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Interlacing adjacent levels of S—Jacobi corners processes

Vadim Gorin * Lingfu Zhang

Abstract

We study the asymptotics of the global fluctuations for the difference between two adjacent
levels in the S—Jacobi corners process (multilevel and general 8 extension of the classical Jacobi
ensemble of random matrices). The limit is identified with the derivative of the 2d Gaussian
Free Field. Our main tools are integral forms for the (Macdonald-type) difference operators
originating from the shuffle algebra.
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1 Introduction

A typical setup in random matrix theory is to take an NV x N Hermitian matrix X and to study its
eigenvalues r1 < --- <z as N — oo. One observable of interest is the linear statistic

N
&ri=> flz), (1.1)
=1

for suitable (usually smooth) functions f. In many cases %6 ¢ converges to a constant as N — oo,
while &5 — EG; is asymptotically Gaussian, see e.g. the textbooks [AGZ10|, [PS11], [For10]. Such
limit results are usually referred to as the Law of Large Numbers and the Central Limit Theorem
for the global fluctuations of X.

The asymptotic covariance for & is best understood through the corners processes — a 2d
extension obtained by looking at the joint distribution of the eigenvalues of all principal corners of
X. In more details, let x’f < 3312“ < e < xi be the eigenvalues of the k x k top—left corner of X,
k=1,2,...,N. The global fluctuations of the array {xg}lgingN as N — oo can be then described
by a pullback of the 2-dimensional Gaussian Free Field, as was proven in [Borl4|, [BG15|, [DP14],
[JP14], [GP14] for numerous ensembles of random matrix theory: Wigner, Wishart, S—Jacobi, and
adjacency matrices of random graphs.

The corners processes also pave a way for a sequential construction of &y. Define

k k—1
&) - (z f(xi-“)) _ (z f(wf‘1)> | o)
=1 i=1

then clearly &; = S, &' (k). The aforementioned Central Limit Theorems for the corners
processes imply that for any 0 < a1 < --- < ap, < 1, and smooth functions fi,..., f;, the
m~dimensional vector
| Loy |
> (&),(k) —E&),(k), i=1,---,m, (1.3)
k=1
is asymptotically Gaussian as L — oo, and its covariance can be identified with the joint covariance
of certain integrals of the Gaussian Free Field.

A different approach of understanding (1.3) is to analyze the asymptotics of the joint law of
its individual terms, &'.(k) — E&’(k). As far as the authors know, such analysis in the setting
of the Central Limit Theorem escaped the attention up until recently and it is the main topic of
the present article. Let us however note that in the Law of Large Numbers context, G’f(k:) was
previously considered for Wigner matrices by Kerov [Ker93|, [Ker94], [Ker98| and Bufetov [Bufl3],
leading to interesting connections with orthogonal polynomials and random partitions.

The stochastic system that we work with is the S—Jacobi corners process, first introduced in
[BG15]. This is a random array of particles split into levels, and such that the distribution of
particles at level N can be identified with the classical f—Jacobi ensemble of random N x N matrices.



The special values of the parameter 8 = 1,2, 4 arise when considering real, complex or quaternion
matrices, and for such values of the parameter the Jacobi corners process can be identified with
the eigenvalues of the MANOVA ensemble A*A(A*A+ B*B)~! with rectangular Gaussian matrices
A and B that vary with N, see [BG15, Section 1.5] and [Sunl6| for the details. More generally,
extrapolating from the 8 = 1,2, 4 cases, the definition also makes sense for any value of 5 > 0, see
Section 2.1 for the details.

In the S—Jacobi corners process, suppose that the particles at level &k are x’f < x’z“ < -- -xi, then
we define &¢(k) = Sk f(zF), and & (k) = &¢(k) — &¢(k — 1). We study &'(k) in two separate
asymptotic regimes: for individual £ = |yL| as L — oo, and in the integrated form by averaging
6}(LyLJ) with a smooth weight function on y. These two regimes have very different behaviors.
For the first one, &’ (|yL]) converges as L — oo to a constant (depending on f, see Theorem 3.4),

while & (|yL]) —E&'(lyL]) decays as L~/2 and becomes asymptotically Gaussian upon rescaling.
Somewhat surprisingly, for y; # ys the random variables L!/2 (G’f(LylLJ) - EG’f(LylLJ)> and

LY/? (6}(Ly2LJ) - EG}(LygLJ)) are asymptotically independent, see Theorem 3.7 for the exact

statement and details. The scaling is also different for the second limit regime, as the weighted
averages of the form

/0 a(y) (S (LyL)) — ESy(|yL))) dy (1.4)

decay as L~ and become Gaussian upon rescaling, see Theorem 3.9 for the exact statement and
details.

The results in both scalings are best understood if we recall the main theorem of [BG15|:
Ss(lyL]) — ESf(|yL]) is asymptotically Gaussian (jointly in several y’s and f’s), and the limit
can be identified with the integral of a generalized Gaussian field, which in turn is a pullback of
the Gaussian Free Field. Then our results yield that &' (|yL]) — E&’([yL]) converges to the y-
derivative of this generalized Gaussian field. Rigorously speaking, the field is not differentiable in
y—direction, and this is what leads to the appearance of two scalings; we make this connection more
precise in Theorems 3.13, 3.18.

From this perspective, our main results strengthen the convergence of &¢(|yL|) —EG&¢(|yL]) to
the pullback of the Gaussian Free Field up to the convergence of the derivatives in the y—direction.
We emphasize that there is no a priori reason why such an upgrade for the CLT should hold.
Indeed, in a parallel work [ES17] Erdgs and Schroder show that this is not the case for general
Wigner matrices; in that article the limit might even fail to be Gaussian.

On a more technical side, our result can be linked to an observation that the Gaussian con-
vergence of &¢(|yL]) — ES¢(|lyL]) is faster than it might have been: the cumulants (of order 3
and greater) decay much faster than just o(1), see Proposition 6.11 for the details. In several 2d
stochastic systems, which have no direct connection with our setup, but also lead to the asymptotic
appearance of the Gaussian Free Field, somewhat similar fast decay of cumulants were observed
e.g. in [CS14], [BBNY16].

For the proofs, we adopt parts of the methodology of [BG15] and exploit the fact that the -
Jacobi process is a limit of Macdonald processes of [BC14|, [BCGS16]. A critical new ingredient
is the use of a family of difference operators arising from the work of Negut [Negl3]|, [Negl4]| (see
also [FHH'09]) on Macdonald operators and shuffle algebra. These operators were first introduced
by Borodin and the first author in the appendix to [FLD16] (without detailed proofs), and here we
further develop them to their full power. Let us emphasize that although asymptotic information
on B-Jacobi process was previously accessible through other operators used in [BG15], their combi-
natorics was too complicated for the delicate asymptotic regimes addressed in this text. Therefore,



our use of a new family of difference operators is crucial for the proofs. These operators output
answers in the form of contour integrals in large dimensions, and additional efforts and ideas are
required to convert them into a trackable one or two—dimensional form. This last step is done by
employing new integral identities for dimension reductions, which are presented in Appendix A.

Independently of the present article, the Central Limit Theorem for (‘5}(k) in the context of
Wigner matrices was also considered recently by Erdgs-Schréder [ES17| and by Sodin [Sod16].
Since these authors consider only the asymptotics for a single k, the link to the Gaussian Free Field
is less visible there, although we believe that it should be also present (at least in the case when
the Wigner matrices have Gaussian entries, i.e. for GOE, GUE, GSE). Despite the connections, our
setup is quite different from [ES17|, [Sod16]. In particular, these papers rely on matrix models and
independence of matrix elements; we do not know how to extend such an approach to our settings
of B—Jacobi corners process. In the opposite direction: although there is a simple and well-known
limit from 8 = 1, 2,4 Jacobi corners process to GOE/GUE/GSE, some technical difficulties prevent
us from performing such a limit transition in the exact formulas that we use for the asymptotic
analysis.
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2 Background and setup

2.1 p—Jacobi corners process

Definition 2.1. The K-particle Jacobi ensemble is a probability distribution on K-tuples of real
numbers 0 < x1 < -+ < xx < 1 with density (with respect to Lebesgue measure) proportional to

K
I =2 [P0 =), (2.1)
1<i<j<K i=1

where 8 > 0,p,q > —1 are real parameters.

This is the distribution of the eigenvalues of the MANOVA (Jacobi) random matrix ensemble.
Specifically, consider two infinite matrices X;; and Yj;, 7,5 = 1,2,--- where entries are i.i.d. real,
complex, or quaternion Gaussian, corresponding to 5 = 1, 2,4, respectively. For integers A > M > 0
and N > 0, let XM be the A x M top-left corner of X, and Y™ the N x M top-left corner of
Y. For the M x M matrix,

MANM _ (3 AMyx x AM ((XAM)*XAM 4 (YNM)*YNM)—l ’ (2.2)
almost surely K = min(N, M) of its M eigenvalues are different from 0 and 1; they are distributed

as K-particle Jacobi ensembles, for 5 =1,2,4, and p = g(A —M4+1)—-1,q= g(\M —N|+1)-1,
see e.g. [Forl0, Section 3.6].



Following [BG15], we further introduce the S—Jacobi corners process by coupling a sequence of

Jacobi ensembles. Let x™ be the set of infinite families of sequences z',z2,---, where for each
N > 1, 2V is an increasing sequence with length min(N, M):
N N

and for each N > 1, 2 and zV~! interlace:
eV <N vzl <. (2.4)

Definition 2.2. The 8-Jacobi corners process is a random element of ™ with distribution P20,

where o, M,0 = g > 0 are parameters, such that the sequence ¥, for N = 1,2, ..., is a Markov
chain satisfying the following conditions. First, the marginal distribution of a single "V has density
(with respect to Lebesgue measure) proportional to

min(N,M)
H (.T;V _ xg\f)29 H (:Eﬁ\f)@a—l(l B xl]'V)G(|M—N\+1)—1. (25)
1<i<j<min(N,M) i=1

Second, the conditional density of V=1 given 2V is

(N 1)0 H (x;}f—l —%N_l) H (a;j-v V)12

i=1 1<i<j<N-1 1<i<j<N
N-1 N N-1 1
i=1 j=1 i (@)

when N < M, and
I'(NO) N-1 N—1y/,.N _ _N\y1-20
(@~ N )
LOMT(NG — MO) 1<i£:[<M J ¢ J !
N 1)9 2V O(M—-N-1)+1 A N 6-1 1_$ )(N M-
X H ;') H |z} — - H ~T)Ng (2.7)

ij=1 i
when N > M.

The proof that the distribution P*M? is well-defined (i.e., that the formulas (2.5), (2.6), and
(2.7) agree with each other) can be found in [BG15, Proposition 2.7]. It is based on integral identities
due to Dixon [Dix05] and Anderson [And91].

Sun proved in [Sunl6, Section 4] that the joint distribution of the (different from 0, 1) eigenvalues
in MA™M = 1 ... N is the same as the first N rows of S-Jacobi corners process with o =
A—M+1, and f = 1,2 (corresponding to real and complex entries, respectively). See |[BG15,
Section 1.5] for more discussions about matrix models of the S—Jacobi corners process.

2.2 Signed measures and their diagrams
Our main object of study is a pair of interlacing sequences V=1, ¥ drawn from the S-Jacobi
corners process. We assign to such a pair two closely related objects: a signed measure and a

diagram.

Definition 2.3. Given an interlacing sequence z; < y; < -+ < yp,—1 < x,, the corresponding



signed interlacing measure (%1%} is an atomic signed measure on R of total mass 1 given by
n n—1
plob W (A) =3 " Mgea = > Nyen, VACR. (2.8)
i=1 i=1
An alternative way to describe interlacing sequences (due to Kerov [Ker93|, see also [Bufl3])
relies on the notion of a diagram.
Definition 2.4. A diagram w : R — R is a function satisfying;:
1. Lipschitz condition: |w(u1) — w(ug)| < |ug — ug|, Yui, uz € R.
2. There is a ug € R, the center of w, such that w(u) = |u — ug| for |u| large enough.

Any diagram w that is piecewise linear and satisfies %w = +1 (except for finitely many points) is
called rectangular.

We draw a connection between interlacing sequences and diagrams, see Figure 1 for an example.

Definition 2.5. For any interlacing sequence ;1 < 13 < -+ < yp—1 < x,, define its diagram
w: R — R as follows:

1. For u < 1 or u > @y, let w(u) = |u — ug|, where ug = Y7 2 — S0 ;.

2. Fori=1,--n,let w(z) =31y —25) + 2 <@ — yj-1).

3. Fori=1,--- n—1let w(yi) =3 1<;jc; (¥ — ) — @i + Tiv1 + Xi10j<n(@ — Yj—1).
4. In all the intervals [z;,y;] and [y;, z;41], w is linear.

It’s easy to verify that the defined w is a rectangular diagram; to be more precise, it satisfies
the following conditions:

1. Ly(u) =1, for any u € (U?z_ll(xi,yi)> U(zp, 00) .

2. %w(u) = —1, for any u € (U?;ll(yi,l’i_i_l)) U(—o0,z1) .

Remark 2.6. For an interlacing sequence 1 < y1 < --- < yp—1 < Zp, and its diagram w, the

second derivative %w can be identified with 2g{%i}-{vi},

2.3 Pullback of the Gaussian Free Field

In this section we briefly define a pullback of the Gaussian Free Field, and review the results of
[BG15] about the appearance of the GFF with Dirichlet boundary conditions in the asymptotics of
the B—Jacobi corners process.

Detailed surveys of the 2-dimensional Gaussian Free Field are given in [She07], [Dub09, Section
4], [Werl14], and here we will omit some details. Informally, the Gaussian Free Field with Dirichlet
boundary conditions in the upper half plane H is defined as a mean 0 (generalized) Gaussian random
field G on H. It vanishes on the real axis, and the covariance (for any z,w € H) is

1

E(G()G(w)) = ——In

Z—w

Z—w

(2.9)
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Figure 1: The diagram of an interlacing sequence

Since (2.9) has a singularity at the diagonal z = w, the value of the GFF at a point is not defined.
However, the GFF can be well-defined as an element of a certain functional space. In particular,
the integrals of G(z) against sufficiently smooth measures are bona fide Gaussian random variables.

The next step is to define a correspondence which maps to the upper half-plane the space where
particles of the S—Jacobi corners process live.

Definition 2.7. Let M, & > 0 be parameters, and define D C [0, 1] x Rs¢ be the set of all (z, N),
satisfying the following:

2/ NN (VL + 6)(N + &)

x_MN+(M+@)(N+oQ)
(N +a+ M)?

(N +a+ M)?

(2.10)

Let 2 : D — H be such that the horizontal section of D at height N (for N % M) is mapped to the
half-plane part of the circle, centered at

M (2.11)
N-M
with radius
VN +&)(N +a)
~ ~ (2.12)
]

(when N = M the circle is replaced by the vertical line at %), in a way that for any point u on the
half circle (or half vertical line), it is the image of

( L “_O‘A,N>. (2.13)
u+N u—a—M

It is known that such Q is well defined and injective, and the image is H without (the upper
half of) the ball centered at & + M with radius /M (M + &) (see [BG15, Section 4.6]).



Definition 2.8. K is a generalized Gaussian random field in [0, 1] X R which vanishes outside D
and is equal to G o Q (i.e. the pullback of G with respect to map Q) inside D.

Remark 2.9. Since the image of ) is smaller that H, only the restriction of the field G to the
image Q(D) is important. However, for the definition of G we need to take the entire H, i.e. we do
not impose any new boundary conditions for the field on the non-real part of the boundary of the
image.

Again, the value of K at a given point in D is not well-defined, but it can be integrated with
respect to certain types of measures; specifically, we have the following results, which can essentially
be taken as an alternative definition of IC (indeed, either of Lemmas 2.10, 2.12 can be used to recover
the covariance kernel of K(u,y)).

Lemma 2.10. For any 0 < Ny <--- <N, and positive integers ki, --- , kp, the following random

vector
h

(/01 uF K (u, Ni)du> . (2.14)

is jointly centered Gaussian, and the covariance between the ith and jth component is the double
contour integml

ff d’Uldvg
(2mi)2(k; +1 (kj +1) (v] — vg)?

v v — O kitl v vy — & hitt
x( LI — > 2.2 _ . (2.15)
m+N, v—a—M ’U2+Nj v — & — M

where |v1| < |va|, and the contours enclose —N;, —Nj, but not & + M.

