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Abstract

In the stochastic description of biochemical reaction systems, the time evolution of statistical
moments for species population counts is described by a linear dynamical system. However, except
for some ideal cases (such as zero- and first-order reaction kinetics), the moment dynamics is
underdetermined as lower-order moments depend upon higher-order moments. Here, we propose
anovel method to find exact lower and upper bounds on stationary moments for a given arbitrary
system of biochemical reactions. The method exploits the fact that statistical moments of any
positive-valued random variable must satisfy some constraints that are compactly represented
through the positive semidefiniteness of moment matrices. Our analysis shows that solving moment
equations at steady state in conjunction with constraints on moment matrices provides exact lower
and upper bounds on the moments. These results are illustrated by three different examples—the
commonly used logistic growth model, stochastic gene expression with auto-regulation and an
activator—repressor gene network motif. Interestingly, in all cases the accuracy of the bounds is
shown to improve as moment equations are expanded to include higher-order moments. Our
results provide avenues for development of approximation methods that provide explicit bounds on
moments for nonlinear stochastic systems that are otherwise analytically intractable.

1. Introduction

Stochasticity is an integral aspect of biochemical
systems, in which different species are often present
at low counts. Mathematical characterization of
such systems is done by employing the chemical
master equation (CME) [1-3]. However, the CME is
analytically intractable except for few special cases,
and generally requires considerable computation
effortif solved numerically [4-13]. The computational
cost tends to become prohibitive if one is interested
in studying the long-time (i.e. stationary or steady-
state) behavior of the system. Perhaps a reasonable
goalis to determine a few lower-order moments (such
as mean, variance, etc) of different species in the
stationary state. Not only is moment computation of
primary importance for many purposes, it can also be
used to infer useful information about the probability
density function using tools such as the Chebyshev’s
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inequality [14], moment-based reconstruction of the
probability density function [15], etc.

The time evolution of moments of a biochemi-
cal system is governed by a system of differential
equationswhich canbe obtained from the CME [16-18].
Consider a system of n species Xj,j = {1,2,...,n}
and denote the state of the system by a vector
x(t) = [x(t) %) ... x, (O], where xj(t) rep-
resents the population of X at time t. Given a vector
m=[m my ... mn]Tofnnon—negativeintegers,asta—
tistical moment of x is defined as {x{"x5" - -- x;""), where
the sumz;?: , mjisreferred toasthe order of the moment.
x," the
time derivative of (x[") obtained from the CME is given
by [16-18]

Using a short-hand notation x!"™ := x{"x5" ..

d(x['”]) _

S
m <Zﬁ(X)((x + )™ — xtm) > (1)

i=1
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where S represents the number of reactions R;,
i€ {1,2,...,S}through which the species interact. The
term f;(x(t)) denotes the propensity of the ith reaction
Rin the sense that the probability that it occurs in an
infinitesimal small time interval [¢, t + df) is given by
f;(x(t))dt.Upon occurrence of R, the state of the system
is transitioned to x + o, where v; is the stoichiometry
vector that describes the change in population.
Typically the propensity functions f;(x) for mass
action kinetics are taken as polynomials in x [1-3].
In that case, it follows from equation (1) that if all
moments up to order M are stacked in a vector p, then
the time evolution of g+ is given by
d—H:a+Au+Bﬁ,. (2)
dt
Here & consists of moments of order higher than M
[17]. The elements of the vector a and the matrices A
and Bdepend upon the reaction parameters. Assuming
that a stationary distribution (not necessarily unique)
with valid moments exists, equation (2) implies that the
stationary moments must satisfy the following:

a+Ap+ B = 0. (3)

When the reaction propensities are constants (zero-
order reactions), linear (first-order reactions) or the
system has some special structure [19], then B =0
and the steady-state moments in g can be determined
exactly by solving equation (3). However, in general the
matrix B = 0, which implies that equation (3) represents
an underdetermined system of equations. One widely
used approach for handling such cases is to employ an
appropriate moment closure technique. Based on dif-
ferent assumptions, these techniques approximate the
vector [z as a, possibly nonlinear, function of p¢ [20—44].
Although presumed to be reasonably accurate, moment
closure schemes typically do not provide any mathemat-
ical guarantee on the accuracy of the approximation.

