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ABSTRACT

The BLASTPol observations of Vela C have provided the most detailed characterization of

the polarization fraction p and dispersion in polarization angles S for a molecular cloud. We

compare the observed distributions of p and S with those obtained in synthetic observations

of simulations of molecular clouds, assuming homogeneous grain alignment. We find that

the orientation of the mean magnetic field relative to the observer has a significant effect on

the p and S distributions. These distributions for Vela C are most consistent with synthetic

observations where the mean magnetic field is close to the line of sight. Our results point to

apparent magnetic disorder in the Vela C molecular cloud, although it can be due to either an

inclination effect (i.e. observing close to the mean field direction) or significant field tangling

from strong turbulence/low magnetization. The joint correlations of p with column density

and of S with column density for the synthetic observations generally agree poorly with the

Vela C joint correlations, suggesting that understanding these correlations requires a more

sophisticated treatment of grain alignment physics.

Key words: MHD – polarization – turbulence – stars: formation – ISM: magnetic fields –

ISM: structure.

1 IN T RO D U C T I O N

Stars are typically formed in molecular clouds (MCs), as a result

of runaway collapse in which gas self-gravity overwhelms ther-

mal and magnetic pressure support (Shu, Adams & Lizano 1987;

McKee & Ostriker 2007). This process is sensitive to the local mag-

netic field conditions, including magnetic field strength and the rel-

ative organization of the magnetic field (herein, collectively referred

to as magnetic structure) within the MC (McKee & Ostriker 2007;

Crutcher 2012). Magnetic fields provide direct resistance against

gravitational collapse; magnetic tension forces tend to constrain

gas motions; and magnetized media support additional wave inter-

actions (Alfvén and magnetosonic waves). These effects vary in

importance across many scales of hierarchical structure, and if suf-

ficiently strong can even halt gravitational collapse and prevent star

formation (Mestel & Spitzer 1956; Strittmatter 1966; Mouschovias

& Spitzer 1976). In short, a comprehensive understanding of star

formation requires a detailed understanding of magnetic structure

in MCs.

On the other hand, magnetic structure is difficult to ascertain, be-

ing relatively inaccessible to observations. Through measurement

of polarized dust emission, far-IR and submillimetre polarimetry

� E-mail: pkk4hu@virginia.edu

has emerged as a most promising technique for accessing MC

magnetic structure (Hildebrand, Dragovan & Novak 1984; Hilde-

brand 1988; Novak et al. 1997; Dotson et al. 2000; Hildebrand

et al. 2000; Matthews et al. 2009). Dust grains in MCs are thought

to align, on average, perpendicular to the local magnetic field

(Davis & Greenstein 1951; Lazarian 2007; Andersson, Lazarian &

Vaillancourt 2015), and therefore provide a measure of line-of-

sight averaged magnetic structure, in particular the orientation of

the magnetic field projected on to the plane of sky. Maps of polarized

dust emission provide crucial means to test theoretical expectations

of magnetic structure (Chapman et al. 2013; Hull et al. 2013; Li

et al. 2014; Zhang et al. 2014; Cox et al. 2015; Ching et al. 2016;

Planck Collaboration XXXIII 2016). However, use of this informa-

tion has been limited in the past, as each individual polarization

pseudo-vector is difficult to interpret alone, and is necessarily lim-

ited by both projection and uncertainties in the physics of grain

alignment.

The magnetic structure of MCs can be studied using numeri-

cal simulations, which provide a fully three-dimensional picture

of both the gas and magnetic field structure (Ostriker, Stone &

Gammie 2001; Li et al. 2004; Nakamura & Li 2008; Li, McKee

& Klein 2015). Using these simulations we can compute synthetic

observations under simplifying assumptions about grain alignment

physics, which can be directly compared with observational data.

Examining both the detailed three-dimensional magnetic structure
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and the resulting two-dimensional polarimetric observables can help

determine specifically dynamical effects (arising purely from gas

and magnetic structure) and help disentangle them from effects that

might arise exclusively due to grain alignment physics. These nu-

merical efforts have considerable statistical power due to the high

theoretically achievable spatial resolution, but nevertheless suffer

from a fundamental limitation: without observations that have com-

parable statistical power, it is unclear whether these models are

reasonable models of real MCs.

Until recently high-resolution sub-mm maps were only available

from ground-based polarimeters, which were limited to observ-

ing either extremely bright evolved MCs, or small areas within

clouds because of atmospheric transmission and loading. Recently

the Planck Satellite has produced all-sky polarization maps at

850 µm (Planck Collaboration XIX 2015), which has enabled de-

tailed studies of magnetic field morphology for nearby low-mass

clouds at 10 arcmin resolution (Planck Collaboration XXXV 2016).

In addition the Balloon-borne Large Aperture Submillimeter Tele-

scope for Polarimetry (Galitzki et al. 2014) has produced a sim-

ilarly detailed map for the more distant (∼700 pc) early-stage gi-

ant MC Vela C. With over a thousand independent polarization

pseudo-vector measurements and 0.5 parsec resolution, these ob-

servations represent a crucial advance towards achieving statistical

power parity with numerical simulations. Future flights with the

next generation BLAST-TNG instrument promise observations of

more star-forming MC targets with even higher sensitivity.

We present the first detailed statistical comparison of the BLAST-

Pol observations with synthetic polarimetric observations of nu-

merical simulations of star-forming regions, which were conducted

using the ATHENA code (Stone et al. 2008). We used a colliding-flow,

oblique MHD shock set-up that was used in Chen, King & Li (2016)

and Chen & Ostriker (2014, 2015). This geometry is motivated by

the observation that it is typically in regions with large-scale conver-

gent flows that the gas becomes significantly compressed and results

in gravitational instability to collapse (Mac Low & Klessen 2004;

Ballesteros-Paredes et al. 2007). We use the post-shock region of

these simulations as idealized models of a subset of a star-forming

MC. We characterize the synthetic and BLASTPol observational

data sets statistically, determining both the probability distributions

of individual observables and joint correlations between observ-

ables.

Our paper is organized as follows. In Section 2 we describe the

BLASTPol observations (Section 2.1) and the numerical simula-

tions (Section 2.2) used in our comparison, as well as describe

the methods used to produce the synthetic polarimetric observa-

tions (Section 2.3) and the statistical techniques we used to analyse

both data sets (Section 2.4). Next we discuss the probability dis-

tributions of the polarization fraction in Section 3. We discuss the

probability distributions of the dispersion in polarization angles in

Section 4. Next we consider the joint correlation between the po-

larization fraction and angle dispersion in Section 5. We consider

joint correlations between the column density and the polarimetric

observables in Section 6. We discuss the effect of intermediate in-

clination of the line of sight in Section 7. Finally we conclude and

summarize in Section 8.

2 M E T H O D S

2.1 BLASTPol observations of Vela C

BLASTPol is a high-altitude balloon-borne polarimeter, which

maps the sky simultaneously in three wide frequency bands

(�f /f ≈ 30 per cent) centred at 250, 350, and 500 µm (Galitzki

et al. 2014). These frequency bands span the spectral peak of cold

(10–20 K) dust, and since the instrument is not limited by atmo-

spheric loading it has both higher sensitivity and can recover larger

scale structures than ground-based polarimeters.

On 2012 December 26 BLASTPol launched from the NASA

Long Duration Balloon Facility near McMurdo Station and at-

tained an average altitude of ∼38.5 km. The primary science target

of the BLASTPol 2012 flight was the nearby Vela C giant MC

(d ∼ 700 ± 200 pc; Liseau et al. 1992). Vela C is a massive cloud:

it contains 5× 104 M� dense gas as traced by C18O (Yamaguchi

et al. 1999). The cloud also appears to be a rare example of a GMC at

an early evolutionary state in that most of the cloud appears cold and

not affected by feedback from previous generations of massive star

formation (Baba et al. 2004; Netterfield et al. 2009; Hill et al. 2011).

This makes Vela C an excellent target for studying how magnetic

fields affect the formation of MCs and dense cloud substructure.

BLASTPol spent 50 h mapping Vela C during the 2012 flight,

covering four of the five cloud subregions identified in Hill et al.

(2011). Fissel et al. (2016) describes the data reduction pipeline,

calibration, and polarization de-biasing corrections. As the tele-

scope beam was non-Gaussian additional smoothing was required

to avoid spurious polarization due to sky rotation. In this paper

we use the BLASTPol 500 µm data, which required smoothing

only to 2.5 arcmin full width at half-maximum (FWHM) (0.5 pc)

resolution, rather than the 250 or 350 µm bands, both of which re-

quired smoothing to 3.0 arcmin FWHM resolution.1 The resulting

3.1 deg2 polarization map contains over 1000 independent polariza-

tion measurements.

Fissel et al. (2016) studied the correlations between the 500 µm

polarization fraction p, column density (NH), and the polarization

angle dispersion on 0.5 pc scales S. Here we compare our syn-

thetic observations to their sample of interstellar radiation field

heated sightlines within the cloud boundaries defined by Hill et al.

(2011), which excludes sightlines heated by the compact H II re-

gion RCW 36. In their analysis Fissel et al. (2016) also exclude

any sightlines with p < 0.1 per cent, p < 3 σ p, or where p varies

significantly using different polarized diffuse ISM background sub-

traction methods. The final catalogue contains 2235 approximately

Nyquist sampled sightlines.

2.2 Numerical simulations

2.2.1 Converging flow simulations

The simulations in this study are similar to those discussed in Chen

& Ostriker (2014, 2015). These are fully 3D, ideal MHD collid-

ing flow simulations with gravity conducted using the ATHENA code

(Stone et al. 2008). The colliding flow is adopted as an idealization

of the large-scale turbulence that is thought to be responsible for

driving dense structure formation but is difficult to capture numer-

ically in grid-based simulations like ours that seek to study cloud

structures down to the core scale or smaller because of limited

dynamic range. An isothermal equation of state is adopted with a

sound speed of 0.20 km s−1, consistent with the nearly isothermal

conditions found in MCs. Initially the simulated region is a uni-

form density box, with a constant magnetic field in the x–z plane,

inclined 20◦ with respect to the z-axis. A supersonic, plane-parallel

1 As noted in Soler et al. (2017), the polarization angles are generally con-

sistent between the three BLASTPol bands.
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Figure 1. Geometry of the ATHENA converging flow simulations, illustrating

the notational conventions labelling the different lines of sight (x, y, z).

The converging flows (red arrows) produce a sheet-like post-shock region

(green slab); the partially inclined initial magnetic field (cyan lines) becomes

amplified during shock compression and results in a prevailing direction in

the plane of the post-shock region. The pre-shock region is perturbed by

initial turbulence (not indicated for simplicity), which is carried by the

converging flow into the post-shock region.

converging flow with a Mach number Ms = 10 is driven in the

±z direction, which strongly compresses the gas to create a dense

post-shock region with a magnetic field amplified by compression.

The modestly oblique pre-shock magnetic field becomes flattened

and is nearly parallel to the x–y plane in the post-shock region.

Material is continuously fed into the simulation through inflow

boundary conditions; periodic boundary conditions are adopted on

the x and y axes. Turbulence is introduced by perturbing the veloc-

ity field, adopting a Gaussian random distribution with a Fourier

power spectrum v2
k ∝ k−4 (Gong & Ostriker 2011). The resulting

geometric set-up is illustrated in Fig. 1.