Remark 2.11. We note that |v;| < |va| means that the contour of vy encloses any pole that
depends on vy, for any v; in its contour. In particular, in (2.15), this is equivalent to that the
contour of v; is inside the contour of vo. We will use the notation < throughout the following text.

Lemma 2.12. For any integers ki,--- ,kp, and g1,--- ,gn € C*([0,G]) for some G € R, the
joint distribution of the vector
h

(/ " [MEsr dudy) (216)

is centered Gaussian, and the covariance between the ith and jth component is

/G/G 9i(y1)g;(y2)0 7" ff
o Jo (@mi)2(ki+1)(k; +1) (v1 — vg)?

~

V1 v — & kitl V9 vy — Qv kit
X ( . = ) < . = ) dvldvgdyldyg, (2.17)
ntyr n—-—a—M vty vg—a—M

where the inner contours enclose poles at —y1 and —y2, but not & + M, and are nested: when
Y1 < Y2, [v1] K Jval; when y1 > yo, |va| < vy

These above two Lemmas are obtained from the Gaussianity of integrals against the Gaussian
Free Field (see e.g. [BG15, Lemma 4.5, 4.6]), by following the arguments in [BG15, Section 4.6] to
pull the integrals back to K.

Let us emphasize once again that since the values of K are not defined, the expressions (2.14)
and (2.16) are not conventional integrals, rather they are pairings of a generalized random function
K with certain measures.



3 Main results

We proceed to the statements of our asymptotic theorems.
In our limit regime the parameters o, M of the g—Jacobi corners process and level N depend
on a large auxiliary variable L. — oo, in such a way that

a . N - .M.
Sr T AT TN AR T o
For a random P®M-?_distributed sequence (', 22,---) € x™, we introduce random variables
N, N<M
N _ N N
= x€x ’...7‘%‘ ,1’...’17 N>M (32)
() M )
N-M
and
N
Pr(e™) =D (@) (3.3)
i=1
The following three theorems give the I — oo Law of Large Numbers for the pair (zV=1 2V)

in three different forms. They are equivalent to each other.

Theorem 3.1. In the limit regime (3.1), the random variable By, (™) — Br (N 1) converges to a
constant as L — oo, in the sense that the variance

_ 12
E [(Br(z™) = BV 1) = EBr(@™) = B 1)), (3.4)
decays as O(L™1). The constant is given by the following contour integral:
1 v v— Q& o
lim E V) — N1 :7{< — - A> —dwv, 3.5
Jim B (P (@) = Pe(z™ ) il oo F voaci) ook (3.5)

where the integration contour encloses the pole at —N but not & + M, and s positively oriented.

Remark 3.2. Using exactly the same approaches as those in the proof of Theorem 3.1, we can
show that

1 1 ) v — Q& k
lim L7'E Ny == 7{ _ . —) d .
Jees (‘Bk(x )) k27 (U+N v —& — M> Y (3.6)

whose N derivative is precisely (3.5).

Theorem 3.3. Let w® =" " be the interlacing diagram of the sequence ¥ < ijlvfl < - <L 5:%:% <
:E% Then it converges to a deterministic diagram ¢ under the limit scheme (3.1), in the sense that
lim sup wiN’jN_l(u) —o(u)| =0, (3.7)

in probability. Here ¢ is the unique diagram satisfying

M—N+(N+M+é&)(1—u 1
) = ﬁuyi{ua)(l)(u) ) sy 4 € (3.8)
2C(Ma N)é(u_ 1)a u e (—OO,’Yl]U[’YQ,OO),
where
2 2
<\/(d+M)(&+N)— MN) (\/(d+M)(d+Z\7)+\/MN>
Y1 = = - s Y2 = = = y (3.9)
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Figure 2: Plots of the density %-.
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Note that 1, v2 precisely describe the left and right boundaries of the domain D in Definition
2.7.

Theorem 3.4. Let ¢ be defined as in Theorem 3.3. Take a function f :[0,1] = R, such that f’
exists almost everywhere, and is of finite variation. Then the random variable

1 N N-1
PR SR C A (3.11)
0 i=1 i=1
converges (in probability) as L — oo in the limit regime (3.1) to the constant %fol f(w)¢" (u)du.

Remark 3.5. As each pzn zn-1 is not a positive measure, Theorem 3.4 does not hold for general
f. For example, take any A C [0,1], and let f be the indicator function of A; then (3.11) takes
only integer values, and can not converge to a non-integer constant. This implies that the measures
dpzn zn-1 do not weakly converge to the measure with density %".

Also, the measure with density %ﬁ is not necessarily positive (although it has total mass 1): when

M < N the density function can take negative values, cf. Figure 2. This measure is an instance of
the interlacing measures, which were introduced and studied by Kerov (see [Ker98, Section 1.3]).

We note that the asymptotic objects in Theorem 3.1, 3.3, and 3.4 are independent of the pa-
rameter ¢ in the underlying S—Jacobi corners process. However, these results have a remarkable
limit as 8 — oo. They degenerate to statements about asymptotic separation of the roots of Jacobi
orthogonal polynomials.

Let F7? be the Jacobi orthogonal polynomials of degree n with weight function 2P(1 — z)?
on [0,1], see e.g. [Sze39|. Let jarn.a, be the ith root (in increasing order) of fi;lt’]@j[]\?)m, for

1 <4 <min(M, N). We further denote jas N, = 1, for any fixed M, N, o, and min(M, N) < i < N.
Theorem 3.6. There is an interlacing relationship for the roots:

IMNal < JMN-1,01 <JMNa2 < . (3.12)

10



Let 1y, N, be the diagram corresponding to this interlacing sequence, as in Definition 2.5, and let ¢
be defined as in Theorem 3.3. Under the limit scheme (3.1), the diagrams tpyr,n,o converge to ¢ in
the uniform topology.

Kerov in [Ker94| proved similar statements about Hermite and Chebyshev polynomials.

Now we switch to the Central Limit Theorems. The first result describes the asymptotic behavior
of fluctuations for the individual By, (xV) — P, (zV1).

Theorem 3.7. For positive integers ky,--- ,ky, ki,--- ,kj,, Ni,--- ,Np, and N{,--- ,N;,, in ad-
dition to the limit scheme (3.1) we also let

$£;5:'¢ 1<i<h, lg&szﬁg 1<i<h. (3.13)
The random vectors
L3 (P, (&™) = P, (@) — E (P (™) = Pi @), (3.14)
and
/ ’ n
(B @) —E (P @) (3.15)

jointly converge (as L — oo) to centered Gaussian random vectors in distribution, and the two
limiting vectors are independent. Within the limiting vector of (3.14), the covariance between the
ith and jth component becomes

kiky 67! 1 N
~ g g fﬁ . ( v t—e A> dv, (3.16)
=Nk + k2w W+N)2Z\v+N, v—a—-M
where the contour encloses —N; but not & -+ M; within the vector (3.15), the covariance between the
ith and jth component becomes

ki R k;
ff O Sl 227 ) dudes,  (3.17)
27T1 (v1 — v2)? vl—l—N’ v — & — M U2+N],- vg —a— M

where the contour of vy encloses —NZ-’ and the contour of va encloses —]\7;, and neither of them

encloses & + M. We also require that |vi| < |va|, assuming that N! < NJ’

Remark 3.8. The Gaussianity of the vector (3.15) is actually [BG15, Theorem 4.1], and here we
are more interested in its joint distribution with (3.14). The proof presented in this text also gives
an alternative derivation of the results of [BG15, Theorem 4.1]. In particular, the covariance (3.17)
can be directly computed using the approach of Section 6.1.

The asymptotic behavior is different for the weighted averages (in N) of By, (zV) — By, (zV1).

Theorem 3.9. Let ky,--- ,ky, be integers, and g1,--- ,gn € L*([0,G]), for some G € Rxq. Under
(3.1), the random vector

(L /0 i) (B @) - o 1) — (3 (02) -y a1 dy)h (3.18)

=1
converges in distribution to a centered Gaussian vector, with covariance between the ith and jth
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component

kik;
//0<y1<y2<G 2ri)? f% (v1 —v2)?(v1 + y1)(v2 + y2)
N NN
(y1)9<y2)< T vl_aA> ( 2 UQ_O‘A)
gi ! vty n—-—a&a—-M V2t+Y2 vg—a&—M

A k; ~ ki
1 V] — J V2 V9 — & ¢
+ g; i . = . = dvidvodyr d

g;(yl)gz(yg) <v1+y1 vl—&—M> <02+y2 m—&—M) ) LEV2AT1 a2

G 1 ~ ki+k;
0~ y)kik; - i
—/ 7{ < v Oﬂ) dvdy, (3.19)
o 2mi k+k v+y) vty v—a— M

where in the first integral, the contours are nested: |vi| < |va|, and enclose —y1, —y2 but not G+ M;
in the second integral, the contour encloses —y but not &+ M.

Remark 3.10. Let us emphasize that the scalings in (3.14) and (3.18) are different: for a single
difference the scale is L%, while for the weighted average the scale is L. The conceptual reason is
that the limiting field I (of Definition 2.8) is differentiable only in generalized sense in a spatial
direction even after smoothing in another direction; see Theorems 3.13, 3.18 for more details on the
field K. One vague analogy is with the functional central limit theorem describing the convergence
of the random walk to the Brownian motion: the latter is non-differentiable, and we need to rescale
increments of the random walk differently (in fact, there will be no rescaling at all) to see a finite
random variable as their limit.

Remark 3.11. If g; = 1, _ g/, then (3.18) has the same asymptotic behavior as (3.15). In particular,
one can get (3.17) from (3.119), by integrating in y,y2 in the first integral in (3.19). In doing this
it suffices to consider the anti-derivative of its integrand. At N{ it is (3.17), at zero it vanishes, and
along the line y; = ys it is the second integral of (3.19) (using integral identities from Appendix A).

Theorems 3.7 and 3.9 have an interpretation in terms of the Gaussian Free Field. For that we
define (random) height functions, similar to [Borl4|, [BG15].

Definition 3.12. Let the sequences z',z2,--- be distributed as P®™¢  For any L > 0 and
(u,y) € [0,1] x Rsg, define H(u,y) to be the number of i such that .”L’ZLLyJ is less than u. For y > 1,
let Wr(u,y) = L (Hp(u,y) — Hi(u,y — L7h)).

In [BG15], the authors proved that centered H converges to the random field K of Definition
2.8. Our Central Limit Theorems imply the convergence of centered Wy, to a derivative of the
random field IC, as L — oo. In more details, Theorem 3.7 leads to the weak convergence to a
“renormalized derivative” of the random field K, in the following sense.

Theorem 3.13. Under the limit scheme (3.1), for any integers ki,--- ,ky and ki,---  kj,, real
numbers 0 < ]\71 <. < Nh and 0 < N{ << N;l,, the vector
h

1
<L% / ki (WL(U, N)—E (WL(u, N,-))) du> (3.20)
0 i=1
as L — oo converges in distribution to a Gaussian vector, which is the same as the weak limit
1 1 h
lim 6~} ( / i, Ny + 6)du — / K, Ni)du) | (3.21)
0—04 0 0 i=1

12



In addition,

/

(/01 o (’HL(u, N -E (HL(U, N;))) du) ; (3.22)

and (3.20) jointly converge (in distribution) as L — oo, while the limit vectors are independent.

In words, Theorem 3.13 means that the limiting field for 1d—slices of L_%WL (in the u—direction),
is the same as the renormalized deerivative of the limiting field for Hr; but when letting L — oo
simultaneously for 1d slices of L™2Wy, and Hp, one gets independent fields.

Remark 3.14. By [BG15, Theorem 4.13], (3.22) converges to
h/

(/01 ubiK (u N{) du> _ (3.23)

as L — oo. A simple computation involving Lemma 2.10 shows that (3.21) is independent from
(3.23), in the sense that as 6 — 04, the covariances tend to zero. Note, however, that (3.21) is
defined as a weak limit, and may not actually exist in the probability space of K.

In contrast to Theorem 3.13, when we deal with 2d—integrals of Wy, and Hp, then the limit-
ing fields turn out to be much more closely related. Namely, we define the pairings 3, of the
y-derivative of the field K with test functions u*g(y) through the following procedure based on
integration by parts in the y—direction.

Definition 3.15. For any G € Ry and g € C*°([0, G]), with g(G) = 0, define

3ok = /OG /01 ut <jyg(y)> K(u,y)dudy. (3.24)

Lemma 3.16. For any G € Rsq and g € L*([0,G)), and positive integer k, there exists a sequence
of functions g1, g2, - -, satisfying that

1. Each g, € C*([0,G]), and g,(G) = 0.
2. lim, o0 gn = g in L%([0,G)).
3. The sequence of random variables 34, k, 3gs.k» - converges almost surely.

If there is another sequence gi, g2, - -+ satisfying the same conditions, then the limits limy, o0 34, k
and lim,, o0 35, 1 are almost surely the same.

With this we can extend the definition of 3, to any G € Rso and g € L%([0,G)).

Definition 3.17. For any G € R and g € L?([0,G]) we define 3, to be the limit in Lemma
3.16.

Now we state the convergence of Wy, to the y—derivative of K in the following sense.

Theorem 3.18. Let ky,--- ,kp, be positive integers, G € Rsg, and g1,--- ,g9n € L>*([0,G]). As
L — oo, the vector
h

( /OG /Olukigz(y) (Wr(u,y) —E (W (u, y)))dudy) (3.25)

1=1
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converges in distributz’on to the vector (397;7]‘31')?:1' Moreover, take differentiable functions gy, --- ,gn €
([0, G)), such that & 191 € L>=([0,G]) for each 1 < i < I, and positive integers ky,- - , kj,. Then

consider the vector
h/

(/ /_u( Gty )> (HL(“’W—E(HL(uay)))dudy>i g (3.26)

As L — oo, (3.25) and (3.26) jointly converge in distribution to the h + h' dimensional vector
h/
h
(391‘7’%)1‘:1 U (351',%)2.:

Remark 3.19. We point out that for g; € C*°([0, G]), Theorem 3.18 can be obtained from [BG15,
Theorem 4.13| via integration by parts. However, we are unaware of any approach that extends to
the case of g; € L*°(]0, G]) without using Theorem 3.9.

1.

Organization of remaining text

The remaining sections are devoted to proofs of the above stated results.

Section 4 presents the formulas for the expectations of the joint moments of S—Jacobi corners
processes, using Macdonald processes and difference operators. The proofs of the Law of Large
Numbers (Theorem 3.1) and the related convergence of diagrams and measures (Theorems 3.3, 3.4)
can be found in Section 5, except that the decay of variance in Theorem 3.1 is left for Section 6,
which contains the proofs of the Central Limit Theorems (Theorems 3.7, 3.9). Section 7 contains
the proofs of Theorems 3.13 and 3.18, and Lemma 3.16. Throughout the proofs we will widely use
some contour integral identities, which are given in Appendix A, to simplify the computations.

4 Discrete joint moments

In this section we compute the joint moments in S—Jacobi corners processes. The main goal is to
prove the following result.

Theorem 4.1. Let (', 22,---) € x™ be distributed as P9 and let Py (xN) be defined as (5.3).
Letl, N1 <--- < Nj, and ky,--- , k; be positive integers, satisfying o+ M > ki +--- + k;.

For any positive integers n, m, m, and variables w1, -+ , Wy, W1, , W, denote
1
J(wi, -, Wm0, M, 0,n) =
(w1 mn ) (wg —w1+1—=0) - (W, — W1 + 1 — 0)
(wj — w;)(w, +1-0) -0 w; — O
X . . (4.1)
1<Z,1<_][,<m(wj w; — 0)(w; —wl—l-l)Hwi—{—@(n—l) w; — Qo — OM
and

D — w1 —ws 1 —0

C(w, Wy s+ st ) = 11 (0i — w;) (Wi — w; + ) (4.2)

Then the moments of P (xV) can be computed via

E(‘Bkl(x]\ﬁ)...mkl(x]\ﬁ)) _(277(1)_1614_%% %HJ Uids s Uik O M,6 N)

X HS(Ui,h ey Uk ULyttt 7uj,kj;6) H 1_1 dum/, (4.3)

i<j i=1¢=1
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where for each i =1,--- 1, the contours of w;1,--- ,u;r, enclose —0(N; —1) but not (ac+ M), and
lui1| < - < Juig,|. For 1 <i <1, we also require that |u; ;| < |wit1.1]-

We remark that a different contour integral expression for the left hand side of (4.3) is given in
[BG15, Section 3]. The authors are not aware of a direct way to match the two expressions.

