lavaan (Rosseel,
2012) for R (R Core Team, 2017). The coordinate-descent methods proposed by Drton et al. (2009) and Drton
et al. (2017) can be a useful computational alternative that largely avoids convergence issues.

As a less parametric method, generalized least squares (GLS) minimizes a discrepancy between the sample
covariance and the covariance implied by the parameters. Although the estimates are slightly more robust to
misspecification, they are still asymptotically equivalent to the Gaussian MLEs (Olsson et al., 2000). When
multivariate Gaussianity is inappropriate, MLEs and GLS generally lose statistical efficiency and yield incorrectly
calibrated confidence intervals. Weighted least squares methods (WLS)—also called asymptotically distribution
free—weight the discrepancy between the observed and hypothesized covariance structure by explicitly estimated
fourth moments. Although WLS estimates are consistent and produce asymptotically correct confidence intervals
even with non-Gaussian errors, the estimation of higher order moments may come at a loss of statistical efficiency
and cause convergence issues, which has limited their use (Muthen & Kaplan, 1992).
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Chaudhuri et al. (2007) propose using the empirical likelihood (EL) of Owen (2001) to estimate a covariance
matrix with structural zeros. In our setup, this corresponds to the special case of a mixed graph with no directed
edges. Kolenikov & Yuan (2009) use EL to estimate the parameters of a linear SEM. In contrast to the mixed
graph formulation, Kolenikov & Yuan (2009) consider the case where the latent variable structure is explicitly
modeled and all errors are independent. The EL approach is appealing as it gives consistent estimates and
asymptotically correct confidence intervals even when the errors are not multivariate Gaussian. However, EL can
present numerous practical difficulties when the sample size is small relative to the number of parameters or
estimating equations used. Moreover, standard implementation of EL methods is computationally feasible only for
systems with a handful of variables. We believe that these issues have prevented application of EL to linear SEMs
beyond what was done by Kolenikov & Yuan (2009).

1.2. Contribution
In this article, we apply the empirical likelihood framework to SEMs represented by mixed graphs and propose
several modifications to a naive approach which address the most salient practical concerns:

(i) We show that in the mixed graph setting, the covariance parameters Ω can be profiled out. This greatly
reduces the computational burden by reducing the number of estimating equations imposed and parameters
directly estimated. It also naturally encodes the positive definite constraint on Ω and yields a positive definite
estimate of Ω for any point B with a well defined empirical likelihood.

(ii) When maximizing the empirical likelihood, we leverage a recent insight and directly incorporate gradient
information in a quasi-Newton procedure instead of the typical derivative-free approaches to empirical
likelihood optimization. This again yields substantial computational savings.

(iii) We use the adjusted empirical likelihood (AEL), first proposed by Chen et al. (2008). This adjustment
ensures that an empirical likelihood and corresponding gradient is well defined for every value in the
parameter space.

(iv) We apply the idea of extended empirical likelihood (EEL), which furnishes drastically improved coverage of
confidence intervals at small sample sizes (Tsao & Wu, 2014).

Our simulations show that with these proposed modifications, empirical likelihood becomes an attractive
alternative for practitioners concerned with non-Gaussianity in structural equation modeling.

2. Background on Empirical Likelihood
Let Y = (Y1, . . . , Yn) be a sample from an m-variate distribution P belonging to a non-/semiparametric statistical
modelM. Let Pn be the n − 1 dimensional probability simplex. For p = (p1, . . . , pn) ∈ Pn, define the log-empirical
likelihood ℓ(p; Y ) =

∑n
i=1 log(pi). This is the log-likelihood of the sample under the discrete distribution with mass pi

at each point Yi . Suppose we are interested in a parameter θ = θ(P ) taking values in Θ ⊆ Rd such that for a map
G : Rm × Rd ↦→ Rq we have EPG(Yi , θ(P )) = 0 for all P ∈M. The log-empirical likelihood at a given parameter
value θ is then

ℓ(θ; Y ) = max
p∈Pθ

ℓ(p; Y ) = max
p∈Pθ

n∑
i=1

log(pi), (5)
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where the feasible set

Pθ =

{
p ∈ Pn :

n∑
i=1

piG(Yi , θ) = 0

}
(6)

reflects that the expectation of G(·; θ) vanishes for distributions compatible with θ.