Using this general set-up, we adopted two simulations cho-

sen to study the role of turbulence and magnetization in shap-

ing the polarimetric observables of the post-shock region. Some

important parameters for these two simulations can be found in

Table 1. The first model (Model A) used a background density of

ρ0 = 50 cm−3, an initial magnetic field strength of 3.47 µG, for a

simulation box of side-length 10 pc. This model was designed to

mimic a large-scale cloud–cloud collision, which has been consid-

ered as one of the formation scenarios for denser MCs (Ballesteros-

Paredes, Hartmann & Vázquez-Semadeni 1999; Koyama & Inut-

suka 2000; Vázquez-Semadeni et al. 2006; Heitsch et al. 2008;

Banerjee et al. 2009; Inoue & Fukui 2013). For this model, the

velocity perturbation (σ v = 0.7 km s−1) was chosen by setting the

virial number of the simulated cloud, αvir ≡ (5Rcloud/GMcloud)σ 2
v ,

where Rcloud ≡ Lcloud/2 and Mcloud ≡ 4πR3
cloudρ0/3 equal to

2. The resulting post-shock region for this model is strongly

supersonic (Ms = 10.4) and super-Alfvénic (MA = 2.43). The

second model (Model B) adopted was the model M10B10 from

Chen & Ostriker (2015). The model parameters for this simula-

tion were instead chosen to study a star-forming region inside

a magnetized, turbulent dense cloud: a background gas density

of 1000 cm−3, an initial magnetic field strength of 10 µG, and

a velocity perturbation of 0.14 km s−1 were chosen for a sim-

ulation box of side-length 1 pc for this purpose. The velocity

perturbation was chosen by adopting Larson’s scaling law for

turbulence in MCs, σ l ∝ l1/2 [see Gong & Ostriker (2011) or

Chen & Ostriker (2014, 2015) for a detailed derivation]. The

resulting post-shock region is modestly supersonic (Ms = 2.85)

and sub- to trans-Alfvénic (MA = 0.81). To better compare with

the BLASTPol observations that are on multiparsec scales, we

rescale this model such that the box side-length is 10 pc (see

Section 2.2.2 below).

The converging flow geometry and slab-like post-shock regions

of these two models provide a unique way to study how intrin-

sic gas and magnetic structure affect polarimetric observations. An

observer looking down each coordinate axis perceives three dif-

ferent conditions with respect to the combined gas-magnetic field

structure. An observer whose line of sight is in the z-direction has

a face-on view of the post-shock region with relatively short gas

column lengths. In this line of sight the mean magnetic field is

primarily in the plane of sky; only a small component of the mag-

netic field is parallel to the line of sight. An observer whose line

of sight is in the y-direction instead has an edge-on view of the

post-shock region with longer gas column lengths, while neverthe-

less retaining a plane-of-sky oriented mean magnetic field with-

out a strong line-of-sight component. Finally an observer whose

line of sight is in the x-direction has again an edge-on view of

the post-shock region but a totally different mean magnetic field

orientation, being weak in the plane of sky and principally ori-

ented along the line of sight. Comparisons between the edge-on and

face-on views determine how the amount of material in the col-

umn affects polarimetric observations; comparisons between the

x line of sight and the other two determine how magnetic or-

ganization with respect to the observer affects the same. Lastly,

comparisons between our two models determine how turbulence

and magnetization (or ‘intrinsic’ magnetic disorder) can affect the

observations.

2.2.2 Scaling

Isothermal, ideal MHD simulations with gravity produce scalable

solutions: specific numerical values can be changed under appropri-

ately chosen scaling transformations which leave certain constants

and dimensionless numbers unchanged. The inclusion of gravity

demands that the numerical value of the gravitational constant G is

unchanged under this transformation; this constant has dimensions

[G] =
[v]2

[L]2[ρ]
, (1)

Table 1. Some properties of the two ATHENA simulations, including the initial number density, n0; the pre-shock inflow Mach

number, Ms,0; the turbulent velocity perturbation, σ v; the initial magnetic field strength, B0; the initial Alfvén Mach number,

MA,0; and the post-shock sonic and Alfvén Mach numbers Ms,ps and MA,ps; and the post-shock plasma β. The initial densities

and magnetic field strength for Model B have been scaled such that the box-length is 10 pc.

Simulation n0 Ms,0 σ v B0 MA,0 Ms,ps MA,ps βps

Model A 50.0 cm−3 10.0 0.70 km s−1 3.47 µG 2.83 10.4 2.43 0.11

Model B 10.0 cm−3 10.0 0.14 km s−1 1.00 µG 4.40 2.85 0.81 0.16
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where [L] is the dimension of length, [ρ] are the dimensions of

density, and [v] are the dimensions of velocity. Additionally, the

plasma β = 8πρc2
s /B

2 (the ratio of thermal to magnetic pressure)

must also remain unchanged to ensure the magnetic field is scaled

appropriately. Plasma β has dimensions

[β] =
[ρ][v]2

[B]2
, (2)

where [B] are the dimensions of the magnetic field. In this study it

is desirable to leave the velocity unchanged since it is tied to the

sound speed, which is controlled by the molecular gas temperature

typically fixed at ∼10 K. These constraints and choices provide a

complete (though not necessarily unique) scaling transformation for

length, density, and the magnetic field using a single multiplicative

factor λ:

L →
L

λ
, (3)

ρ → λ2ρ, (4)

B → λB. (5)

As mentioned above, we are free to scale Model B (originally at

a box-length of 1 pc) to the same box-length as Model A (whose

box-length is 10 pc), provided that the density and magnetic field are

adjusted appropriately. These scaling transformations also provide

a degree of freedom with respect to the synthetic observations.

Column density quantities have dimensions [N] = [L][ρ], indicating

that under this transformation they are scaled by N → λN. Thus

we are free to scale the column densities determined from our

synthetic observations to values comparable to those determined

observationally, provided that we adjust the box-length, number

densities, and magnetic field strengths of our simulation.

2.3 Synthetic observations

2.3.1 The stokes parameters

Previous work (e.g. Lee & Draine 1985; Fiege & Pudritz 2000;

Kataoka, Machida & Tomisaka 2012; Planck Collaboration

XX 2015; Chen, King & Li 2016) has established standard practice

in the computation of synthetic Stokes parameters from MHD sim-

ulations. Suppose we define a Cartesian coordinate system where

the x and y coordinates define the plane of the sky (with y corre-

sponding, locally, to Galactic North for definiteness), and with our

line of sight s lying parallel to the z-axis. Then we may express

the synthetic Stokes parameters in terms of the local magnetic field

B = (Bx, By, Bz), the source function Sν , and the optical depth τ ν

(Planck Collaboration XX 2015):

I =
∫

Sνe−τν

(

1 − p0

(

B2
x + B2

y

B2
−

2

3

))

ds, (6)

Q = p0

∫

Sνe−τν

(

B2
y − B2

x

B2

)

ds, (7)

U = p0

∫

Sνe−τν

(

2BxBy

B2

)

ds. (8)

(V = 0 as thermal dust emission is linearly polarized.) Here, p0

is a parameter called the intrinsic polarization fraction, which is

assumed to be uniform over the whole MC. We are comparing to

BLASTPol observations at submillimetre wavelengths, so we may

safely assume that the emission is optically thin (τ ν < <1). The

source function is usually assumed to be proportional to that of a

blackbody; as our simulations have adopted an isothermal equation

of state we may quote the Stokes parameters in column density

units (as opposed to specific intensity units), where n is the local

gas number density:

I =
∫

n

(

1 − p0

(

B2
x + B2

y

B2
−

2

3

))

ds = N − p0N2, (9)

Q = p0

∫

n

(

B2
y − B2

x

B2

)

ds = p0Q̄, (10)

U = p0

∫

n

(

2BxBy

B2

)

ds = p0Ū . (11)

Here, N =
∫

n ds is the usual definition for column density. Here we

have defined the quantities N2, Q̄, and Ū as a convenient shorthand:

N2 =
∫

n

(

B2
x + B2

y

B2
−

2

3

)

ds, (12)

Q̄ =
∫

n

(

B2
y − B2

x

B2

)

ds. (13)

Ū =
∫

n

(

2BxBy

B2

)

ds. (14)

The N2 term in (9) is a necessary corrective factor that accounts for

the reduction in emission for dust grains inclined with respect to the

plane of the sky (Fiege & Pudritz 2000). By examining the extreme

configurations that maximize and minimize the contributions in

(12), it is clear that this correction safely preserves the condition

that Stokes I be strictly positive. N2 ranges from − 2
3
N (all grains

aligned with the line of sight) to 1
3
N (all grains aligned in the plane

of sky). These extreme configurations should be very rare, and

since the correction is also of order p0 – generally a small quantity

– then we may assume that Stokes I (in column density units) is

approximately the column density to a reasonably high degree of

accuracy, an approximation that we confirmed numerically.

The polarization fraction p is given by

p =
√

Q2 + U 2

I
= p0

√

Q̄2 + Ū 2

N − p0N2

(15)

and the polarization angle (measured in the plane of the sky) is

given by

χ =
1

2
arctan(U, Q), (16)

where arctan is the two-argument arctangent which returns the ap-

propriate quadrant of the computed angle. Note that χ is mapped

into [0, π), as polarization is a pseudo-vector defining an orientation

rather than a direction.

Real observations of the Stokes parameters are limited by the

resolution of the instrument. This effect can also be modelled by

convolving the pixel-resolution synthetic Stokes parameters with

a Gaussian filter. These beam-convolved quantities are then used

to compute the polarization fraction and the polarization angle. To

examine beam effects we report both the results at pixel-scale and

those at telescopic resolution (0.5 pc) for both Model A and Model
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B. (Since we have rescaled Model B to the same box-length as

Model A, 10 pc, the beam size is the same in both cases.) We im-

plement this beam convolution using a simple symmetric Gaussian

filter [implemented by SCIPY in Jones et al. (2001)]. In principle this

procedure may be modified to accommodate any beam shape.

Synthetic observations along edge-on lines of sight (the x and

y lines of sight) will have pixels which contain only pre-shock

material. In both of our models the post-shock region is the primary

region of interest, and the pre-shock material is too diffuse and

ordered to properly model an MC. In these lines of sight there

will also be pixels near the boundary between the pre- and post-

shock region; these transition regions will contain sharply varying

magnetic fields and artificially short column lengths, potentially

contaminating our sample. We exclude these regions simply by

eliminating those pixels from the sample, focusing on the interior

of the post-shock region.

The intrinsic polarization fraction, p0, is in principle set by con-

ditions in specific MCs. In Fiege & Pudritz (2000), p0 is explicitly

the average (over all grain populations) of the product of two terms:

the Rayleigh reduction factor due to imperfect grain alignment,

and the reduction in polarization due to the turbulent component

of the magnetic field. These conditions are assumed not to vary

throughout the cloud2 and so can be taken safely out of the in-

tegrals. We adopt a fiducial value of 0.15 for initial calculations,

which is consistent with observationally determined values (Planck

Collaboration XX 2015; Fissel et al. 2016); however, it bears not-

ing that there is some freedom to adjust this parameter to match

observations. Adjusting p0 would not change the polarization angle

as the contribution from p0 vanishes in equation (16).3 The depen-

dence on p0 in equation (9) would adjust Stokes I values, but this

effect should be small, which we have also verified numerically; in

accordance with our approximation that Stokes I is approximately

the column density we neglect this effect.