The proof of Theorem 4.1 relies on the formalism of Macdonald processes. Under certain limit
transition it weakly converges to P*M:? In turn, we compute the moments of Macdonald processes
by applying a remarkable family of difference operators coming from the work [Negl3| on the
symmetric functions. A particular case (I = 1) of Theorem 4.1 was proven by one of the authors
and Borodin in the appendix to [FLD16].

We recall the definition and some basic asymptotic relations of Macdonald processes in Section
4.1. Then in Section 4.2, we introduce the differential operators, which help to extract moments
of Macdonald processes; we also give another expression of these operators on a special class of
functions, in terms of nested contour integrals (Proposition 4.10). In Section 4.3, we first show that
applying the operators repeatedly can get moments of Macdonald processes (Proposition 4.11).
Then by using Proposition 4.10 repeatedly, we evaluate the result of applying the operators re-
peatedly, as nested contour integrals (Proposition 4.12). In Section 4.4, we do a limit transition in
Macdonald processes, and get the desired expression for moments of S—Jacobi corners processes.

4.1 Macdonald processes and asymptotic relations

Let Ay denote the ring of symmetric polynomials in N variables, and A denote the ring of symmetric
polynomials in countably many variables (see [Mac95, Chapter I, Section 2|). Let Y be the set of
partitions, i.e. infinite non-increasing sequence of non-negative integers, which are eventually zero:

Y:{)\: ()\1,)\2’...) EZOO|)\1 2)\2 Z 207 3N€Z+’)\N:0}’
and Yy C Y consists of sequences A such that Ayy1 = 0. Let |\ = >°°; A; be the size of partition
A

We can make Y a partially ordered set, by using dominance order:

For any A € Y, denote Py(-;¢,t) € A to be the normalized Macdonald polynomial,
Py(5q,t) =my + Z Un My, (4.5)
p<A

where m,, are the monomial symmetric polynomials, and wuy,, are certain real coefficients depending
on q,t, see [Mac95, Section VI.4]. Here g and ¢ are real parameters, and we assume that 0 < ¢ < 1
and 0 < ¢t < 1. From this definition, each P\(-;¢,t) is homogeneous with degree |A|, and the
collection

{Pr(5q,t) | A €Y} (4.6)
is a basis of A. We also denote Qx(+;¢,t) = ba(q,t)Px(+;q,t), where by(g,t) is a constant uniquely
defined by the identity (4.8) below and with an explicit expression given by [Mac95, Chapter VI

(4.11)]. We further define the skew Macdonald polynomials Pyj,, and Q,,,, where A\, € Y, to be
the coefficients of the following expansions (see [Mac95, Chapter VI, (7.9)]):

P)\(CL]_,"' 7(1N,b]_,"' abNaqvt): Z PA/y(a’lv"' aaN;q’t)P/L(bla'” 7bNaQ7t)
HEY N

Q)\(ala”' ,GN,bl,"' 7bN7Q7t) = Z Q)\/,u(ah'” 7aN;Q7t)QM(b17"' 7bN7q7t)
HEY N

(4.7)
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Proposition 4.2 (see [Mac95, Chapter VI|). For any finite sequences ay,- -+ ,ap;, and by, -+ by, €
C, with |a;bj| <1, V1 <i < My, 1 <j < My, we have

> (1 —tabjgh1
2 Palan g, Qb1 b, ) = I1 HH@OI((l — a.lb.J k_l)),
ASY 1<i<ny i<y =1 T divig

Z P/J,/)\<a17 sy G Q7t>P)\/V(b17 o 7bM2; qat) = Pp,/l/(a/la e 7aM17b17 e 7bM2; qvt) (49>
reY
Let UM be the set of all infinite families of sequences {\! 2, which satisfy

1. For N 2 1, )\N € Ymin{M,N}'
2. For N > 2, the sequences AV and AV ~! interlace: )\{V > )\{Vfl > )\év >

Definition 4.3. The infinite ascending Macdonald process with positive parameters M € Z-y,
{a;}2,, {6}, 0 < a; < 1, 0 < b; < 1, is the distribution on W™ such that the marginal
distribution for AV is

> (1 —abigh1!
Pr0b<)\N:M) = H Holz—l(l quk_l) Pﬂ(al’... 7aN§Q7t)Q,u(bl,"' ,bM;q,t), (4_10)
1<i<NA< <M [T, (1 = taibjg—)

and {A\N}n>1 is a trajectory of a Markov chain with (backward) transition probabilities

P . L
Prob(V ! = ju | AY = 1) = Py (as g, ) b 0N 1) (4.11)

Py(ala" : 7aN;Q7t) '
Remark 4.4. The consistency of formulas (4.10) and (4.11) follows from properties of Macdonald
polynomials. See [BC14, Section 2.2.2|, [BCGS16, Section 3.1] for more details.

From this definition and (4.9), the following Proposition follows by induction, cf. [BC14, Defi-
nition 2.2.7] [BCGS16, Definition 3.2] [BG12, Definition 7.8|.

Proposition 4.5. Let {)\N}N21 be distributed as a Macdonald process with parameters M € Z~y,
{a;}2,, {b;}M ., where each 0 < a;,b; < 1. Forintegers 0 < Ny < --- < Ny, and u* € Yn,,--- ,pul €
Yn,, their joint distribution is

[, (1 — aibjg*t)
Prob(A\M = pt, - AN =ty = H Hoko 1(1 _ taz.b], k=)
1<i<Na<j<m Hi=t 034
-1
X Pul (alv o 7aN1;q7t) (H Pui+1/,ui(aNi+1a o aaN¢+1;Q7t)> Q/J,l(bb < b qvt) (412)
=1

There is a limit transition which links Macdonald processes with P®M.¢.

Theorem 4.6. [BG15, Theorem 2.8] Given positive parameters M € Z, o, 0 € Rsg. Let the
random family of sequences {)\N}Nzl, which takes values in UM | be distributed as a Macdonald
process with parameters M, {a;}2,, {b;}M,. For ¢ > 0, set

—€), t=-exp(—be)
—Oe(i—1)), i=1,2,---,
—fe(a+i—1)), 1<i<M,
N (e) = exp(—eAN), N =1,2,---,1<i<min{M,N},

q = exp(
a; =t =exp( (4.13)
b, =ttt =exp( '

then as € — 0L, the finite dimensional distributions of ', 2%, --- weakly converge to P®M?0.
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4.2 Differential operators

We introduce operators acting on analytic symmetric functions. Such operators were originally
defined to act on A, and more algebraic discussions of them can be found in [FHH'09| or [Negl13].
We will use them to extract moments of P,

Definition 4.7. Let » > 0 and ¢,t € (0, ) be parameters. Let DY be an operator acting on
symmetric analytic functions defined on BY, where B, = {z € C : |z| < r}. For any analytic
symmetric F': BY — C, since (4.6) is a basis of A, we can expand

F(zy,--,on) = eaxPa(an,- an;q,1), (4.14)
AeY N

where ¢y are complex coefficients. We set DY oL BN — C to be the sum of the series

N

DynF(xl,--- ,.Z'N): Z ( 1—t n Z Lt H_l t_Nn> P)\(wl,'“ ,Z‘N;q,t). (4.15)
AEY N =1

Proposition 4.8. The series (4.14) and (4.15) converges uniformly on compact subsets of BY

thus the operator DY, is well-defined and linear. Further, it is continuous in the following sense:

for a sequence {Fi}2, of symmetric analytic functions converging to 0 uniformly on every compact
subset of BN, then so is the sequence {DY, F;}22,

We need the following Lemma in the proof of Proposition 4.8.

Lemma 4.9. For any r,6 > 0, ¢q,t € (0,1), and N € Zsq, there is a constant Cny > 0 sat-
isfying the following: for any symmetric analytic function F : BN — C given by (4.14), if

|F'(x1,- -+ ,2n)| < 1 for every w1,--- ,xn € By, then for every x1,--- 2N € By1_s), and X\ € Yy,
one has |cxPy(z1,- - ,xn;q,t)| < (1= 63)NC.
Proof. Since each Py is homogeneous, by rescaling x1,---,xy the decomposition (4.14) is un-

changed, and then it suffices to consider the case where r =1+ 6.
We define a scalar product for any two symmetric analytic functions f, g on B1 R

g> = / f(zh e ,ZN)g(Zl, o aZN)A(Zla Tt 52N Q7t)d27 (416)
T
where T is the torus T = {(zl, s an) ECN 1y = 1}, dZ is the uniform measure on T, and
e R
Az, 2v) =] ] (Hlﬂ_l : (4.17)
4 \rmo 1~ U7i%; 4
This definition follows [Mac95, Section VI.9], where one can find more discussions. We immediately
see that in T, A(z1,---,zn) is always real and takes values in an interval (7,1), where 7 > 0

depends on ¢ and gq.
By [Mac95, Chapter VI (9.5)], the Macdonald polynomials Py(-;q,t) are pairwise orthogonal
with respect to this scalar product. Thus we have

(F, Px(+19,1)) = ex{Pa(5;0,1), Pa(+5 9, 1)) (4.18)
By the Cauchy-Schwarz inequality, we have

then

(F, F)
|C/\| : \/<P)\(';Qat)?P/\(';Q7t)>. (420)
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For (F, F'), since |F| is bounded by 1 in B1 5> one has (F, F) < (1,1).
To lower bound (Py\(-;q,t), Px(+;q,t)), recall that Py(z1, - ,2N:;q,t) = > uevy, UryMy, with

nSA
uxy = 1. Denote N, to be the number of different permutations of (1, -, un), then we have
(Pa(54,t), PA(59,1)) > / TIPA(z1,- - 2vs g )P dZ = 20N D JusPN, (4.21)
T HEY N,
HEA

where the last equality is due to the orthogonality of the monomials m,,, with respect to integrating
against dZ on 7.

Also note that for any x1,--- ,zny € Bj_s2, we have
IPr(z1, - ons g, )] <) [ualNu(1 = 63, (4.22)
59N

since for each p < A, m,, has degree |u| = |A].
Then by putting (4.20), (4.21), and (4.22) together we get

(1,1) (120 > ltaul N
\/ZMS/\ uru PNy

<17 1> 2\|A

<=1 = §HW 4.23

- T(27T)N( ) ZN“’ (4.23)
H<A

where the last inequality is Cauchy-Schwarz.

Note that each NV, is bounded by N!, and the number of 1 € Yy, i < A grows polynomially in |A|.
Then we conclude that there is a constant Cly such that [cxPy(x1, - ,zn; ¢, )| < (1-0%)MCy. O

leaPy(x1, -+ ,zN;q,t)] <

Proof of Proposition 4.8. The uniform convergence of (4.14) and (4.15) on any compact subset of
BT],V follows from Lemma 4.9, and that

N
(1—t MY (g +tN"> (4.24)

i=1
is uniformly bounded.
For the continuity, expand

Fi(xl7"'7xN): Z Ci,APA(Jll,"',IEN;q,t), 121727 (425)
AEY N
By Lemma 4.9, for any small § > 0 and z1, -+ 2y € B%ka)g, we have
N
‘Dynlji(l'l,"' ,zy)| < Z (I1—¢t™) Z Agmathyn = Nel (1 — 3)Noy sup |Fi|, (4.26)
AEY N j=1 B, _s)
and this converges to 0 as i — oc. O

So far we've defined the operator DY, via its elgenvectors and eigenvalues, in Definition 4.7, and
proved continuity. Next, we evaluate the action of DY » on a special class of functions, and give an
expression as a nested contour integral.
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Proposition 4.10. For any positive integer m, m, variables wy, -+ , Wy, Wi, , W, and param-
eters q,t, denote

S el (1 - “4) (1 _ gﬂ)
%(wl"" 7fwm7q7t): =1 w;q ]‘[ w w; ’
(1_@>...(1_tum)..(l_wi)(l_w)
qui qQWm—1 1<J tw; p

- - w; — t7quy
3(w17"'7wm;w17"'awm;Q7 HH : q Za (428)

—1i'=1 wz_qwz

Let f : B, — C be analytic, such that f(0) # 0; and g : B — C be analytic, with r' > r, such
that g(2)f(q " 2) = f(2) for any z € B,. The action of DN, can be identified with a integral:

N )n—l
Dyn (H f(az)) (Hf a; ) W
=1
% %% 21,000, Zn,(],ﬂS(Zl,' B2 NS P anQvt)Hg(zz).dzz> (429)

=1

(4.27)

where the contours are in By and nested: all enclose 0 and qay,--- ,qan, and |z;| < |tziy1| for each
1<:1<n-—1.

Proof. We prove Proposition 4.10 by introducing an algebraic version of the operator DY, , which
acts on formal power series, and using [Negl3, Theorem 1.2|, a formula for that algebraic operator.

m;
Define Z to be a ring which contains all elements of the form ) .. dp, H?;ll (i) Zmn

Zit+1
where d,, are complex coefficients, and satisfy that for some m’ € Z, all coefﬁcients dym with
min; m; < m’ vanish. In other words, Z is the ring of Laurent power series in z,, -2 F ,i=1,--- ,n—1.
Let Res : Z — C be the (C-linear) map, sending every such element to its coefﬁ(nent of H -1
This is an analogue of computing contour integrals around 0.

Define A to be the ring of symmetric formal power series with complex coefficients in countably

i=1%i

many variables ap,as,---, and A[Z] to be the ring of symmetric formal power series in countably
many variables ay, ag, - - -, with coefficients in Z.
For any F € A[Z], it can be uniquely written as
F=> caP(iqt), (4.30)
AEY

where each ¢y € Z, so we can also define Res as an operator A[Z] — A, by acting on each coefficient.
Define D_,, : A — A, through

N
D X antan | = X a 0o ya e nean, aa

NeZy N€eZ4 =1
MY N AEY N

where each ¢y € C. ) )
For each k € Z, denote py, = > ;2 af € A. Note that any element in A can be uniquely written
as a formal power series in p1, pa, - - - ; then % defines an operator from A to itself. Now we present
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the “integral form” of the operator D_,,, which is a reformulation of [Negl3, Theorem 1.2]:

k —k
_ +o 42y
B(21,+ , 2ni ¢, t) exXp (Zq e - Pk)
- k k —k 0 - -1
« ap <Z<z1+---zn><1—q >>Hz@- ] (132

k=1

D_, = (-1)""!Res

-1 -1
where, inside B(z1, - - , zp; q, t), the factors <1 — %) and ((1 — i) (1 — %)) are elements
J

i tz;
in Z, by expanding in z;/z;41 for 1 <i <n —1, and in z;/z; for 1 gji < j < n (that’s where the
condition |z;| < [tz 1] arrives from). The exponential expressions are operators from A to A[Z], by
expanding them into power series in the usual way (where py is the operator of multiplying by pg).
We need to emphasize that under the setting of Negut, (4.32) is an identity of operators acting
on polynomials. Since D_, preserves degree, and the vector space of fixed degree polynomials is
finitely generated, we can extend it to formal power series of A. In the rest of the proof, we translate
this algebraic statement into analytic formulation of Proposition 4.10.
We rewrite the factor in (4.32) as

k zi
exp <Zq t_k + 2 i nkPk:)
_1 a;
—HHexp(qu—w U T e

i=14'=1 i=14¢=1 Zz

Take any complex coefficient formal power series f(z) = Zfooszx , with sg = 1. Using the

expansion In(1 + z) = = — %2 + % — -+, we define > 2%, wpz® := In(f(x)). Then we have f(z) =
exp(D-2, wiz'). Note that for any k 6 7., any power series h(pk) in pg, and any C € Z, by

expanding the operators one can check that exp ( > h(px) = h(pr + C). Therefore,

[e.9] B a [e.9]
o (3otet i o0 ) Tt

=TT (oo (e 40— a7y, Yoo <wkm>)

k=1
oo (S (e st ) ) = TG T, ca
k=1

where f(x)~! is understood as the power series >0 (=3, siw )j.
Applying both sides of (4.32) to [[52, f(a;) € A, we obtain the following formula:

D, (H f(ao) — (—1n! (H f(az-)>
=1 =1

n o] ].—t_l a;r )
%(zl,...,zn;q,t)[[(H — L 'f(JZJ(—Zf,)zi>zil)]‘ (4.35)

i=1 \i'=1 q Zi

X Res

Now we pass from infinitely many to finitely many variables. Define Ay to be the ring of
symmetric formal power series (with complex coefficients) in N variables ay,--- ,an, and Ay[Z] to
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be the ring of symmetric formal power series in ai, -+, aN, with coefficients in Z. Then Res can
also be defined to act on ]\N[Z], with image in AN Let 7y : A — An be the projection setting
0 =ant1 = anqo = ---; and (y ¢ Ax — A be an embedding, sending each Py(ai,--- ,an;q,t),
A€ Yy, to Py(-;q,t). Then 7y oy is the identity map of Ay.