The empirical likelihood (EL) from (5) provides a basis for statistical inference. Maximizing it over θ ∈ Θ yields the
maximum empirical likelihood estimator

θ̌ = argmax
θ
ℓ(θ; Y ) (7)

that we refer to as MELE. Ratios of the EL yield empirical likelihood ratio statistics. Owen (1988) derives an
EL analogue of Wilk’s Theorem, and the result was expanded to the general estimating equation framework by
Qin & Lawless (1994). The specific regularity conditions needed are discussed in Section 3.3, and the results
imply under very general conditions that the MELE is consistent and asymptotically normal. In addition, EL ratio
statistics have limiting χ2 distributions that can be used to calibrate statistical tests and create confidence intervals
or regions. For a detailed exposition of these ideas, we refer readers to Owen (2001).

The nice theoretical properties for EL, however, come at a high practical cost. The practical issues become
particularly pressing for applications to linear SEMs, for which the number of parameters and estimating equations
generally grow on the order of m2, where m = |V | is the number of variables considered. We describe three
difficulties that complicate the direct use of EL for SEMs:

(i) For some values θ, the origin may be outside the convex hull of {G(Yi , θ) : i = 1, . . . , n}, in which case the
feasible set Pθ from (6) is empty and the EL at θ is zero. This “convex hull problem” occurs more often when
the sample size is small relative to the number of estimating equations or when the data is skewed. As
discussed by Grendár & Judge (2009), it is possible that Pθ = ∅ for all parameter vectors θ, which is known
as the “empty set problem”. In addition, the log-EL is typically not a convex function (Chaudhuri et al., 2017),
and finding an initial point that has well-defined EL and is in the basin of attraction of the MELE can be
difficult.

(ii) The optimization problem defining the log-EL ℓ(θ; Y ) from (5) is typically solved iteratively through its dual.
Although this problem is convex, it can be computationally burdensome when the number of estimating
equations, which corresponds to the number of dual variables, is large.

(iii) Confidence intervals based on the asymptotic normal variance and χ2 likelihood ratio calibration have been
shown to often undercover at small sample sizes (Tsao & Wu, 2014).

3. Empirical Likelihood for SEMs
We now turn to the application of EL to SEMs. For expository simplicity, we assume throughout that our
observations are centered. In other words, the intercept parameter vector µ for (1) is zero, so that E(Yi) = 0.
However, our ideas extend straightforwardly to the case where we also make inference about µ ̸= 0.

3.1. Profiled Formulation
Consider the linear SEM given by a mixed graph G = (V, E→, E↔), as defined in the Introduction. The general
framework laid out in Section 2 can be applied directly to such a model by taking the covariance matrix of the
observations Yi as the general parameter θ. We may then define an EL at a pair of parameter matrices (B,Ω)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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as the EL at the covariance matrix Σ(B,Ω) from (2). In such a direct application to the linear SEM, the log-EL
function ℓ(B,Ω; Y ) is the maximum of the log-EL ℓ(p; Y ) over the set

PΣ(B,Ω) =

{
p ∈ Pn :

n∑
i=1

piYi = 0,

n∑
i=1

pi
[
vech

(
YiY

T
i

)
− vechΣ(B,Ω)

]
= 0

}
. (8)

Here, vech is the half-vectorization operator for symmetric matrices. Under this formulation, there arem constraints
for the mean and m(m + 1)/2 covariance constraints, and the MELE is computed by optimization with respect to
the pair of m ×m matrices (B,Ω), with Ω restricted to be positive definite.