In this paper we present an alternative method that
provides both upper and lower bounds on the stationary
moments. Instead of finding an approximation of fz, we
use the fact that the elements of p and [T are moments
of some probability distribution. Therefore these ele-
ments cannot take arbitrary values and must satisfy
some constraints (e.g. variance is non-negative). These
constraints are compactly represented in terms of posi-
tive semidefiniteness of moment matrices [45]. We show
that solving the moment equations in equation (3) along
with the positive semidefiniteness of moment matrices
results in the lower and upper bounds on elements of .
Furthermore, increasing the order of truncation, i.e. the
size of p, and correspondingly increasing the number
of moment constraints often results in improvement in
these bounds. We describe the constraints on moments
of arandom variable in the following.

2. Constraints on moments

In the proposed method, our aim is to exploit the
constraints satisfied by moments of any random

2
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variable [45]. For simplicity, let us first consider the case
of a scalar random variable x. Suppose we construct

.
a vector v = [1 x x2 _._xd] that consists of

monomials up to degree d of x. Then the outer product
vy is positive semidefinite (denoted by > 0), and the
semidefiniteness is preserved if expectation is taken (see
appendix A). That is, we have

1 (x) ..o (x9)
Ty =| €D T )
<xd> <xd+1> <x2d>
for all d = {1,2,...}. Furthermore, if the random
variable x is non-negative, which is the case when
x represents the level of some biochemical species,
another semidefinite constraint can be obtained as

(x)  (x?) (xd )
=] )
(xci+1> <xdv+2> <x2;i+1>

foralld = {1,2, ..
form (g(x)vv"), where g is a non-negative polynomial
function of x, is positive semidefinite. This fact can
be further exploited if x has bounded support. For
example, if x€[L, U] then {(x — L)»w')>0 and
((U=xwT)>0.

These constraints can be generalized to multivariate
random variables. For example, for an #-dimensional

. }.More generally, any matrix of the

T
random variable x = [xl b3 x,,] ,amatrixanal-

ogous to the one in equation (4) can be constructed by
taking the expectation of the outer product vw where
the vector v (with slight abuse of the notation) consists
of all monomials of x up to order d

-
xlxz...xlxn...xi...xd]. (6)

v:[l X1 ... Xp X Y

1
Furthermore, n matrices analogous to equation (5) can
begeneratedas(xyv') > 0fori = 1,2, ..., n. Additional
constraints can also be encoded via (g(x)vw ') > 0.

The constraints described by equations (4)—(5) and
their multivariate analogues essentially ensure that the
higher-order moments appearing in equation (3) do
not take arbitrary values. To see this, we can use the
fact that a matrix is positive semidefinite if and only
if all of its principal minors are non-negative (this is
known as the Sylvester criterion [46]). Therefore, for
d = 1,the non-negative determinants of the matrices
in equation (4) and equation (5) resultin

(x)*
()
respectively. Note that the first inequality above is
nothing but the well-known inequality representing
non-negativity of variance. Similarly, for d = 2, the
determinant of the matrix in equation (4) yields

()2 ()2

(7)
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() + () — 20 (x)
(x?) = (x)?
In essence, these determinants for varying d allow
higher-order moments to be bounded from below by
nonlinear functions of the lower-order moments.
Another point to note is that the matrix (vv') gen-
erates inequalities for even-order moments whereas
(xwv") generates inequalities for odd-order moments.
Likewise, for the multivariate random variable x, non-
negativity of the principal minors of matrix(vv") gives