We claim that for any F € A, if 7x(F) = 0, then ny(D_,(F)) = 0. Indeed, write F =
Y ey UaPa(+5¢,t); by TN (F) = 0, uy = 0 for any A € Y. Since Py(-; q,t) are eigenvectors of D_,
the coefficient of Py(+;¢,t) in D_n(F) is zero for any A € Yy. As mn sends every Py\(+;¢,t) to O for
A € Y\Yy, we conclude that 7TN(D n(F)) =0.

Define DN Ay — Ay by D =nyoD_,o0uty. Then DN oy =y o D_,, since for any
Fel ny( NOTI'N(F) F)= 7TNOLNO7TN(F) 7N (F) =0, thus my(D_potyory(F)—D_,(F)) =0,
which is just DY, o n(F) — 7y o D_,,(F) = 0.

It’s also easy to check that for each A\ € Yy, Py(a1,--- ,an;q,t) is an eigenvector of DYV | with
eigenvalue ((1 —t") Zij\il(q’\it_”l)" + t_N”). Then for any power series in A that converges on
BN | the action of DY, is the same as the action of DV, .

Note that mx [[5°, f(a:) = [T, f(as), for formal power series f(z) = 200, siz’ with sg = 1.
Hence one has DY, [TY, f(ai) = 7y o D, [132, f(a;); and by (4.35) this equals

N
- <H f(ai))

X Res

B(21, 5203 ¢, 1) (21, s 20501, an; g, t Hf —1z z7t . (4.36)
l

When f : B, — C is an analytic function with f(0) = 1, the action of DY, can be computed
s (4.36), by expanding f(z;) and f(q 'z;) as power series. The same is true for any analytic
f : B, — C such that f(0) # 0, by multiplying a constant. Further, the map Res can be identified
with contour integrals of z,--- , z,, with the part inside Res being the integrand, and the contours
must be taken in a way such that: first, the coefficient for each Hfil x;", which is a series in
Z, converges; second, the power series for aq,---,ay converges. It suffices to ensure that each
[tziv1| > |qzi| for 1 < i < m—1, || < |tz;] for 1 < i < j < n, |gay| < |z for 1 < i < n,

1 <4 < N, and each power series f(J; (z:) o) converges. These are guaranteed by the conditions given

in Proposition 4.10. O

4.3 Joint higher order moments

In this section, we first prove a formula obtained by applying the operators
Ly Nk Ny Ly Nk N1
%6 (t th D_kl) ey, %6 (t 1P D—kl) (437)

one by one to both sides of (4.8). The formula implies that these operators can be used to compute
certain expectations of Macdonald processes . Under (4.13) and € — 04, these expectations become
moments of f—Jacobi corners processes. We also evaluate the action of these operators as nested
contour integrals. Then in the next section, we take ¢ — 04 in the contour integrals as well, to
obtain the integral formula of moments of f—Jacobi corners processes. This is somewhat standard
in the study of Macdonald processes, see [BC14|, [BCGS16|, and [BG15]. However, the operators
DN are very different from the ones used in those articles.

Proposition 4.11. Let Ny < --- < Ny, ki,--- , ki be positive integers, by, -+ ,byr € C, and 0 <
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q,t < 1. Then we have the following identity of functions defined on BN, r = ming <;<ps |bi| 7L

l 00 _
H 1 (t—NikJi _ DN;-c ) H [T (1= miquk b
9/@' i o -

i=1

1<i<N,1<j<M 121 (1 — asbjg)

N;
B ks Uy N N5 .
PR 1 oy AR

pHEY Ny €Yy, i=1

X PMI ((11, s ,aNl;q,t) H Zi—&—l—)i, (438)

1<i<i
where
Tyiq = {Puiﬂ/w‘(a]vi_,_l, S AN q,t), N; < Ny (4.39)
]lw‘:uzurl, N; = Niq1.
The first product on the left hand side means applying the opemtors in the following way: first
we apply b%kl(t*lel — DN’ ) on variables ai,--- ,an,, then ek (t Ni—iki—1 _ Dﬂil) on variables
A1, ANy, s 0k1 (t~ lel Dlj}ﬂ) on variables ay,- -+ ,an;,.

Proof. The proof is similar to [BCGS16, Proposition 4.9]. We argue by induction onl. Forl =1,
in the Cauchy identity (4.8), set My = Ny, My = M. By applying the operator T L (3=Nikr _ Dfél)
acting on variables ay, - ,an,, to both sides, we get the desired equation.

For general [, we assume that the statement is true for [ — 1; specifically, we have that

l 00 k—1
, : [[=,(1 —ta;bjg" )
| | N;k; D_jvki) | | k=1 J

=2 1<i<N;,1<j<M Hziil(l - az‘quk_l)

> H gk Z“Jt k) Qua(bry- -+ bari g, 1)
j=1

PPEY Ny, ut €Yy, =2
X P#Q(al, e ,aNQ;q,t) H Tit1-si- (4.40)
2<i<l
If Ny = No,
P,LL2(a17"' 7aN2;Q7t) = Z P,u,l(ala"' 7aN1;Q7t)ﬂ,u1:,u2; (441)
preYn,

If N1 < Na, by using (4.7) repeatedly, we get

P;ﬂ(ah"' ,G,N2;q,t)

= Z Pul(al,---,aNl;q,t) Z H Pyi/ui—l(aNl_H';q,t)

M1€Y1\]1 V1€YN1+1,~”,I/N2_N1 EYNQ 1<i<N3—Ni
= Z Pul(ab'" aaN1;Q>t)P,u2/,ul(aN1+17"' 7aN2;Qat)7 (442)
pteYn,
where 10 = p, and vV27N1 = 15 and the last line follows from (4.9).

In either case we have

Puz(ala”' 7aN2;q7t) = Z P,u,l(ah'” 7aN1;q7t){:i+1—>i- (443>
pteYn,

Plug this into (4.40) and apply the operator o L (p=Nikr _ Df}ﬂ) to both sides, we immediately
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obtain (4.38). O

Now we evaluate the action of the operators, in the special case where b; = t®T "L for1 < i < M,
by using Proposition 4.10 multiple times.

Proposition 4.12. Let B and § as defined in Proposition 4.10. In addition, for any positive integer
m, m, variables wy, -+ , Wy, W1, , Ws, and parameters q,t, denote

(-2)(-m)
gUbET

Then for fized real parameters 0 < q,t < 1, a € R, and positive integers Ny < -+ < Nj ki, -+, kg,
and o+ M > ki + - -+ + ki, we have the following identity of functions defined on B{Vl :

HD H Hk 1 (1 —aztO‘Jquk 1) _ (-1 k1+ Atk — lf‘ 7{1_[ Hk 1 (1 —azta+qu 1)
req (1= aitegh1) (27r1 etttk o (1 —aitogh—1)
l

< [ B, azz‘,kﬁQat)Hg(Zi,l;'” ) Zikii 01,000 5 GN3 45 T)

Q:(wla"' ,’wm;UN)h"' 7wm;q7 (444)

i=1 i=1
l .
a 1—q "0 dzig
X HQ:(Ziala"' » Zi iy Zgls s Z],kquu H H < 1ta+MZ 2 3 (445)
1<j i=1i'=1 0,3 <1
where each operator phi k acts on variables a1, --- ,an,;, and the contours are nested and satisfy the

followmg foreach 1 <i <l and 1 <1i < k; we have |z | < t|z;ir4+1|; and for each 1 < i <1, we
have ;also, ¢ < |z11], and |z ,| < qgt=*~M.

Remark 4.13. The constraints we impose on the contours imply that each of the contours encloses
0 and all ga;, but none of them encloses gt~ M. The requirement that o + M > ki + --- + k
ensures the existence of the desired contours.

Proof of Proposition 4.12. We prove by induction on .
For the base case where [ = 1, we apply Proposition 4.10 to the function
> (1-— xtO‘+qu_1
flay = L2t g ) (1.46)
[Tp2: (1 — at>gh1)
Specifically, f(x) is analytic in By-a, with f(0) = 1. And

T 1 — zteq~!
flz) q (4.47)
flge) ~ 1 ato gL
is analytic in Bqtfan. For ai,--- ,an, € B1 C By, we can construct contours of 211, -+, 21,

such that ¢ < |2z11], |z14,| < gt~ M and |21,i] < t|21,i41| for each 1 < i < k;, which satisfies the
requirements in Proposition 4.10. The expression given by Proposition 4.10 is precisely (4.45) for
l=1.

For more general [ > 2, assume that the statement is true for [ — 1; then we have the following
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identity for functions defined on B{V !

HD H Hk 1 1 _azta-l—qu 1) _ ( k2+ -tk — l% %H Hk 1 1 _aztoc-&—qu 1)
roq (1= aitegh—T) (27r1 Yhatth roq (1= atogh=1)
l

X H%(zi,la"' azi,k’i;Q7 Hg Zily o Rk ALyt aaquat)

=2

X H Q:(Z,’Ll,--.722',]%;2]',1,.-- Z]k]aQ7 Hﬂ( 1__qltat+]2\/;; /- ..,>HHlel’ 448)

1<i<j i=24'=1 =24/ =1

where the contours are constructed in the following way: for each 2 < i <[ and 1 < ¢ < k; we
have |z; | < t|z;41]; and for each 2 < i < [, we have |z k,| < t|zi41,1] ; also, ¢ < |22.1], and
|21, < gt M. Since a + M > ki + --- + k;, we can let the contours move continuously and
require that |21 > gt ¥~ 1.

Now apply the operator Dﬁil to both sides of (4.48), acting on variables aj,--- ,an,. On the
right hand side, we can change the order of the operator Dﬂ,l and the integral, by the linearity

and continuity of Df}gl stated in Proposition 4.8. To apply DY}CI to the integrand, we just need to
consider the following function

(1 — gtotMgk=t Lok v —t gz
f(z) = [Tz ( ) H 2; —a (4.49)

[ (@ —wtegh=h) s

This f(z) is analytic in By, with f(1) = 0. Also note that, as |z; ;| > gt =¥ 71 for each 2 < i <
and 1 < ¢’ < k;, the function

f(z) _ 1 —xt% _1_1 H H Ziq — Zigt — T (4.50)

flg7lz) 1 —atetMy sty Fid T 4T Zz’,i’ —t1z

is analytic inside B, . By Proposition 4.10, one has

(1 — qitotM gh—1 !
20 (H [ : )HS(%,L“'  Zikii Q1,00 N3G )

— aqk—1
peq (1= aitegh=1) Pl

Ny o0 M  k—1

[1p2 (1 —at*Mg* )

= H ﬁzé 1(1 —Zaitaqkil) g(zi,lv Ty Rk A1y, AN Q7t)
i=1 =

1=

k:1 1
27_‘_1 kl f %% 21 NER 7Z1,k1;Q7t)3(zl,1a"' 7Z1,k1;ala"' aaNl;q’t)

) ) < 1—q "%y dzy
X H Q:(Zl,l, Rk Ryl s Rk G t) H 1— q_ltoH_le . ’ (451)
. ! !

i'=1
for any a1, - ,an, € B, and the contours are constructed such that for each 1 <17 < k1 we have
21,4 < tlz1it1l, ¢ < |z11], and |z, | < gt
Putting (4.48) and (4.51) together we get exactly (4.45). O
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4.4 Limit transition

We finish the proof of Theorem 4.1 in this section. We changes variables as (4.13), and send € — 0
in formula (4.45). In the integral we want to set

zip =expleu; ), 1<i<l1<d <k, (4.52)

and all the contours u; ; are nested in a certain way to give valid contours of z; ;.

There is a difficulty in doing this: (4.52) implies that as e — 04, 2; # approaches to 1. However,
originally each z; ; encloses 0. The idea to resolve this is to split each contour of z; ; (4.45) into
two: one enclosing 0 and another enclosing all of gay,--- ,gan,. It turns out that most terms with
contours enclosing 0 are evaluated to zero or cancel out.

In more details, we associate each z;; with two contours i; ;; and ®U; ;, satisfying: for each
1 <i<land 1l <7 <k 8, is inside t44; 41, Vv is inside t0; 441; for each 1 <7 < 1, Y g,
is inside t4; 111, U g, is inside tW;11,1. Also, each of &; i encloses 0, but none of gai,--- ,qan,,
while each of ; ; encloses gay, - - -, qay,, but not 0. All of these contours are inside B;—o-um. Such
contours exist as long as 1 — ¢ is small enough.

Let IT be the power set of {z; #|1 <1 <1I,1 <7 < k;}, then for each T € II, denote Y; ;s to be
ilw if Ziq € T, and QTW if 2 g T. Let

l

l
QT :% H%(Zl"l,..- azi,ki;q’t)Hg(zi,h“' s Ziks A1y aa/Ni;q;t)

Tia Tk i=1 i=1
L L—q M%%,y dzy
X H (i1, s Rk 2,10 Zgkgs 4 t) H H 1—g-lta+My. ., » ., )" (4.53)
i<y i=1i'=1 a L

Then (4.45) can be written as

1 k1+-+k—1 N o0 (1 _ ita+M k-1
(=1 [;=,(1—a ) 3 9r. (4.54)

e R LT (et ) &,

In the following Lemmas, we show that under the limit transition (4.13), most of Qy converge
to zero, or are canceled out with one another, and the only left one Q.
The first Lemma is an extension of [FLD16, Appendix A, Lemma 5|.

Lemma 4.14. Qv = 0 unless for each 1 <i <1, T(\{zi1, -+, 2k} s either empty or of the form
{Zisir Zisit1, 7+ 5 Zir ), where 1 < s; <7y < k.

Proof. Let us order the variables z;; as in the nesting of the contours, from inner to outer:
21,212, s 2 ks 22,1, > 2Lk For any Y € II, we evaluate the integral (4.53) for those vari-
ables that are in T, and in that order. The order is to ensure that the integrals are evaluated from
inner to outer, then when evaluate the integral for each variable, the only possible pole is at the
origin.

For any given 1 < i <[, suppose that we’ve evaluated the integrals for all z; € T, 1 < j <4,
1 <i' <kj Let 1 <s; <k; be the smallest index (if any) such that z; 5, belongs to Y. Now let’s
evaluate the integral z; ;,. This is done by multiplying the integrand by z; s, and sending z; s, — 0.
Most factors are computed in an obvious way, except for

Y
Zkf’ zl’kit - 7
=1 k;—1

Z; ;197

1_ tz; 2 (1= tzi,ki
qzi,1 qZik; —1
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in B(zi1, -, 2ik;qt). As zj s — 0, it becomes
Zi’kitk:ifsifl

- Fi—s;—1
Zis; 4197 5

(1 B tzi.,z) o <1 _ tzi.,sl-—1> (1 B tzi.,si+2) o <1 _ tzzkzl ) ’

qzi,1 qZi,s; —2 qZi,s;+1 qZik; —1
If there is any s; < ¢/ < k; such that zig & T, we let 5, with s; < r; < k;, be the index satisfying
that z; » € T for any s; < i" < 1, but zp,41 # Y. Then we evaluate the integral of z; v for all
si < @' < r;. This is done in the same way as evaluating the integral of z;,,: we multiply the
integrand by z; i/, then send z;;; — 0. Under z;;; — 0, for all s; < i’ < 1y, the factor (4.56) finally
becomes

(4.56)

(st

Zi,'r‘i-!—lqk E
tzi2 t2i,5,—1 t2i ;42 12; 1, )
(1 o qzi,1> o <1 o qzi,si—2> <1 - qzi,ri+1) o <1 o qzi,ki71>
If there is any ¢/, such that r; < < k; and z;# € T, let w; be the smallest one. The next integral

to evaluate is the one of z;,,. However, when sending z;,, — 0, the factor (4.57) becomes zero.
Thus the integral is zero. O

i

(4.57)

Using the arguments in the proof of Lemma 4.14, we have the following identity.