Inspection of the covariance constraints reveals that a great simplification is possible by profiling out Ω. Indeed,
the covariance constraint yields an explicit solution for Ω given B, Y = (Y1, . . . Yn), and p. Specifically, with
Π = diag(p1, . . . , pn), we have

Y ΠY T = Σ(B,Ω) = (I − B)−1Ω(I − B)−t ⇐⇒ (I − B)Y ΠY (I − B)t = Ω. (9)

The entries of Ω are either constrained to be zero or freely varying. No constraints arise from the freely varying
entries, and we may base estimation of B on only the structural zeros in Ω, that is,{

(I − B)Y ΠY (I − B)t
}
uv
= 0 ∀{u, v} ̸∈ E↔.

Once a solution for B is found, we may simply compute Ω = Ω(B) by setting ωuv = {(I − B)Y ΠY (I − B)t}uv for
u = v or {u, v} ∈ E↔. The profile log-EL in this approach is the function

ℓ(B; Y ) = max
p∈PB

ℓ(p; Y ) (10)

obtained from the set of weight vectors

PB =

⎧⎨⎩p ∈ Pn :
n∑
i=1

piYi = 0,

n∑
i=1

pi

⎛⎝Yv i − ∑
s∈pa(v)

βvsYsi

⎞⎠⎛⎝Yui − ∑
t∈pa(u)

βutYti

⎞⎠ = 0 ∀{v , u} ̸∈ E↔

⎫⎬⎭ . (11)

The MELE B̌ is found by maximizing ℓ(B; Y ) over the set B(G) from (3), and then Ω̌ = Ω(B̌). We emphasize that
there are now only m(m − 1)/2− |E↔| covariance constraints, and only the matrix B needs to be optimized.

Following a standard strategy, we evaluate ℓ(B; Y ), that is, solve the “inner maximization” in (10) at a fixed
B, through the dual problem. Strong duality holds because the constraints in (11) are linear in the weights
pi . Let G(Yi , B) be the map with coordinates Gv (Yi , B) = Yiv for v ∈ V and Guv (Yi , B) = gu(Yi , B)gv (Yi , B)
for each nonedge {u, v} /∈ E↔, where gv (Yi , B) = Yv i −

∑
s∈pa(v) βvsYsi . With dual variables α ∈ R and λ ∈

Rm+m(m−1)/2−|E↔|, the Lagrangian for the inner optimization over PB is

LB(p, α, λ) = −
n∑
i=1

log(pi) + α

(
n∑
i=1

pi − 1

)
+ n

n∑
i=1

pi

⎛⎝∑
v∈V
λvGv (Yi , B) +

∑
{u,v}/∈E↔

λuvGuv (Yi , B)

⎞⎠ . (12)

Maximizing over the weights, with α = n, we find

p̌i =
1

n

1

1 +
∑
v∈V λvGv (Yi , B) +

∑
{u,v}/∈E↔ λuvGuv (Yi , B)

, (13)
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and substitution into LB yields a convex dual function of λ. We optimize it via Newton-Raphson with a backtracking
line search to ensure 0 ≤ pi ≤ 1.

In the “outer maximization”, we optimize ℓ(B; Y ) with respect to B using a gradient based quasi-Newton
method. Although we can only evaluate ℓ(B; Y ) numerically, once we have the optimal dual variables λ and the
corresponding weights from (13), we can analytically compute the gradient of ℓ(B; Y ) as

∇ℓ(B; Y ) = −λT
n∑
i=1

p̌i∇G(Yi , B); (14)

see Chaudhuri et al. (2017). The Hessian, however, cannot be computed in closed form, so we use BFGS which
builds an approximate Hessian via the gradient.

Although both formulations yield the same MELE, the profile approach from (10) and (11) drastically eases
difficulties (i) and (ii) discussed in Section 2 as the number of estimating equations for the covariance is reduced
to m +m(m − 1)/2− |E↔|. This reduces the number of dual variables to optimize in the inner maximization.
Moreover, when profiled, the outer maximization searches over only B ∈ B(G) while the naive direct formulation
from (8) requires a search over both B ∈ B(G) and Ω ∈ W(G); in particular, positive definiteness of Ω needs
to be respected in the naive optimization. Finally, satisfying the convex hull condition for the error covariances
typically requires a simultaneous good choice of B and Ω. The directed edge weights can be easily initialized
with regression estimates, but the covariance parameters are typically more difficult to specify. In Section 4, we
show that the computational advantages produce substantial gains in computation time and converge to a valid
stationary point at a much higher proportion of the time even when the sample size is small.