(x>

(8)

bound on the moments (xizd>,i ={1,2,...,n}. Asan
T

example, for x = [xl Xz] , the following is obtained

ford =1

1 X1 X

2
XXy X% >0, 9)
X XX x%

which results in <x12> > (x)% and the following
inequality bounding <x§>

<x2> N (xx)* + <x12><x2> — 2(a) (%) (xx)
2/ =

(x) = (a)?
The moments whose form is different from <x,v2d> can

(10)

be bounded by taking expectation of (g(x)vv ') with
an appropriately chosen g. For instance, when x takes
positive values, g(x) = x; gives the constraint

1 X1 X
2
xi|x X xx% >0, (11)
2
X X X,

which can be used to find a lower bound on <x1x§ >

It should also be noted that the univariate inequali-
ties obtained from equations (4)—(5) are valid for both
xj and x,. Furthermore, as x; and x; are positive random
variables, additional inequalities as follows can also be
written

<x1[1 x§]>z0, <x2[1 xﬁ]>zo. (12)
X xZ X1 xl

These inequalities translate to lower bounds on

moments <xfx2> and <x1x§>. To sum up, one can write
amultitude of positive semidefinite matrix constraints
satisfied by the moments. In the following section,
we discuss how these constraints can be used to find
bounds on moments.

3. Bounds on steady-state moments
In this section, we provide a general methodology to

obtain bounds on stationary moments of a biochemical
system, and illustrate it using examples.

P Letters

3.1. Method

Broadly speaking, the method utilizes the linear
equationsin equation (3) and constraints on the higher-
order moments discussed in the previous section. The
key steps are enumerated below.

(i)  Obtain the system of linear equations
a+ Ap + Bi = 0 for the stationary
moments.

(i) Solvea + Ap + Bpr = 0 for the elements of
e in terms of the elements of fz.

(iii) Useinequalities which bound the elements
of [z in terms of elements of 1 in conjugation
with equations in step (ii). This yields
inequalities for the elements of fz.

(iv) Usually, there are multiple solutions; the
spurious solutions can be discarded based on
moment inequalities satisfied by the lower-
order moments.

(v) Revertingto step (ii), the bound on elements
of prare readily obtained by substituting the
corresponding bounds on fz.

These steps can be easily implemented in a
computational tool such as Mathematica or Matlab,
and can even give analytical bounds if the problem
at hand is small enough. However, it turns out that as
the size of the problem grows, solving the inequalities
becomes difficult for these off-the-shelf tools. A more
specialized approach is to recognize the fact that we
are essentially looking for a minimum or maximum
value taken by a moment of interest, subject to linear
constraints arising from the moment equations in
equation (3) and the semidefinite constraints in
equations (4)—(5) (or their multivariate analogues).
Thus, the problem could be posed as a semidefinite
program whereby maximizing (minimizing) a
moment gives upper (lower) bound [47,48],and these
programs could be solved using specialized algorithms
[49]. In what follows, we will illustrate the proposed
method via examples.

3.2. Example 1: stochasticlogistic growth witha
constantimmigration rate

Consider the following biochemical system, where a
species X arrives in the system via two modes, a constant
immigration rate k and a species-dependent rate r, and
each species degrades or leaves the system with a rate

rx/C

k r x/C
g—X, X—X+1, X—Xx—1, (13)

where x denotes the population level of the species.
With k = 0, this model essentially represents a logistic
growth model which is widely used to model the
growth of populations in ecology and virus dynamics
[28,50-52]. In the deterministic sense, the population
grows with a rate r and saturates once it reaches a finite
carrying capacity C due to resource limitations. The
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term k here represents a constant rate of immigration
so as to avoid the extinction of the population.

In this example, there are three reactions with pro-
pensity functions and stoichiometric vectors tabulated
intable 1. Using equation (1), we can write the moment

dynamics for amth-order moment as

dix")y

<(k + rx)((x+ 1) — x™)
dt

(14)
+ éxz((x — )" — xm)>.