Lemma 4.15. Let II' be the collection of all T € 11, such that for each 1 < i <1, Y\ {zi1, %k}
is either empty or of the form {2, Zis;+1- - %} for some 1 < s; < r; < k;. Then for any
Y € I, there is

Q’I'_f fT HQJ H {2’217... 7Zi,ki}\T§a1,"‘ aaNi;q,t)

i z/gT} i=1
1—q "%y dzy
1— g tetMz i 2

X H Q:({Z’i,l) te azi,ki}\T; {Zj,h e 7Zj,kj}\T; q, t) H

1<j 24! Y

> . (4.58)

where

2;(T) = (2ri)"i st (—1)rimsit Lz

Zik, t kj—ri— 'ri;éki

e t—Ni(ri—si+1) 1z (1 —
Ziﬂri+1ri;ﬁkiq v Zi, 5! tzi,j,

H ) 1— tZi,i’+1 o H 1— b 1— qz; ’
1<i'<s;—1, qz; Z’<]’:Zi,i/,zi1j/€’r tZ p 2. .y

or r;+1<i'<k; 1,5
if{zit, 5 Zig YN ={Zis;s s Zig; } forsomel < sy <1y < ki; andDi(T) = B(zi1, -+ 5 Zikys ¢ 1)
Zf {Zi,la e 7zi,ki} ﬂT == Q)

Based on Lemma 4.14, we use (4.58) to compute the action of t=V% — ka.

(4.59)

Lemma 4.16. Let II C IT' contain all Y such that {#zi1, - 2zig, } €T forany 1 <i <I. Then we

have
l
H(t* )HHk L l—aztO‘Jquk 1)
(1 — a;tegh-1)
i=1 k= 1

(_1)k1+---+kl Hk 1(1_altoc+M k— 1 a 4
Hk 1(1_azta k— 1 Z T 60

i=1 Yell

~ @rREeTh
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Proof. The difference between the left hand side of (4.45) and (4.60) is in shifts by ¢t~Vi*i_ which
are from {21, -+, 2z} CT.

For any U C {1,---,1}, let Iy C II' contain all T, satisfying that {z1,---,z} € Y for
any ¢ ¢ U. For any YT € Iy, define Quy to be a nested contour integral expression, obtained as
following: starting from the integrand of (4.53), we first remove every factor that contains z;; for
i € {1,---,I1}\U, and then integrate z; ;s for all i € U, 1 < i’ < k;. Now we evaluate both the
expressions Qy and Qp,y, from the inner contours to outer ones. We apply Lemma 4.15 to Qr,
then for each i € {1,--- ,I}\U, the 2;(Y) in (4.59) equals (—1)¥~1(27i)*i¢t=Niki_ Then we conclude
that

ar= [T (v5emb ) aur. (4.61)
e{1,-- ,IN\U
By Proposition 4.12, we have that

1 taJrM
eU i=1 k

1—@1 qk 1)

(1= aitegh=1)

N ser kiUl Moo (1 40t M k1
_ Lo HH’“Zl(l Gl )Z Qur. (4.62)

erymet T I ated) 2 =0

Plugging (4.61) into (4.62), we obtain

HDM H 4= Niki H [12 1 (1 — atotMgh=1)
—k; 1 —a; taqk 1)
N,
_ ( 1)k1+ k1l N Hk 1(1_azta+M k— 1 Z QT 463
(27-r1)k1+ +k; palet Hk 1(1,ata k— 1 Y

We obtain (4.60) by multiplying (—1)IV! to both sides of (4.63) and summing over all U € {1,--- ,1}.
O

Next, we send € — 04 in the result of Lemma 4.16.

Lemma 4.17. For Y €11, if there is 1 < w <1 such that {21, , 2wk } T = {Zwswr " » Zwirs }»
for some 1 < sy < 1y < kyy, then

lim e 'Qy| =0. (4.64)
e—04 a;=t*—1 t=exp(—0¢),q=exp(—e¢)
For Y/, Y" € 10, if there is 1 < w < | such that {zw1, 2wk, Y = {Zwl, s Zwre b
{zw1, s 2wk Y = {2ws0, > Zwike b With Ty = ky — Sy + 1, and for any i # w we have
{zit, 2z )N ={zi1, -, 2, Y7, then
1 7 " == 0 465
e—lgl € (QT +QT )aizti—l,t:exp(fGG),qzeXp(fG) ( )

Proof. Forany Y € II, in (4.58) do the change of variables a; = t*~!, ¢ = exp(—60e), ¢ = exp(—e¢), Zi i =
exp(eu;;7), and send € — 04. Since the right hand side of (4.58) involves only z;» ¢ T, those

u; i are well defined. We have dz; # = eexp(eu;;r)du; 7. Therefore, each variable in the integral
(4.58) produces an € factor. The term 2);(Y) in (4.58) is of order e~ (si=2+Lsj=1)=(kimrimltln ;) —
ezt ik NT 2 Tsy=1 T —k; g ¢ lQT| is of order e~ izt (Lsi=1+Lr=k;)

a;=t"—1 t=exp(—0¢),q=exp(—e¢)
Since T € 1I, LTg,=1 + 1=k, < 1; and if 15, + 1,,—¢, = 0 for any 4, we have (4.64).
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Now we consider a pair Y/ and Y” as described in the statement of this Lemma. Then for any
i #w, Di(Y') =9i(Y”). For w, we can identify z, ;s in (") with 2y 14y, in D (Y’); then we
conclude that 9).,(Y’) + Dw(Y”) equals (under the notations in 9),,(Y’))

( Zw’kwtkw—Tw—l ) —Nyr ( 2w il K ) < qzw 3 )
kw —rw—1 t
(2o (— 17 At ) 11 a2 (4.66)
1'<y"z

tzw,i/-&-l Zw,i’ qzw,i’ )

Hrw+1§i’<k‘w (1 B 92y it 12y it €1 (1 - tzw’j/> (1 B EY )

By setting a; = t'1,t = exp(—fe),q = exp(—€), z;,» = exp(eu;; ), and sending € — 04, this

expression is in the order of e Fvtrwt2 — ¢=Hzw 2wk NYI42 - Thus ¢! (Qy 4+ Qyr) is in the
1

order of e~ 2izuw(Lsi=1+Lri=t:) which decays to zero when € — 04. Then we conclude (4.65). O

Proof of Theorem 4.1. From Lemma 4.16 and Lemma 4.17 we see that

77! N; N, TIp2,(A—ait*tMgh—t)
li ‘ Hi:l( —b- )Hz -1 ﬁkl 1 (I—ait*gh—1) a;=t""1
6_1>I(];1+ HNl [Tp2; (1—astetMqg k—1y t=exp(—0e),
=1 T[22 (1—a;tegk—1) g=exp(—e)
1 kit
. e (=™ !
=1 . (4.67
eg& (2mi)katth S )
Notice that in Qp, each contour encloses all of gaq,---,gan, but not 0; then we can set each
zi iy = exp(eu; ), with u; 7 independent of e, satisfying the stated requirements. Evaluating the

limit gives

-l l —N;k; _ N; N; Hzozl(l alto"quk 1
I e [Liea(t D) 1L T, (I—aytagh—1) J— (—1
im .
e—=0 1 [Ti, (1—a;totMgk—1) t=exp(—0be), 27?1 k1+ +kz
=1 T3, (1—ait>gh~1) g=exp(—e)
! k;
X H’J Wity s Uikgs & M, 0, N;) Hﬂ(ui,l, S Uik U Uk O) H H du; i, (4.68)
=1 1<j i=14'=1
where for each i = 1,--- 1, the contours of u; 1, - - ,u;, enclose —9(N; — 1) but not (o + M), and

|ui1| < - < Jujk,|. For 1 <i<i+1<1I, we also require that |u;x,| < |uiy1,1]-
By Proposition 4.5, the identity given by Proposition 4.11 can be interpreted as

l ~N;k; N; Ny 152, (1—astetMgh—1)
HZ 1 Qk‘ (t D—k‘z) Hi:l Hzozl(lfaitaqk_l)

I [Ie2, (A—aitetMgk—T)

=1 [T, (1—astgk—1) ai=ti—1
! ] Ni
=E — (M -1 Atk 4.69
[T (e - 0> @ s ) | o)
=1 7=1
where the joint distribution of AV, ... | AN is distributed like a Macdonald process, with parameters
M7 {ala o 7aN1707 o }7 and {bz}zﬂil
By Theorem 4.6 we have that
l 1 N;
) K J+1
Jim B (] e (¢ —DY (Nt t=exp(—60),
=1 j=1 q=exp(—e)
= (mlﬁ (le) T mkl (le» : (470)
Putting (4.68), (4.69), and (4.70) together finishes the proof. O
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5 Law of Large Numbers

In this section we present the proofs of Theorems 3.1, 3.3, 3.4, and 3.6. We first prove Theorem 3.1
in Section 5.1, as a direct application of Theorem 4.1. In Section 5.2, we prove Theorem 3.3, by first
proving the convergence of the interlacing diagram in moments (Proposition 5.1), and then showing
that this is equivalent to convergence in uniform topology. In Section 5.3 we deduce Theorem 3.4
from Theorem 3.3 via integration by parts. We pass 8 — oo in Section 5.4 and obtain Theorem 3.6
using results from Section 5.2.

5.1 First moment of adjacent rows: proof of Theorems 3.1

Proof of Theorem 3.1. Taking [ =1 in Theorem 4.1 we get

E (Br(a™) = Pr(aV1)

—u;+1—20)
XH —uz—i-l —uz—9)<

2—@“—}—1—9) (k—uk 1—{—1—9)
1 wi — 0 _ﬁ u; — 0
ui—i-(N—l)H e u,-—l—(N—2)9

i=1
Qo — u;
du;. 1
H9a+M —ulu (5-1)

Setting u; = LOv;, we send L — oo under (3.1). Note that

k k
. u; — 0 u; — 0
LlfgoL(il;[ui+(N—1)9_Hui+(N—2)9)

L u; — 0 b+ (N i U
_Lh—{r;oLi:lui—i-(N—l)g (1_HUZ‘+(N ) (1;[1]1+N) (;vz+]v) (5.2)

Therefore

: Ny — () = 1
LIEEOE(mk(x) il ) (27Ti)kf y{(’l&—vl)-..(vk—vk—l)
i V; & — v; k 1
X (gvi—i_]v.é‘-i-j\?[—wdw) (;vi—i—N)’ (5.3)

where the contours enclose —N but not & + M, and |v;| < --- < |vg|. By Corollary A.2, this is
simplified to (3.5).
The decay of variance will be proved as a special case of Lemma 6.7. O

5.2 Convergence of diagrams: proof of Theorem 3.3

Proposition 5.1. Let ¢ be defined as in Theorem 3.3. For any nonnegative integer k, under the
limit scheme (3.1) we have
1 1
lim wa’zN_l(u)deu = / p(u)u"du, (5.4)
0

L—oo 0

in probability.

The proof of Proposition 5.1 relies on the following identity.
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Lemma 5.2. For ¢ as in Theorem 3.3, we have

1 v v—a \* 1 1 /! .
— ( — - A> —dv = / " (u)u*du, (5.5)
2ri Jr\v+N v—-a-M/) v+ N 2 Jo

where T' is a positive oriented contour enclosing —N but not &+ M.

Proof. Fix the contour I', and let Q be the constant

N v—a—M
Q= inf [LFN VT | (5.6)
vel'| v v— &
For any z € C, |z| < Q, summing the geometric series we get
A k
ikljl{( U—OéA> 1Adv
v—|—N v—a—M/) v+ N
. k A
v— & 1 1 v— & —
A‘ = —dv = —; dv, (5.7
27r17€k 0( ’u—éz—M) v+ N 2ri Jr (1 —2)(v — R1)(v — Ra) (5.7)
where
- (1= 2)a+ M = N = /(1 - 2)a+ N + R)? — 42NN
1= )
2(1 —
(1-2) (5.8)
(172)a+M7N+\/((l—z)éz+M+N)2—4zMN
Ro =

The definition of the contour I' implies that there exists 0 < Q' < Q, such that I" encloses R1,
but not R, for all z € C, |z| < Q. Then (5.7) is evaluated as a residue at R1; more precisely,

~ k
7{( v— Q& > 1 o
27“ v—l—N v—G&— M U—l—N

1 ]{ v—&— M p 1 Ri—-a-M (5.9)
= V= . . .
2mi(1 — 2) Jr (v —R1)(v —Ra) 1-2 Ri—Ra

On the other hand, for |z| < 1 we have that

Z / ub 2Fdu

_C(M,N —~ 1 [ M-N+( N+M+a)(1—u)‘ 2Pk y

1z +k§0277/71 (N + M +6)(1 - u) Ve
_C(M,N) | 1 [?M-N+(N+M+a)(l—u) 1 y
"t w L F et et Ve O

where 1 and 2 are defined as in Theorem 3.3. The last integral can be evaluated in the following
way: define 1 : [y2,00) — C, as

1 M—N+(N+M+a)1—w) 1
2 (N+ M +a)1—w)(l—2w) (w-1)(w—72)
and then extend the definition of n to C\ ([y1,72] U{1} U{z'}), by taking the analytic continuation.
The integral in the last line of (5.10) is equal to the contour integral of n around [y1,72]. Then it

n(w) = (5.11)
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suffices to subtract the residues of n(w) at 1 and z~!, which are

1 MU | OM + &)z — (M + N + é
; <C(M,N) - 2) @Mya)e- MANTS) (5.12)
—2 21— 2/ (1 = 2)a + M + N)? — 4201 K
respectively. We thus conclude that (5.10) equals
1 M+ N+a—2Mz— za
5.13
21—z " ’ (5.13)

21— 2)/(1 = )&+ M + N)? — 4201 N

which coincides with (5.9).
In other words, for any z € C, |z] < min{Q’, 1}, we have

N
v— & o

- U_E du. 5.14

2W1j{<v+N v— &—M) v+ N / (5.14)

The uniqueness of the Taylor series expansion then implies (5.5). O

Proof of Proposition 5.1. First, by Remark 2.6, Theorem 3.1, and Lemma 5.2, for any nonnegative
integer k, under the limit scheme (3.1) we have

1 g2 1
d AN ~ZN—1
I N E gy — 1i Ny _ N-1y) _ " k 1
Jim | d (u)u"du Lgr;@Q (B (z™) = Pr(z" 1)) ; ¢ (w)u"du, (5.15)
in probability. Integrating by parts twice, this implies (5.4). O

The following result connects Proposition 5.1 and Theorem 3.3.

Lemma 5.3. [I002, Lemma 5.7] For any fized interval [a,b] C R, let 3 be the set of all functions
p: R = R, that are supported in [a,b] and satisfy |p(u1) — p(u2)| < |u1 — usl|, Yui,us € [a,b]. Then
the weak topology defined by the functionals

p—>/ yukdu, k=0,1,-- (5.16)
coincides with the uniform topology given by the supremum norm ||p|| = sup |p(u)| .

Proof of Theorem 8.3. By Lemma 5.3, the convergence of w AN (in probability) under the uni-
form topology is equivalent to the convergence (in probability) of each moment, and the later is
precisely Proposition 5.1. O

5.3 Convergence of discrete signed measures: proof of Theorem 3.4

Proof of Theorem 3.4. It suffices to consider a function f whose derivative is nondecreasing, since
each function of finite variation can be written as the difference of two nondecreasing functions.
Now since f’ is nondecreasing, we can define g : [0, 1] — R such that g(u) is the right limit of f’ at
u, for any u € [0,1); and g(1) the left limit of f’ at 1. Then g is also nondecreasing, and bounded,
and right continuous. Also g = f’ almost everywhere.

Let n be a measure on [0, 1], such that 7([0,u]) = g(u), for any u € [0, 1].
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Integrating by parts (and with Remark 2.6) we have

Lot _ —fO &™) + FOFe ) 1t d e
fy 1o ) 3 | g, ()

1
SO 2 (™ 1) - g™ 0) + /O W™ (wydn. (5.17)

By Theorem 3.3, we have
lim w™ 7" (0) = 0(0),  lim w™ T (1) = (1), (5.18)

L—oo L—oo

in probability. Since

B/Olwfw,jw—l(u)dn - ;/0 dn‘ < 2/ I w) = ()| d

< 5 sup w5 () — o) (0, 1)), (5.19)
ucR
we have
1 1
Jim 2/ u)dn = 2/0 p(u)dn, (5.20)
in probability. Again integrating by parts, we conclude
1
gim [ 5 = 2 (704700 - g0p0) + £ O0) + [ platan)
1 ! "
—5 [ fedu, G
which is precisely (3.11). O

5.4 Asymptotics of roots of Jacobi polynomials: proof of Theorem 3.6

We prove Theorem 3.6 by utilizing a limit transition between the distribution P*M-¢ on y™ and

the roots of .Fror‘lml]‘\/[MN)Nl.

