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ABSTRACT

The BLASTPol observations of Vela C have provided the most detailed characterization of
the polarization fraction p and dispersion in polarization angles S for a molecular cloud. We
compare the observed distributions of p and S with those obtained in synthetic observations
of simulations of molecular clouds, assuming homogeneous grain alignment. We find that
the orientation of the mean magnetic field relative to the observer has a significant effect on
the p and S distributions. These distributions for Vela C are most consistent with synthetic
observations where the mean magnetic field is close to the line of sight. Our results point to
apparent magnetic disorder in the Vela C molecular cloud, although it can be due to either an
inclination effect (i.e. observing close to the mean field direction) or significant field tangling
from strong turbulence/low magnetization. The joint correlations of p with column density
and of S with column density for the synthetic observations generally agree poorly with the
Vela C joint correlations, suggesting that understanding these correlations requires a more
sophisticated treatment of grain alignment physics.
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ISM: structure.

1 INTRODUCTION

Stars are typically formed in molecular clouds (MCs), as a result
of runaway collapse in which gas self-gravity overwhelms ther-
mal and magnetic pressure support (Shu, Adams & Lizano 1987;
McKee & Ostriker 2007). This process is sensitive to the local mag-
netic field conditions, including magnetic field strength and the rel-
ative organization of the magnetic field (herein, collectively referred
to as magnetic structure) within the MC (McKee & Ostriker 2007;
Crutcher 2012). Magnetic fields provide direct resistance against
gravitational collapse; magnetic tension forces tend to constrain
gas motions; and magnetized media support additional wave inter-
actions (Alfvén and magnetosonic waves). These effects vary in
importance across many scales of hierarchical structure, and if suf-
ficiently strong can even halt gravitational collapse and prevent star
formation (Mestel & Spitzer 1956; Strittmatter 1966; Mouschovias
& Spitzer 1976). In short, a comprehensive understanding of star
formation requires a detailed understanding of magnetic structure
in MCs.

On the other hand, magnetic structure is difficult to ascertain, be-
ing relatively inaccessible to observations. Through measurement
of polarized dust emission, far-IR and submillimetre polarimetry
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has emerged as a most promising technique for accessing MC
magnetic structure (Hildebrand, Dragovan & Novak 1984; Hilde-
brand 1988; Novak et al. 1997; Dotson et al. 2000; Hildebrand
et al. 2000; Matthews et al. 2009). Dust grains in MCs are thought
to align, on average, perpendicular to the local magnetic field
(Davis & Greenstein 1951; Lazarian 2007; Andersson, Lazarian &
Vaillancourt 2015), and therefore provide a measure of line-of-
sight averaged magnetic structure, in particular the orientation of
the magnetic field projected on to the plane of sky. Maps of polarized
dust emission provide crucial means to test theoretical expectations
of magnetic structure (Chapman et al. 2013; Hull et al. 2013; Li
et al. 2014; Zhang et al. 2014; Cox et al. 2015; Ching et al. 2016;
Planck Collaboration XXXIII 2016). However, use of this informa-
tion has been limited in the past, as each individual polarization
pseudo-vector is difficult to interpret alone, and is necessarily lim-
ited by both projection and uncertainties in the physics of grain
alignment.

The magnetic structure of MCs can be studied using numeri-
cal simulations, which provide a fully three-dimensional picture
of both the gas and magnetic field structure (Ostriker, Stone &
Gammie 2001; Li et al. 2004; Nakamura & Li 2008; Li, McKee
& Klein 2015). Using these simulations we can compute synthetic
observations under simplifying assumptions about grain alignment
physics, which can be directly compared with observational data.
Examining both the detailed three-dimensional magnetic structure
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and the resulting two-dimensional polarimetric observables can help
determine specifically dynamical effects (arising purely from gas
and magnetic structure) and help disentangle them from effects that
might arise exclusively due to grain alignment physics. These nu-
merical efforts have considerable statistical power due to the high
theoretically achievable spatial resolution, but nevertheless suffer
from a fundamental limitation: without observations that have com-
parable statistical power, it is unclear whether these models are
reasonable models of real MCs.

Until recently high-resolution sub-mm maps were only available
from ground-based polarimeters, which were limited to observ-
ing either extremely bright evolved MCs, or small areas within
clouds because of atmospheric transmission and loading. Recently
the Planck Satellite has produced all-sky polarization maps at
850 um (Planck Collaboration XIX 2015), which has enabled de-
tailed studies of magnetic field morphology for nearby low-mass
clouds at 10 arcmin resolution (Planck Collaboration XXXV 2016).
In addition the Balloon-borne Large Aperture Submillimeter Tele-
scope for Polarimetry (Galitzki et al. 2014) has produced a sim-
ilarly detailed map for the more distant (~700 pc) early-stage gi-
ant MC Vela C. With over a thousand independent polarization
pseudo-vector measurements and 0.5 parsec resolution, these ob-
servations represent a crucial advance towards achieving statistical
power parity with numerical simulations. Future flights with the
next generation BLAST-TNG instrument promise observations of
more star-forming MC targets with even higher sensitivity.

We present the first detailed statistical comparison of the BLAST-
Pol observations with synthetic polarimetric observations of nu-
merical simulations of star-forming regions, which were conducted
using the ATHENA code (Stone et al. 2008). We used a colliding-flow,
oblique MHD shock set-up that was used in Chen, King & Li (2016)
and Chen & Ostriker (2014, 2015). This geometry is motivated by
the observation that it is typically in regions with large-scale conver-
gent flows that the gas becomes significantly compressed and results
in gravitational instability to collapse (Mac Low & Klessen 2004;
Ballesteros-Paredes et al. 2007). We use the post-shock region of
these simulations as idealized models of a subset of a star-forming
MC. We characterize the synthetic and BLASTPol observational
data sets statistically, determining both the probability distributions
of individual observables and joint correlations between observ-
ables.

Our paper is organized as follows. In Section 2 we describe the
BLASTPol observations (Section 2.1) and the numerical simula-
tions (Section 2.2) used in our comparison, as well as describe
the methods used to produce the synthetic polarimetric observa-
tions (Section 2.3) and the statistical techniques we used to analyse
both data sets (Section 2.4). Next we discuss the probability dis-
tributions of the polarization fraction in Section 3. We discuss the
probability distributions of the dispersion in polarization angles in
Section 4. Next we consider the joint correlation between the po-
larization fraction and angle dispersion in Section 5. We consider
joint correlations between the column density and the polarimetric
observables in Section 6. We discuss the effect of intermediate in-
clination of the line of sight in Section 7. Finally we conclude and
summarize in Section 8.

2 METHODS

2.1 BLASTPol observations of Vela C

BLASTPol is a high-altitude balloon-borne polarimeter, which
maps the sky simultaneously in three wide frequency bands
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(Af/f =~ 30percent) centred at 250, 350, and 500 wm (Galitzki
et al. 2014). These frequency bands span the spectral peak of cold
(10-20K) dust, and since the instrument is not limited by atmo-
spheric loading it has both higher sensitivity and can recover larger
scale structures than ground-based polarimeters.

On 2012 December 26 BLASTPol launched from the NASA
Long Duration Balloon Facility near McMurdo Station and at-
tained an average altitude of ~38.5 km. The primary science target
of the BLASTPol 2012 flight was the nearby VelaC giant MC
(d~ 700=£ 200 pc; Liseau et al. 1992). VelaC is a massive cloud:
it contains 5x 10* M dense gas as traced by C'*O (Yamaguchi
etal. 1999). The cloud also appears to be a rare example of a GMC at
an early evolutionary state in that most of the cloud appears cold and
not affected by feedback from previous generations of massive star
formation (Baba et al. 2004; Netterfield et al. 2009; Hill et al. 2011).
This makes VelaC an excellent target for studying how magnetic
fields affect the formation of MCs and dense cloud substructure.

BLASTPol spent 50h mapping VelaC during the 2012 flight,
covering four of the five cloud subregions identified in Hill et al.
(2011). Fissel et al. (2016) describes the data reduction pipeline,
calibration, and polarization de-biasing corrections. As the tele-
scope beam was non-Gaussian additional smoothing was required
to avoid spurious polarization due to sky rotation. In this paper
we use the BLASTPol 500 um data, which required smoothing
only to 2.5 arcmin full width at half-maximum (FWHM) (0.5 pc)
resolution, rather than the 250 or 350 wm bands, both of which re-
quired smoothing to 3.0 arcmin FWHM resolution.! The resulting
3.1 deg? polarization map contains over 1000 independent polariza-
tion measurements.

Fissel et al. (2016) studied the correlations between the 500 pm
polarization fraction p, column density (Ny), and the polarization
angle dispersion on 0.5 pc scales S. Here we compare our syn-
thetic observations to their sample of interstellar radiation field
heated sightlines within the cloud boundaries defined by Hill et al.
(2011), which excludes sightlines heated by the compact Hu re-
gion RCW 36. In their analysis Fissel et al. (2016) also exclude
any sightlines with p < 0.1 percent, p < 30, or where p varies
significantly using different polarized diffuse ISM background sub-
traction methods. The final catalogue contains 2235 approximately
Nyquist sampled sightlines.

2.2 Numerical simulations

2.2.1 Converging flow simulations

The simulations in this study are similar to those discussed in Chen
& Ostriker (2014, 2015). These are fully 3D, ideal MHD collid-
ing flow simulations with gravity conducted using the ATHENA code
(Stone et al. 2008). The colliding flow is adopted as an idealization
of the large-scale turbulence that is thought to be responsible for
driving dense structure formation but is difficult to capture numer-
ically in grid-based simulations like ours that seek to study cloud
structures down to the core scale or smaller because of limited
dynamic range. An isothermal equation of state is adopted with a
sound speed of 0.20kms~!, consistent with the nearly isothermal
conditions found in MCs. Initially the simulated region is a uni-
form density box, with a constant magnetic field in the x—z plane,
inclined 20° with respect to the z-axis. A supersonic, plane-parallel

! As noted in Soler et al. (2017), the polarization angles are generally con-
sistent between the three BLASTPol bands.
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Figure 1. Geometry of the ATHENA converging flow simulations, illustrating
the notational conventions labelling the different lines of sight (x, y, z).
The converging flows (red arrows) produce a sheet-like post-shock region
(green slab); the partially inclined initial magnetic field (cyan lines) becomes
amplified during shock compression and results in a prevailing direction in
the plane of the post-shock region. The pre-shock region is perturbed by
initial turbulence (not indicated for simplicity), which is carried by the
converging flow into the post-shock region.

converging flow with a Mach number M = 10 is driven in the
=z direction, which strongly compresses the gas to create a dense
post-shock region with a magnetic field amplified by compression.
The modestly oblique pre-shock magnetic field becomes flattened
and is nearly parallel to the x—y plane in the post-shock region.
Material is continuously fed into the simulation through inflow
boundary conditions; periodic boundary conditions are adopted on
the x and y axes. Turbulence is introduced by perturbing the veloc-
ity field, adopting a Gaussian random distribution with a Fourier
power spectrum v} oc k= (Gong & Ostriker 2011). The resulting
geometric set-up is illustrated in Fig. 1.