Note that these equations are not closed because of
the quadratic propensity function, and time evolution
of an mth-order moment depends upon a moment
of (m + 1)th order. Thus, if we construct a vector p
consisting of the first M moments, then iz = [{xM*1)].

To see how the moment inequalities lead to bounds,
we start with the simplest case of M = 1. From equa-
tion (14), the steady-state moment satisfies

. r
(x) = k+r{x) — E(xz) =0. (15)

Solving the above equation gives
r(x?y — kC
rC ’

Using this with the non-negative variance inequality
(x2) = {x)? gives a quadratic inequality in {x?)

(x) = (16)

r2(x2)? — (2krC + r?CY){(x2) + k*C*> 0, (17)

whose solution can be used in equation (16) to obtain
bounds on{x)

C 1 [4kC+ Cr 1 [4kC+Cr C
— Y —— <)L=, | — F+ —.
2 2\ r \<>\2\J r 2

(18)
The lower bound on (x) can be discarded from the fact
that (x) > 0. Thus, we have the following lower and
upper bounds on (x)

2
OS(x)<% M+% (19)
r

Next, consider the case of M = 2. In this case, the
steady-state moment equations are given by

(x) = k+r(x) — é<x2> =0, (20)

(2 = k+ (2k + é)(x) + (Zr + é)(xz) - %(x3> —o.

(21)
Solving these equations results in
kG +kC = 1(x?)
Ck+Cr+r)

k2C + r*(x)
rtk+Cr+r)
(22)
Using the above expressions in the second inequality
from (7) leads to a quadratic inequality in {x?).
Substituting the solution back to expressions of (x)and
(x?) results in bounds on them. Upon rejecting the

(x) = (%) =

W Letters

Table 1. Description of reactions for the logistic growth model.

Reaction, R; Stoichiometric Propensity

vector, cv; function, f;(x)

[ "

XLox41 i &

PR

xS x (r/C)x*

spurious solutions by using inequalities (x?) > (x)
and (x) > 0,a more useful lower bound for (x) is found
compared with the M = 1case

3 202 2 2 _
1 4kC+kCr+212<Cr+kr+k(C 1)<(x)
2 r(k+ 1) 2(k+ 1)
2
L [#crcr  C
2 r 2
(23)

As the order of truncation M is increased, the same
approach can be used: take steady-state equations of
first M moments, use the inequality bounding the
(M + 1)th moment and apply the inequalities for
lower-order moments to prune solutions. Though the
resulting expressions do notlead to closed-form analyt-
icalbounds, numerical solutions are still possible. Inter-
estingly, the solutions for odd values of M improve the
upper bounds on the average population level whereas
the solutions for even values of M improve the lower
bounds (figure 1(Left)). At M = 9,thelower and upper
bounds obtained are respectively given by 18.9711and
19.1635. The exact average population level obtained
from Monte Carlo simulations of the processis19.1495.

Although we have so far discussed the bounds only
on (x), this approach yields bounds on all moments up
to order M. These bounds can be straightforwardly used
to infer the bounds on other statistical quantities of
interest, for example coefficient of variation, skewness,
etc. In particular, the coefficient of variation squared is
equal to ((x?)/{(x)?) — 1. Thus, a lower (upper) bound
on the coefficient of variation can be computed by
using the lower (upper) bound of (x?) and the upper
(lower) bound of {x).