Theorem 5.4. [BG15, Theorem 5.1] Let (z',22,---) € xM be distributed as PYM0 and let jps N o

be the ith root (in increasing order) of f:lmlll/lMN)Nl, for 1 <i<min(M,N). Then we have

lim 2} = jar N, (5.22)
0— 00
in probability.

Proof of Theorem 3.6. The interlacing relationship for the roots immediately follows Theorem 5.4
and the interlacing relationship for the sequences va and xN L

In Theorem 4.1, take | = 1, set uy; = 6w;, and send § — oo. Using Theorem 5.4, we compute
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for k=1,2,--:

N
> Huvoi= e :
pt MNeoi = (9ri)k (wg —wy — 1)+ (wg — wg—1 — 1)

k

w; — 1 o — w;
X . dw; 5.23
gwi—l—]\f—l o+ M —w; wi, (523)

where each contour encloses —N + 1 but not M + «a, and |wi| < -+ < |wg].
Under (3.1), setting w; = Lv;, we have

N-1
hm (Z jM N,a,i Z j]ﬁ/[,N—l,a,i)

1
L—>oo 27‘(1 7{ y{ (wg —wy — 1)+ (W — wp—q1 — 1)
i o — w; w; + N —1
x : dw; [TTE 72
leﬁN—l atM—w (Ewi—l—N—Q

k R k
a—v;
. (524
27r1 j{ 7{1)2—@1 (vg — Vg—1) Hv,—i—N oz—i—M—vZ (ZUM—N) )

=1 =1

We apply Corollary A.2 to (5.24) to do dimension reduction, and get

li al .k = -k _ 1 v v— & K 1 d
Jim leM,N,a,i - Zl IMN-1Lai | = 5 = - I —dv, (5.25)
1= 1=

v+ N v—-a-— v+ N
where the contour on the right hand side is around —N but not & + M.
The right hand side now exactly fits Lemma 5.2, and we conclude that
1

N N-1 1
e iyt du = fim 2 (Z INNai = D jJ’f@N—l,a,x’) —/0 " (wyuFdu.  (5.26)
=1

0 i=1
Finally, we integrate by parts, which leads to

1 1
lim LN o (w)uFdu = / o(u)uFdu. (5.27)
L—oo 0 0
By Lemma 5.3, the above is equivalent to the statement of Theorem 3.6. O

6 Central Limit Theorem and Gaussianity of fluctuations

The ultimate goal of this section is to present the proofs of Theorem 3.7 and Theorem 3.9. To
prove weak convergence of the joint distribution of a vector to a Gaussian vector, it suffices to check
that all the cumulants converge to the corresponding ones of a Gaussian vector. We first introduce
our notations for cumulants, and recall a basic result about the cumulants of multivariate Gaussian
distribution.

Definition 6.1. For any positive integer h, let O} be the collection of all unordered partitions of

{1, h}:
@h: {{Ul,"' 7Ut}

t
teZ+,UUi:{1,-~ ,h}jUiﬂUj:(Z),Ui;«é@,wgz’<j§t}. (6.1)

=1
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For a random vector u = {u;}{*, and any vy, --- ,vp € {u1,- - , Uy}, define the (order h) cumulant
K(v1, -+, vp) as
t

Ko, -o) = Y (D) e D] E

tEZ>o r=1
{U1,-,Ut}€O},

11 vil . (6.2)

1€Ur

The definition implies that all cumulants of order up to h of a vector exist if and only if all joint
moments of order up to h of the same vector exist. The moments and joint cumulants uniquely
determine each other.

We further give another (and more commonly used) definition of cumulants.

Definition 6.2. For a random vector u = {u;}{*,, the characteristic function ¢ : R — C is
defined as

BN, ) = B (el (6.3)
Definition 6.3. Let u = {u;}{", be a random vector with characteristic function ¢, then the cumu-

lants are the coefficients of the Taylor expansion of log(¢ (A1, - -+ , Ay)), if it exists in a neighborhood
of the origin:

[es) w h
1 .
log(¢(A, -+ Aw)) = D o > h(uay, s ua,) [[iA (6.4)
h=1 a1, ,ap=1 7j=1
and we require that k(uq,,- - ,Uq,) is symmetric on ay, - - -, ap, for fixed h.

This definition imposes more requirements on the random vector, since we need the existence
of the Taylor expansion of log(¢(\1, -+, Ay)). This can be generalized by using the derivatives of
log(¢(A1,-++,Ay)) at the origin. For more discussions, see e.g. [PT11, Section 3.1, 3.2], where the
second definition is taken, and (6.2) is proved as a proposition.

From the second definition, the following result immediately follows.

Lemma 6.4. A random vector is Gaussian if and only if all of its cumulants with order 8 or more
are zero.

Now let’s consider the cumulants of the vectors in Theorem 3.7 and Theorem 3.9. For the vectors
(3.14) and (3.15) in Theorem 3.7, the first order cumulants obviously vanish. In Section 6.1, we
show that the second order cumulants, which are precisely the covariances, converge to the desired
values. Then it suffices to show that the higher order cumulants converge to zero as L — oco. In
Section 6.2, we first prove a formula about the decay of the cumulants with certain constraints
(Proposition 6.8), and use a linear combination of it to get the decay of any high order cumulants
(Proposition 6.11). These results lead to Theorem 3.7 (actually the decay of high order cumulants
is faster than needed). Finally, in Section 6.3, we integrate Proposition 6.11 and the computations
of covariances over levels, and prove Theorem 3.9.

6.1 Computation of covariances

The first step of our proof of Theorems 3.7, 3.9 is the covariance computation, presented in this
section.
Throughout this section, let k1, k2 and Ny, No be positive integers. In addition to (3.1), we also
let
lim L Ny,  lim Nz _ N, (6.5)
L—oo L—oo L

where N7 and Ny are positive real numbers.
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Lemma 6.5. Under the limit scheme (3.1) and (6.5), let us assume additionally either (1) Ny < N
for all L large enough, or (II) Ny > No for all L large enough. Then

LH—EI;OL E [(mkl (le) - mh (le_l)) ka ($N2)] —L-E [mkﬂ (le) - mkl (le_l)] E [mkz (xNQ)]

1k LA k;
17575 H< “QO‘A) dvi, (6.6)
27r1 (v1 — v2) v1+N1 ey vi + N; vl—oz—M

where the contours enclose poles at —Ny and —Na, but not & + M, and are nested: |vi| < |va] in
case I, and |v1| > |va| in case I

Proof. Applying Theorem 4.1 to the following four terms: E [‘131@1 (2N) Py, (a2 )] , E [‘Bkl (zN D)y, (22

E [mkl (CL’Nl)] E [‘Bkz (JENQ)], and E [%kl (le_l)] E [‘Bkz ($N2)], we get
E [(gpkl (le) - f‘plﬂ (‘eril)) gka (xNz)] —E [q;}kl (le) - r’p/ﬂ (leil)] E [(‘Bkz (xNQ)]

- T 1
N (27i)kathe e (wip —uin +1—0)-- (g, —wig,—1+1—06)

k;

(uij/—u”/)(uij/—u”/+1— u“/— Uj; /—00&
X ] ) ) du .,
1<i’1<_[j’<k¢ (wijr — wizr — 0)(wijr — w4+ 1) 1;[1 U —1)0 iy —0a—0M
k
% 1_ 1—1[ Uy 4 + (Nl - 1)9 H (ul’i/ — u2?j/)(u1ﬂ-/ — Ug 4 +1-— 9) 1 7 (67)
o v (N1=2)0 )| G2 (e — gy — 0)(ury —uzy +1)
1<5/<ks
where the contours for w;,,- - ,u;, enclose —0(N; —2) and —f(N; — 1) but not 6(a + M), for

i =1,2. We also require that |u; 1| < -+ < |ug g, ], - K |ug i, |5 and Jug g, | < |ug,1| when
N1 < Na, |ugp,| < |ur,1| when Ny > Np. The four terms obtained from expanding the two factors
in the last line correspond to the four terms to which we apply Theorem 4.1.

Set w; = LOv; i for i = 1,2, and any 1 <4’ < k;, and send L — oco. Observe that

11 (ur —ug ) (ury —ugy +1—0)

0—1
— 1= L_2 . -z L—4 ) )
(ul,i’ — U2 — 0)(16171'/ — ug y + 1) Z (Ul o= 2 + O( ) (6 8)

1</ <k, 1< <k,
1<y <k 1<y’ <k
and

k1

k1
Ui 4 —I— (Nl — 1)0 1 1 _92
1-— I | : =—-L . g — | FO(L77). 6.9
=1 U17i/ + (Nl - 2)6 —1 1}171‘/ + Nl ( ) ( )

Therefore, (6.7) multiplied by L converges to

S e (!
27r1 (27i)k1+ke (V1,00 — va 5 )2 = Vi Ny

1</ <ky
1257<ks
1 il Vi Vit — Q
X H H bt ~ ot = = dvm‘/ . (610)
Uz 2 — Uy 1 (Uz’,ki - vi,ki—l) =1 Vit + N; Vg — Q0 — M
Applying Corollary A2 10 Uik, Vik, and Vg, -, Uk, Tespectively, we get (6.6). O]
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Lemma 6.6. Assume that N1 < No for L large enough, then

2

Jim L°E [H (Be. (=) = P, (@) = E (P, (@) — P (2" )))]
=1
1kﬂﬂz 2 dvi _ ; vi—d \Fi
7{7{ ’Ul_v22HU1 <’U7,+N Ui—d—M) s (6.11)

where the contours enclose poles at —Ny and —Ny, but not &+ M, and are nested with |vy| < |va].

Proof. The proof is very similar to the proof of Lemma 6.5. By Theorem 4.1 we obtain that
2

i=1
S ﬁ 1
N (27Ti)k1+k2 i (i —uin+1—10)--- (ui,ki —Uig;—1+1— 0)

% H (ui,j’ _ui,i’)(uzj’ — Uiy +1 —0) H uzz’ —0 Ui g  — Oa

1</ < §' <k; (ui,j/ — Ui — 0)(“’1,] Us 4 + ]- e} Uz R + — 1)9 U 40 — o — M

k;
o 1— H ui i + (N; —1)0 H (w1, —ug ) (ur,y —ugy +1—10) 1|, (612
oy Wi+ (Ne=2)0 ) 1| o2 (g —uzy = 0)(ury —uz g +1)

1<) <ks

du,-’i/

where the contours for w;g,,- - ,u;, enclose —0(N; —2) and —f(N; — 1) but not 6(a + M), for
i =1,2. We also require that |u1] < - < |up g, | < |ug1| < -+ < |ug ).

Again set u; s = LOv;y for ¢ = 1,2 and any 1 < ¢ < k;. Sending L — oo, using (6.9) and
(6.8), and applying Corollary A.2 to v;j,,--- ,vik, and vk, - , Ujk;» respectively, we eventually
get (6.11). 0

Lemma 6.7. Under the limit scheme (3.1), we have

o IS

L—oo

lim L-E [ (B, (&) — B, (V1) — E (B, (=) — Py, (wN‘l)))]

o 0 k1 ko ]{ dv < v v — & >k2+k2 (6.13)
2mi(ky + ko) (v-i—N)z v+N v—a—-M ’ .

where the contours enclose poles at —N but not &+ M.

i=1

Proof. We can write the expectation as

2

E | T (Be@™) - Pr @) ~ E (B (™) — B (a” ))]

=1
E [( (=) = B (V1) B (0™)] — B [Py (@) (Bry (@) = By (V)]
-E (mlﬂ (xN) - ;Blﬂ (xN_l)) E (Y’Bkz (xN)) +E (g’ka (:E )) E (m (xN) — gﬁkl (xN_l)) . (6.14)
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Now apply Lemma 6.5, and we obtain

2

Jim. L‘E[H = P, (2 )—E(‘mxxN)—mki(w“)))]
=1
k‘19 1%% ( ’Ug—d >k1< U1 ) v — @ )k2 1
(2mi)? ’()2—|—N Vg — & — M m+N v—a—M (v2+N)(U2—vl)2

(%] v — k1 V2 Vo — Q k2 1
— < ) < ~ = ) = d’Uldvg, (615)
vl+N vy — & — M v+ N v9—a-—M (v1 + N)(vg — v1)?
where the contours of v; and vy enclose —N but not & + M; and |v| < |va|.
Interchanging kq and ko, for the same limit we have

k‘ge 1%% < V2 — )k2< V1 Ul—d )kl 1
vo+ N ’Ug*a*M m+N vi—a—M (02+N)(0271}1)2
~ kz A kl
- - 1
_< v1 v =a ) < vz _w—a ) i dvrdvs, (6.16)
vl+N v —&—M v+ N v9—a-—M (v1 + N)(vg — v1)?

where the contours of v; and vy enclose —N but not & + M; and lv1] < |va.
Notice that (6.15) x kl’fka + (6.16) x kl’ile equals

0= kiko %%
27r12k1+k2 Ul—i-N U2+N)(2—U1)
y ( Vo vy — & > ( U1 v — & >k2
v2+N vy — & — M v+ N v—a—-M
v v — & h v v2 — & k2
+< 1 . 1 A) < 2 . 2 A> dvidvg (617)
v +N v —a—-M v+ N vy —d&—-M

where the contours enclose —N but not &+ M, and |v;| < |va|. By Theorem A.1 this equals the
right hand side of (6.13). O

6.2 Decay of cumulants: proof of Theorem 3.7

In this section we present formulas about the decay of the high order cumulants of (3.14) and (3.15).
They will lead to the proof of Theorem 3.7.

Proposition 6.8. Let ky,--- ,kp and Ny < --- < Ny, be positive integers, and let D C {1,---  h}
be a subset of indices, satisfying that for any 1 <i < j < h and j € D, there is N; < N;.

For any v € D, denote
and for any i € D, denote

¢ = P, (z") — E (Pp, (=) . (6.19)
Then for any n < h — 2+ |D|, we have
lim L (€1, -, €,) = 0. (6.20)
L—oo

Proof. For a random vector, adding a constant vector only adds a first order term to the log of its
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characteristic function; thus for h > 2,
i n e = i n D — 1)
Jim L7 (€1, €,) = lim L > T -
teZ>o
{U1,+,Ut}€Oy,
t
<TTE| J] BuG™ -BrE™ ) JI Bu@™)|. (6.21)
r=1 iEUrnD iEUr\D

For any fixed {Uy,--- ,U;} € Oy, we apply Theorem 4.1 to expectations in the following form:

E| [T 0¥ [ &™), (6.22)
€U, D €U \D
where 1 < r < ¢, and each \; € {0,1}. We multiply the contour integrals (4.3) over all r =1,...,¢,
and then sum the result over all choices of {\;};cp. Note that for any i € D, i > 1, we have assumed
N;_1 < N; —1 < Nj; thus the nesting order of the contour integrals is the same for different choices
of {\i}iep. Therefore, we have

t

[T IT ®BeE™) =B ) I B

r=1 ieUrND ieUr\D
27_‘_1 k1+ Yk, f % H j(ui,la T aui,ki;aan 0’ Nl)
1€{1,,h}\D
XH(J(UM,--- Wik, 0 M, O, N;) — T(ug, - g 0, M, 0, Ny — 1))
i€D

t
X H H S(ui,l,--~ ,ui’ki;uj‘71,-” 7uj,kjv H H du“/ 623

r=1 i<y, i=14¢=1
4,j€Ur
where the contours are nested such that for each 1 < ¢ < h, we have |u;1| < -+ < |u;g,|; for

1 <i<h—1, we have |u;k,| < |tiy1,1]-
For each 1 < i < j < h, denote

EITIZ-J = S(’U,Z’J, tee ,ui’ki;uﬁl, cee ,Uj,kj;e) —1. (624)
Now sum (6.23) over all {Uy,---,U;} € Oy, and rewrite the expression with the notation 9; ;:

t

Z (_1)t_1(t - 1! H E H (mkz (xNZ) — B, (‘/ENi_l)) H P (‘TN

teZxo r=1 €U, N D €U \D

{U1,-,Us}€0Op,
27” k1+ +kp, f f H j(ui,h"' ,’U/Lki;OA,M, eaNz)
«,h}\D

X H jui,la"' uzk‘laa Me N) (ull7 c 7ui,ki;a7M’97Ni*1))
€D

t h ki
x> o= I o+ O] dwie- (6.25)

t€Z0 r=1 i<j, i=1i'=1
{U1,,Ut}€0y, i,j€U,
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We use a combinatorial argument to simplify the last line of (6.25). For any set U C {1,--- ,h},
let 7(U) be the set of all undirected simple graphs whose vertices are labeled by U, and L£(U) C
T (U) be the set of such graphs that are connected. We also denote

= > I ™ = > I i (6.26)

QeT(U) i<y, QeL(U) i<y,
(4,5)€2 (4.4)€Q

Then we have

t
Twy= Y, J[Rw, (6.27)
t€Z50,{U1, Uy} k=1
where the sum is over all partitions of U. By induction on |U| (or (generalized) Mobius inversion
formula), we invert (6.27), and get

R(U) = > (D" = [ 7). (6.28)
k=1

t€Z>0,{U1,,Ut}

where the sum is over all partitions of U. Take U = {1,--- , h}, then the right hand side of (6.28)
is precisely the last line of (6.25).