Using this general set-up, we adopted two simulations cho-
sen to study the role of turbulence and magnetization in shap-
ing the polarimetric observables of the post-shock region. Some
important parameters for these two simulations can be found in
Table 1. The first model (Model A) used a background density of
po = 50cm™3, an initial magnetic field strength of 3.47 uG, for a
simulation box of side-length 10 pc. This model was designed to
mimic a large-scale cloud—cloud collision, which has been consid-
ered as one of the formation scenarios for denser MCs (Ballesteros-
Paredes, Hartmann & Vazquez-Semadeni 1999; Koyama & Inut-
suka 2000; Vazquez-Semadeni et al. 2006; Heitsch et al. 2008;
Banerjee et al. 2009; Inoue & Fukui 2013). For this model, the
velocity perturbation (o = 0.7 kms~!) was chosen by setting the
virial number of the simulated cloud, oi; = (5Rcioud/ GMCk,ud)avz,
where Reoud = Leiowd/2 and Mows = 47R3400/3 equal to
2. The resulting post-shock region for this model is strongly
supersonic (M = 10.4) and super-Alfvénic (M, = 2.43). The

second model (Model B) adopted was the model M10B10 from
Chen & Ostriker (2015). The model parameters for this simula-
tion were instead chosen to study a star-forming region inside
a magnetized, turbulent dense cloud: a background gas density
of 1000cm™3, an initial magnetic field strength of 10 uG, and
a velocity perturbation of 0.14kms~!' were chosen for a sim-
ulation box of side-length 1pc for this purpose. The velocity
perturbation was chosen by adopting Larson’s scaling law for
turbulence in MCs, o, o I'/? [see Gong & Ostriker (2011) or
Chen & Ostriker (2014, 2015) for a detailed derivation]. The
resulting post-shock region is modestly supersonic (M = 2.85)
and sub- to trans-Alfvénic (M, = 0.81). To better compare with
the BLASTPol observations that are on multiparsec scales, we
rescale this model such that the box side-length is 10pc (see
Section 2.2.2 below).

The converging flow geometry and slab-like post-shock regions
of these two models provide a unique way to study how intrin-
sic gas and magnetic structure affect polarimetric observations. An
observer looking down each coordinate axis perceives three dif-
ferent conditions with respect to the combined gas-magnetic field
structure. An observer whose line of sight is in the z-direction has
a face-on view of the post-shock region with relatively short gas
column lengths. In this line of sight the mean magnetic field is
primarily in the plane of sky; only a small component of the mag-
netic field is parallel to the line of sight. An observer whose line
of sight is in the y-direction instead has an edge-on view of the
post-shock region with longer gas column lengths, while neverthe-
less retaining a plane-of-sky oriented mean magnetic field with-
out a strong line-of-sight component. Finally an observer whose
line of sight is in the x-direction has again an edge-on view of
the post-shock region but a totally different mean magnetic field
orientation, being weak in the plane of sky and principally ori-
ented along the line of sight. Comparisons between the edge-on and
face-on views determine how the amount of material in the col-
umn affects polarimetric observations; comparisons between the
x line of sight and the other two determine how magnetic or-
ganization with respect to the observer affects the same. Lastly,
comparisons between our two models determine how turbulence
and magnetization (or ‘intrinsic’ magnetic disorder) can affect the
observations.

2.2.2 Scaling

Isothermal, ideal MHD simulations with gravity produce scalable
solutions: specific numerical values can be changed under appropri-
ately chosen scaling transformations which leave certain constants
and dimensionless numbers unchanged. The inclusion of gravity
demands that the numerical value of the gravitational constant G is
unchanged under this transformation; this constant has dimensions

[v]?

Gl= —>—.
] [L1[p]

ey

Table 1. Some properties of the two ATHENA simulations, including the initial number density, ng; the pre-shock inflow Mach
number, M o; the turbulent velocity perturbation, o; the initial magnetic field strength, Bp; the initial Alfvén Mach number,
M 0; and the post-shock sonic and Alfvén Mach numbers M ;s and M4 ps; and the post-shock plasma . The initial densities
and magnetic field strength for Model B have been scaled such that the box-length is 10 pc.

Simulation no M; o oy By Mao M ps M ps Bps
Model A 50.0cm ™3 10.0 0.70kms™~! 3.47 uG 2.83 10.4 243 0.11
Model B 10.0cm ™3 10.0 0.14kms™! 1.00 uG 4.40 2.85 0.81 0.16
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where [L] is the dimension of length, [p] are the dimensions of
density, and [v] are the dimensions of velocity. Additionally, the
plasma B = 8mpc?/ B (the ratio of thermal to magnetic pressure)
must also remain unchanged to ensure the magnetic field is scaled
appropriately. Plasma $ has dimensions

 [pllvP?
61="gp

where [B] are the dimensions of the magnetic field. In this study it
is desirable to leave the velocity unchanged since it is tied to the
sound speed, which is controlled by the molecular gas temperature
typically fixed at ~10 K. These constraints and choices provide a
complete (though not necessarily unique) scaling transformation for
length, density, and the magnetic field using a single multiplicative
factor A:

@

L
L — n 3)
p— A2p, )
B — AB. (5)

As mentioned above, we are free to scale Model B (originally at
a box-length of 1pc) to the same box-length as Model A (whose
box-length is 10 pc), provided that the density and magnetic field are
adjusted appropriately. These scaling transformations also provide
a degree of freedom with respect to the synthetic observations.
Column density quantities have dimensions [N] = [L][p], indicating
that under this transformation they are scaled by N — AN. Thus
we are free to scale the column densities determined from our
synthetic observations to values comparable to those determined
observationally, provided that we adjust the box-length, number
densities, and magnetic field strengths of our simulation.

2.3 Synthetic observations

2.3.1 The stokes parameters

Previous work (e.g. Lee & Draine 1985; Fiege & Pudritz 2000;
Kataoka, Machida & Tomisaka 2012; Planck Collaboration
XX 2015; Chen, King & Li 2016) has established standard practice
in the computation of synthetic Stokes parameters from MHD sim-
ulations. Suppose we define a Cartesian coordinate system where
the x and y coordinates define the plane of the sky (with y corre-
sponding, locally, to Galactic North for definiteness), and with our
line of sight s lying parallel to the z-axis. Then we may express
the synthetic Stokes parameters in terms of the local magnetic field
B = (B,, By, B.), the source function §,, and the optical depth 7,
(Planck Collaboration XX 2015):

- B!+ B} 2
I = /Sve" 1 - po T—g ds, (6)
B? - B?
Q ZPO/SUeiT“ (‘BZX> dS, (7)

_. (2B:B,
U = pO/Sve v BZA ds. ®)

(V = 0 as thermal dust emission is linearly polarized.) Here, py
is a parameter called the intrinsic polarization fraction, which is
assumed to be uniform over the whole MC. We are comparing to
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BLASTPol observations at submillimetre wavelengths, so we may
safely assume that the emission is optically thin (v, < <1). The
source function is usually assumed to be proportional to that of a
blackbody; as our simulations have adopted an isothermal equation
of state we may quote the Stokes parameters in column density
units (as opposed to specific intensity units), where n is the local
gas number density:

B} +B; 2
1= /n 1-po —5 "3 ds =N — pyN>, 9
2

B2 - B?
Q:p()/n )BZ> ds

2B, B, _
U:po/n Bz' ds = poU. (11)

Here, N = [nds is the usual definition for column density. Here we
have defined the quantities N,, 0, and U as a convenient shorthand:

© [ BI+B; 2
N2='/n —m; "3 ds, (12)
B — B?
0= [n («"Bz ) ds. (13
0= [n (“;B) ds. (14)

The N, term in (9) is a necessary corrective factor that accounts for
the reduction in emission for dust grains inclined with respect to the
plane of the sky (Fiege & Pudritz 2000). By examining the extreme
configurations that maximize and minimize the contributions in
(12), it is clear that this correction safely preserves the condition
that Stokes / be strictly positive. N, ranges from —%N (all grains

=0, 10)

aligned with the line of sight) to %N (all grains aligned in the plane
of sky). These extreme configurations should be very rare, and
since the correction is also of order py — generally a small quantity
— then we may assume that Stokes / (in column density units) is
approximately the column density to a reasonably high degree of
accuracy, an approximation that we confirmed numerically.

The polarization fraction p is given by

_Ve+u Vo + 0
P = 7 _pON—poNz

5)

and the polarization angle (measured in the plane of the sky) is
given by

X = %arctan(U, 0), (16)

where arctan is the two-argument arctangent which returns the ap-
propriate quadrant of the computed angle. Note that x is mapped
into [0, 7t), as polarization is a pseudo-vector defining an orientation
rather than a direction.

Real observations of the Stokes parameters are limited by the
resolution of the instrument. This effect can also be modelled by
convolving the pixel-resolution synthetic Stokes parameters with
a Gaussian filter. These beam-convolved quantities are then used
to compute the polarization fraction and the polarization angle. To
examine beam effects we report both the results at pixel-scale and
those at telescopic resolution (0.5 pc) for both Model A and Model
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B. (Since we have rescaled Model B to the same box-length as
Model A, 10 pc, the beam size is the same in both cases.) We im-
plement this beam convolution using a simple symmetric Gaussian
filter [implemented by scipy in Jones et al. (2001)]. In principle this
procedure may be modified to accommodate any beam shape.

Synthetic observations along edge-on lines of sight (the x and
y lines of sight) will have pixels which contain only pre-shock
material. In both of our models the post-shock region is the primary
region of interest, and the pre-shock material is too diffuse and
ordered to properly model an MC. In these lines of sight there
will also be pixels near the boundary between the pre- and post-
shock region; these transition regions will contain sharply varying
magnetic fields and artificially short column lengths, potentially
contaminating our sample. We exclude these regions simply by
eliminating those pixels from the sample, focusing on the interior
of the post-shock region.

The intrinsic polarization fraction, py, is in principle set by con-
ditions in specific MCs. In Fiege & Pudritz (2000), p, is explicitly
the average (over all grain populations) of the product of two terms:
the Rayleigh reduction factor due to imperfect grain alignment,
and the reduction in polarization due to the turbulent component
of the magnetic field. These conditions are assumed not to vary
throughout the cloud® and so can be taken safely out of the in-
tegrals. We adopt a fiducial value of 0.15 for initial calculations,
which is consistent with observationally determined values (Planck
Collaboration XX 2015; Fissel et al. 2016); however, it bears not-
ing that there is some freedom to adjust this parameter to match
observations. Adjusting py, would not change the polarization angle
as the contribution from p, vanishes in equation (16).> The depen-
dence on p, in equation (9) would adjust Stokes / values, but this
effect should be small, which we have also verified numerically; in
accordance with our approximation that Stokes / is approximately
the column density we neglect this effect.

While we are not considering heterogeneous alignment in this
paper, a short discussion on its expected effects is useful. In the
context of grain alignment by radiative torques (Hoang & Lazar-
ian 2008), grains are expected to be aligned less efficiently with
respect to the local magnetic field in denser well-shielded regions.
The reduction in alignment efficiency in such regions is expected
to decrease the polarization fraction, especially along high column
density sightlines. Its effect on the polarization angle along a given
sightline is less clear, because the angle is determined by the ratio of
the integrated Q and U along the line of sight which, unlike Q and
U themselves, does not depend on the grain alignment efficiency in
a simple way. We will explore these effects fully in a subsequent
paper.