3.2. Small Sample Improvements
In addition to reformulating the optimization problem, we make two modifications to improve the performance of
EL for SEMs. We apply adjusted empirical likelihood (AEL) to improve the search for a MELE and use extended
empirical likelihood (EEL) to improve the coverage of confidence intervals.

Chen et al. (2008) proposed AEL to alleviate the convex hull problem mentioned in difficulty (i) above. The
adjustment amounts to adding a pseudo-observation whose contribution to the estimating equations is Gn+1(B) =
−anḠ(B) = −an 1n

∑n
i=1 G(Yi , B) for a choice of an > 0. Adding this term ensures that no matter the value of B, the

set of feasible weight vectors, now in Pn+1, is non-empty. Hence, the log-AEL ℓa(B; Y ) and its gradient

∇ℓa(B; Y ) = −λT
n∑
i=1

[
p̌i +

(
−
an
n

)
p̌n+1

]
∇G(Yi , B) (15)

are well defined across the entire parameter space. Chen et al. (2008) show that AEL retains the asymptotic
properties of the original EL when an = o(n2/3), and suggest an = log(n)/2. We adopt this choice.

The terms in our covariance constraint are products, Guv (Yi , B) = gv (Yi , B)gu(Yi , B). This is generally not true for
the added term Gn+1(B) and is not clear how to define an appropriately sparse and positive definite matrix Ω(B)
using AEL weights. Thus, we propose finding an estimate B̌ that maximizes the AEL and computing Ω̌ = Ω(B̌)
based on weights from recalculating the original EL at B̌. As demonstrated in our numerical experiments, this
approach alleviates some convergence issues but, of course, the original EL may be zero at the AEL maximizer
B̌, in which case we do not have an estimate of Ω and say that the AEL procedure has not converged.

To address undercoverage of confidence regions for smaller samples, as described in difficulty (iii), we adopt the
EEL of Tsao & Wu (2014) who show that their χ2-calibrated EEL confidence regions outperform those from the

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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original EL. Assuming the MELE B̌ exists, a positive EEL may be defined for any matrix B ∈ B(G) by taking the
original EL at a convex combination of B and B̌. Specifically, the log-EEL suggested by Tsao & Wu (2014) is

ℓe(B; Y ) = ℓ(h−1(B, Y ), Y ) (16)

for h(B, Y ) = B̌ + γ(n, ℓ(θ; Y ))(B − B̌) with γ(n, ℓ(B; Y )) =
(
1 + 2(−n log(n)−ℓ(B;Y ))2n

)
.

3.3. Asymptotic Distribution of Empirical Likelihood Estimators
It follows from Qin & Lawless (1994, Theorem 1) that under the following assumptions, MELEs are asymptotically
normal and empirical likelihood ratios converge to χ2 limits. The same is true for the modifications from Section 3.2.

Proposition 1
Let G = (V, E→, E↔) be a mixed graph, let B0 ∈ B(G) and Ω0 ∈ W(G). Let ϵ be a zero-mean random vector with
covariance matrix Ω0. Assume that:

(a) The Jacobian of the parametrization (B,Ω) ↦→ Σ(B,Ω) defined on B(G)×W(G) has full rank at (B0,Ω0).

(b) The joint distribution of ϵ and ϵ(2) = (ϵv ϵu : v , u ∈ V ) is non-degenerate and has finite third moments.