To illustrate this point, we compute the bounds on
the coefficient of variation squared as k/r is varied. It is
worth noting that both the upper and lower bounds on
(x)inequation (23) depend only onk/r and not on indi-
vidual values of k and r. This holds true for all bounds
obtained here, as evident from the steady state of the
moment equation in equation (14). We call the ratiok/r
the relative immigration rate and show its effect on the
coefficient of variation in figure 1(Right). Itis seen that
both the upper and lower bounds on the coefficient of
variation decrease with increase in k/r, thus suggesting
that the coefficient of variation decreases. Interestingly,
the difference between the bounds is large for small
values of k/r and it becomes negligible for high values
of k/r. Thus, depending upon the parameter regime,
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Figure 1. Estimated bounds on steady-state moments for the logistic growth model. Left: upper and lower bounds on the second
moment of the population level are shown for different orders of truncation M. As M is increased, the bounds obtained get tighter.
The exact mean value 0f19.149is obtained by averaging 100 000 MC simulations performed using the stochastic simulation
algorithm (SSA) [53]. Parametersin (13) are takenask = 1, r = 5and C = 20. Right: the bounds on the coefficient of variation
(standard deviation/mean) of the steady-state population level are shown as the relative immigration rate k/r is changed. Both lower
and upper bounds decrease as the relative immigration rate increases. These bounds are obtained via a fifth-order truncation.

a lower- or higher-order truncation might be used to
obtain bounds within a desired accuracy.

3.3. Example 2: stochastic gene expression with
negative auto-regulation

Consider stochastic expression of an auto-regulating
gene represented by the following reactions:

kon
Geneppr = Genepy;,

koft2
k Y,
Geneon —2, B x Protein —» @. (24)

Here the gene is assumed to reside in one of the two
states: ON (active) and OFF (inactive). The protein is
produced atarate k, from the ON state whereas there is
no protein production when the geneis in the OFF state.
Each production event produces B protein molecules
where B follows a geometric distribution. The gene
state is represented by x;, which is a Bernoulli random
variable (x; = 1(0) for the ON (OFF) state), and the
protein level is represented by x,. The gene negatively
regulates itself by switching to the OFF state in a protein
copy number-dependent fashion with a rate kogx.
Finally, the protein molecules can degrade with aratey,.
This gene expression model hasbeen studied previously
[34,54-56]; exact solutions to its moments are available
which allows us to validate the bounds obtained using
our method.

In this example, the state of the system is

.
x = [X1 xz] .Thereare four reactions whose propen-

sity functions and stoichiometric vectors are described
in table 2. Using equation (1), the time evolution of a

moment(x}"x}?)is given as
d{x)"xh"
% = (kon(l - xl)((-xl + 1)m1 - xrl)x;nz

+ kogee((x — 1™ — x")x5"?
+ kpx)"((x + B)" — x5
+ wpxzx{'”((xz — 1" — x'2”2)>. (25)

Table 2. Description of reactions for an auto-regulating gene.

Reaction, R; Stoichiometric Propensity
vector, o function, f;(x)
k N kon(1 — x;
Geneopr — Geneon [1 0] onl )
Kot 22 U Koftxits
Genepn = Geneorr —1 0] °
kpx

k T
GeneON—p> Genepn + B x Protein [0 B]

T VX
0 —1

-
Protein — &

Note that dynamics is unclosed due to the nonlinearity
arising from the negative feedback: a moment (x{"x5")

m2+1>

depends upon <x{"‘x2 Furthermore, x € {0, 1}

is a binary random variable for which the following
relations hold
(") = (axh®y, m € {1,2,3, ...},

m, €{0,1,2,3,...}. (26)
The above relations imply that the moment vector

1 does not need to contain all cross moments. For
example, the moments up to order 3 can be stacked as

p,:[(xl) (%) {(xx) <x§> <x1x§> <x§>]T In this

case, the corresponding z is given by & = [<x1x3>],

As with the one-dimensional example, here too we
are interested in obtaining bounds on moments of the
state x. Towards this end, we begin by writing the first-
order moment equations in steady state

<X1> - kon - kon<x1> - koff<x1x2> = 0) (27)

() = kp(B)(x) — 7,(x) = 0. (28)