While we are not considering heterogeneous alignment in this

paper, a short discussion on its expected effects is useful. In the

context of grain alignment by radiative torques (Hoang & Lazar-

ian 2008), grains are expected to be aligned less efficiently with

respect to the local magnetic field in denser well-shielded regions.

The reduction in alignment efficiency in such regions is expected

to decrease the polarization fraction, especially along high column

density sightlines. Its effect on the polarization angle along a given

sightline is less clear, because the angle is determined by the ratio of

the integrated Q and U along the line of sight which, unlike Q and

U themselves, does not depend on the grain alignment efficiency in

a simple way. We will explore these effects fully in a subsequent

paper.

The synthetic polarimetric observations of the ATHENA simu-

lations described here were implemented using routines written

using NUMPY (van der Walt, Colbert & Varoquaux 2011), SCIPY

(Jones et al. 2001), and the YT package (Turk et al. 2011). Our

plots were generated using the MATPLOTLIB PYTHON plotting library

(Hunter 2007).

2 This assumption is sometimes called perfect grain alignment, which is

strictly speaking incorrect, as p0 includes the effects of imperfect grain

alignment provided that it is the same everywhere. We prefer the term

homogeneous grain alignment.
3 In principle, modifications to the grain alignment efficiency that are not

homogeneous will introduce some variation in χ , though these corrections

might be expected to be small: the corrections will modify both Stokes Q

and U and thus will vanish to first order upon computing χ .

2.3.2 Dispersion in polarization angles

While the polarization angle χ provides approximately the column-

averaged magnetic field orientation in the plane of the sky, the

relative change in orientation rather than its precise value is more

directly comparable to observations. This is probed by calculating

the dispersion in polarization angles (e.g. Falceta-Gonçalves, Lazar-

ian & Kowal 2008; Planck Collaboration XIX 2015; Chen, King &

Li 2016; Fissel et al. 2016):

S2(x, δ) =
1

N

N
∑

i=1

�χ2(x, xi). (17)

Here, �χ (x, xi) is the angular difference4 between the angle at

the point x and another point xi located a distance δ (called the

lag) away from it. The sum is over all points at the lag radius δ

away from x. �χ i is usually calculated directly from the Stokes pa-

rameters using the two-argument arctangent (Planck Collaboration

XIX 2015):

�χ (x, xi) =
1

2
arctan(QiUx − QxUi, QiQx + UiUx), (18)

where Qx and Ux are the Stokes parameters at x and Qi and Ui are

the Stokes parameters located at the point xi located a distance δ

away from x.

The dispersion in polarization angles is a measure of the local

changes in magnetic field direction, regardless of orientation con-

vention chosen. We note that, as calculated in Planck Collaboration

XIX (2015), the dispersion in polarization angles for pure noise con-

verges to π/
√

12 (about 52◦). For our purposes we elect to use the

smallest sensible lag to study the finest polarization angle structure.

For BLASTPol and the beam-convolved synthetic observations, the

lag would be the FWHM of the beam; we use the pixel scale for the

simulation resolution synthetic observations.

Maps of the column density, polarization fraction, and dispersion

in polarization angles computed along the x, y, and z lines of sight

are presented in Figs 2 (at pixel resolution) and in 3 (convolved

with a Gaussian beam). The polarization angles (corresponding to

the magnetic field orientation) are annotated on the column density

plots (top panel).

2.4 Statistical techniques

2.4.1 Geometric statistics

The range of values for column density, polarization fraction, and

the dispersion in polarization angles typically spans several orders

of magnitude (Vázquez-Semadeni & Garcı́a 2001; Planck Collab-

oration XIX 2015; Fissel et al. 2016); studying their probabilistic

features is commonly done in logarithmic space to capture both

central and asymptotic behaviour in the distribution. For the col-

umn density and polarization fraction, we will work in logarithmic

contrast variables, normalizing the values to a measure of central

tendency:

ζNH
= log10

(

NH

NH

)

, (19)

ζp = log10

(

p

p

)

. (20)

4 Note that because polarization angles πout of phase are indistinguishable,

the maximum angular difference must be π/2.
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Figure 2. Stokes I (top row), polarization fraction (middle row), and dispersion in polarization angles (bottom row) for the ATHENA Model A simulation (left

column) and the ATHENA Model B simulation (right column). For each image, the central image is the z line of sight; the image parallel to the y-axis is the x line

of sight; and the bottom image parallel to the x-axis is the y line of sight. These images are produced at pixel resolution.
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Figure 3. Same as Fig. 2 but convolved with the annotated 0.5 pc beam. p and S are computed from the beam convolved Stokes parameters (Q and U; see

Section 2.3). A black circle annotates the beam FWHM in each plot.
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For the dispersion in polarization angles, we will instead simply use

the value measured in degrees:

ζS = log10

(

S

1◦

)

. (21)

In logarithmic space, the geometric mean is a more natural mea-

sure of central tendency than the arithmetic mean. For a set of N val-

ues X = {xi}, the geometric mean is simply related to the arithmetic

mean of the logarithmic values, defined by Z = {ζ i} = {log xi}:

μG(X) =

(

N
∏

i=1

xi

)1/N

= exp

(

1

N

N
∑

i=1

ζi

)

= exp (μA(Z)) , (22)

where μG and μA denote the geometric and arithmetic means of

the set, respectively. Similarly, the geometric standard deviation is

a natural first moment measure of distribution width in logarithmic

space, and is defined through the standard deviation of the logarith-

mic contrast values (Kirkwood 1979):

(log σG(X))2 =
1

N

N
∑

i=1

log

(

xi

μG(X)

)2

= σ 2(Z), (23)

where σ G and σ denote the geometric standard deviation and stan-

dard deviation of a set, respectively. (These expressions are easily

modified to base 10.)

Higher statistical moments can provide more information on the

shape of a probability distribution. The kurtosis of a distribution (the

fourth standardized moment), in particular, can offer insight into

the behaviour of the tails of the distributions (Ivezić et al. 2014).

To study the tails of the distribution in logarithmic space, we may

compute the kurtosis of the logarithmic values of the polarimetric

observables, which we call the geometric kurtosis:5

KurtG(X) = Kurt(Z) =
1
N

∑N

i=1

(

log
(

xi

μG(X)

))4

log(σG(X))4
. (24)

As a Gaussian distribution has a kurtosis of 3, the excess kurtosis

(the kurtosis less 3) is often quoted to emphasize deviations from

Gaussianity (Ivezić et al. 2014). (We denote excess kurtosis by Kurt

to distinguish it.) Similarly, we will quote the excess geometric

kurtosis, which describes deviations from log-normality. Distribu-

tions with positive excess kurtosis are termed leptokurtic and have

tails which asymptotically approach zero less rapidly than a Gaus-

sian; distributions with negative excess kurtosis are instead termed

platykurtic and have tails that approach zero more rapidly than a

Gaussian distribution. Distributions with excess kurtosis close to

zero are termed mesokurtic. In our logarithmic context, power-law

asymptotics (a commonly encountered behaviour) would manifest

as positive excess geometric kurtosis.

Both the freedom to adjust N values through a scaling trans-

formation and the freedom to adjust p0 are multiplicative factors,

and therefore in logarithmic space amount to adjusting the geomet-

ric mean. These adjustments will not adjust either the geometric

standard deviation or the geometric kurtosis. For these reasons, the

geometric mean of the polarization fraction and column density are

5 Rather than adopting the same convention in the geometric mean and

geometric standard deviation, we define the geometric kurtosis not as

exp (Kurt(Z)) but as Kurt(Z), as the prior definitions are chosen to empha-

size the connection between geometric moments of the set and the arithmetic

moments of the logarithm of the set. No simple relationship exists for the

higher statistical geometric and arithmetic moments.

less important quantities as far as constraining simulation parame-

ters is concerned. However, because the dispersion in polarization

angles cannot be scaled freely, the mean angle dispersion is an

important quantity of interest.

2.4.2 Kernel density estimation

The underlying probability density function (PDF) for the observ-

ables has much to say about MC structure. For a single observ-

able, the PDF is commonly visualized using a histogram. A two-

dimensional version of the same is often used when studying joint

correlations. The histogram has the advantage of simplicity, but has

its limitations. Regardless of how optimally the bin size is cho-

sen, information is lost inside the bin. Locating the bin centres

and choosing bin size given a data set is arbitrary, and behaviour

at the bin boundaries can give rise to inappropriate discontinuities

(Scott 1992; Feigelson & Babu 2012). Instead we prefer to use

kernel density estimation (KDE), a technique that yields a smooth

estimate of the PDF from a set of data.

For a set {xi} of N independent observations which are sampled

from a common PDF f, the kernel density estimate of f is given by

(Scott 1992)

f̂h(x) =
1

N

N
∑

i=1

1

h(x)
K

(

x − xi

h(x)

)

. (25)

Here K is the kernel function (normalized and with mean zero) and

h is the bandwidth parameter. h may be thought of as analogous

to the bin size in histograms. It is chosen according to Scott’s

rule, a known rule for optimal bandwidth (Scott 1992). The choice

of kernel function is usually unimportant, and may depend on the

application. In our case, it has been established (Vázquez-Semadeni

& Garcı́a 2001) that a log-normal distribution is expected for the

column density. Therefore, we use a Gaussian kernel function on

the logarithmic values:

K(u) =
1

√
2π

e− 1
2
u2

. (26)

These one-dimensional forms are easily generalized to two or higher

dimensions for multivariate correlations. For a set {xi} of N indepen-

dent observation vectors of dimension d, the kernel density estimate

of the joint PDF f (x) is (Scott 1992)

f̂H (x) =
1

N

N
∑

i=1

|H|−1/2 K(H−1/2 (x − xi)), (27)

where H is the multivariate generalization of the bandwidth pa-

rameter (the d × d bandwidth matrix) which may also be chosen

optimally. The multivariate Gaussian kernel function is

K(u) =
1

(2π)d/2
e− 1

2
u

T
u. (28)

We use the SCIPY implementation of Gaussian KDE (Jones

et al. 2001), which implements both the univariate and multivariate

cases.

2.4.3 Principal components and the covariance matrix

The joint PDF of observables contains strictly more information

than the one-dimensional PDFs alone, which may be thought of

as projections of the full configuration space PDF on to a sin-

gle observable axis. The joint distributions contain information not

only on extent but also on mutual dependence. Past work (Planck
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Collaboration XIX 2015; Planck Collaboration XX 2015; Fissel

et al. 2016) has presented these joint correlations and explored mu-

tual dependence by fitting to a power law with linear regression.

Linear regression has the disadvantage of depending on the choice

of independent variable, i.e. the fit is not symmetric with respect

to axis choice. Linear regression is one choice in characterizing the

geometry of the multivariate joint distribution; we instead compute

the principal components for this purpose (Murtagh & Heck 1987).

Principal component analysis (PCA) has been used elsewhere in

astrophysics, where it has particular value in reducing the dimen-

sionality of data sets with many variables, such as is done in Bertram

et al. (2014). Unlike these previous applications, our use of the prin-

cipal components is based on their natural geometric interpretation

and utility as descriptive tools.