If Y1, . . . , Yn is an i.i.d. sample from the distribution determined by (B0,Ω0, ϵ), i.e., the distribution of (I − B0)−1ϵ,
then the MELE θ̌ =

(
vech

[
B̌
]
, vech

[
Ω(B̌)

])
is asymptotically normal with

√
n
(
θ̌ − θ0

)
→ N(0, V ), V −1 = E

(
∂G(Y, θ0)

∂θ

)t
E[G(Y, θ0)G(Y, θ0)t ]−1E

(
∂G(Y, θ0)

∂θ

)
. (17)

Here, G is given by the estimating equations corresponding to the naive formulation in (8). Furthermore, EL ratio
statistics have χ2 limits. In particular, for q = m +m(m + 1)/2 and d = |E→|+ |E↔|+m, we have

2
(
−n log(n)− ℓ(θ̌; Y )

)
→ χ2(q−d), 2

[
ℓ(θ̌; Y )− ℓ(θ0; Y )

]
→ χ2d . (18)

We sketch the proof of the proposition in the appendix.

If the rank condition from (a) holds, then the rational map (B,Ω) ↦→ Σ(B,Ω) has full rank Jacobian at almost all
choices of (B,Ω), and the map is generically finite-to-one. There is thus a connection to local/finite identifiability
of (B,Ω) from the covariance matrix. For state-of-the-art methods for determining identifiability see Foygel et al.
(2012); Chen (2016); Drton & Weihs (2016).

4. Numerical Simulations
We now show a series of numerical experiments to evaluate the effectiveness of the proposed methods and
compare the results to existing methods.

4.1. Convergence of Optimizers for Naive vs Profile Formulation
We first compare the naive/direct procedure which explicitly estimates B and Ω to the profiled procedure which
only involves B. For both procedures, we use the original EL and adjusted EL. We also consider a hybrid method,
which first finds the maximum AEL point to initialize a search which then uses original EL. We randomly generate

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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acyclic mixed graphs with 8 nodes, 10 directed edges, and 6 bidirected edges. We randomly select directed edges
u → v from all pairs such that u < v and then select bidirected edges u ↔ v from the remaining unselected pairs.
This setup ensures that (B,Ω) are generically identifiable from Σ(B,Ω) by the result of Brito & Pearl (2002).

We generate random true parameter matrices B = (βuv ) and Ω = (ωuv ) as follows. The coefficients βuv are
drawn uniformly from (−1, .− .2) ∪ (.2, 1). For Ω, we draw off-diagonal elements ωuv = ωvu , u ̸= v , uniformly from
(−.8, .− .3) ∪ (.3, .8). We then use exponential draws to set ωvv =

∑
u ̸=v |ωuv |+ 1 + exp(1).

We consider errors from four distributions. First, we generate centered multivariate Gaussian errors with
covariance matrix Ω. Second, we generate them from a multivariate T -distribution with 4 degrees of freedom,
which we denote by T4, again with expectation zero and covariance matrix Ω. Third, we consider log-normal
errors. In this case, we simulate a multivariate Gaussian vector Z, centered and with covariance matrix equal to
the correlation matrix C that corresponds to Ω. We then set the error vector to ϵ = exp(Z)−

√
e, which yields

covariance matrix e(exp(C)− 1). Finally, in order to draw a multivariate distribution with recentered gamma
marginals and covariance Ω, we follow the steps:

1. Draw ϵv ∼ gamma(shape = ωvv −
∑
v ̸=u |ωuv |, scale = 1).

2. For each {u, v} ∈ E↔, generate δuv i ∼ gamma(shape = |ωuv |, scale = 1) and a random sign ξuv ∈ {−1, 1}.

3. If ωuv > 0, add ξuvδuv i to ϵui and ϵv i . If ωuv < 0, add ξuvδuv i to ϵui and −ξuvδuv i to ϵv i .

4. Subtract the true mean from each error term so that it has mean 0.

All optimizations are initialized with a procedure from Drton et al. (2017), where the free elements of B are
calculated via least squares. The resulting residuals are used to initialize the non-zero values ωuv . If a row is
not diagonally dominant, the off-diagonal elements are scaled so that

∑
j ̸=i |ωi j | < .9× ωi i to ensure Ω is positive

definite.