The synthetic polarimetric observations of the ATHENA simu-
lations described here were implemented using routines written
using Numpy (van der Walt, Colbert & Varoquaux 2011), scipy
(Jones et al. 2001), and the vt package (Turk et al. 2011). Our
plots were generated using the MATPLOTLIB PYTHON plotting library
(Hunter 2007).

2 This assumption is sometimes called perfect grain alignment, which is
strictly speaking incorrect, as po includes the effects of imperfect grain
alignment provided that it is the same everywhere. We prefer the term
homogeneous grain alignment.

3 In principle, modifications to the grain alignment efficiency that are not
homogeneous will introduce some variation in x, though these corrections
might be expected to be small: the corrections will modify both Stokes Q
and U and thus will vanish to first order upon computing x.

2.3.2 Dispersion in polarization angles

While the polarization angle x provides approximately the column-
averaged magnetic field orientation in the plane of the sky, the
relative change in orientation rather than its precise value is more
directly comparable to observations. This is probed by calculating
the dispersion in polarization angles (e.g. Falceta-Gongalves, Lazar-
ian & Kowal 2008; Planck Collaboration XIX 2015; Chen, King &
Li 2016; Fissel et al. 2016):

N
$2(x,8) = % DA x). (17)
i=1

Here, A x(x, x;) is the angular difference* between the angle at
the point x and another point x; located a distance § (called the
lag) away from it. The sum is over all points at the lag radius §
away from x. A x; is usually calculated directly from the Stokes pa-
rameters using the two-argument arctangent (Planck Collaboration
XIX 2015):

1
Ax(x,x;)= 3 arctan(Q; U, — Q. U;, Q; 0, + U;U,), (18)

where Q, and U, are the Stokes parameters at x and Q; and U, are
the Stokes parameters located at the point x; located a distance §
away from x.

The dispersion in polarization angles is a measure of the local
changes in magnetic field direction, regardless of orientation con-
vention chosen. We note that, as calculated in Planck Collaboration
XIX (2015), the dispersion in polarization angles for pure noise con-
verges to 7/+/12 (about 52°). For our purposes we elect to use the
smallest sensible lag to study the finest polarization angle structure.
For BLASTPol and the beam-convolved synthetic observations, the
lag would be the FWHM of the beam; we use the pixel scale for the
simulation resolution synthetic observations.

Maps of the column density, polarization fraction, and dispersion
in polarization angles computed along the x, y, and z lines of sight
are presented in Figs 2 (at pixel resolution) and in 3 (convolved
with a Gaussian beam). The polarization angles (corresponding to
the magnetic field orientation) are annotated on the column density
plots (top panel).

2.4 Statistical techniques

2.4.1 Geometric statistics

The range of values for column density, polarization fraction, and
the dispersion in polarization angles typically spans several orders
of magnitude (Vazquez-Semadeni & Garcia 2001; Planck Collab-
oration XIX 2015; Fissel et al. 2016); studying their probabilistic
features is commonly done in logarithmic space to capture both
central and asymptotic behaviour in the distribution. For the col-
umn density and polarization fraction, we will work in logarithmic
contrast variables, normalizing the values to a measure of central
tendency:

N,
Eny = logy (N:;‘) : (19)
¢, =log (2) . (20)
P

4 Note that because polarization angles 7t out of phase are indistinguishable,
the maximum angular difference must be 7t/2.
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Figure 2. Stokes I (top row), polarization fraction (middle row), and dispersion in polarization angles (bottom row) for the ATHENA Model A simulation (left
column) and the ATHENA Model B simulation (right column). For each image, the central image is the z line of sight; the image parallel to the y-axis is the x line

of sight; and the bottom image parallel to the x-axis is the y line of sight. These images are produced at pixel resolution.

MNRAS 474, 5122-5142 (2018)

Downloaded from https://academic.oup.com/mnras/article-abstract/474/4/5122/4683257

by University of Virginia user
on 30 May 2018



5128 P K. King et al.

5.0

[ ——

2.5

NN—/
|
)///>u~_

7

~

Y (pc)

|

N\

\

AN\
\

/
)??)7
i

T

NN
N

-5.0

7 i
A / /i
/ / !
0. : . 50 25 00 25 50
X (pc) log;y N (cm~2) X(pc)

Y (pc)

Y (pc)

-5.0 -2.5 0.0 2.5 5.0 -5.0 -2.5 0.0 2.5 5.0
X (pc) logiy S (°) X (pc)
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For the dispersion in polarization angles, we will instead simply use
the value measured in degrees:

S
¢s =logy, (F) . 21

In logarithmic space, the geometric mean is a more natural mea-
sure of central tendency than the arithmetic mean. For a set of N val-
ues X = {x; }, the geometric mean is simply related to the arithmetic
mean of the logarithmic values, defined by Z = {¢,;} = {logx;}:

N 1/N |
po(X) = (Hx,) = exp (NZ;) = exp(ua(2)). (22)

i=1 i=1

where ug and pa denote the geometric and arithmetic means of
the set, respectively. Similarly, the geometric standard deviation is
a natural first moment measure of distribution width in logarithmic
space, and is defined through the standard deviation of the logarith-
mic contrast values (Kirkwood 1979):

1 N ) 2
(logog(X))* = - > log < > X)> = 0%(2). (23)

P el
where o and o denote the geometric standard deviation and stan-
dard deviation of a set, respectively. (These expressions are easily
modified to base 10.)

Higher statistical moments can provide more information on the
shape of a probability distribution. The kurtosis of a distribution (the
fourth standardized moment), in particular, can offer insight into
the behaviour of the tails of the distributions (Ivezié et al. 2014).
To study the tails of the distribution in logarithmic space, we may
compute the kurtosis of the logarithmic values of the polarimetric
observables, which we call the geometric kurtosis:

Ly (log (,LC,XEXJ>>4
log(oa(X))*

As a Gaussian distribution has a kurtosis of 3, the excess kurtosis
(the kurtosis less 3) is often quoted to emphasize deviations from
Gaussianity (Ivezié et al. 2014). (We denote excess kurtosis by Kurt
to distinguish it.) Similarly, we will quote the excess geometric
kurtosis, which describes deviations from log-normality. Distribu-
tions with positive excess kurtosis are termed leprokurtic and have
tails which asymptotically approach zero less rapidly than a Gaus-
sian; distributions with negative excess kurtosis are instead termed
platykurtic and have tails that approach zero more rapidly than a
Gaussian distribution. Distributions with excess kurtosis close to
zero are termed mesokurtic. In our logarithmic context, power-law
asymptotics (a commonly encountered behaviour) would manifest
as positive excess geometric kurtosis.

Both the freedom to adjust N values through a scaling trans-
formation and the freedom to adjust py are multiplicative factors,
and therefore in logarithmic space amount to adjusting the geomet-
ric mean. These adjustments will not adjust either the geometric
standard deviation or the geometric kurtosis. For these reasons, the
geometric mean of the polarization fraction and column density are

Kurtg(X) = Kurt(Z) = (24)

5 Rather than adopting the same convention in the geometric mean and
geometric standard deviation, we define the geometric kurtosis not as
exp (Kurt(Z)) but as Kurt(Z), as the prior definitions are chosen to empha-
size the connection between geometric moments of the set and the arithmetic
moments of the logarithm of the set. No simple relationship exists for the
higher statistical geometric and arithmetic moments.
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less important quantities as far as constraining simulation parame-
ters is concerned. However, because the dispersion in polarization
angles cannot be scaled freely, the mean angle dispersion is an
important quantity of interest.

2.4.2 Kernel density estimation

The underlying probability density function (PDF) for the observ-
ables has much to say about MC structure. For a single observ-
able, the PDF is commonly visualized using a histogram. A two-
dimensional version of the same is often used when studying joint
correlations. The histogram has the advantage of simplicity, but has
its limitations. Regardless of how optimally the bin size is cho-
sen, information is lost inside the bin. Locating the bin centres
and choosing bin size given a data set is arbitrary, and behaviour
at the bin boundaries can give rise to inappropriate discontinuities
(Scott 1992; Feigelson & Babu 2012). Instead we prefer to use
kernel density estimation (KDE), a technique that yields a smooth
estimate of the PDF from a set of data.

For a set {x;} of N independent observations which are sampled
from a common PDF f, the kernel density estimate of fis given by
(Scott 1992)

N 1L 1 % X — X; 25
TO=N 25 ( h(x) > ' @
Here K is the kernel function (normalized and with mean zero) and
h is the bandwidth parameter. 7 may be thought of as analogous
to the bin size in histograms. It is chosen according to Scott’s
rule, a known rule for optimal bandwidth (Scott 1992). The choice
of kernel function is usually unimportant, and may depend on the
application. In our case, it has been established (Vazquez-Semadeni
& Garcia 2001) that a log-normal distribution is expected for the

column density. Therefore, we use a Gaussian kernel function on
the logarithmic values:

1 12
Ku)=—e 2". (26)
V27
These one-dimensional forms are easily generalized to two or higher
dimensions for multivariate correlations. For a set {x;} of N indepen-
dent observation vectors of dimension d, the kernel density estimate
of the joint PDF f(x) is (Scott 1992)

N
N 1

x)=—) [H?KMH"?@x—x)), 27
fH<>N;|| (H™2 (x —x)) @7
where H is the multivariate generalization of the bandwidth pa-
rameter (the d x d bandwidth matrix) which may also be chosen
optimally. The multivariate Gaussian kernel function is

1 —LuTy
K(u) = WC 2 . (28)
We use the scipy implementation of Gaussian KDE (Jones
et al. 2001), which implements both the univariate and multivariate

cases.

2.4.3 Principal components and the covariance matrix

The joint PDF of observables contains strictly more information
than the one-dimensional PDFs alone, which may be thought of
as projections of the full configuration space PDF on to a sin-
gle observable axis. The joint distributions contain information not
only on extent but also on mutual dependence. Past work (Planck

MNRAS 474, 5122-5142 (2018)

Downloaded from https://academic.oup.com/mnras/article-abstract/474/4/5122/4683257
by University of Virginia user
on 30 May 2018



5130 P K. King et al.

Collaboration XIX 2015; Planck Collaboration XX 2015; Fissel
et al. 2016) has presented these joint correlations and explored mu-
tual dependence by fitting to a power law with linear regression.
Linear regression has the disadvantage of depending on the choice
of independent variable, i.e. the fit is not symmetric with respect
to axis choice. Linear regression is one choice in characterizing the
geometry of the multivariate joint distribution; we instead compute
the principal components for this purpose (Murtagh & Heck 1987).
Principal component analysis (PCA) has been used elsewhere in
astrophysics, where it has particular value in reducing the dimen-
sionality of data sets with many variables, such as is done in Bertram
etal. (2014). Unlike these previous applications, our use of the prin-
cipal components is based on their natural geometric interpretation
and utility as descriptive tools.