Suppose that you have a set of n variables Xn, each of which

is a set of observations of length N. The covariance between two

variables is given by

σ 2
(

Xi, Xj

)

=
1

n − 1

n
∑

k=1

(Xik − X̄i)(Xjk − X̄j ). (29)

Here, X̄i refers to the average of Xi. This definition recovers the

ordinary definition of variance:

σ 2(Xi) =
1

n − 1

n
∑

k=1

(Xik − X̄i)
2. (30)

The covariance matrix for this set of variables is this symmetric

n × n matrix:

C =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

σ 2(X1) · · · σ 2(Xi, X1) · · · σ 2(Xn, X1)

...
. . .

σ 2(X1, Xi) σ 2(Xi)
...

...
. . .

σ 2(X1, Xn) · · · σ 2(Xn)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (31)

The principal components are the eigenvectors {vm} of C, satisfying

Cvm = λmvm. (32)

Trivially there are n principal components, mutually orthogonal to

each other in the n-dimensional configuration space of our vari-

ables. Analogous to the principal moments of inertia for a rotat-

ing rigid body, the eigenvectors describe a set of coordinate axes

that maximize variance (in the least-squares sense). Principal axes,

in this sense, have been used effectively to describe the shape of

clumps in MCs (Gammie et al. 2003; Nakamura & Li 2008; Gong &

Ostriker 2015). The eigenvalues describe the relative importance of

the principal components: the component with the highest eigen-

value contains the most variance (and is often referred to simply

as the principal component, especially for multivariate studies with

large n). We note that PCA provides a very simplified view of

the joint PDF geometry, and is unsuited for detailed studies of

PDF features, which would require more sophisticated techniques.

Analogous to the fitted slope in linear regression, the implied PCA

power-law index is the slope of the principal vector.

The principal components capture the geometry of the joint dis-

tributions, but do have an important drawback: they do not mea-

sure, without ambiguity, the degree to which observables are cor-

related with each other. A simple measure of correlation between

two observables is the Pearson correlation coefficient (Feigelson &

Babu 2012). For two observables, X and Y, their Pearson correlation

coefficient is (Feigelson & Babu 2012)

ρP,XY =
σ 2(X, Y )

√

σ 2(X)σ 2(Y )
. (33)

It should be noted that (like PCA) the Pearson correlation coeffi-

cient is limited in its sensitivity to correlations more complicated

than simple linear ones. A slightly more sophisticated version, the

Spearman rank correlation coefficient, tests for monotonic depen-

dence rather than simple linear correlation. If RX and RY are the

ranked variables6 corresponding to X and Y, then the Spearman

rank correlation coefficient is the Pearson correlation coefficient of

these two ranked variables (Feigelson & Babu 2012):

ρS,XY =
σ 2 (RX, RY )

√

σ 2 (RX) σ 2 (RY )
. (34)

The numerical value of ρP, XY and ρS, XY is between −1 and 1, where

positive values indicate a positive correlation, and negative values

indicate negative correlation. The magnitude is a measure of correla-

tion strength, with 1 being associated with perfect linear correlation

and 0 being perfectly uncorrelated. For our purposes we compute

the Pearson correlation coefficient of the logarithmic values of the

observables (equivalent to applying a logarithmic transformation on

the data). Therefore this Pearson coefficient measures how strongly

the two observables are relatable to each other via a power law. As

a logarithmic transformation is monotonic, the Spearman rank cor-

relation coefficient is unchanged by a logarithmic transformation;

therefore this quantity measures the degree of monotonic depen-

dence, without imposing a power-law form on to the relationship.

3 T H E P O L A R I Z AT I O N F R AC T I O N

The polarization fraction measured at any pixel is strongly depen-

dent on the magnetic organization within its line of sight. On the

one hand, contributions to the polarized emission at any point in the

line of sight are bounded above by the inclination of the magnetic

field with respect to the plane of sky: any inclination reduces the

polarization signal by reducing the apparent ratio of the long to

short axes of the grain relative to the observer (Chen et al. 2016).

On the other hand, even contributions with no inclination can be

negated entirely by another contribution exactly π/2 out of phase, or

partially negated by any contribution with non-zero relative phase.

This makes the polarization fraction a simultaneous measure of

both magnetic field inclination with respect to the plane of sky

and magnetic field organization along the line of sight (provided

that contributions from heterogeneous grain alignment can be ne-

glected). Examining the distribution of polarization fraction thus

provides some insight into the general behaviour of the magnetic

field as seen by the observer.

While we noted in Section 2.3 that there is freedom in the choice

of p0, there is not unlimited freedom: p0 is limited to attain values

consistent with both grain alignment physics and the amount of

magnetic disorder at scales smaller than the simulation resolution

element. Practically p0 is determined empirically from the polar-

ization fraction distribution (effectively, from the mean polarization

fraction). In principle, an overall reduction in the mean polariza-

tion fraction from sky-averaged inclination and cancellation along

6 The ranked variables are the integer ordering of the observations, with the

largest value assigned to be 1. Duplicate values are provided a fractional

rank.
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Table 2. Distribution statistics for the one-dimensional PDFs of the polar-

ization fraction.

LOS Model Beam μG(p) log σG(p) KurtG(p)

x-LOS A Pixel 0.017 0.330 1.214

0.5 pc 0.009 0.323 1.409

B Pixel 0.007 0.368 0.924

0.5 pc 0.003 0.350 0.903

y-LOS A Pixel 0.068 0.153 8.987

0.5 pc 0.062 0.088 1.252

B Pixel 0.125 0.066 49.34

0.5 pc 0.122 0.045 6.469

z-LOS A Pixel 0.061 0.195 5.997

0.5 pc 0.057 0.152 3.814

B Pixel 0.091 0.085 29.85

0.5 pc 0.090 0.061 5.805

BLASTPol – 0.5 pc 0.027 0.260 0.737

all lines of sight would also reduce the apparent p0 from magneto-

hydrodynamical effects alone. We find, however, that these effects

are tied to the mean orientation of the magnetic field with respect

to the line of sight. The mean polarization fractions are found in

Table 2. (These means are all computed after assuming the fidu-

cial value p0 = 0.15.) In the y and z lines of sight, we find that

the mean polarization fraction for Model A is lower than that for

Model B. In this case, the disordering influence of stronger turbu-

lence/weaker magnetization reduces the mean polarization fraction.

On the other hand, in the x line of sight, the mean polarization frac-

tion for Model A is higher, not lower, than Model B. In this case, the

more disordered magnetic field relative to the mean magnetic field

provides more opportunities along any given line of sight for the

magnetic field to locally align with the plane of sky, strengthening

contributions to the polarization fraction. The lower turbulence and

stronger magnetization of Model B permits fewer deviations from

the mean magnetic field, resulting in a more complete suppression of

polarized emission when the mean magnetic field is parallel to the

line of sight.

Turning our attention to the PDFs of polarization fraction con-

trast in Fig. 4, we can see immediately that the x line of sight shows

remarkable agreement with the BLASTPol observations of Vela C.

Distribution widths and kurtosis can be found in Table 2. The x

line-of-sight distribution widths for the simulations and BLASTPol

are all relatively similar (left-hand panel of Fig. 4), and agreement

improves slightly upon beam convolution (dashed lines in Fig. 4).

In terms of kurtosis, both BLASTPol and the simulations are gener-

ally mesokurtic (deviating little from Gaussian). The leading edges

at high polarization fraction contrast are also generally consistent,

as are the tails at low polarization fraction. In contrast, neither

the y nor z line of sight (middle and right-hand panels of Fig. 4)

produces PDFs that are very consistent with the BLASTPol obser-

vations. These lines of sight produce significantly narrower distri-

butions than the BLASTPol observations, and are all significantly

leptokurtic, with extremely peaked distributions that have more

extended tails than a Gaussian. This translates to a very uniform

polarization fraction in the plane of sky, with significant deviations

being quite rare. The leading edges are much steeper, and the tails at

low polarization fraction are generally lower in probability than the

BLASTPol tail; such steep leading edges indicate that the peak is

probably very near the maximum polarization fraction (see e.g. the

log–log plots of the y and z lines of sight in Fig. 4, bottom panel).

Examining the y and z lines of sight in more detail, we note their

remarkable consistency: viewing either Model A or Model B from

either line of sight produces little variation. Both of these lines of

sight differ primarily in that one is edge-on (y) versus the other

being face-on (z), which indicates that the y line-of-sight sightlines

generically contain much more material than the z line of sight.

Because both of these lines of sight share the quality that the mean

magnetic field is primarily in the plane of sky and perpendicular

to the line of sight, this similarity indicates that the magnetic field

orientation dominates the behaviour of the polarization fraction, and

Figure 4. PDFs of the polarization fraction for the BLASTPol Vela C observations (Fissel et al. 2016, Blue), Model A (Red), and Model B (Cyan). The

solid coloured lines correspond to distributions computed at the pixel scale of the simulation, while dashed coloured lines correspond to those observed with

a Gaussian beam. The x line-of-sight distributions are in the left column; in the centre, the y line-of-sight distributions; and in the right, the z line-of-sight

distributions. The top row PDFs are log–linear and the bottom row are log–log.
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is far more important than the effects that might arise due to longer

column integration lengths.

This is an important observation: consider the aforementioned

roles of inclination and cancellation within a column. Under this

regime, where the mean magnetic field is in the plane of sky, a

longer column of material would provide more opportunities to en-

counter fluctuations relative to the mean magnetic field. The effects

of more fluctuations are best understood relative to the mean po-

larization fraction. On the one hand, if more fluctuations can be

encountered, then intuitively it is less likely for high polarization

fraction contrast to manifest, as such configurations demand sig-

nificant magnetic order in the column to avoid cancellation. On

the other hand, the lowest polarization fractions also become less

likely. This perhaps counter-intuitive result arises due to the condi-

tions necessary to achieve such low polarization fractions: in this

regime, consistently high inclination (where the magnetic field is

nearly aligned with the line of sight) throughout the column is very

unlikely, and therefore low polarization fractions require significant

pairwise cancellation. While this indicates a state of extremely high

magnetic disorder, it is also a very rare state. The likelihood of

achieving such a state is improved if there is less material required

to pairwise cancel; or equivalently, higher rates of fluctuations can

destroy the pairwise cancellation, simply by serendipitous magnetic

field orientation alignment between two fluctuations. The combined

effect is that, magnetic organization being the same, longer column

lengths result in narrower polarization fraction distributions. This

is corroborated in Fig. 4 (middle and right-hand panels), where we

see narrower distributions in the y line of sight relative to the z line

of sight. However, it is important to note that the relative weak-

ness of this effect further demonstrates the importance of magnetic

organization relative to the observer.

Within these lines of sight, the differences between Model A and

Model B are apparent. Model A has a wider distribution, has less

kurtosis, has reduced steepness in the leading edge, and has a higher

probability state for the depolarization tail. These differences sug-

gest that stronger turbulence/lower magnetization (Model A versus

Model B) has a role in determining the shape of the polarization

fraction distribution, at least in the presence of an ordered mean

magnetic field in the plane of sky. Both the increase in width and

decrease in kurtosis indicate that turbulence tends to counteract the

highly peaked behaviour. This is consistent with the general expec-

tation for the effects of turbulence, which would introduce disorder

and weaken signatures of strong magnetic order.