Figure 1 shows that in all cases the profiled formulation converges at least as often as the naive formulation. AEL
converges more often than original EL, and the hybrid procedure converges the most often. Even at a sample
size of n = 100, the profiled problem converges nearly every single time, except in the case of log-normal errors.
Figure 2 shows that the profiled form can be up to 40 times faster on average than the naive form.

4.2. Estimation Error
We now explore the estimation errors resulting from different approaches. We compare both original EL and
AEL to the Gaussian MLE computed as in Drton et al. (2009), GLS, and WLS. The latter two estimates
are computed using the R package lavaan (Rosseel, 2012). We also include a hybrid procedure that finds
the Gaussian MLE B̂ and then uses the resulting residuals and the maximum EL weights at B̂ to form an
estimate Ω̌ = (I − B̂)tY ΠY t(I − B̂)t . Note that the T4 distribution does not have finite 6th moments, so the limiting
distributions from Proposition 1 may not hold; however, all estimation procedures still appear to be consistent.

Proceeding as in Section 4.1, we generate 1000 graphs for each error distribution and sample size. To measure
estimation accuracy, we average the relative error ∥vech(Σ̌)− vech(Σ)∥2/∥vech(Σ)∥2 for Σ(B,Ω) across each of
the simulation runs in which all methods converge; recall Figure 1. The results are shown in Figure 3.

In general, there is no substantial difference in accuracy between the adjusted and original empirical likelihood
methods. For the Gaussian case, MLE and GLS perform better than the methods which do not assume
Gaussianity, but the improvement is slight. In the T4 and log-normal case, the EL procedures perform substantially
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Figure 1. Proportion of 500 simulations which converge to a valid stationary point, plotted versus the sample size. O- original
EL; A- adjusted EL; H- hybrid EL. Red points indicate the profile formulation; blue points indicate the naive formulation.

better than the other methods. Finally, for the gamma case, the hybrid method seems to outperform the other
methods, followed closely by the EL methods; however, the differences between the methods are not substantial.
In Figure 4, all methods converge more than 95% of the time in all distributions, except for the log-normal case. In
this case, the WLS procedure still only converges roughly 90% at n = 1000.

4.3. Confidence Regions
We examine the coverage frequencies of joint confidence regions for the parameters βuv and ωuv . We construct
Wald regions using the estimates of Var(θ̂) from the Gaussian MLE, GLS, and WLS. We also calculate a sandwich
variance estimator using the Gaussian likelihood as the estimating equations and the asymptotic EL variance via
Qin & Lawless (1994). Alternatively, we calculate the EL at (B0,Ω0) using original EL, EEL, AEL. We then compare
the resulting EL ratio to its asymptotic χ2 distribution. If a method does not converge, we count this as a case in
which the confidence region does not cover the true parameters.

At each sample size and error distribution, we construct 1000 graphs with 6 nodes, 8 directed edges and 4
bidirected edges from the procedure described in Section 4.1. For the T distribution, we increase the degrees
of freedom to 7 to ensure Proposition 1 applies. The coverage rates for 90% confidence intervals are shown
in Figure 5. Based on the displayed results, regions obtained from the Gaussian MLE and GLS can only be
recommended when the errors are (close to) Gaussian. The EEL method performs the best, staying close to the
parametric methods in the Gaussian case and doing the best in most non-Gaussian scenarios. The sandwich
method is another good choice. However, we also observe that in order to achieve nominal coverage levels very
large sample sizes may be required.
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Figure 2. The average run time in seconds among the simulations in which all methods converge to a valid stationary point,
plotted versus the sample size. O- original EL; A- adjusted EL; H- hybrid EL. Red points indicate the profile formulation; blue
points indicate the naive formulation.