Suppose that you have a set of n variables X, each of which
is a set of observations of length N. The covariance between two
variables is given by

- _ _
o (Xi. X;) = p— Z(Xik - X)X — X)). (29)
k=1

Here, X; refers to the average of X;. This definition recovers the
ordinary definition of variance:

2% = 1S X, — R
a(x,>—n_1;<x,k Xy (30)

The covariance matrix for this set of variables is this symmetric
n X n matrix:

az(Xl) ~'O'2(Xi, Xl)"'az(Xanl)

C=]ox.xy o) : - 6D

52X, X,) 62X,

The principal components are the eigenvectors {v,, } of C, satisfying
Cvm = ApUp. (32)

Trivially there are n principal components, mutually orthogonal to
each other in the n-dimensional configuration space of our vari-
ables. Analogous to the principal moments of inertia for a rotat-
ing rigid body, the eigenvectors describe a set of coordinate axes
that maximize variance (in the least-squares sense). Principal axes,
in this sense, have been used effectively to describe the shape of
clumps in MCs (Gammie et al. 2003; Nakamura & Li 2008; Gong &
Ostriker 2015). The eigenvalues describe the relative importance of
the principal components: the component with the highest eigen-
value contains the most variance (and is often referred to simply
as the principal component, especially for multivariate studies with
large n). We note that PCA provides a very simplified view of
the joint PDF geometry, and is unsuited for detailed studies of
PDF features, which would require more sophisticated techniques.
Analogous to the fitted slope in linear regression, the implied PCA
power-law index is the slope of the principal vector.

The principal components capture the geometry of the joint dis-
tributions, but do have an important drawback: they do not mea-
sure, without ambiguity, the degree to which observables are cor-
related with each other. A simple measure of correlation between
two observables is the Pearson correlation coefficient (Feigelson &

Babu 2012). For two observables, X and Y, their Pearson correlation
coefficient is (Feigelson & Babu 2012)

o2(X,Y)

T 00

It should be noted that (like PCA) the Pearson correlation coeffi-
cient is limited in its sensitivity to correlations more complicated
than simple linear ones. A slightly more sophisticated version, the
Spearman rank correlation coefficient, tests for monotonic depen-
dence rather than simple linear correlation. If Ry and Ry are the
ranked variables® corresponding to X and Y, then the Spearman
rank correlation coefficient is the Pearson correlation coefficient of
these two ranked variables (Feigelson & Babu 2012):

(33)

o2 (Rx, Ry)

P = o Ry o? (Ry)|

The numerical value of pp xy and pg, xy is between —1 and 1, where
positive values indicate a positive correlation, and negative values
indicate negative correlation. The magnitude is a measure of correla-
tion strength, with 1 being associated with perfect linear correlation
and 0 being perfectly uncorrelated. For our purposes we compute
the Pearson correlation coefficient of the logarithmic values of the
observables (equivalent to applying a logarithmic transformation on
the data). Therefore this Pearson coefficient measures how strongly
the two observables are relatable to each other via a power law. As
a logarithmic transformation is monotonic, the Spearman rank cor-
relation coefficient is unchanged by a logarithmic transformation;
therefore this quantity measures the degree of monotonic depen-
dence, without imposing a power-law form on to the relationship.

(34)

3 THE POLARIZATION FRACTION

The polarization fraction measured at any pixel is strongly depen-
dent on the magnetic organization within its line of sight. On the
one hand, contributions to the polarized emission at any point in the
line of sight are bounded above by the inclination of the magnetic
field with respect to the plane of sky: any inclination reduces the
polarization signal by reducing the apparent ratio of the long to
short axes of the grain relative to the observer (Chen et al. 2016).
On the other hand, even contributions with no inclination can be
negated entirely by another contribution exactly 7t/2 out of phase, or
partially negated by any contribution with non-zero relative phase.
This makes the polarization fraction a simultaneous measure of
both magnetic field inclination with respect to the plane of sky
and magnetic field organization along the line of sight (provided
that contributions from heterogeneous grain alignment can be ne-
glected). Examining the distribution of polarization fraction thus
provides some insight into the general behaviour of the magnetic
field as seen by the observer.

While we noted in Section 2.3 that there is freedom in the choice
of po, there is not unlimited freedom: py is limited to attain values
consistent with both grain alignment physics and the amount of
magnetic disorder at scales smaller than the simulation resolution
element. Practically p is determined empirically from the polar-
ization fraction distribution (effectively, from the mean polarization
fraction). In principle, an overall reduction in the mean polariza-
tion fraction from sky-averaged inclination and cancellation along

6 The ranked variables are the integer ordering of the observations, with the
largest value assigned to be 1. Duplicate values are provided a fractional
rank.
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Table 2. Distribution statistics for the one-dimensional PDFs of the polar-
ization fraction.
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polarized emission when the mean magnetic field is parallel to the
line of sight.
Turning our attention to the PDFs of polarization fraction con-

LOS Model ~ Beam  pug(p)  logog(p)  Kurtg(p) trast in Fig. 4, we can see immediately that the x line of sight shows
+LOS A Pixel 0.017 0.330 1214 remarkable agreement with the BLASTPol observations of Vela C.
0.5pc 0.009 0.323 1.409 Distribution widths and kurtosis can be found in Table 2. The x

B Pixel 0.007 0.368 0.924 line-of-sight distribution widths for the simulations and BLASTPol

0.5pc 0.003 0.350 0.903 are all relatively similar (left-hand panel of Fig. 4), and agreement

y-LOS A Pixel 0.068 0.153 8.987 improves slightly upon beam convolution (dashed lines in Fig. 4).
0.5pc 0.062 0.088 1.252 In terms of kurtosis, both BLASTPol and the simulations are gener-

B Pixel 0.125 0.066 49.34 ally mesokurtic (deviating little from Gaussian). The leading edges

0'_5 pe 0.122 0.045 6.469 at high polarization fraction contrast are also generally consistent,

z-LOS A Pixel 0.061 0.195 5.997 . L . .

as are the tails at low polarization fraction. In contrast, neither

0.5 pc 0.057 0.152 3.814 th li f sioht (middl d rieht-hand Is of Fic. 4

B Pixel 0.091 0.085 29.85 e y nor z line of sight (middle and right-hand panels of Fig. )

0.5 pc 0.090 0.061 5.805 produces PDFs that are very consistent with the BLASTPol obser-

BLASTPol _ 0.5pc 0.027 0.260 0.737 vations. These lines of sight produce significantly narrower distri-

all lines of sight would also reduce the apparent py from magneto-
hydrodynamical effects alone. We find, however, that these effects
are tied to the mean orientation of the magnetic field with respect
to the line of sight. The mean polarization fractions are found in
Table 2. (These means are all computed after assuming the fidu-
cial value py = 0.15.) In the y and z lines of sight, we find that
the mean polarization fraction for Model A is lower than that for
Model B. In this case, the disordering influence of stronger turbu-
lence/weaker magnetization reduces the mean polarization fraction.
On the other hand, in the x line of sight, the mean polarization frac-
tion for Model A is higher, not lower, than Model B. In this case, the
more disordered magnetic field relative to the mean magnetic field
provides more opportunities along any given line of sight for the
magnetic field to locally align with the plane of sky, strengthening
contributions to the polarization fraction. The lower turbulence and
stronger magnetization of Model B permits fewer deviations from
the mean magnetic field, resulting in a more complete suppression of

butions than the BLASTPol observations, and are all significantly
leptokurtic, with extremely peaked distributions that have more
extended tails than a Gaussian. This translates to a very uniform
polarization fraction in the plane of sky, with significant deviations
being quite rare. The leading edges are much steeper, and the tails at
low polarization fraction are generally lower in probability than the
BLASTPol tail; such steep leading edges indicate that the peak is
probably very near the maximum polarization fraction (see e.g. the
log—log plots of the y and z lines of sight in Fig. 4, bottom panel).
Examining the y and z lines of sight in more detail, we note their
remarkable consistency: viewing either Model A or Model B from
either line of sight produces little variation. Both of these lines of
sight differ primarily in that one is edge-on (y) versus the other
being face-on (z), which indicates that the y line-of-sight sightlines
generically contain much more material than the z line of sight.
Because both of these lines of sight share the quality that the mean
magnetic field is primarily in the plane of sky and perpendicular
to the line of sight, this similarity indicates that the magnetic field
orientation dominates the behaviour of the polarization fraction, and
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Figure 4. PDFs of the polarization fraction for the BLASTPol Vela C observations (Fissel et al. 2016, Blue), Model A (Red), and Model B (Cyan). The
solid coloured lines correspond to distributions computed at the pixel scale of the simulation, while dashed coloured lines correspond to those observed with
a Gaussian beam. The x line-of-sight distributions are in the left column; in the centre, the y line-of-sight distributions; and in the right, the z line-of-sight
distributions. The top row PDFs are log—linear and the bottom row are log—log.
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is far more important than the effects that might arise due to longer
column integration lengths.

This is an important observation: consider the aforementioned
roles of inclination and cancellation within a column. Under this
regime, where the mean magnetic field is in the plane of sky, a
longer column of material would provide more opportunities to en-
counter fluctuations relative to the mean magnetic field. The effects
of more fluctuations are best understood relative to the mean po-
larization fraction. On the one hand, if more fluctuations can be
encountered, then intuitively it is less likely for high polarization
fraction contrast to manifest, as such configurations demand sig-
nificant magnetic order in the column to avoid cancellation. On
the other hand, the lowest polarization fractions also become less
likely. This perhaps counter-intuitive result arises due to the condi-
tions necessary to achieve such low polarization fractions: in this
regime, consistently high inclination (where the magnetic field is
nearly aligned with the line of sight) throughout the column is very
unlikely, and therefore low polarization fractions require significant
pairwise cancellation. While this indicates a state of extremely high
magnetic disorder, it is also a very rare state. The likelihood of
achieving such a state is improved if there is less material required
to pairwise cancel; or equivalently, higher rates of fluctuations can
destroy the pairwise cancellation, simply by serendipitous magnetic
field orientation alignment between two fluctuations. The combined
effect is that, magnetic organization being the same, longer column
lengths result in narrower polarization fraction distributions. This
is corroborated in Fig. 4 (middle and right-hand panels), where we
see narrower distributions in the y line of sight relative to the z line
of sight. However, it is important to note that the relative weak-
ness of this effect further demonstrates the importance of magnetic
organization relative to the observer.

Within these lines of sight, the differences between Model A and
Model B are apparent. Model A has a wider distribution, has less
kurtosis, has reduced steepness in the leading edge, and has a higher
probability state for the depolarization tail. These differences sug-
gest that stronger turbulence/lower magnetization (Model A versus
Model B) has a role in determining the shape of the polarization
fraction distribution, at least in the presence of an ordered mean
magnetic field in the plane of sky. Both the increase in width and
decrease in kurtosis indicate that turbulence tends to counteract the
highly peaked behaviour. This is consistent with the general expec-
tation for the effects of turbulence, which would introduce disorder
and weaken signatures of strong magnetic order.