The x line of sight, as well as the BLASTPol observations, both

display significantly different behaviour from that of the y and z

lines of sight. There is not a particularly distinctive peak, and the

transition to the depolarization tail is indistinct. Notably, there is re-

markably little difference in polarization fraction contrast between

Model A and Model B despite their different levels of turbulence

and magnetization. The only meaningful difference appears to be at

highest polarization fraction levels, wherein Model B has a slight

enhancement at high polarization fraction relative to Model A. This

could possibly be due to the increased role of turbulence in Model

A: stronger turbulence and lower magnetization could decrease the

likelihood of attaining the highest polarization fraction contrast.

Because in the x line of sight, contributions to the Stokes param-

eters (and thus the polarization fraction) from the mean magnetic

field are suppressed, the highly ordered high polarization fraction

configurations along a column become very unlikely. Increasing

the turbulence (or making the magnetic field less resistant to pertur-

bation) could reduce this likelihood further, effectively narrowing

the distribution in the tails. Much like what we see with the mean

polarization fraction, the influence of turbulence/magnetization is

significantly tied to the orientation of the mean magnetic field with

respect to the observer: in the y and z lines of sight, we see that

stronger turbulence/lower magnetization widens the distribution,

yet in the x line of sight, this narrows it.

The beam convolved distributions are provided as dashed lines

in Fig. 4. The effects of beam convolution are most concentrated in

the depolarization tails and the leading edge, where the highest and

lowest polarization fraction contrasts appear to be cut off or sharply

curtailed. Note that beam convolution does not broaden distribu-

tions, but narrows them: the beam mixes information spatially on

the plane of sky, and therefore any contrast features smaller than the

beam will be partially destroyed. In the case of the y and z lines of

sight, we see that the depolarization tail nearly disappears and the

leading edge steepens further. The peak becomes even more empha-

sized and narrow, though the kurtosis is reduced (most likely due

to the reduction in the depolarization tail). This demonstrates that

the scale of the highest and lowest contrast features in these lines of

sight are not larger than the beam and probably not clustered enough

to avoid destruction after beam convolution, or else they would be

preserved. On the other hand, in the x line of sight the leading edge

is reduced, but not the depolarization tail. Since the tail is preserved

under beam convolution, we may infer that either the scale of these

features is larger than the beam or they are ubiquitous enough to

avoid destruction.

The depolarization tails in all the polarization fraction distribu-

tions demonstrate interesting asymptotic behaviour. This includes

the BLASTPol distribution, though it appears to be cut off at the

lowest polarization fractions. This is likely a result of the finite

polarization sensitivity of the BLASTPol telescope, which neces-

sarily cannot detect extremely low polarization fractions.7 In all

the distributions, the leading edge rapidly falls off from the peak, as

evidenced in the log–log plot in Fig. 4 (bottom panel). This is consis-

tent with Gaussian behaviour, in which probability is exponentially

attenuated at high contrast values. Instead, the depolarization tail

displays approximately linear behaviour, which is in fact a signa-

ture of a power-law dependence of probability. Similar power-law

behaviour has been reported in the column density, and has been

interpreted as a signature of gravitationally dominated regions un-

dergoing collapse (Vázquez-Semadeni & Garcı́a 2001; Burkhart,

Collins & Lazarian 2015; Burkhart, Stalpes & Collins 2017). We

emphasize that we do not know whether self-gravity plays the same

role here in the polarization fraction, or rather that some other as

yet undetermined mechanism is responsible. We plan to explore

possible mechanisms in future work.

4 T H E D I S P E R S I O N I N P O L A R I Z AT I O N

A N G L E S

The dispersion in polarization angles is a direct measure of plane-

of-sky magnetic disorder. At the smallest scales it measures local

changes in magnetic field orientation: high S indicates significant

differences in magnetic field behaviour between adjacent sightlines,

whereas low S indicates a uniform field that changes little between

adjacent sightlines. Rapid changes may be due to dominant dense

regions changing magnetic orientation, or due to uniform changes

across the whole sightline. Due to the fact that S cannot be scaled

7 As noted in Section 2.1, Fissel et al. (2016) only includes sightlines with

p > 0.1 per cent. Lower polarization values suffer from uncertainty in cor-

recting for the instrumental polarization of the telescope.
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Figure 5. PDFs of the dispersion in polarization angles for the BLASTPol Vela C observations (Fissel et al. 2016) (Blue), Model A (Red), and Model B

(Cyan). The solid coloured lines correspond to distributions computed at the pixel scale of the simulation, while dashed coloured lines correspond to those

observed with a Gaussian beam. The orange line annotates the special value π/
√

12. The x line-of-sight distributions are in the left column; in the centre, the y

line-of-sight distributions; and in the right, the z line-of-sight distributions. The top row PDFs are log–linear and the bottom row are log–log.

(see Section 2.2.2), determining the mean angle dispersion provides

a crucial general measure of plane-of-sky magnetic disorder, which

is intrinsic to the MC under observation. Furthermore, the reduced

sensitivity of S to heterogeneous grain alignment effects (to be

discussed in more detail in a follow-up paper) renders it an even

more important measure of magnetic disorder, being strongly tied

to the magnetohydrodynamical behaviour of the MC rather than

grain alignment microphysics. Different mean angle dispersions

point to vastly different conditions due to the angular nature of

the quantity, bounded above by 90◦: a mean angle dispersion of 1◦

indicates a very ordered plane-of-sky magnetic field, yet a mean

angle dispersion of 10◦ indicates a far higher degree of magnetic

disorder in the plane of sky.

Much like what we found in the distributions in polarization

fraction, we can see in the dispersion in polarization angles PDFs

in Fig. 5 that the x line of sight (left-hand panel) provides the

best agreement with the BLASTPol observations of Vela C. Mean

angle dispersions, distribution widths, and kurtosis can be found in

Table 3. In general, all simulation distributions have approximately

the same width, and are all mesokurtic. But only the mean angle

dispersions (of both simulations) in the x line of sight are within a

degree or so of the BLASTPol value; whereas in the y and z lines

of sight, the difference is a reduction by a factor of 3 (for the Model

A) up to a factor of 10 (for Model B) – significant reductions in the

angle dispersion relative to the BLASTPol observations.

We do find that there is one primary significant difference be-

tween Models A and B in the y and z lines of sight: the mean angle

dispersion is much higher in Model A than Model B. Besides this,

the distribution shape is very similar: the widths and kurtosis are

nearly the same. As lower mean angle dispersion indicates stronger

magnetic order in the plane of sky, this indicates that, just as in

the case with polarization fraction, higher levels of turbulence and

lower magnetization weaken signatures of strong magnetic order.

It is also evident that the dispersion in polarization angles shares

another common behaviour with the polarization fraction: the y and

z lines of sight share very similar behaviour for both simulations.

Table 3. Distribution statistics for the one-dimensional PDFs of the disper-

sion in polarization angles.

LOS Model Beam μG(S) log σG(S) KurtG(S)

x-LOS A Pixel 9.141◦ 0.372 − 0.484

0.5 pc 11.01◦ 0.338 − 0.654

B Pixel 9.204◦ 0.364 − 0.516

0.5 pc 11.51◦ 0.341 − 0.753

y-LOS A Pixel 2.904◦ 0.341 0.759

0.5 pc 3.006◦ 0.229 − 0.100

B Pixel 0.635◦ 0.337 0.660

0.5 pc 0.444◦ 0.251 − 0.724

z-LOS A Pixel 2.884◦ 0.379 0.460

0.5 pc 3.327◦ 0.295 0.733

B Pixel 0.746◦ 0.358 1.179

0.5 pc 0.635◦ 0.283 0.148

BLASTPol – 0.5 pc 7.933◦ 0.266 0.222

In both models, the distributions change little when viewed edge-

on (y line of sight) or face-on (z line of sight), with the dominant

magnetic field perpendicular to the line of sight. Again, the key

difference between these lines of sight are the general length of the

dense post-shock region along a given sightline, rather than different

magnetic field orientation with respect to the plane of sky.

This result demonstrates that, in common with the polarization

fraction, the dense layer column length has a relatively minor role in

not one but both polarimetric observables. It is remarkable that this

holds for the dispersion in polarization angles, which is determined

by relative changes in the polarization angles on the plane of sky.

While the polarization angle is determined non-linearly from con-

tributions along the sightline, it can be expected that, in the presence

of strong magnetic order in the plane of sky, the angles will be domi-

nated by that order (see e.g. Fig. 2, top row). Variations with respect

to the mean magnetic field produce structures in the map of the

dispersion in polarization angles. As argued before, longer column

lengths provide more opportunities to encounter fluctuations with
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respect to the mean magnetic field, but these fluctuations are hard

to interpret with respect to the polarization angle, as these contribu-

tions are difficult to gauge in relative importance. On the one hand,

higher fluctuation rates might translate to some modest angular dif-

ferences between the measured plane-of-sky polarization angle and

the dominant mean magnetic field. Without some other effect bi-

asing these differences in some direction, they would be expected

to be relatively random, and therefore the mean angle dispersion

would be relatively higher than measured for a shorter column. On

the other hand, angular fluctuations are not purely additive, and any

contribution to the line-of-sight averaged quantity would likely be

small, and so overall the effect might be negligible. Quantitatively,

there appears to be little measurable difference between the y and z

line-of-sight views for either simulation (Table 3), so it appears that

any effect from the longer column lengths is not important.

The x line of sight instead displays a very high mean angle dis-

persion, centred near the BLASTPol value. Remarkably, and in

common with the polarization fraction, there is little variation be-

tween the two models, recovering even the finer structures in the

distribution, such as the feature near π/
√

12. Note also that no scal-

ing has been applied to the model S distributions. The fact that the

two simulations are almost indistinguishable in either polarization

fraction contrast or dispersion in polarization angles – two separate

measures of magnetic disorder in the plane of sky – demonstrates

that relative differences in turbulence or magnetization are appar-

ently not very important when polarized emission contributions

from the mean magnetic field are suppressed. The differences be-

tween this case and the y and z lines of sight highlight the fact that

apparent magnetic disorder is not a perfect proxy for intrinsic, 3D

magnetic disorder; in other words, one cannot conclude that an MC

is super-Alfvénic from these observations alone.

Beam convolution affects the dispersion in polarization angles

slightly differently than the polarization fraction: not only is res-

olution degraded, but the lag δ (see equation 17 in Section 2.3.2)

is adjusted to reflect the minimum sensible resolution for compu-

tation of this quantity. We nevertheless recover similar behaviour

that was seen in the beam-convolved polarization fraction, in that

beam convolution narrows the width of the distribution, tending to

eliminate contributions from both the high and the low dispersion

tails. Prior to beam convolution, all three lines of sight and both

models have very similar distribution widths; after beam convolu-

tion, these widths are reduced to similar values as well, and to a

value consistent with the width of the BLASTPol distribution. The

consistency of the width of the dispersion in polarization angles dis-

tributions is a remarkable feature. Taken at face value, this indicates

that the width of this distribution is affected neither by the pre-

vailing plane-of-sky magnetic order; the typical column length, or

equivalently, cloud depth; nor the level of magnetization/turbulence.