4.4. Protein Signaling Network
Sachs et al. (2005, Figure 2) present a signaling network of 11 observed molecules and 13 unobserved molecules.
The black edges in Figure 6 give a plausible mixed graph representation of that network and was also considered
by Drton et al. (2017). A log-transformation of the available protein expression data improves Gaussianity but
leaves the distribution of some of the variables skewed and/or multimodal. We consider two separate tests; each
compares the SEM sub-model corresponding to the graph of black edges against a full model which adds one
of the two red edges also shown in Figure 6. Note that the added red edge from Mek→ PKA induces a directed
cycle. For the log-transformed data, we perform a Gaussian as well as an empirical likelihood ratio test. For the test
involving the directed edge Mek→ PKA, the Gaussian LR is .416 (p-value = .52) and the ELR is 4.379 (p-value
= .04). For the test involving the bidirected edge Akt↔ PIP2, the Gaussian LR is 15.216 (p-value < .001) and the
ELR is .782 (p-value = .37). While we do not have a certified gold standard network, and the implicit assumption
of linearity may not be appropriate for all postulated relationships, these examples present situations in which the
Gaussian assumption is particularly inappropriate and may cause concerns for a practitioner.

5. Discussion
In this article, we showed that EL methods are an attractive alternative for estimation and testing of non-Gaussian
linear SEMs. Our approach of profiling out the error covariance matrix Ω drastically reduces computational effort
and creates a far more tractable and reliable estimation procedure. Furthermore, we showed that the use of AEL
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Figure 3. Log mean relative squared estimation error in Σ over 1000 simulations, plotted versus the sample size. Average
is only taken on simulations in which all methods converged. A- adjusted EL; E- empirical likelihood; G- generalized least
squares; H- hybrid Gauss/EL; M- Gaussian MLE; W- weighted least squares.

may further improve convergence of optimizers, particularly, when the sample size is small and the errors are
skewed. EEL was seen to drastically improve the coverage rate of the joint confidence intervals.

Our EL methods are applicable under very few distributional assumptions, all the while allowing statistical inference
in close to analogy to parametric modeling. When the data is non-Gaussian, the modified EL methods outperform
the other methods we considered in almost all scenarios we explored. This concerns the proportion of times a valid
estimate is returned, statistical efficiency, and also confidence region coverage. While there remains significant
room for improvement in the design of confidence regions, we conclude that EL methods are a valuable tool for
applications of linear SEMs to non-Gaussian data.

Appendix

Proof of Proposition 1
We recall our notation θ = (B,Ω) and θ0 = (B0,Ω0). Based on the right-most expression in (9), the considered
naive/direct estimating equations may be based on the function G(y , B) with coordinates

Gv (y , B) = yv , Guv (y , B) =

⎛⎝yv − ∑
s∈pa(v)

βvsys

⎞⎠⎛⎝yu − ∑
t∈pa(u)

βutyt

⎞⎠− ωuv ,
for v ∈ V and {u, v} ∈ V × V , respectively.

Our claim follows from Theorem 1 of Qin & Lawless (1994) under the following conditions:
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Figure 4. Proportion of times (over 1000 simulations) the method converged to a local maximum of the objective function,
plotted versus the sample size. A- adjusted EL; E- empirical likelihood; G- generalized least squares; H- hybrid Gauss/EL; M-
Gaussian MLE; W- weighted least squares.

(1) E(G(Yi , θ0)G(Yi , θ0)t) is positive definite.

(2) In a neighborhood of the d-dimensional parameter θ0, the derivative ∂G(y,θ)
∂θ is continuous, and

 ∂G(y,θ)∂θ

 and

∥G(y , θ)∥3 are bounded by an integrable function M1(y).

(3) E
(
∂G(Yi ,θ0)
∂θ

)
has rank d .

(4) ∂2G(y , θ)/∂θθT is continuous and
∂2G(y , θ)/∂θθT is bounded by an integrable function M2(y) in a

neighborhood of the true parameter θ0.

Here, ∥·∥ denotes the Euclidean norm.

Noting that Guv (Yi , B0) = ϵv ϵu − ωuv , condition (1) is an immediate consequence of assumption (b) in our
proposition. Condition (3) is implied by assumption (a). With polynomial estimating equations, all derivatives in
conditions (2) and (4) exist. Now, G and its first and second partial derivatives are at most quadratic functions of
Yi , which in turn is a linear function of a realization of the error vector ϵ. Local bounds on the concerned quantities
are easily obtained and assumption (b) ensures their integrability.
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