The x line of sight, as well as the BLASTPol observations, both
display significantly different behaviour from that of the y and z
lines of sight. There is not a particularly distinctive peak, and the
transition to the depolarization tail is indistinct. Notably, there is re-
markably little difference in polarization fraction contrast between
Model A and Model B despite their different levels of turbulence
and magnetization. The only meaningful difference appears to be at
highest polarization fraction levels, wherein Model B has a slight
enhancement at high polarization fraction relative to Model A. This
could possibly be due to the increased role of turbulence in Model
A: stronger turbulence and lower magnetization could decrease the
likelihood of attaining the highest polarization fraction contrast.
Because in the x line of sight, contributions to the Stokes param-
eters (and thus the polarization fraction) from the mean magnetic
field are suppressed, the highly ordered high polarization fraction
configurations along a column become very unlikely. Increasing
the turbulence (or making the magnetic field less resistant to pertur-
bation) could reduce this likelihood further, effectively narrowing
the distribution in the tails. Much like what we see with the mean

polarization fraction, the influence of turbulence/magnetization is
significantly tied to the orientation of the mean magnetic field with
respect to the observer: in the y and z lines of sight, we see that
stronger turbulence/lower magnetization widens the distribution,
yet in the x line of sight, this narrows it.

The beam convolved distributions are provided as dashed lines
in Fig. 4. The effects of beam convolution are most concentrated in
the depolarization tails and the leading edge, where the highest and
lowest polarization fraction contrasts appear to be cut off or sharply
curtailed. Note that beam convolution does not broaden distribu-
tions, but narrows them: the beam mixes information spatially on
the plane of sky, and therefore any contrast features smaller than the
beam will be partially destroyed. In the case of the y and z lines of
sight, we see that the depolarization tail nearly disappears and the
leading edge steepens further. The peak becomes even more empha-
sized and narrow, though the kurtosis is reduced (most likely due
to the reduction in the depolarization tail). This demonstrates that
the scale of the highest and lowest contrast features in these lines of
sight are not larger than the beam and probably not clustered enough
to avoid destruction after beam convolution, or else they would be
preserved. On the other hand, in the x line of sight the leading edge
is reduced, but not the depolarization tail. Since the tail is preserved
under beam convolution, we may infer that either the scale of these
features is larger than the beam or they are ubiquitous enough to
avoid destruction.

The depolarization tails in all the polarization fraction distribu-
tions demonstrate interesting asymptotic behaviour. This includes
the BLASTPol distribution, though it appears to be cut off at the
lowest polarization fractions. This is likely a result of the finite
polarization sensitivity of the BLASTPol telescope, which neces-
sarily cannot detect extremely low polarization fractions.” In all
the distributions, the leading edge rapidly falls off from the peak, as
evidenced in the log—log plot in Fig. 4 (bottom panel). This is consis-
tent with Gaussian behaviour, in which probability is exponentially
attenuated at high contrast values. Instead, the depolarization tail
displays approximately linear behaviour, which is in fact a signa-
ture of a power-law dependence of probability. Similar power-law
behaviour has been reported in the column density, and has been
interpreted as a signature of gravitationally dominated regions un-
dergoing collapse (Véazquez-Semadeni & Garcia 2001; Burkhart,
Collins & Lazarian 2015; Burkhart, Stalpes & Collins 2017). We
emphasize that we do not know whether self-gravity plays the same
role here in the polarization fraction, or rather that some other as
yet undetermined mechanism is responsible. We plan to explore
possible mechanisms in future work.

4 THE DISPERSION IN POLARIZATION
ANGLES

The dispersion in polarization angles is a direct measure of plane-
of-sky magnetic disorder. At the smallest scales it measures local
changes in magnetic field orientation: high § indicates significant
differences in magnetic field behaviour between adjacent sightlines,
whereas low S indicates a uniform field that changes little between
adjacent sightlines. Rapid changes may be due to dominant dense
regions changing magnetic orientation, or due to uniform changes
across the whole sightline. Due to the fact that S cannot be scaled

7 As noted in Section 2.1, Fissel et al. (2016) only includes sightlines with
p > 0.1 percent. Lower polarization values suffer from uncertainty in cor-
recting for the instrumental polarization of the telescope.

Downloaded Molr\nI%é§s‘!7ﬂa?c§\éezm2i_c§ol\ﬁ>2.c(ozm()rlm§)as/articlefabstract/ﬁl74/4/5122/4 683257

by University of Virginia user
on 30 May 2018



5133

Modelling molecular cloud dust polarization
logp S (°)
T | T 1 T T l T T
2 H 3
@
?
g
g g
o =
)]
B
=
8
@
| =
u (¢}
E ¢
=)
2

® BLASTPol

1.5 —
® Model A

15

® Model B

Figure 5. PDFs of the dispersion in polarization angles for the BLASTPol Vela C observations (Fissel et al. 2016) (Blue), Model A (Red), and Model B
(Cyan). The solid coloured lines correspond to distributions computed at the pixel scale of the simulation, while dashed coloured lines correspond to those
observed with a Gaussian beam. The orange line annotates the special value 7t/+/12. The x line-of-sight distributions are in the left column; in the centre, the y
line-of-sight distributions; and in the right, the z line-of-sight distributions. The top row PDFs are log-linear and the bottom row are log-log.

(see Section 2.2.2), determining the mean angle dispersion provides
a crucial general measure of plane-of-sky magnetic disorder, which
is intrinsic to the MC under observation. Furthermore, the reduced
sensitivity of S to heterogeneous grain alignment effects (to be
discussed in more detail in a follow-up paper) renders it an even
more important measure of magnetic disorder, being strongly tied
to the magnetohydrodynamical behaviour of the MC rather than
grain alignment microphysics. Different mean angle dispersions
point to vastly different conditions due to the angular nature of
the quantity, bounded above by 90°: a mean angle dispersion of 1°
indicates a very ordered plane-of-sky magnetic field, yet a mean
angle dispersion of 10° indicates a far higher degree of magnetic
disorder in the plane of sky.

Much like what we found in the distributions in polarization
fraction, we can see in the dispersion in polarization angles PDFs
in Fig. 5 that the x line of sight (left-hand panel) provides the
best agreement with the BLASTPol observations of Vela C. Mean
angle dispersions, distribution widths, and kurtosis can be found in
Table 3. In general, all simulation distributions have approximately
the same width, and are all mesokurtic. But only the mean angle
dispersions (of both simulations) in the x line of sight are within a
degree or so of the BLASTPol value; whereas in the y and z lines
of sight, the difference is a reduction by a factor of 3 (for the Model
A) up to a factor of 10 (for Model B) — significant reductions in the
angle dispersion relative to the BLASTPol observations.

We do find that there is one primary significant difference be-
tween Models A and B in the y and z lines of sight: the mean angle
dispersion is much higher in Model A than Model B. Besides this,
the distribution shape is very similar: the widths and kurtosis are
nearly the same. As lower mean angle dispersion indicates stronger
magnetic order in the plane of sky, this indicates that, just as in
the case with polarization fraction, higher levels of turbulence and
lower magnetization weaken signatures of strong magnetic order.
It is also evident that the dispersion in polarization angles shares
another common behaviour with the polarization fraction: the y and
z lines of sight share very similar behaviour for both simulations.

Table 3. Distribution statistics for the one-dimensional PDFs of the disper-
sion in polarization angles.

LOS Model Beam nG(S) log og(S) Kurtg(S)
x-LOS A Pixel 9.141° 0.372 —0.484
0.5pc 11.01° 0.338 —0.654

B Pixel 9.204° 0.364 —0.516

0.5pc 11.51° 0.341 —0.753

y-LOS A Pixel 2.904° 0.341 0.759
0.5pc 3.006° 0.229 —0.100

B Pixel 0.635° 0.337 0.660

0.5pc 0.444° 0.251 —0.724

z-LOS A Pixel 2.884° 0.379 0.460
0.5pc 3.327° 0.295 0.733

B Pixel 0.746° 0.358 1.179

0.5 pc 0.635° 0.283 0.148

BLASTPol - 0.5pc 7.933° 0.266 0.222

In both models, the distributions change little when viewed edge-
on (y line of sight) or face-on (z line of sight), with the dominant
magnetic field perpendicular to the line of sight. Again, the key
difference between these lines of sight are the general length of the
dense post-shock region along a given sightline, rather than different
magnetic field orientation with respect to the plane of sky.

This result demonstrates that, in common with the polarization
fraction, the dense layer column length has a relatively minor role in
not one but both polarimetric observables. It is remarkable that this
holds for the dispersion in polarization angles, which is determined
by relative changes in the polarization angles on the plane of sky.
While the polarization angle is determined non-linearly from con-
tributions along the sightline, it can be expected that, in the presence
of strong magnetic order in the plane of sky, the angles will be domi-
nated by that order (see e.g. Fig. 2, top row). Variations with respect
to the mean magnetic field produce structures in the map of the
dispersion in polarization angles. As argued before, longer column
lengths provide more opportunities to encounter fluctuations with
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respect to the mean magnetic field, but these fluctuations are hard
to interpret with respect to the polarization angle, as these contribu-
tions are difficult to gauge in relative importance. On the one hand,
higher fluctuation rates might translate to some modest angular dif-
ferences between the measured plane-of-sky polarization angle and
the dominant mean magnetic field. Without some other effect bi-
asing these differences in some direction, they would be expected
to be relatively random, and therefore the mean angle dispersion
would be relatively higher than measured for a shorter column. On
the other hand, angular fluctuations are not purely additive, and any
contribution to the line-of-sight averaged quantity would likely be
small, and so overall the effect might be negligible. Quantitatively,
there appears to be little measurable difference between the y and z
line-of-sight views for either simulation (Table 3), so it appears that
any effect from the longer column lengths is not important.

The x line of sight instead displays a very high mean angle dis-
persion, centred near the BLASTPol value. Remarkably, and in
common with the polarization fraction, there is little variation be-
tween the two models, recovering even the finer structures in the
distribution, such as the feature near 77/+/12. Note also that no scal-
ing has been applied to the model S distributions. The fact that the
two simulations are almost indistinguishable in either polarization
fraction contrast or dispersion in polarization angles — two separate
measures of magnetic disorder in the plane of sky — demonstrates
that relative differences in turbulence or magnetization are appar-
ently not very important when polarized emission contributions
from the mean magnetic field are suppressed. The differences be-
tween this case and the y and z lines of sight highlight the fact that
apparent magnetic disorder is not a perfect proxy for intrinsic, 3D
magnetic disorder; in other words, one cannot conclude that an MC
is super-Alfvénic from these observations alone.

Beam convolution affects the dispersion in polarization angles
slightly differently than the polarization fraction: not only is res-
olution degraded, but the lag § (see equation 17 in Section 2.3.2)
is adjusted to reflect the minimum sensible resolution for compu-
tation of this quantity. We nevertheless recover similar behaviour
that was seen in the beam-convolved polarization fraction, in that
beam convolution narrows the width of the distribution, tending to
eliminate contributions from both the high and the low dispersion
tails. Prior to beam convolution, all three lines of sight and both
models have very similar distribution widths; after beam convolu-
tion, these widths are reduced to similar values as well, and to a
value consistent with the width of the BLASTPol distribution. The
consistency of the width of the dispersion in polarization angles dis-
tributions is a remarkable feature. Taken at face value, this indicates
that the width of this distribution is affected neither by the pre-
vailing plane-of-sky magnetic order; the typical column length, or
equivalently, cloud depth; nor the level of magnetization/turbulence.
Additionally this value is the geometric width, or width in logarith-
mic space: it appears that values of the dispersion in polarization
angles tend to be found within a narrow range of dex from the
mean angle dispersion. This could be some indication of a universal
property of the dispersion in polarization angles, which merits fur-
ther investigation, though we emphasize that this is a very tentative
conclusion.