Additionally this value is the geometric width, or width in logarith-

mic space: it appears that values of the dispersion in polarization

angles tend to be found within a narrow range of dex from the

mean angle dispersion. This could be some indication of a universal

property of the dispersion in polarization angles, which merits fur-

ther investigation, though we emphasize that this is a very tentative

conclusion.

We conclude this section by noting the features near the special

value π/
√

12 (black dashed lines in Fig. 5). As noted above, this

is the value to which a collection of random vectors converges.

Without exception, all the dispersion in polarization angles distri-

butions rapidly fall off above this value. This is consistent with our

expectation, as any value higher than π/
√

12 is a very unlikely con-

figuration on the plane of sky. This special value also happens to

be near the relatively high values of the filamentary-type structures

that can be seen in the maps of S, found in the bottom panels of

Figs 2 and 3. These features have been reported in past observations

of polarized submillimetre continuum by both Planck (Planck Col-

laboration XIX 2015) and BLASTPol (Fissel et al. 2016). We plan

to explore the nature of these filamentary features in future work.

5 T H E P O L A R I M E T R I C J O I N T

C O R R E L AT I O N

Thus far, our findings present consistent behaviour for both the po-

larization fraction and the dispersion in polarization angles. The

BLASTPol observations are well matched by the x line-of-sight

distributions of each, respectively; the distributions for the y and z

lines of sight, while very consistent with each other, provide a poor

match. These conclusions are supported by the distributions of the

observables alone, as noted in Sections 3 and 4, but we can carry

the analysis further and ask whether they agree with respect to the

joint correlation of the two observables. This joint correlation has

been studied by both BLASTPol (Fissel et al. 2016) and Planck

(Planck Collaboration XIX 2015; Planck Collaboration XX 2015)

in the past. For brevity, we will refer to this particular joint correla-

tion between p and S as the polarimetric joint correlation. The joint

correlation contains strictly more information than the distributions

of each observable alone, which may be thought of as projections

of the joint distribution on to a single axis. Any apparent agreement

between the x line of sight and the BLASTPol observations is sub-

stantially weakened if the joint correlation behaviour of the two are

not consistent.

The polarimetric joint correlations can be found in Fig. 6, both at

the pixel resolution (top panel) and after beam convolution (bottom

panel). The implied power-law indices derived from the principal

components, as well as the Pearson and Spearman correlation co-

efficients, can be found in Table 4. For clarity, we present the joint

correlation computed without applying a scaling to the polarization

fraction, which would obscure the contours. (The reader may apply

this scaling visually by moving the distribution along the p axis of

the plot.) It is evident that the x line of sight provides excellent agree-

ment with the BLASTPol observations: the power-law indices are

very close to each other (being close to −1) and the correlation co-

efficients indicate a moderately strong correlation on the same order

as the BLASTPol data. In contrast, neither of the simulations in the

y and z lines of sight provide very strong agreement, with power-law

indices generally significantly shallower than the BLASTPol index.

The correlations can be both weaker than the BLASTPol correlation

(e.g. Model B in the z line of sight) or around the same order as the

BLASTPol result (e.g. Model A in the x line of sight). Additionally,

as demonstrated in Section 4, the mean angle dispersion is too low

in the y and z lines of sight, which reduces the agreement further,

but we also note that this is not new information as revealed by the

joint correlation. Beam convolution does not appear to modify the

joint correlations substantially; the differences between the lines of

sight remain significantly more important.

Both simulations when viewed from all three lines of sight, and

the BLASTPol observations, consistently demonstrate a negative

power-law index for the polarimetric joint correlation; this has been

noted in other work as well (Planck Collaboration XIX 2015). This

negative dependence is expected between polarization fraction and

dispersion in polarization angles. On the one hand, highly depolar-

ized sightlines may be regions with high inclination with respect to

the line of sight, and these regions could have a high dispersion in

polarization angles if this inclination is significantly different from
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Figure 6. Joint PDFs of the dispersion in polarization angles and the polarization fraction for the BLASTPol Vela C observations (Fissel et al. 2016) (Blue),

Model A (Red), and Model B (Cyan). Top row is at pixel resolution and the bottom row is convolved with a Gaussian beam. Annotated are the 1D PDFs of the

two distributions. The principal component vectors are annotated by vectors; the principal eigenvalues, eigenvalue ratios, and implied power-law indices are

given in Table 4.

the mean magnetic field in the region. On the other hand, sightlines

might contain a significant degree of cancellation (resulting in de-

polarization) if there are significant changes in the magnetic field

orientation in that region; if these changes are at all in the plane-

of-sky direction, then they would show up in the dispersion in

polarization angles, raising it. However, the correlation is certainly

far from perfect. For each polarization fraction there is a fairly wide

range in dispersion in polarization angles, and vice versa. More-

over, any power-law index calculation, be it based on the principal

components or based on linear regression, will be dominated by

the highest probability density regions. Given the very different

asymptotic behaviour of the polarization fraction and dispersion in

polarization angles, the power-law index likely encapsulates the be-

haviour of the most common regions found between the extremes

in either quantity.

In Sections 3 and 4, we noted the common behaviour in the po-

larization fraction and dispersion in polarization angle distributions

for each simulation when viewed from the y and z lines of sight,

which indicates the insensitivity of these distributions to the typical

column length. We find this behaviour again in the polarimetric

joint correlation, in this case in terms of the power-law index and

correlation coefficients. The shallowness of the power-law index ap-

pears to be another signature of high plane-of-sky magnetic order.

Interpreting this in terms of the relation between magnetic disorder

as measured by S and magnetic disorder as measured by p, then

the shallow power law is likely a consequence of the significantly

reduced width in the polarization fraction. This offers a clue into

Table 4. PCA implied power-law index and Pearson/Spearman correlation

coefficients for the dispersion in polarization angles versus polarization

fraction joint PDF.

LOS Model Beam Index ρP, Sp ρS, Sp

x-LOS A Pixel −0.814 −0.577 −0.555

0.5 pc −0.936 −0.682 −0.660

B Pixel −1.020 −0.514 −0.555

0.5 pc −1.058 −0.479 −0.494

y-LOS A Pixel −0.275 −0.529 −0.495

0.5 pc −0.190 −0.439 −0.413

B Pixel −0.098 −0.507 −0.385

0.5 pc −0.043 −0.234 −0.008

z-LOS A Pixel −0.321 −0.511 −0.419

0.5 pc −0.385 −0.645 −0.600

B Pixel −0.072 −0.292 −0.109

0.5 pc −0.037 −0.165 −0.163

BLASTPol – 0.5 pc −0.969 −0.684 −0.635

what kind of magnetic disorder each polarimetric observable mea-

sures: the polarization fraction is dependent on both inclination and

cancellation within the line of sight. A strong plane-of-sky magnetic

field tends to directly reduce inclination. When projecting the small

variations from the mean-magnetic field on to the plane of sky,

the angular differences should nevertheless remain small. When the

mean-magnetic field is instead parallel to the line of sight, the mag-

netic field tends to produce a high degree of inclination within the
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sightline. Additionally, small variations with respect to the mean

magnetic field, even though they might be small, could introduce

significant angular differences within the column once projected on

to the plane of sky, raising the effects of cancellation. We have also

noted in Section 4 that the width of the dispersion in polarization

angles distribution changes very little between different lines of

sight or between Model A and Model B; the distribution is instead

set by the mean angle dispersion, which defines the overall level

of plane-of-sky magnetic disorder. In the presence of strong plane-

of-sky magnetic order (the y and z lines of sight) S is only weakly

anticorrelated with p, whereas a strong correlation is noted when

the plane-of-sky mean magnetic field is suppressed (the x line of

sight). Therefore, strong plane-of-sky magnetic order de-correlates

these two measures of magnetic disorder.

The one-dimensional distributions of polarization fraction and

dispersion in polarization angles alone suggest that the plane-of-sky

magnetic field in Vela C is inconsistent with an ordered plane-of-sky

magnetic field such as that found in both Models when viewed from

the y and z lines of sight. Given that the agreement persists not only

in distribution shape and extent but also in mutual dependence, this

suggestion is strengthened significantly. This can be interpreted in

several ways. On the one hand, the intrinsic magnetic disorder of

the three lines of sight does not change for any given simulation; the

only change is the angle at which it is viewed. It may be that Vela C

happens to be serendipitously aligned relative to our viewing angle,

and that contributions from the highly ordered mean magnetic field

are suppressed in Vela C. However, it is very unlikely for Vela C to

have the highly ordered mean magnetic field of our highly idealized

simulations.

On the other hand, we note that the three key quantities indi-

cating agreement/disagreement – polarization fraction distribution

width, mean angle dispersion, and polarimetric correlation power-

law index – differ between models A and B in the y and z lines of

sight, indicating dependence on the level of turbulence and mag-

netization in the presence of strong magnetic order in the plane

of sky. A higher turbulence level/lower magnetization (model A)

has better agreement (with respect to these three quantities) with

the BLASTPol values. It may be possible that agreement can be

achieved by increasing the Alfvén Mach number in the post-shock

region (thus increasing the importance of turbulence and decreas-

ing the importance of magnetization). The sensitivity of these key

quantities on turbulence and magnetization, in this context, supports

the notion that the x line-of-sight distributions (and the observed

BLASTPol distributions) are realizations of an apparently highly

disordered plane-of-sky magnetic field. If this is the case, then there

is a degeneracy: it may not be possible to distinguish between the

effects of high super-Alfvénic turbulence and suppression of the

mean magnetic field in the plane of sky purely through studying

the polarimetric distributions alone. It may be possible to break this

degeneracy though the use of velocity information obtained from

molecular line observations.

6 J O I N T C O R R E L AT I O N S IN VO LV I N G

C O L U M N D E N S I T Y

We are not limited to considering only the polarization fraction

and dispersion in polarization angles in our comparisons. Corre-

lations involving the column density have long been studied as

part of both observational polarimetric studies (Wolf, Launhardt &

Henning 2003; Planck Collaboration XIX 2015; Fissel et al. 2016)

and theoretical investigation (Cho & Lazarian 2005; Falceta-

Gonçalves et al. 2008; Poidevin et al. 2013; Planck Collaboration

Table 5. PCA implied power-law index and Pearson/Spearman correlation

coefficients for the column density versus polarization fraction joint PDF.

LOS Model Beam Index ρP, Np ρS, Np

x-LOS A Pixel 15.59 0.029 0.026

0.5 pc − 5.168 − 0.240 − 0.227

B Pixel 5.794 0.174 0.171

0.5 pc 333.3 0.005 0.036

y-LOS A Pixel − 0.121 − 0.156 − 0.137

0.5 pc − 0.184 − 0.412 − 0.366

B Pixel − 0.088 − 0.276 − 0.073

0.5 pc − 0.091 − 0.258 − 0.045

z-LOS A Pixel − 0.064 − 0.026 0.036

0.5 pc − 0.417 − 0.252 − 0.198

B Pixel 0.117 0.122 0.436

0.5 pc 0.009 0.011 0.327

BLASTPol – 0.5pc − 1.029 − 0.542 − 0.564

Table 6. PCA implied power-law index and Pearson/Spearman correlation

coefficients for the column density versus dispersion in polarization angles

joint PDF.