We replace the last row of (6.25) by R({1,---,h}). We further set u; s = Lbv;; for any
1<i<h,1<4i <k;. By changing notatlons, (6.25) multiplied by L" can be written as

h ki
W% 7{1_[8 M= > o200 I o T[] dvies (6:29)

ieD  QeL({1,,h}) i<j, i=1i'=1
(1,4)€Q
where || is the number of edges in €2, and
Si = !
" (w2 — v+ (07 = DL e (v — Vi1 + (071 = 1)L
_ —_ k; _ A
< 11 (vijr = vir) iy —vip + (071 = 1)L II vig — L0 g —a (6.30)
1<i'<j'<m (/Uivjl — Vi — L_l)(vl Jj vi:i/ + 0_1L_1) r—1 vi,i’ + Nl - L_l Ui,i’ - OA( - M,
Bt N L
Ri=L|1-]] ——= , (6.31)
=1 Vi,i + N; — 201
and
Vi — i) (Vi — v+ (07 = 1)L
N = L*M; j = L* H (01, 5.3) (Vi i+ ( )L™ 1. (632

Vit — 0 — L= (0: 50 — v p—11-1
1</ <k;, 1<5' <k; ( Wi 3,3 ) 2 .5+ )

Also, the contours in (6. 29) are nested, such that for any 1 <14 < h, we have |v; 1| < -+ < |V,
for 1 <¢ < h—1, we have ; and all contours enclose all —NZ, but not & + M.

We briefly explain the exponent of L in (6.29). the change of variables produces L*1 T T*n each
S; produces L=*+1 each R; produces L~!, and each N; ; produces L2

As L — o0, each §; obviously converges. Besides, we also have

R; = — - +0O(L7! 6.33
,Z_:l Um-/ + NZ — 2L_1 ( ) ( )
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and

6! 9
T 1<¢/<k£[<j/<kj (or —vay — Lo — vy 0L T OET) (034
so when send L — oo, the integrand in (6.29) converges to zero if n + h — |D| — 2|Q| < 0.

For any Q € L({1,--- ,h}), we have |Q] > h — 1. Since we require that n < h — 2+ |D|, we have
n+h—|D| —2|Q2] < 0. We also note that the convergence of the integrand in (6.29) is uniform in
the variables v; ;# in the contours. This means that the integral also converges to zero, and we finish
the proof. O

Remark 6.9. Ideas similar to the combinatoric arguments to obtain (6.28) can be found in standard
arguments of cluster expansions in statistical physics; see e.g. [Farl0, Section 2|, [Pat96, Chapter
9] for more discussions.

~

From the proof, we also conclude that the convergence is uniform in Nl, <o, Np.

Corollary 6.10. For any G € Rso, there is a constant C’(@,]\Zf, G ki, -, kp) , independent of
L, Ny, -+, Ny, and D, such that for any 0 < Ny < --- < Ny, < G, satisfying N; < Nj for any
1<i<j<h,jeD, wehave

Ln"‘{‘(el:"' aQEh)| SC(&7M7G>k17"' >kh) (635)

for any L > C(@,M,G,kl,--- ykn).
Proof. In (6.29), we can fix the contours for all v; ;7, such that they are nested and each encloses

the line segment [~G, 0] but not & + M, when L large enough. Then each of |Sj|, |R;|, and ||
is upper bounded by a constant relying on the chosen contours, and so is the integral. O

We proceed to remove the strict ordering constraints in Proposition 6.8

Proposition 6.11. Let ky,--- ,kp and N1 < --- < Ny, be positive integers, and let D C {1,--- , h}.
Let the notation &; be the same as in Proposition 6.8, for i € D and i & D, respectively.

Suppose that the number of different values among {NZ} b is s, then for any n < h — 2 + s,
1€

we have
lim L'k (&1, ,&,) =0. (6.36)
L—oo
Proof. Suppose that Nil, e ,Nis include all the s values in {Ni}ieD, and i1, -+ ,is € D. For any
i € D\{i1,--- ,is}, denote
62 = ;‘Bkz (xNZ> —E (;Bkz (‘TNZ)) ) 62/ = mkl (xNiil) —E ((‘Bk‘z (wNiil)) . (6'37>
Then via the identity &; = &, — €/, we can write x (&, --- , €,) as a sum of 21P1=s cumulants. We
get (6.36) by applying Proposition 6.8 to each of them and summing them up. O

Based on Proposition 6.11, we finish the proof of Theorem 3.7.

Proof of Theorem 3.7. By Lemma 6.4, to show that (3.14) and (3.15) jointly weakly converge to a
Gaussian vector, it suffices to show that each cumulant of order greater than two converges to zero,
and the first two moments converge to the desired values. Since all the first order moments are
zero, and covariances are given by [BG15, Theorem 4.1], Lemma 6.6, and Lemma 6.7, it suffices to
consider the cumulants of order greater than two.
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For any positive integers h > 3, ky,--- ,kp and Ny < --- < Np,and D C {1,--- ,h} a subset of
indices, let the notation &; be the same as in Proposition 6.8, for ¢ € D and ¢ ¢ D, respectively.
We need that

|D]|
lim L'F (€, , &) =0, (6.38)
L—oo
By Proposition 6.11, under the limit scheme (3.1), (3.13) we have
lim LM 1% (&, , €)= 0. (6.39)
L—oo
for any € > 0. Since when h >3, h —1 > % > @, we immediately obtain (6.38). O]

Remark 6.12. According to Corollary 6.10, for any G € R+, the convergence of (6.39) is uniform
in Ny,--- ,Np € [O,G].

6.3 Integration over levels: proof of Theorem 3.9

Proof of Theorem 3.9. By rescaling, it suffices to consider the case where G = 1. To simplify
notations, denote

€(y) = P (21) = P, (2197 — E (P, (219) = P (219971 (6.40)

By Lemma 6.4, to prove that (3.18) is asymptotically Gaussian, it suffices to show that all
cumulants of order greater than two converge to zero. That is, it suffices to show that, for any
positive integers h > 3,ky, -+ ,kp, N1 < --- < Np, and any functions g1, -+, g, € L*°([0,1]), we
should have

1 1
lim L' ( | s [ gh<y>¢h<Ly>dy> ) (6.41)
L—oo 0 0

By the multi-linearity of cumulants, the left hand side of (6.41) equals
1 1 h
lim / / L' (€1(Ly), - €n(Lyn)) [ [ 9i (i) dyi- (6.42)

The expression (6.42) can be split into a (finite) sum of integrals in the form of

1 1
/o /0 ]lLLy1J=---=LLyclJ<LLyc1+1J=---=LLyc2J<---<LLycS,1+1J=---=LLycSJ
h
x L'k (€1(Lyn), -+ €n(Lyn)) [ [ 9i(wi)dys,  (6.43)
i=1
where 1 < s < hand 1<¢ <---<cs=h. Since each g; is almost everywhere bounded, there is a
number K, independent of L, such that (6.43) is bounded above by

1 1
/0/0 KT pyy == | Lyey | <[ Lyey 1) == Lyey ] << Lye, y+1]==|Lyes )

h
x LM [k (€ (Lyn), -+ €u(Lyn) | [ [ dyi- (6.44)

i=1
Note that each €;(Ly;) is constant when y; € [%, mT‘H), for any 0 < m < L — 1. For each
i=1,---,s, we can replace each of y,, ,+1, -, ¥, by the same variable z; (here and below ¢y = 0).
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Thus (6.44) becomes

1 1 5
=1

here for any 1 < i < s and 1 < j < h, such that ¢;—1 < j < ¢;, we denote 2; = ;(Lz;).

Since h > 3, we have s < h — 2 4+ s. By Proposition 6.11, as L — oo the integrand of (6.45)
converges to 0 for each z1,--- , zs; and by Corollary 6.10 the integrand is bounded regardless of L
and z1,---,2s. Using the dominated convergence theorem we conclude that (6.45) converges to 0,
as L — oco. This implies (6.41).

It remains to match the covariances. For any functions g1, g2 € L>°([0, 1]), we have

. 2 _ 2
ngr;()LE(H/ gi(y Lydy> hm/ / LE(HQZ L%)ng yi)dy;
= lim / / [E (€1(Ly1)€2(Ly2)) 91(y1)g2(y2)
L—o0 Ly1J<LLy2J

+E (€1(Ly2 )€2(Ly1)) 91(y2)g ( 1)] dyrdys

2
i [ ([ T fLc) o

=1
By Lebesgue Differentiation Theorem, for y at almost everywhere we have

2
; 2 (2 R
Jim 22 [ /[LL;J’LLyLHJrggz(y»dyz 01020, (6.47)

From the expectations computed in Section 6.1, the integrands in (6.46) converges pointwise. By
Corollary 6.10, and since g; and g2 are bounded, the integrands in (6.46) are uniformly bounded.
We can thus move the limits inside the integrals. By Lemma 6.6 and 6.7, (6.46) equals

/] o e
0<y1 <<t ( 27” (v1 — v2)2(v1 + 1) (v2 + ¥o2)
A kl A k’Q
(y1)g2(y2) ( a. e ) ( LCHN - >
g vit+YyYr nn-—-a—-M V2t+Y2 vg—&—M

A k?2 k:l
v v — & v v9 — &
+91(y2)92(v1) ( L. ! M) < z . 2 = > ] dvidvadyidys

vty v —a&— V2t+Y2 vy—a&—M

_ / L0 g1(y)92(y) ]{ k1ks ( v v-a )kl% dvdy, (6.48)
0 2mi (k:1+k:2)(v+y)2 vty v—&—M ¥ -

where in the first integral, the contours of vy, v enclose —y71, —ys, respectively, but not & + M , and
|vi| < |ve|; and in the second integral, the contour of v encloses —y but not & + M. In slightly
different notations this is precisely (3.19). O

7 Connecting the limit field with the Gaussian Free Field

In this section we interpret Theorem 3.7 and 3.9 as convergence of the height functions (see Definition
3.12) towards a Gaussian random field.

In Section 7.1, we give the proof of Theorem 3.13. It is based on Theorem 3.7, and computing
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the covariances of the 1-dimensional integrals of the pullback of the Gaussian Free Field. In Section
7.2, we discuss the 2—-dimensional integrals. We first compute the covariances of the 2-dimensional
integrals against the pullback of the Gaussian Free Field. Then, with a bound on the covariances,
we prove Lemma 3.16, and extend the definition of 3, to any g € L?([0,1]). Based on these and
Theorem 3.9, we finish the proof of Theorem 3.18.

7.1 Identification of the 1-dimensional integral: proof of Theorem 3.13

Proof of Theorem 3.13. Denote N; = LLJ\AGJ, fori=1,--- h, and N] = {LN{J, fori=1,---,h.
Through integration by parts, (3.20) and (3.22) are respectively reduced to
h

( % - (B ) — B () — B (B ) — P (o >)>) (7.1)

k; +
t i=1

and

h/
(<1 (e B (8e6™))) 2
By Theorem 3.7 we conclude that, as L — oo, they (weakly) converge to Gaussian jointly, and the
limit vectors are independent. For N; = Nj, the covariance of the ith and jth component in the
L — oo limit of (7.1) is

1 91 1 A kitkj42
—-.f ) ( v ”AaA> dv (7.3)
k‘l+l€]+2 27 (U+Ni)2 v+ N; v—a—M
where the contour encloses —N; = —Nj but not &+ M. For N; #* Nj, the covariance of the ith and
jth component is 0.

Now let’s turn to evaluate (3.21). By Lemma 2.10, for § > 0 the distribution of
h

1 1
5”3 (/ ukiIC(u, N; + 0)du — / ukilC(u,Ni)du> ; (7.4)
0 0

i=1

is also Gaussian, and the covariance of the ith and jth (i < j) component is as following: when
N; < Nj, for 6 < Nj — N; the covariance is

51 7{7{ < v — & )ki“ ( vy v — & )’“i“
(ki + 1) (kj + 1) 2m v1+N—|—(5 v — & — M vi+N; v —a—M

~ kj+1 R k:j—‘rl
" V9 Vg — & _ V9 vy — & dvidvg (7.5)
’1)2+Nj+5 ’Ugfd*M UQ+Nj UQ*OQ*M (Ul_v2)2’ ’

where |v1| < |v2], and the contours enclose —N;, —Nj, —N; -4, and —Nj — 48, but not &+ M; when
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N; = Nj; the covariance is

61 vy — & ki+1 o vy — G kj+1
(ki +1)(kj + 1) 27T1 y{y{<<U1+N+5 vl—oz—M> (024—]\71-%—5'@2—07—]\%)
v — & kitl V9 vy — & kit
_<U1+Ni.U1_OJ_M> <U2+Ni+6'v2_d_M>
v v — & kit vy vy — & hit
_('UI‘FNz‘.Ul_OAé—M) (U2+Ni+5.U2—0Aé—M)

N ( 1 vy — & )ij ( Vg vy — & )kiH dviduy (7.6)
v1+]\7i ful—d—]\Z[ vg—l—Ni vg—&—M (v1 — v2)?’ .
where |v1| < |v2|, and the contours enclose —N; and —N; — 9, but not & + M.

Notice that by sending § — 04, (7.4) converges to a Gaussian as well, because the covariances
converge. Indeed, when § — 04, (7.5) converges to zero, and (7.6) converges to

1 v — & hitd v vy — & kit
_k 27” %%(vl—i—N (vl—i—N vl—a—M) <7)2+Ni.1)2—@—M)
. vi—a \Fth vo—a \"\  dviduy
_U2+Ni(U1+Ni v1—a—A> (v2+N v2—d—M> >(v1—v2)2
1 dvidvg 1
_m 27” j{j{ (v1 —v2) . (v1 + Ni)(v2 + N;)

><< ”1_5&)“1( v “2‘5&)%“. (7.7)
Ul—i-NZ' ’ul—a—M v9+ N; v9—a—M

We switch k; and k;, and obtain an equivalent expression

1 %% dvldvg 1
k; + 1 271'1 Ul - U2 Ul + Ni)(vg -+ NZ)

x( v U1—(34A>kj+1( v2 U2—dA>ki+1' (78)
v+N; vi—a—M vo+N; vo—a—M
kj+1

e (77)+k’;,j1+2 (7.8). O

We get (7.3) by applying Theorem A.1 to o

Remark 7.1. As the convergence is proved by applying Theorem 3.7, from Remark 6.12 we conclude
that, for any G € Rsp, and the vector (3.20), the convergence of all its cumulants of order at
least three are uniform in Np,--- N, € [0,G], and its covariances are bounded uniformly for
Ni,--- N, €10,G]

7.2 Identification of the 2—dimensional integral: proof of Theorem 3.18

Now let us discuss the random variable 3, ; from Definition 3.15.

Proposition 7.2. Let ky,--- ,kp be integers, G € R~g, and let g1,--- ,gn € C([0,G]), satisfying
9i(G) =0 for each 1 < i < h. The distribution of the vector (391.7;.31.)?:1 is joint centered Gaussian,
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and the covariance between the ith and jth component is

1
//0<y1<y2<G 2ri)? f% (v1 —v2)?(v1 + y1)(v2 + y2)
) vy — @& kj+1 Vo vy — @& ki+1
8 [gz(w)g](yl) (v1+y1.v1—a—M) <U2+y2.02—@—M>

R >( o wm-d )“( v w-d )kj“ dordudind
(1) g5 (o ) _ . - v1dvedydys
195 ntyr n—a-—-M vatYy2 vy—a&—M ey

1 ; g1 1 oA ki+k;+2
By QETTOTER S S N
o 2mi(ki+k;i+2)) vty \v+y v—a-M

where for the first two summands, the contours enclose poles at —y1 and —ys, but not & + M, and
are nested with vy larger; for the last summand, the contour encloses pole at —y but not & + M.