‘We conclude this section by noting the features near the special
value 7t/+/12 (black dashed lines in Fig. 5). As noted above, this
is the value to which a collection of random vectors converges.
Without exception, all the dispersion in polarization angles distri-
butions rapidly fall off above this value. This is consistent with our
expectation, as any value higher than 7t/+/12 is a very unlikely con-
figuration on the plane of sky. This special value also happens to

be near the relatively high values of the filamentary-type structures
that can be seen in the maps of S, found in the bottom panels of
Figs 2 and 3. These features have been reported in past observations
of polarized submillimetre continuum by both Planck (Planck Col-
laboration XIX 2015) and BLASTPol (Fissel et al. 2016). We plan
to explore the nature of these filamentary features in future work.

5 THE POLARIMETRIC JOINT
CORRELATION

Thus far, our findings present consistent behaviour for both the po-
larization fraction and the dispersion in polarization angles. The
BLASTPol observations are well matched by the x line-of-sight
distributions of each, respectively; the distributions for the y and z
lines of sight, while very consistent with each other, provide a poor
match. These conclusions are supported by the distributions of the
observables alone, as noted in Sections 3 and 4, but we can carry
the analysis further and ask whether they agree with respect to the
joint correlation of the two observables. This joint correlation has
been studied by both BLASTPol (Fissel et al. 2016) and Planck
(Planck Collaboration XIX 2015; Planck Collaboration XX 2015)
in the past. For brevity, we will refer to this particular joint correla-
tion between p and S as the polarimetric joint correlation. The joint
correlation contains strictly more information than the distributions
of each observable alone, which may be thought of as projections
of the joint distribution on to a single axis. Any apparent agreement
between the x line of sight and the BLASTPol observations is sub-
stantially weakened if the joint correlation behaviour of the two are
not consistent.

The polarimetric joint correlations can be found in Fig. 6, both at
the pixel resolution (top panel) and after beam convolution (bottom
panel). The implied power-law indices derived from the principal
components, as well as the Pearson and Spearman correlation co-
efficients, can be found in Table 4. For clarity, we present the joint
correlation computed without applying a scaling to the polarization
fraction, which would obscure the contours. (The reader may apply
this scaling visually by moving the distribution along the p axis of
the plot.) Itis evident that the x line of sight provides excellent agree-
ment with the BLASTPol observations: the power-law indices are
very close to each other (being close to —1) and the correlation co-
efficients indicate a moderately strong correlation on the same order
as the BLASTPol data. In contrast, neither of the simulations in the
y and z lines of sight provide very strong agreement, with power-law
indices generally significantly shallower than the BLASTPol index.
The correlations can be both weaker than the BLASTPol correlation
(e.g. Model B in the z line of sight) or around the same order as the
BLASTPol result (e.g. Model A in the x line of sight). Additionally,
as demonstrated in Section 4, the mean angle dispersion is too low
in the y and z lines of sight, which reduces the agreement further,
but we also note that this is not new information as revealed by the
joint correlation. Beam convolution does not appear to modify the
joint correlations substantially; the differences between the lines of
sight remain significantly more important.

Both simulations when viewed from all three lines of sight, and
the BLASTPol observations, consistently demonstrate a negative
power-law index for the polarimetric joint correlation; this has been
noted in other work as well (Planck Collaboration XIX 2015). This
negative dependence is expected between polarization fraction and
dispersion in polarization angles. On the one hand, highly depolar-
ized sightlines may be regions with high inclination with respect to
the line of sight, and these regions could have a high dispersion in
polarization angles if this inclination is significantly different from
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Figure 6. Joint PDFs of the dispersion in polarization angles and the polarization fraction for the BLASTPol Vela C observations (Fissel et al. 2016) (Blue),
Model A (Red), and Model B (Cyan). Top row is at pixel resolution and the bottom row is convolved with a Gaussian beam. Annotated are the 1D PDFs of the
two distributions. The principal component vectors are annotated by vectors; the principal eigenvalues, eigenvalue ratios, and implied power-law indices are

given in Table 4.

the mean magnetic field in the region. On the other hand, sightlines
might contain a significant degree of cancellation (resulting in de-
polarization) if there are significant changes in the magnetic field
orientation in that region; if these changes are at all in the plane-
of-sky direction, then they would show up in the dispersion in
polarization angles, raising it. However, the correlation is certainly
far from perfect. For each polarization fraction there is a fairly wide
range in dispersion in polarization angles, and vice versa. More-
over, any power-law index calculation, be it based on the principal
components or based on linear regression, will be dominated by
the highest probability density regions. Given the very different
asymptotic behaviour of the polarization fraction and dispersion in
polarization angles, the power-law index likely encapsulates the be-
haviour of the most common regions found between the extremes
in either quantity.

In Sections 3 and 4, we noted the common behaviour in the po-
larization fraction and dispersion in polarization angle distributions
for each simulation when viewed from the y and z lines of sight,
which indicates the insensitivity of these distributions to the typical
column length. We find this behaviour again in the polarimetric
joint correlation, in this case in terms of the power-law index and
correlation coefficients. The shallowness of the power-law index ap-
pears to be another signature of high plane-of-sky magnetic order.
Interpreting this in terms of the relation between magnetic disorder
as measured by S and magnetic disorder as measured by p, then
the shallow power law is likely a consequence of the significantly
reduced width in the polarization fraction. This offers a clue into
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Table 4. PCA implied power-law index and Pearson/Spearman correlation
coefficients for the dispersion in polarization angles versus polarization
fraction joint PDF.

LOS Model Beam Index PP, Sp 08, Sp
x-LOS A Pixel —0.814 —0.577 —0.555
0.5pc —0.936 —0.682 —0.660
B Pixel —1.020 —-0.514 —0.555
0.5pc —1.058 —-0.479 —0.494
y-LOS A Pixel —0.275 —0.529 —0.495
0.5pc —0.190 —0.439 —-0.413
B Pixel —0.098 —0.507 —0.385
0.5pc —0.043 —-0.234 —0.008
z-LOS A Pixel —0.321 —0.511 —-0.419
0.5pc —0.385 —0.645 —0.600
B Pixel —0.072 —-0.292 —0.109
0.5pc —0.037 —0.165 —0.163
BLASTPol - 0.5pc —-0.969 —0.684 —0.635

what kind of magnetic disorder each polarimetric observable mea-
sures: the polarization fraction is dependent on both inclination and
cancellation within the line of sight. A strong plane-of-sky magnetic
field tends to directly reduce inclination. When projecting the small
variations from the mean-magnetic field on to the plane of sky,
the angular differences should nevertheless remain small. When the
mean-magnetic field is instead parallel to the line of sight, the mag-
netic field tends to produce a high degree of inclination within the
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sightline. Additionally, small variations with respect to the mean
magnetic field, even though they might be small, could introduce
significant angular differences within the column once projected on
to the plane of sky, raising the effects of cancellation. We have also
noted in Section 4 that the width of the dispersion in polarization
angles distribution changes very little between different lines of
sight or between Model A and Model B; the distribution is instead
set by the mean angle dispersion, which defines the overall level
of plane-of-sky magnetic disorder. In the presence of strong plane-
of-sky magnetic order (the y and z lines of sight) S is only weakly
anticorrelated with p, whereas a strong correlation is noted when
the plane-of-sky mean magnetic field is suppressed (the x line of
sight). Therefore, strong plane-of-sky magnetic order de-correlates
these two measures of magnetic disorder.

The one-dimensional distributions of polarization fraction and
dispersion in polarization angles alone suggest that the plane-of-sky
magnetic field in Vela C is inconsistent with an ordered plane-of-sky
magnetic field such as that found in both Models when viewed from
the y and z lines of sight. Given that the agreement persists not only
in distribution shape and extent but also in mutual dependence, this
suggestion is strengthened significantly. This can be interpreted in
several ways. On the one hand, the intrinsic magnetic disorder of
the three lines of sight does not change for any given simulation; the
only change is the angle at which it is viewed. It may be that Vela C
happens to be serendipitously aligned relative to our viewing angle,
and that contributions from the highly ordered mean magnetic field
are suppressed in Vela C. However, it is very unlikely for Vela C to
have the highly ordered mean magnetic field of our highly idealized
simulations.

On the other hand, we note that the three key quantities indi-
cating agreement/disagreement — polarization fraction distribution
width, mean angle dispersion, and polarimetric correlation power-
law index — differ between models A and B in the y and z lines of
sight, indicating dependence on the level of turbulence and mag-
netization in the presence of strong magnetic order in the plane
of sky. A higher turbulence level/lower magnetization (model A)
has better agreement (with respect to these three quantities) with
the BLASTPol values. It may be possible that agreement can be
achieved by increasing the Alfvén Mach number in the post-shock
region (thus increasing the importance of turbulence and decreas-
ing the importance of magnetization). The sensitivity of these key
quantities on turbulence and magnetization, in this context, supports
the notion that the x line-of-sight distributions (and the observed
BLASTPol distributions) are realizations of an apparently highly
disordered plane-of-sky magnetic field. If this is the case, then there
is a degeneracy: it may not be possible to distinguish between the
effects of high super-Alfvénic turbulence and suppression of the
mean magnetic field in the plane of sky purely through studying
the polarimetric distributions alone. It may be possible to break this
degeneracy though the use of velocity information obtained from
molecular line observations.

6 JOINT CORRELATIONS INVOLVING
COLUMN DENSITY

We are not limited to considering only the polarization fraction
and dispersion in polarization angles in our comparisons. Corre-
lations involving the column density have long been studied as
part of both observational polarimetric studies (Wolf, Launhardt &
Henning 2003; Planck Collaboration XIX 2015; Fissel et al. 2016)
and theoretical investigation (Cho & Lazarian 2005; Falceta-
Gongalves et al. 2008; Poidevin et al. 2013; Planck Collaboration

Table 5. PCA implied power-law index and Pearson/Spearman correlation
coefficients for the column density versus polarization fraction joint PDF.

LOS Model Beam Index 0P, Np £S, Np
x-LOS A Pixel 15.59 0.029 0.026
0.5pc —5.168 —0.240 —0.227
B Pixel 5.794 0.174 0.171
0.5pc 333.3 0.005 0.036
y-LOS A Pixel —0.121 —0.156 —0.137
0.5pc —0.184 —0.412 —0.366
B Pixel —0.088 —0.276 —0.073
0.5pc —0.091 —0.258 —0.045
z-LOS A Pixel —0.064 —0.026 0.036
0.5 pc —-0.417 —0.252 —0.198
B Pixel 0.117 0.122 0.436
0.5 pc 0.009 0.011 0.327
BLASTPol - 0.5pc —1.029 —0.542 —0.564

Table 6. PCA implied power-law index and Pearson/Spearman correlation
coefficients for the column density versus dispersion in polarization angles
joint PDF.