LOS Model Beam Index ρP, NS ρS, NS

x-LOS A Pixel 2.881 0.280 0.259

0.5 pc 7.021 0.189 0.172

B Pixel 6.728 0.145 0.148

0.5 pc 28.54 − 0.069 − 0.089

y-LOS A Pixel 1.613 0.421 0.366

0.5 pc 1.159 0.140 0.153

B Pixel 2.456 0.445 0.422

0.5 pc − 11.72 − 0.105 − 0.111

z-LOS A Pixel 2.382 0.493 0.472

0.5 pc 3.350 0.282 0.283

B Pixel 4.544 0.510 0.441

0.5 pc 18.85 0.120 0.098

BLASTPol – 0.5 pc 1.250 0.164 0.167

XX 2015; Chen et al. 2016). Much work has focused on the po-

larization fraction – column density joint correlation, which has

typically been fit to a form p ∝ Nγ , where γ is a power-law index

called the depolarization parameter in Poidevin et al. (2013). The

depolarization parameter, and its equivalent for the dispersion in

polarization angles – column density joint correlation, has usually

been found by computing linear regression in log–log space (Fissel

et al. 2016). Using our alternative measure using the principal com-

ponents, we derive a depolarization parameter for BLASTPol equal

to −1.029, which is about twice that quoted in Fissel et al. (2016);

this dependence is moderately strong as measured by the correla-

tion coefficients (see Table 5). This is consistent with other quoted

values in the literature which range from −0.5 to −1.5 (Cho &

Lazarian 2005; Falceta-Gonçalves et al. 2008; Poidevin et al. 2013;

Planck Collaboration XX 2015; Chen et al. 2016). The dispersion

in polarization angles – column density joint correlation has been

less well explored. For BLASTPol, we determine a power-law in-

dex of 1.250, which is much higher than the value reported in Fissel

et al. (2016); none the less, we also find low correlation coefficients,

which indicate a weak dependence (see Table 6).

We first turn our attention to the polarization fraction – column

density joint correlations, which may be found in Fig. 7. The de-

polarization parameters and correlation coefficients may be found

in Table 5. We note first that neither the x line of sight nor the

y and z lines of sight agree very well with the BLASTPol data.

There is similar behaviour between the y and z lines of sight, as we
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Figure 7. Joint PDFs of the column density and the polarization fraction for the BLASTPol Vela C observations (Fissel et al. 2016) (Blue), Model A (Red),

and Model B (Cyan). Top row is at pixel resolution and the bottom row is convolved with a Gaussian beam. Annotated are the 1D PDFs of the two distributions.

The principal component vectors are annotated by vectors; the principal eigenvalues, eigenvalue ratios, and implied power-law indices are given in Table 5.

The annotated orange lines represent the polarization sensitivity limit to BLASTPol, as discussed in Section 6.

might expect given the similarity of the polarization fraction distri-

butions for these two lines of sight. The depolarization parameter

for these lines of sight is generally weakly negative in most cases

(with the exception of the z line-of-sight view of Model B) and the

correlations are generally poor (|ρP| and |ρS| < <1). On the other

hand, the x line of sight displays significantly different behaviour,

and has depolarization parameters deviating far from the normally

quoted values (−1.5 < γ < −0.5) for both models. The very low

correlation coefficients indicate that a power-law dependence may

not necessarily be descriptive for these distributions. In all cases,

beam convolution distorts the joint distributions, but generally only

introduces modest changes to the principal components.8

The column density–polarization fraction correlation might

be disproportionately affected by unavoidable limitations to the

BLASTPol polarization sensitivity. BLASTPol measurements re-

quire a sufficient signal-to-noise measurement of the polarized in-

tensity, which is proportional to the product of the polarization frac-

tion and column density. This limitation would eliminate portions

of the joint correlation that could not produce a sufficiently high

polarized intensity. However, the estimated minimum polarization

fraction that BLASTPol could measure is 10−3 (Fissel et al. 2016);

8 In the case of the x line of sight, the principal component points nearly

straight down where there is an infinite discontinuity. It changes from nega-

tive to positive infinity as the principal component rotates counter-clockwise

through this point.

thus the minimum polarized intensity BLASTPol requires (in col-

umn density units) is of the order of 1020 cm−2.9 An orange line

annotating this threshold is included in the plots in Fig. 7. There

is some distance between the edge of the BLASTPol distribution

and this line; while some small portion of the distribution may

have been lost, it is very unlikely that enough sightlines were lost

to significantly alter the principal components, which are domi-

nated by a large number of measurements well within the range of

BLASTPol.10 We do not believe this effect can explain any lack

of agreement between our simulations and the BLASTPol observa-

tions.

Next, we consider the dispersion in polarization angles–column

density joint correlations, found in Fig. 8. The principal component-

implied power-law indices for these correlations may be found in

Table 6, along with the correlation coefficients ρP and ρS. The z line

of sight displays moderately stronger correlations than BLAST-

Pol or the other lines of sight; Model A has moderately positive

9 This can be derived from the aforementioned minimum polarization frac-

tion quoted in Fissel et al. (2016) and the maximum column densities in

those same observations.
10 This sensitivity limit does not necessarily apply to the synthetic obser-

vations; we can shift the distributions above the sensitivity limit using an

appropriate scaling transformation (see Section 2.2.2) and choice of p0,

which we have not done for clarity, to avoid crowding the contours in the

plot.
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Figure 8. Joint PDFs of the column density and the dispersion in polarization angles for the BLASTPol Vela C observations (Fissel et al. 2016) (Blue), Model

A (Red), and Model B (Cyan). Top row is at pixel resolution and the bottom row is convolved with a Gaussian beam. Annotated are the 1D PDFs of the two

distributions. The principal component vectors are annotated; the principal eigenvalues, eigenvalue ratios, and implied power-law indices are given in Table 6.

correlations, while those of Model B are very steep. This is pos-

sibly just a reflection of the relative width of the column density

distributions in this line of sight when compared to the width of the

S distribution; in the other lines of sight the widths are relatively

comparable, but in the z line of sight the column density width is

narrower. In general, the rest of the joint correlations display weak

dependence, and beam convolution tends to reduce the strength of

these correlations. Altogether, our results tend to agree with the

conclusion that the dispersion in polarization angles is relatively

uncorrelated with column density, as was reported in BLASTPol.

Correlations with the column density have been interpreted in

multiple ways. The depolarization parameter has commonly been

used to constrain the microphysics of grain alignment, which may

vary due to local conditions in the cloud (Cho & Lazarian 2005;

Whittet et al. 2008). Consistent with previous efforts (Falceta-

Gonçalves et al. 2008) we find a limited amount of depolarization

that arises purely from magnetohydrodynamical effects, but these

effects are weak if the principal component derived slopes are to

be believed. The shape of the joint correlations and their weak cor-

relation coefficients suggest that these effects are weaker still, and

given the inability of our simulations to achieve agreement with

the BLASTPol results – or any previously reported depolarization

parameters – it is likely that the assumption of homogeneous grain

alignment could be responsible. Heterogeneous grain alignment,

where polarization efficiency depends on local conditions such as

the gas density, may affect the results we have presented. Correc-

tions to the Stokes parameters would be present in first order in the

polarization fraction; however, the polarization angle (as it is com-

puted from the arctangent of a ratio) is less sensitive to these correc-

tions. Therefore, the dispersion in polarization angles is likely less

sensitive to these effects. We will address the role of heterogeneous

grain alignment, and its effect on the polarimetric observables, in

subsequent work.

7 INTERMEDI ATE I NCLI NATI ON

The excellent agreement with BLASTPol provided by the x line

of sight, with respect to the distributions of the polarimetric ob-

servables and the polarimetric joint correlation, lends weight to the

conclusion that Vela C might have common plane-of-sky magnetic

structure with the x line of sight. Consistently we have demonstrated

that it is possible to achieve polarimetric distributions strikingly sim-

ilar to the BLASTPol distributions provided that the mean magnetic

field is not in the plane of sky, as is the case in the x line of sight.

However, this is a very specific arrangement in a highly idealized

simulation: a real MC, such as Vela C, will very likely not have an

ordered mean magnetic field that happens to be perfectly aligned

with respect to the observer. One may ask: does the agreement with

BLASTPol requires such an orientation? Is it possible to achieve

agreement with the BLASTPol distributions with a mean magnetic

field that is only moderately suppressed with respect to the line

of sight? We explore such an arrangement by computing synthetic

observations along lines of sight inclined at some angle between
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Figure 9. PDFs of the polarization fraction (left column) and dispersion in polarization angles (right column) for both Model A (top row), and Model B

(bottom row) after rotating by 0◦ (violet, identical to the z line of sight), 15◦ (cyan), 30◦ (blue), 45◦ (green), 60◦ (yellow), 75◦ (orange), and 90◦ (red, identical

to the x line of sight). The BLASTPol distribution is annotated in black.

Table 7. Mean polarization fraction, mean dispersion in polarization angles, and polarization fraction distribution widths for the p and S distributions;

and power-law indices inferred from the principal components, and the Pearson and Spearman rank correlation coefficients, for the S versus p and N

versus p joint correlations, all computed for several inclination angles between the z and x lines of sight.

Angle Model μG(p) μG(S) log σG(p) S–p ρP, Sp ρS, Sp N–p ρP, Np ρS, Np

index index

15◦ A 0.066 2.33◦ 0.201 −0.383 −0.571 −0.467 − 2.567 − 0.132 − 0.083

B 0.101 0.71◦ 0.058 −0.060 −0.292 −0.206 0.099 0.193 0.356

30◦ A 0.064 2.61◦ 0.225 −0.471 −0.536 −0.408 − 4.477 − 0.151 − 0.156

B 0.101 0.84
◦

0.073 −0.125 −0.487 −0.393 − 0.198 − 0.262 − 0.103

45
◦

A 0.055 3.05
◦

0.250 −0.483 −0.517 −0.391 − 14.46 − 0.065 − 0.028

B 0.084 0.80
◦

0.110 −0.193 −0.536 −0.468 − 0.703 − 0.431 − 0.436

60
◦

A 0.039 4.96
◦

0.263 −0.540 −0.510 −0.419 4.876 0.124 0.173

B 0.053 1.38
◦

0.159 −0.274 −0.520 −0.441 − 1.889 − 0.367 − 0.408

75
◦

A 0.023 7.53
◦

0.315 −0.757 −0.614 −0.583 − 7.174 − 0.059 − 0.041

B 0.021 4.19
◦

0.231 −0.322 −0.324 −0.251 5.497 0.245 0.205

the x line-of-sight direction and the z line of sight.11 In such an

arrangement the mean magnetic field has some component in the

plane of sky, but its ordering influence is reduced in comparison to

the extreme cases.

Fig. 9 contains the distributions of polarization fraction and dis-

persion in polarization angles (computed at pixel scale) for a range

of intermediate inclination angles between the z and x lines of sight.

The mean polarization fraction, mean angle dispersion, and width

in polarization fraction are presented in Table 7. The convention

is that 0◦ indicates the z line of sight and 90◦ indicates the x line

of sight. As the inclination angle increases, the polarization frac-

tion distributions gradually increase in width; their peaks become

more suppressed, becoming closer to the BLASTPol distribution.