Proof. By Lemma 2.12, the vector (3, & )Z | is centered Gaussian, and the covariance between the
ith and jth component is

dygz Y1) (dygj 92
/ / (27i)2 (ki + 1) (k; + 1) j{j{ (v1 — vg)?

~ ~

vy v — & ki+1 vy vy — G kj+1
X < = ) ( . = > dvldvgdyldyg, (7.10)
v1 + Y1 vl—a—M vty vg—a—M

where the contours enclose poles at —y; and —y2, but not & + M , and are nested: when y; < ys9,
vy is larger; when y; > yo, vy is larger.
We fix the contours when y; < yo and ys < y1, respectively, and switch the order of integrals:

(Lo:w0) (o) o
%%//O<y1<y2<G @ri)2 (ki + 1)k + 1) (v1 —v2)?

. ki1 . kj+1
vl — & v vy — &
X ( : - = ) ( 2. 2 < ) dy1dyadvidvs
V1 + N

v—a—M Vot Y2 wvg—a&— M
7{7{// dygz(w)) (d%gj(yg)> o
o<po<m<c  (2mi)%(ki +1)(kj +1)  (v1—v2)?
V1 — o ki+1 Vg vy — & ]Cj-i-l
X < ~ > < : = ) dyldygdvldvg, (7.11)
U1t Y1 Ul—a—M v2tY2 vy—G&—M

where in the first summand, |v;| < |v2|; and in the second summand, |vs| < |v1].

We then integrate by parts for y;. The first summand in (7.11) has boundary terms at 0 and
Y2, while the second summand has boundary terms at yo and G. The boundary term at 0 vanishes
since the contour of v; encloses no pole when y; = 0; and the boundary term at G vanishes since
9:(G) = 0.

Let us show that the boundary terms at yo in the two summands cancel out. Indeed, each of
them is an integral of vy, va, yo, of the same expression. The only difference is the nesting of the
contours. We fix the contour of v in these two terms, and integrate v; along two circles, one inside
and another one outside vy, with different orientations. Then we only need to compute the residue
of v at vg. The result is an integral of vy and y2, and equals zero, because the integrand is the v
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derivative of another function. Then we conclude that (7.11) equals

]{]{// 9i(y1) (dygy(yQ)) o~ 1
0<y1<y2<G 27“) (k +1) (v1 — U2)2(U1 + 1)
v — & kitl V9 vy — & kj+1
X ( . - ) ( . - ) dy1dyadvidvg
n+yr v-—a—M vatY2 vg—&—M
ff// 9i(y1) (dygj(y2)> o 1
0<yo<p<a  (2m)2(k; +1) (v1 — v2)2(v1 + v1)

V] — & ki+1 V9 vy — & kj+1
X ( = ) ( . = > dyldygdvldvg (7.12)
v1 + Y1 Ul—a—M vat+Y2 vy—a&—M

where the contours are nested: in the first summand |v;| < |v2|, and in the second summand
|va| < |vi|. Then we integrate by parts for ys, for each of the two summands in (7.12). For the

second summand, we further exchange v; and vy, y1 and yo. In the end, we conclude that (7.10)
= A+ B, where

a-f 4] () ()67 !
0<y1 <y2<G (2mi)? (v1 —v2)?(v1 + 1) (v2 + o)
U1 v1 — & ijrl () Vg — & kitl
X ( . = > < . = > dyldygdvldvg
vty v —&—M vatY2 vy—a—M
7{7{// 9i(y1)g; (y2)0 ! . 1
0<y1 <y2 <G (27Ti)2 (Ul - U2)2(Ul + yl)(’Uz + yz)

v — & kit 1 v vy — & kitl
X ( . ! = > < 2 . 2 = ) dyldygdvldvg, (7.13)
vVit+Yr nn—-—a—M VatY2 vg—G—M

8- N/ D
2771 k: +1) (v1 —v2)2(v2 +y)
><< U1 U1—&A>kj+1< V2 Uz_dA)kinydvldvg
vl—l—y vy —&—M U2+y vg —a— M
y)o~! 1
ff/ . R

v — & ki+1 v Vo — & kj+1
X < ! - ) ( z_. 2 - > dydvidvg, (7.14)
Ul+y vn—&—M V2+Y ve—a—M
where the contours in both A and B are nested and |v;| < |v2|. Note that A equals the first and

second summands in (7.9).

By symmetry, if we interchange i and j in A and B to get A’ and B’, we would have that (7.10)
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= A’ + B’. Note that A = A’, and

j{j{/ 27“ k fll) (’01—1)2)12(’01+y>

R kj+1 N ki+1

v V] — J U V9 — & v

x( L ! A> ( 2 2 A> dydvidvgy
Ul+y v—a—M U2+Z/ vo—&— M

7{%/ 27T1 o 11) (0 —1;2)12(1)2 +y)

1 — & kitl V2 1)2—54 kj+1
X < - ) < . - > dydvidvg, (7.15)
v1+y vy —a—M va+Y wg—a—M

where the contours are also nested and |v;| < |v2|. Then we have
(k:j +1)B+ (ki + l)B/
ki +kj+2

B=DB =

(y)o~" 1
?{?{/ 27r1 k +k +2) (01— v2)(v1 +y)(v2 + )
X<< ’L}l—aA)kj+1< V9 . U2_dA>ki+1
vl+y vp—a—M 2ty v-a-M
n ( v wu-—a _ )ki+1< 2 _v2—a i >kj+1) dydvidve, (7.16)
n+y vy—a—M 2ty v-a-M

where the contours are nested and |v;| < |vz|. By applying Theorem A.1 to (7.16), we get the last
summand in (7.9). O

Using this proposition we can bound the covariance uniformly:

Corollary 7.3. There is a constant C(&, M, k, G), such that for any g1, g2 € C*([0,G]), we have
E (391 k3g2.k) < C(&, M, k, G)llg1 | 2 g2l 2- (7.17)

Proof. By Proposition 7.2, since the random variables 34, » and 3, 1. are centered Gaussian, E (34, £34,.k)
is just the covariance given by (7.9). We fix the contours in (7.9) to enclose line segment [—G, 0]
but not & + M; then it is bounded by

c ( /0 ¢ /O ? 1)) dysdys + /0 " @) dy)

< C(llgallpr lgallpr + lgallz2 llgallg2) < 2C lgullz2 lgall g2, (7.18)
for some constant C' independent of g1, g2. Setting C(4&, M, k, G) = 2C finishes the proof. O

Now we show that 3, can be defined for any G € R+ and g € L%([0, G)).

Proof of Lemma 3.16. Since smooth functions are dense in L?([0, G]), there is a sequence hy, ha, - - - €
C*(]0,G]) which converges to g in L?([0,G]). We further take a sequence A1, A9, --- € C*([0, G]),
where each 0 < A\, < 1, A\,(G) = 1, and each ||\, 72 < 27"||Anll 5. Set gn = (1 — Ap)hy, then
each g, € C*([0,G]) satisfies g,(G) =0, and ||gn — gllr2 < ||hn — gllz2 + ||AnllL || Anl| 2. Then the
sequence g1, g2, -+ converges to g in L.
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Passing to a subsequence if necessary, we can assume that for any n we have ||g,—gn+1|/z2 < 27"
By Corollary 7.3, we have

1
) <E (’3971,]9 - 39n+17k‘2) =E (‘Sgn_ng—lakF) i
< C(&, M,k ,G)2||gn — gnstllz2 < 27"Cl(, M, k,G)z. (7.19)

Then by the dominated convergence theorem, the limit

N

E (‘BQn,k - Sgn-&-l,k’

m—1

lim 3. k= hm Z ngh 397“;{), where 34, 1 = 0, (7.20)

m— 00

exists almost surely. Denote it as 3 .
For the uniqueness of 3, , if there is another such sequence g1, g2, - -, then we have

E (‘597’9 - agnvk’) S E (|39:k - 39n:k‘) + E (’39n»k - 3§n7k’>
<E(13gk — 3guil) + C(& M, k,G)||gn — Gnll 2, (7.21)

which goes to 0 as n — oo. Then 3, » also converges almost surely to 34 . O
With this we can extend Proposition 7.2 to functions in L*([0,1]).

Proposition 7.4. Let ki,--- ,ky be integers, G € Rsq, and g1, ,g9n € L*([0,G]). Then the
joint distribution of the vector (392,7;%)?:1 is Gaussian, and the covariance between the ith and jth
component is given by the same expression (7.9).

Proof. For each 1 < i < h, take a sequence g¢1;,924, - such that each is in C°°([0,G]), and
gn,i(G) = 0 for each positive integer n, and g, ; converges to g; in LQ([O, G]). The joint distribution
of (3g:.k:)1_, is the limit

h

lim (ng l) o

n—00 i=1"’

(7.22)

in the sense that this vector almost surely converges. By Proposition 7.2, for each n, (3% . )

i= 1
jointly Gaussian, then so is (3, k )f 1> and the covariances are given by taking the n — oo limit of
the corresponding covariances. O

Finally we finish the proof of Theorem 3.18.
Proof of Theorem 3.18. Integrating by parts in the u—direction, we obtain
“r A 9i(y)
/ / uFigi (y)Wr (u, Ny)dudy = L/ . (min{N;, M} — min{N; — 1, M'}) dy
Ie min{N;,M} ) min{N;,—1,M} )
9i(y) ( N->’fz+1 ( N)’fz“
- L A - A dy. (7.23
L Enl X (o > (@) e o
7j=1 j=1
Thus, (3.25) equals
h
Y) _ . _
(- [ 29 1) = a7 - B (Braa ) = Bua @) ay) (720
i=1

which, by Theorem 3.9, is asymptotically Gaussian, and the covariances are given by (7.9).
On the other hand, by Proposition 7.4, the joint distribution of (3, x )l | is also Gaussian, with
covariances also given by (7.9).
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For (3.26), it suffices to show that for each 1 <4 < A’ the random variable

[ 1 (i) a5 () +5) OV 0.9) — B OV ) |ty

(7.25)
weakly converges to 0 as L — oco. Here we can also assume that ¢;(G) = 0 for each 1 < i < A/, since
adding a constant to each §; does not influence (7.25).

Take Lo be the largest integer strictly less than GL. Note that Hp(u,y) — E (H
piecewise constant function for y: specifically, fixing w, it is constant for y € Tl
positive integer n. By integrating in the y—direction we have

/ / < ) (Hr(uy) = E(He(u,y))) dudy
Lo
_/oluk;Lﬂ;?” (%) [WL (“’ %) —E (WL <u, %))} du. (7.26)

This implies that the absolute value of (7.25) is bounded by

sup |9i(a (0)] /
a,bel0,G],la—b|<L—1

ng

L(u,y)) is a
%) for any

uFW(u,y) — B (W (u,)) du| dy

1
Ll/o WL (u,y) — E (Wi (u,y)) du| dy.  (7.27)

00

By Theorem 3.13, as L — oo, the 1ntegrand of the outer integral weakly converges to zero, and
this is uniform in y according to Remark 7.1. Then (7.27), and (7.25), weakly converge to 0 as
L — oc. O

Appendices

A Dimension reduction identities

In this appendix we discuss integral identities, which are widely used in proofs in the main text. A
special case (m = 1) of the following result was communicated to the authors by Alexei Borodin,
and we present our own proof here.

For any positive integer n, let o, denote the cycle (12---n), and let S%¢(n) denote the n—element
subgroup of the symmetric group spanned by o,.

Theorem A.l1. Letn > 2, and f1,---,fn : C — C be meromorphic with possible poles at
{p1, - ,pm}. Then we have the identz’ty

) L
(2mi)n j{ % (a2 — 1) - (un —Un71)dU1 duy, = 27Tiffl( ) fu(u)du, (A1)

where the contours in both sides are positively oriented, enclosing {p1, - ,Ppm}, and for the left hand
side we require |uj| < -+ < |up.

UESC?!C

Proof. Let €q,---,&9,_1 be closed paths around {p1,---,pm}, and each €; is inside €;;1, 1 <i <
2n — 2. Also, to simplify notations, set fn4¢: = fi and upy¢ = uy for any 1 <t < n — 1. Then the
left hand side of (A.1) can be written as

f1+t Ul fn-i—t(un) L
72 7{” duy, - - - duy. (A.2)

ug — uy) (un — Up—1)

t:0
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When n = 2, we have

: fulw) falua) folwn) i (2)
i b v+ s ) S s

ug — U1
_ 1 fi(u1) fo(uz) 1 J1(u1) fo(uz) wod
B 751 ¢ U2~ U duadin + 15 5y (27i)? ﬁg ¢, U1 — U2 Guzdu

(27i)?
1
- 7{ Nlw)folud) yog (a3)
2mi)? Jey—e, Je, w1 —ug
where §¢3_¢1 is a notation for the difference of integrals over €3 and €;. Further, (A.3) equals to
1
2 fl( ) f2(u)du, (A.4)
f1(u) fa(u2)

since as a function of wuq, Py has a single pole at uy between €3 and €;; and the residue at
this pole equals fi(u2) fa(ugz). This proves the case of n = 2.

When n > 3, we argue by induction and assume that Theorem A.1 is true for n — 1. For any
1 <t<n-—1, we have that

f1+t ur) - froge(un)
ug —up) - (Up — Un—1)

duy, - - - duy

¢1

n

j{ 7{ filtn) - Julie) Ay gt - - duy
27“ Cype Crtt U2+t - U1+t) te (Un+t - Un71+t)

7{ 7{ % 7{ Al Tl ity - - duy.  (A.5)
271'1 i1 Cpit JCii1 " u2+t_ul+t) (Un+t_un—1+t)

Now we can move the contours of uy,--- ,us from €,pq,--,Cpyy to €1, -+, &, respectively.
We move the contours one by one starting from w1, and each move is across €41, -+ ,&,. For
u1(= up41), the only pole between €, ;1 and €; is uy,; for any u;, 1 < ¢ < t, there is no pole between
¢,y and €;. Thus we have that

N
2771 Crit @nﬂ Tt (U2 — wige) - (un+t — Up—1+t)

fl Ul) fn(un)
27” 7{ %n U2+t —Uttt) o (Ungt — Un— 1+t)dun i
Jree(ue) - fr(Un—t) foe1(Un—t) - - froge(tn-1)
(27i)"— (i)t 7{1 jén ) d

(ug —u1) - (Up—1 — Un—2)
Notice that (taking into account that w4+ = uy)

Z_: fi(ur) - fu(un) —0, (A7)

(Ut — urge) - (Untt — Un—14¢)

Up—1 " dul. (AG)
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and by the induction assumption (applied to fo, -, fn—1, fnf1), we have that

1 7{ 7{ Ji44( u1 “ frye(un) duy, - - - duy
€1 n

:0 (2mi)n (ug — up) (un — Up—1)
nz _ 7{ ?{ Jrve(ur) - fo(un—t) fopr(un—t) - - fn+t(un l)dun e duy
= 27” ¢ Cro1 u2_u1) (’U,n 1 — Up— 2
. (A8
O
Corollary A.2. Let s be a positive integer. Let f, g1, -+ , gs be meromorphic functions with possible

poles at {p1, - ,pm}. Then forn > 2,

n

1
v;)dv; i(v))
(vz—vl)...(vn—vnl)}_ll }_[1 ;9 j
N 2771 ff ng )dv, (A.9)

where the contours in both sides are around all of {p1,- -+ ,pm}, and for the left hand side we require
lug] < - < |up.

Proof. Take disjoint sets Uy, - -+, Uy, with |J; U; = {1,--- ,s} (some of which might be empty).
In Theorem A.1 we let f; = f[];cp, gj for each 1 <4 <n, and get

n
o= e d ) ACONS | QEZICRLY
O'GSCyC( 2 1 n—1 =1 jGUO-()
=53 y{f ng dv. (A.10)
Summing over all n® partitions Uy, --- ,U, of {1,--- ,s} into n disjoint sets, we obtaln (A9). O
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