LOS Model Beam Index PP, NS PS, NS
x-LOS A Pixel 2.881 0.280 0.259
0.5pc 7.021 0.189 0.172
B Pixel 6.728 0.145 0.148
0.5pc 28.54 —0.069 —0.089
y-LOS A Pixel 1.613 0.421 0.366
0.5pc 1.159 0.140 0.153
B Pixel 2.456 0.445 0.422
0.5pc —11.72 —0.105 —0.111
z-LOS A Pixel 2.382 0.493 0.472
0.5pc 3.350 0.282 0.283
B Pixel 4.544 0.510 0.441
0.5pc 18.85 0.120 0.098
BLASTPol - 0.5pc 1.250 0.164 0.167

XX 2015; Chen et al. 2016). Much work has focused on the po-
larization fraction — column density joint correlation, which has
typically been fit to a form p o« NV, where y is a power-law index
called the depolarization parameter in Poidevin et al. (2013). The
depolarization parameter, and its equivalent for the dispersion in
polarization angles — column density joint correlation, has usually
been found by computing linear regression in log—log space (Fissel
etal. 2016). Using our alternative measure using the principal com-
ponents, we derive a depolarization parameter for BLASTPol equal
to —1.029, which is about twice that quoted in Fissel et al. (2016);
this dependence is moderately strong as measured by the correla-
tion coefficients (see Table 5). This is consistent with other quoted
values in the literature which range from —0.5 to —1.5 (Cho &
Lazarian 2005; Falceta-Gongalves et al. 2008; Poidevin et al. 2013;
Planck Collaboration XX 2015; Chen et al. 2016). The dispersion
in polarization angles — column density joint correlation has been
less well explored. For BLASTPol, we determine a power-law in-
dex of 1.250, which is much higher than the value reported in Fissel
etal. (2016); none the less, we also find low correlation coefficients,
which indicate a weak dependence (see Table 6).

We first turn our attention to the polarization fraction — column
density joint correlations, which may be found in Fig. 7. The de-
polarization parameters and correlation coefficients may be found
in Table 5. We note first that neither the x line of sight nor the
y and z lines of sight agree very well with the BLASTPol data.
There is similar behaviour between the y and z lines of sight, as we
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Figure 7. Joint PDFs of the column density and the polarization fraction for the BLASTPol Vela C observations (Fissel et al. 2016) (Blue), Model A (Red),
and Model B (Cyan). Top row is at pixel resolution and the bottom row is convolved with a Gaussian beam. Annotated are the 1D PDFs of the two distributions.
The principal component vectors are annotated by vectors; the principal eigenvalues, eigenvalue ratios, and implied power-law indices are given in Table 5.
The annotated orange lines represent the polarization sensitivity limit to BLASTPol, as discussed in Section 6.

might expect given the similarity of the polarization fraction distri-
butions for these two lines of sight. The depolarization parameter
for these lines of sight is generally weakly negative in most cases
(with the exception of the z line-of-sight view of Model B) and the
correlations are generally poor (|pp| and |ps| < <1). On the other
hand, the x line of sight displays significantly different behaviour,
and has depolarization parameters deviating far from the normally
quoted values (—1.5 < y < —0.5) for both models. The very low
correlation coefficients indicate that a power-law dependence may
not necessarily be descriptive for these distributions. In all cases,
beam convolution distorts the joint distributions, but generally only
introduces modest changes to the principal components.®

The column density—polarization fraction correlation might
be disproportionately affected by unavoidable limitations to the
BLASTPol polarization sensitivity. BLASTPol measurements re-
quire a sufficient signal-to-noise measurement of the polarized in-
tensity, which is proportional to the product of the polarization frac-
tion and column density. This limitation would eliminate portions
of the joint correlation that could not produce a sufficiently high
polarized intensity. However, the estimated minimum polarization
fraction that BLASTPol could measure is 1073 (Fissel et al. 2016);

8 In the case of the x line of sight, the principal component points nearly
straight down where there is an infinite discontinuity. It changes from nega-
tive to positive infinity as the principal component rotates counter-clockwise
through this point.

thus the minimum polarized intensity BLASTPol requires (in col-
umn density units) is of the order of 10?° cm=2.° An orange line
annotating this threshold is included in the plots in Fig. 7. There
is some distance between the edge of the BLASTPol distribution
and this line; while some small portion of the distribution may
have been lost, it is very unlikely that enough sightlines were lost
to significantly alter the principal components, which are domi-
nated by a large number of measurements well within the range of
BLASTPol.'"® We do not believe this effect can explain any lack
of agreement between our simulations and the BLASTPol observa-
tions.

Next, we consider the dispersion in polarization angles—column
density joint correlations, found in Fig. 8. The principal component-
implied power-law indices for these correlations may be found in
Table 6, along with the correlation coefficients pp and pg. The z line
of sight displays moderately stronger correlations than BLAST-
Pol or the other lines of sight; Model A has moderately positive

9 This can be derived from the aforementioned minimum polarization frac-
tion quoted in Fissel et al. (2016) and the maximum column densities in
those same observations.

10 This sensitivity limit does not necessarily apply to the synthetic obser-
vations; we can shift the distributions above the sensitivity limit using an
appropriate scaling transformation (see Section 2.2.2) and choice of po,
which we have not done for clarity, to avoid crowding the contours in the
plot.
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Figure 8. Joint PDFs of the column density and the dispersion in polarization angles for the BLASTPol Vela C observations (Fissel et al. 2016) (Blue), Model
A (Red), and Model B (Cyan). Top row is at pixel resolution and the bottom row is convolved with a Gaussian beam. Annotated are the 1D PDFs of the two
distributions. The principal component vectors are annotated; the principal eigenvalues, eigenvalue ratios, and implied power-law indices are given in Table 6.

correlations, while those of Model B are very steep. This is pos-
sibly just a reflection of the relative width of the column density
distributions in this line of sight when compared to the width of the
S distribution; in the other lines of sight the widths are relatively
comparable, but in the z line of sight the column density width is
narrower. In general, the rest of the joint correlations display weak
dependence, and beam convolution tends to reduce the strength of
these correlations. Altogether, our results tend to agree with the
conclusion that the dispersion in polarization angles is relatively
uncorrelated with column density, as was reported in BLASTPol.
Correlations with the column density have been interpreted in
multiple ways. The depolarization parameter has commonly been
used to constrain the microphysics of grain alignment, which may
vary due to local conditions in the cloud (Cho & Lazarian 2005;
Whittet et al. 2008). Consistent with previous efforts (Falceta-
Gongalves et al. 2008) we find a limited amount of depolarization
that arises purely from magnetohydrodynamical effects, but these
effects are weak if the principal component derived slopes are to
be believed. The shape of the joint correlations and their weak cor-
relation coefficients suggest that these effects are weaker still, and
given the inability of our simulations to achieve agreement with
the BLASTPol results — or any previously reported depolarization
parameters — it is likely that the assumption of homogeneous grain
alignment could be responsible. Heterogeneous grain alignment,
where polarization efficiency depends on local conditions such as
the gas density, may affect the results we have presented. Correc-
tions to the Stokes parameters would be present in first order in the

polarization fraction; however, the polarization angle (as it is com-
puted from the arctangent of a ratio) is less sensitive to these correc-
tions. Therefore, the dispersion in polarization angles is likely less
sensitive to these effects. We will address the role of heterogeneous
grain alignment, and its effect on the polarimetric observables, in
subsequent work.

7 INTERMEDIATE INCLINATION

The excellent agreement with BLASTPol provided by the x line
of sight, with respect to the distributions of the polarimetric ob-
servables and the polarimetric joint correlation, lends weight to the
conclusion that Vela C might have common plane-of-sky magnetic
structure with the x line of sight. Consistently we have demonstrated
thatitis possible to achieve polarimetric distributions strikingly sim-
ilar to the BLASTPol distributions provided that the mean magnetic
field is not in the plane of sky, as is the case in the x line of sight.
However, this is a very specific arrangement in a highly idealized
simulation: a real MC, such as Vela C, will very likely not have an
ordered mean magnetic field that happens to be perfectly aligned
with respect to the observer. One may ask: does the agreement with
BLASTPol requires such an orientation? Is it possible to achieve
agreement with the BLASTPol distributions with a mean magnetic
field that is only moderately suppressed with respect to the line
of sight? We explore such an arrangement by computing synthetic
observations along lines of sight inclined at some angle between
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Figure 9. PDFs of the polarization fraction (left column) and dispersion in polarization angles (right column) for both Model A (top row), and Model B
(bottom row) after rotating by 0° (violet, identical to the z line of sight), 15° (cyan), 30° (blue), 45° (green), 60° (yellow), 75° (orange), and 90° (red, identical
to the x line of sight). The BLASTPol distribution is annotated in black.

Table 7. Mean polarization fraction, mean dispersion in polarization angles, and polarization fraction distribution widths for the p and S distributions;
and power-law indices inferred from the principal components, and the Pearson and Spearman rank correlation coefficients, for the S versus p and N
versus p joint correlations, all computed for several inclination angles between the z and x lines of sight.

Angle Model na(p) na(S) logog(p) S—p PP, Sp PS, Sp N-p PP, Np 08, Np
index index

15° A 0.066 2.33° 0.201 —0.383 —0.571 —0.467 —2.567 —0.132 —0.083
B 0.101 0.71° 0.058 —0.060 —0.292 —0.206 0.099 0.193 0.356

30° A 0.064 261° 0.225 —0.471 —0.536 —0.408 —4.477 —0.151 —0.156
B 0.101 0.84° 0.073 —0.125 —0.487 —0.393 —0.198 —0.262 —0.103

45 A 0.055 3.05° 0.250 —0.483 —0.517 —0.391 — 14.46 —0.065 —0.028
B 0.084 0.80° 0.110 —0.193 —0.536 —0.468 —0.703 —0.431 —0.436

60° A 0.039 4.96° 0.263 —0.540 —0.510 —0.419 4.876 0.124 0.173
B 0.053 1.38° 0.159 —0.274 —0.520 —0.441 —1.889 —0.367 —0.408

75" A 0.023 7.53° 0315 —0.757 —0.614 —0.583 —7.174 —0.059 —0.041
B 0.021 4.19° 0.231 —0.322 —0.324 —0.251 5.497 0.245 0.205

the x line-of-sight direction and the z line of sight.!' In such an
arrangement the mean magnetic field has some component in the
plane of sky, but its ordering influence is reduced in comparison to
the extreme cases.