Similarly, the mean angle dispersion increases with increasing in-

clination angle, raising the overall level of the S distribution. The

Model A distributions become closer to the BLASTPol distribution

at a smaller inclination angle than the Model B distributions do

(compare the 60◦ and 75◦ distributions for Model A to Model B in

Fig. 9), but agreement is reached before completely reaching the

x line of sight. We find similar behaviour in the polarimetric joint

correlation, which is presented for a few intermediate inclination an-

11 We compare only to the z line-of-sight given the similarity of the y line-

of-sight and z line-of-sight distributions demonstrated in Sections 3 and 4.

gles in the top row of Fig. 10; the power-law indices and correlation

coefficients are also found in Table 7. The distributions steepen (as

measured by power-law index) as the inclination angle increases,

and become closer to the BLASTPol distribution. Again, Model A

reaches agreement with BLASTPol before Model B; Model A has

nearly identical principal components to BLASTPol in the 75◦ incli-

nation (left column, Fig. 10), yet Model B remains shallower. Based

on these comparisons, it is clear that Model A has consistency with

BLASTPol at inclinations greater than at least 75◦ (measured from

the z line of sight), while Model B would require higher inclinations.

These results suggest that the BLASTPol observations are con-

sistent not just with one single orientation but a range of possible

inclinations. Additionally, we see again that higher levels of turbu-

lence (Model A) are consistent with a wider range of inclination

angles; we can see this by directly comparing the Model A and

B distributions for each inclination angle in Fig. 9. At face value,

one might conclude that Vela C shares the same magnetic struc-

ture as our simulations (within some range of possible inclinations)

which may vary depending on the relative level of turbulence and

magnetization. However, we note that our simulations only repre-

sent simplified, idealized scenarios. Another, perhaps more likely,

interpretation of the inclination angle is as a mixing angle, indicat-

ing the proportion of the potentially irregular mean magnetic field

that happens to be in the plane of sky. This would indicate that the

polarimetric distributions in Vela C are at least partially accounted
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Figure 10. Joint PDFs of the dispersion in polarization angles versus polarization fraction (top row) and column density versus polarization fraction (bottom

row) for three inclination angles, intermediate between 0◦ (magnetically ordered, face-on view, z line of sight) and 90◦ (magnetically disordered, edge-on view,

x line of sight): 15◦ (right column), 45◦ (centre column), and 75◦ (left column).

for by suppression of the mean magnetic field to some degree with

respect to the plane-of-sky.

Regardless of the interpretation, our results demonstrate that there

is a significant degeneracy in apparent magnetic disorder. The key

polarimetric signatures of intrinsic magnetic disorder – high mean

angle dispersion, wide distributions in polarization fraction, and a

steep negative correlation between these two – can arise either from

a highly turbulent and low magnetization environment (intrinsic

magnetic disorder) or from suppression of the organizing influence

of the mean magnetic field in the plane-of-sky (a projection effect).

Each of these signatures in the y and z lines of sight are closer to

the BLASTPol values in Model A than Model B; and as mentioned,

agreement with BLASTPol is reached for Model A at less extreme

inclination than Model B. Highly disordered magnetic fields have

long been suspected of arising due to high turbulence and/or low

magnetization; however the signatures of magnetic disorder can be

affected as much or more by reducing the plane-of-sky component

of the mean magnetic field, which can, in principle, be relatively

strong. The consistency of the BLASTPol data with the x line-

of-sight distributions of Model B demonstrate this possibility, in

which sub-Alfvénic conditions are nevertheless consistent with ap-

parent signatures of high magnetic disorder.

One may also ask if an intermediate inclination angle can address

the issues raised in Section 6 with respect to the joint correlation

between polarization fraction and column density. It is conceiv-

able that an intermediate inclination angle may result in a principal

component consistent with BLASTPol and other observations of

the depolarization parameter. If that were the case, then a suitable

inclination angle choice may result in the appropriate power-law

index consistent with BLASTPol, though this might require some

fine-tuning. The bottom row of Fig. 10 contains the column density-

polarization fraction joint correlations for a few inclination angles;

the power-law indices may be found also in Table 7. There is a

modest agreement with the Model A column density–polarization

fraction distribution at 15◦ inclination (right column bottom row,

Fig. 10), which is peculiar given the evidence for agreement at large

rather than small inclination angles in the polarization fraction and

dispersion in polarization angles. It appears that the relative im-

portance of the vertically oriented principal component (dominated

by the width of the polarization fraction) increases as inclination

angle increases. This indicates that the difference between the x line

of sight and the y and z lines of sight appears to be an expression

of the previously identified increase in the width of polarization

fraction. Additionally, the discrepancy in correlation strength (as

measured by the correlation coefficients in Table 7) does not im-

prove with inclination; they remain significantly low compared to

the BLASTPol correlation coefficients in nearly all cases, including

15◦ (see Table 5). In this light, the modest agreement at 15◦ is likely
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a coincidence. We conclude that inclination cannot explain the dis-

agreement between our synthetic observations and the BLASTPol

observations, which supports the notion we articulated earlier that

the column density correlations need to be explored in the context

of heterogeneous grain alignment.

8 C O N C L U S I O N S

We provide a direct comparison between the BLASTPol observa-

tions of the Vela C molecular ridge (Fissel et al. 2016) and numerical

simulations of MCs with colliding flows (Chen & Ostriker 2015).

We perform this direct comparison by computing synthetic po-

larimetry of two numerical simulations (Models A and B; see

Table 1), and applying the same statistical analysis methods to both

the synthetic observations and the BLASTPol polarimetry data for

the Vela C MC. The BLASTPol observations provide an unprece-

dentedly high number of polarization pseudo-vectors for a single

MC, enabling our use of detailed statistical comparison with nu-

merical simulations. Our main conclusions are the following:

(i) We find that the distribution of polarization fraction p in Vela

C is rather broad when compared to our simulations observed with

the mean magnetic field parallel to the plane of sky (Section 3), and

shows remarkable consistency with the x line of sight, in which the

mean magnetic field is mostly parallel to the line of sight (Fig. 4).

We find that those lines of sight in which the mean magnetic field

is primarily in the plane of sky (the y and z lines of sight) produce

much more highly peaked polarization fraction distributions, indi-

cating little variability. In this regime, the width of the polarization

fraction PDF appears to be related to the level of turbulence and

magnetization, and is not substantially affected by differences in the

amount of material in the sightlines; higher turbulence/lower mag-

netization widens the distribution. In contrast, the x line of sight

shows little variability in regards to turbulence or magnetization.

We also demonstrate that beam convolution narrows the p distribu-

tions (bottom panel of Fig. 4), and therefore exacerbates the degree

to which the y and z lines of sight disagree with the BLASTPol

observations. Finally, we demonstrate the existence of linearity in

the depolarized tail of the p distribution, which is a signature for

power-law behaviour in the PDF.

(ii) Similarly, our examination of the dispersion in polarization

angles S (Section 4) demonstrates that the mean angle dispersion in

Vela C is rather high, and is again remarkably consistent with the x

line of sight (Fig. 5). We find that the y and z lines of sight produce S

distributions with relatively very low mean angle dispersions, which

can be affected by the level of turbulence and magnetization: higher

turbulence/lower magnetization (Model A versus Model B) drives

the mean angle dispersion higher. On the other hand, the x line of

sight shows exceptionally little dependence on turbulence or mag-

netization. Interestingly, we find that the width of the distributions

varies little between all lines of sight of both simulations, being

substantially affected only by beam convolution (bottom panel of

Fig. 5), which tends to improve agreement with the BLASTPol

observations. Finally, we note that near the value S = π/
√

12 (the

value of S where a collection of random vectors converges to) exists

filamentary features in S, similar to structures that have been ob-

served by Planck (Planck Collaboration XIX 2015) and BLASTPol

(Fissel et al. 2016).

(iii) We further confirm remarkable consistency between the x

line of sight and the BLASTPol observations of Vela C in our

examination of the joint correlation between polarization fraction

and dispersion in polarization angles in Section 5 (Fig. 6). The

power-law indices and correlation coefficients (Table 4) match those

of BLASTPol very well for both simulations. This correlation is still

strong for the y and z lines of sight, but the power-law indices are

much shallower. In these lines of sight it appears that the steepness

of the slope is affected by higher turbulence/lower magnetization,

with steeper slopes found in Model A. The power-law indices in the

x line of sight are not much affected by the level of turbulence and

magnetization, consistent with our results for the polarization frac-

tion and dispersion in polarization angles alone. We also note that

beam convolution has little effect on the joint correlations (Fig. 6,

bottom panel). Altogether, we present strong evidence for relatively

high apparent magnetic disorder in Vela C, but we note that this

apparent magnetic disorder may not be a true proxy for intrinsic

magnetic disorder arising from weak magnetization or strong turbu-

lence. There is a degeneracy between this type of magnetic disorder

and disorder that arises due to large inclination of the mean mag-

netic field with respect to the plane of sky, leading to the absence

of an ordered plane-of-sky magnetic field.

(iv) Examining the joint correlations involving column density

(Section 6), we find that none of the lines of sight particularly match

the BLASTPol observations. The polarization fraction versus col-

umn density correlations are generally weakly correlated (Fig. 7). In

the y and z lines of sight, the power-law index is much shallower than

measured in BLASTPol, and for the x line of sight, the magnitude

of the power-law index is very large, but this has little weight given

the weakness of the correlation as measured by the correlation co-

efficients (Table 5). On the other hand, where BLASTPol saw little

correlation in the dispersion in polarization angles–column density

joint correlation, in some cases the simulations display a moderate

positive correlation (e.g. the z line of sight in Model A in Fig. 8

and Table 6). We argue that we are unable to match the BLASTPol

observations because we assumed homogeneous grain alignment,

and that while there are some purely MHD contributions to these

relationships, they are more likely dominated by the effects of grain

alignment physics. We will explore this in a future publication.

(v) By examining intermediate lines of sight between the x line of

sight and the z lines of sight (Section 7), we establish that agreement

with the BLASTPol data may be found within a range of inclination

angles, not just the pure x line of sight (Fig. 9). Model A is consistent

with BLASTPol at a wider range of inclination angles than Model

B; Model A is consistent with at least inclinations greater than 75◦

measured from the z to the x line of sight. As inclination increases

towards the z lines of sight, disagreement is worsened. We argue

that the inclination angle may be interpreted as a mixing angle

rather than a physical inclination, indicating the relative degree to

which the mean magnetic field is in the plane of sky, and that

agreement is found when enough of the ordering influence of the

mean magnetic field is suppressed by projection effects. We also

find little evidence that inclination can achieve agreement between

the simulations and BLASTPol joint distributions involving column

density (Fig. 10), adding further evidence that MHD structure alone

cannot account for the observed correlations with column density.

To summarize, our comparisons of colliding flow simulations to

the BLASTPol observations suggest that Vela C has a high degree

of apparent magnetic field disorder, as supported by studies of the

polarization fraction and dispersion in polarization angles. Whether

this magnetic disorder is merely apparent (due to fortuitous align-

ment of the magnetic field relative to the line of sight rather than

significant intrinsic magnetic field disorder) cannot be determined

from our studies alone. We also find that the correlations involv-

ing column density cannot be explained by MHD structure alone;
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future work is needed modelling the effects of heterogeneous grain

alignment.
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