Fig. 9 contains the distributions of polarization fraction and dis-
persion in polarization angles (computed at pixel scale) for a range
of intermediate inclination angles between the z and x lines of sight.
The mean polarization fraction, mean angle dispersion, and width
in polarization fraction are presented in Table 7. The convention
is that 0° indicates the z line of sight and 90° indicates the x line
of sight. As the inclination angle increases, the polarization frac-
tion distributions gradually increase in width; their peaks become
more suppressed, becoming closer to the BLASTPol distribution.
Similarly, the mean angle dispersion increases with increasing in-
clination angle, raising the overall level of the S distribution. The
Model A distributions become closer to the BLASTPol distribution
at a smaller inclination angle than the Model B distributions do
(compare the 60° and 75° distributions for Model A to Model B in
Fig. 9), but agreement is reached before completely reaching the
x line of sight. We find similar behaviour in the polarimetric joint
correlation, which is presented for a few intermediate inclination an-

1'We compare only to the z line-of-sight given the similarity of the y line-
of-sight and z line-of-sight distributions demonstrated in Sections 3 and 4.

gles in the top row of Fig. 10; the power-law indices and correlation
coefficients are also found in Table 7. The distributions steepen (as
measured by power-law index) as the inclination angle increases,
and become closer to the BLASTPol distribution. Again, Model A
reaches agreement with BLASTPol before Model B; Model A has
nearly identical principal components to BLASTPol in the 75° incli-
nation (left column, Fig. 10), yet Model B remains shallower. Based
on these comparisons, it is clear that Model A has consistency with
BLASTPol at inclinations greater than at least 75° (measured from
the z line of sight), while Model B would require higher inclinations.

These results suggest that the BLASTPol observations are con-
sistent not just with one single orientation but a range of possible
inclinations. Additionally, we see again that higher levels of turbu-
lence (Model A) are consistent with a wider range of inclination
angles; we can see this by directly comparing the Model A and
B distributions for each inclination angle in Fig. 9. At face value,
one might conclude that Vela C shares the same magnetic struc-
ture as our simulations (within some range of possible inclinations)
which may vary depending on the relative level of turbulence and
magnetization. However, we note that our simulations only repre-
sent simplified, idealized scenarios. Another, perhaps more likely,
interpretation of the inclination angle is as a mixing angle, indicat-
ing the proportion of the potentially irregular mean magnetic field
that happens to be in the plane of sky. This would indicate that the
polarimetric distributions in Vela C are at least partially accounted
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Figure 10. Joint PDFs of the dispersion in polarization angles versus polarization fraction (top row) and column density versus polarization fraction (bottom
row) for three inclination angles, intermediate between 0° (magnetically ordered, face-on view, z line of sight) and 90° (magnetically disordered, edge-on view,

x line of sight): 15° (right column), 45° (centre column), and 75° (left column).

for by suppression of the mean magnetic field to some degree with
respect to the plane-of-sky.

Regardless of the interpretation, our results demonstrate that there
is a significant degeneracy in apparent magnetic disorder. The key
polarimetric signatures of intrinsic magnetic disorder — high mean
angle dispersion, wide distributions in polarization fraction, and a
steep negative correlation between these two — can arise either from
a highly turbulent and low magnetization environment (intrinsic
magnetic disorder) or from suppression of the organizing influence
of the mean magnetic field in the plane-of-sky (a projection effect).
Each of these signatures in the y and z lines of sight are closer to
the BLASTPol values in Model A than Model B; and as mentioned,
agreement with BLASTPol is reached for Model A at less extreme
inclination than Model B. Highly disordered magnetic fields have
long been suspected of arising due to high turbulence and/or low
magnetization; however the signatures of magnetic disorder can be
affected as much or more by reducing the plane-of-sky component
of the mean magnetic field, which can, in principle, be relatively
strong. The consistency of the BLASTPol data with the x line-
of-sight distributions of Model B demonstrate this possibility, in
which sub-Alfvénic conditions are nevertheless consistent with ap-
parent signatures of high magnetic disorder.

One may also ask if an intermediate inclination angle can address
the issues raised in Section 6 with respect to the joint correlation

between polarization fraction and column density. It is conceiv-
able that an intermediate inclination angle may result in a principal
component consistent with BLASTPol and other observations of
the depolarization parameter. If that were the case, then a suitable
inclination angle choice may result in the appropriate power-law
index consistent with BLASTPol, though this might require some
fine-tuning. The bottom row of Fig. 10 contains the column density-
polarization fraction joint correlations for a few inclination angles;
the power-law indices may be found also in Table 7. There is a
modest agreement with the Model A column density—polarization
fraction distribution at 15° inclination (right column bottom row,
Fig. 10), which is peculiar given the evidence for agreement at large
rather than small inclination angles in the polarization fraction and
dispersion in polarization angles. It appears that the relative im-
portance of the vertically oriented principal component (dominated
by the width of the polarization fraction) increases as inclination
angle increases. This indicates that the difference between the x line
of sight and the y and z lines of sight appears to be an expression
of the previously identified increase in the width of polarization
fraction. Additionally, the discrepancy in correlation strength (as
measured by the correlation coefficients in Table 7) does not im-
prove with inclination; they remain significantly low compared to
the BLASTPol correlation coefficients in nearly all cases, including
15° (see Table 5). In this light, the modest agreement at 15° is likely
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a coincidence. We conclude that inclination cannot explain the dis-
agreement between our synthetic observations and the BLASTPol
observations, which supports the notion we articulated earlier that
the column density correlations need to be explored in the context
of heterogeneous grain alignment.

8 CONCLUSIONS

We provide a direct comparison between the BLASTPol observa-
tions of the Vela C molecular ridge (Fissel et al. 2016) and numerical
simulations of MCs with colliding flows (Chen & Ostriker 2015).
We perform this direct comparison by computing synthetic po-
larimetry of two numerical simulations (Models A and B; see
Table 1), and applying the same statistical analysis methods to both
the synthetic observations and the BLASTPol polarimetry data for
the Vela C MC. The BLASTPol observations provide an unprece-
dentedly high number of polarization pseudo-vectors for a single
MC, enabling our use of detailed statistical comparison with nu-
merical simulations. Our main conclusions are the following:

(i) We find that the distribution of polarization fraction p in Vela
C is rather broad when compared to our simulations observed with
the mean magnetic field parallel to the plane of sky (Section 3), and
shows remarkable consistency with the x line of sight, in which the
mean magnetic field is mostly parallel to the line of sight (Fig. 4).
We find that those lines of sight in which the mean magnetic field
is primarily in the plane of sky (the y and z lines of sight) produce
much more highly peaked polarization fraction distributions, indi-
cating little variability. In this regime, the width of the polarization
fraction PDF appears to be related to the level of turbulence and
magnetization, and is not substantially affected by differences in the
amount of material in the sightlines; higher turbulence/lower mag-
netization widens the distribution. In contrast, the x line of sight
shows little variability in regards to turbulence or magnetization.
We also demonstrate that beam convolution narrows the p distribu-
tions (bottom panel of Fig. 4), and therefore exacerbates the degree
to which the y and z lines of sight disagree with the BLASTPol
observations. Finally, we demonstrate the existence of linearity in
the depolarized tail of the p distribution, which is a signature for
power-law behaviour in the PDF.

(i1) Similarly, our examination of the dispersion in polarization
angles S (Section 4) demonstrates that the mean angle dispersion in
Vela C is rather high, and is again remarkably consistent with the x
line of sight (Fig. 5). We find that the y and z lines of sight produce S
distributions with relatively very low mean angle dispersions, which
can be affected by the level of turbulence and magnetization: higher
turbulence/lower magnetization (Model A versus Model B) drives
the mean angle dispersion higher. On the other hand, the x line of
sight shows exceptionally little dependence on turbulence or mag-
netization. Interestingly, we find that the width of the distributions
varies little between all lines of sight of both simulations, being
substantially affected only by beam convolution (bottom panel of
Fig. 5), which tends to improve agreement with the BLASTPol
observations. Finally, we note that near the value S = 7t/ V12 (the
value of S where a collection of random vectors converges to) exists
filamentary features in S, similar to structures that have been ob-
served by Planck (Planck Collaboration XIX 2015) and BLASTPol
(Fissel et al. 2016).

(iii) We further confirm remarkable consistency between the x
line of sight and the BLASTPol observations of Vela C in our
examination of the joint correlation between polarization fraction
and dispersion in polarization angles in Section 5 (Fig. 6). The
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power-law indices and correlation coefficients (Table 4) match those
of BLASTPol very well for both simulations. This correlation is still
strong for the y and z lines of sight, but the power-law indices are
much shallower. In these lines of sight it appears that the steepness
of the slope is affected by higher turbulence/lower magnetization,
with steeper slopes found in Model A. The power-law indices in the
x line of sight are not much affected by the level of turbulence and
magnetization, consistent with our results for the polarization frac-
tion and dispersion in polarization angles alone. We also note that
beam convolution has little effect on the joint correlations (Fig. 6,
bottom panel). Altogether, we present strong evidence for relatively
high apparent magnetic disorder in Vela C, but we note that this
apparent magnetic disorder may not be a true proxy for intrinsic
magnetic disorder arising from weak magnetization or strong turbu-
lence. There is a degeneracy between this type of magnetic disorder
and disorder that arises due to large inclination of the mean mag-
netic field with respect to the plane of sky, leading to the absence
of an ordered plane-of-sky magnetic field.

(iv) Examining the joint correlations involving column density
(Section 6), we find that none of the lines of sight particularly match
the BLASTPol observations. The polarization fraction versus col-
umn density correlations are generally weakly correlated (Fig. 7). In
the y and z lines of sight, the power-law index is much shallower than
measured in BLASTPol, and for the x line of sight, the magnitude
of the power-law index is very large, but this has little weight given
the weakness of the correlation as measured by the correlation co-
efficients (Table 5). On the other hand, where BLASTPol saw little
correlation in the dispersion in polarization angles—column density
joint correlation, in some cases the simulations display a moderate
positive correlation (e.g. the z line of sight in Model A in Fig. 8
and Table 6). We argue that we are unable to match the BLASTPol
observations because we assumed homogeneous grain alignment,
and that while there are some purely MHD contributions to these
relationships, they are more likely dominated by the effects of grain
alignment physics. We will explore this in a future publication.

(v) By examining intermediate lines of sight between the x line of
sight and the z lines of sight (Section 7), we establish that agreement
with the BLASTPol data may be found within a range of inclination
angles, not just the pure x line of sight (Fig. 9). Model A is consistent
with BLASTPol at a wider range of inclination angles than Model
B; Model A is consistent with at least inclinations greater than 75°
measured from the z to the x line of sight. As inclination increases
towards the z lines of sight, disagreement is worsened. We argue
that the inclination angle may be interpreted as a mixing angle
rather than a physical inclination, indicating the relative degree to
which the mean magnetic field is in the plane of sky, and that
agreement is found when enough of the ordering influence of the
mean magnetic field is suppressed by projection effects. We also
find little evidence that inclination can achieve agreement between
the simulations and BLASTPol joint distributions involving column
density (Fig. 10), adding further evidence that MHD structure alone
cannot account for the observed correlations with column density.

To summarize, our comparisons of colliding flow simulations to
the BLASTPol observations suggest that Vela C has a high degree
of apparent magnetic field disorder, as supported by studies of the
polarization fraction and dispersion in polarization angles. Whether
this magnetic disorder is merely apparent (due to fortuitous align-
ment of the magnetic field relative to the line of sight rather than
significant intrinsic magnetic field disorder) cannot be determined
from our studies alone. We also find that the correlations involv-
ing column density cannot be explained by MHD structure alone;
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future work is needed modelling the effects of heterogeneous grain
alignment.
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