To obtain a bound on (x;) and (x;), we require a bound
on the second-order moment (xx,). Generally, the
only bound that we can use is (xx,) > 0. However,

because x; is a binary random variable, we have that

< X%, > = (x%2). Thus, using the inequality obtained from
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Figure2. Estimated bounds on moments for a stochastic gene expression model. Left: the lower and upper bounds for the average
gene activity (left axis)/protein level (right axis) for different orders of truncation M is shown. The bound for M = 1corresponds
to equation (29). As M is increased, the bounds obtained get tighter. The exact mean values are obtained from the analytical
solution of the system from [56]. Parameters in equation (24) taken askon = 10, kogr = 0.1,kp, = 15,(B) = 5, andAP = L Right:
the coefficient of variation (standard deviation/mean) of the steady-state protein level as a function of the gene activation rate
kon is plotted. The steady-state protein level in the deterministic sense is kept constant at 50 molecules by varying k,, with ko, such
thatk,, = 507,(50kos + kon)/(kon{B)). The lower and upper bounds on the coefficient of variation are obtained for M = 5and
they exhibit U-shaped profiles, thus showing that the noise is minimizing at a specific value of ko,,. Other parameters are taken as

kot = 0.1,(B) = 5and, = 1.

first matrix of equation (12),abound({x1x,) < (x,)canbe
found. Plugging this in the moment equations yields

kon’Yp
— < (X)) < 1,
kon’Yp + koffkp<B> ek
k(B komy, k(B
oB) b < B )
’YP kOH’Yp + kofka<B> ’yp

In the similar fashion to the above, we can write
moment equations up to order two and use the
inequality for< XX > obtained from the second matrix of
equation (12). This eventually leads to an improvement
in the lower bounds on both {(x;) and (x,).

Continuing in similar way, we obtain improve-
ments in the lower bounds for M =4 and
M = 6, and improvements in the upper bounds for
M=3M=5and M =7.Theboundsup to M = 4
are shown in figure 2(Left). The lower and upper
bounds obtained for (x;) via seventh-order trunca-
tion are 0.667 463 and 0.667 465 respectively. These
are quite precise, as the exact solution for (x) is
0.667 464 obtained using the exact solution from
[56].1tis worth noting that as discussed below equa-
tion (5), we can also use additional bounds arising
from the fact that x; € [0, 1], so x; and 1 — x; both
would be positive. However, in this particular exam-
ple, they do not lead to significant improvements in
the bounds.

As done in the logistic growth example, we also
obtain the bounds on the second-order moment and
compute the bounds on coefficient of variation. In
particular, we study the effect of varying the param-
eter ko, (gene activation rate). Our results show that
there is a U-shaped curve, and the noise is minimized
at an optimal value of k,, (figure 2(Right)). Further-
more, the coefficient of variation approaches a limit-
ing value for large values of k,, (i.e. the gene is always
ON). Similar results were obtained in [34] for an auto-
regulating gene expression model using the moment

6

closure techniques. Notably, here the lower and upper
bounds remain reasonably close to each other for
the range of k,, considered as opposed to the logistic
growth example.

3.4. Example 3: activator-repressor gene motif
Next we apply the proposed method to estimate bounds
on moments of a slightly more complicated example
of a gene network motif that consists of two genes as
described by the following reactions:

Kon,
Genea,,, = Geney,,,
off\ X4

k .
Geney,, A, B, x Proteiny &) (%] (30)
Fong 1

Genep,,, = Geneg,,
offR

k
Geney,,, —> By x Proteing RINPENE)

Here the notations with subscript A denote the activator
whereas those with subscript R represent the repressor.
The state of the system is represented by the vector

T
x = [xl X X3 x4] , where x; and x3, respectively,

represent the activator and repressor gene state. The
corresponding proteins are represented by x; and x;.
Aswith the previous example, the genes are assumed to
reside in two states: OFF and ON. The activator turns
the repressor gene ON whereas the repressor turns
the activator gene OFF, thereby creating a feedback
loop. There are eight reactions in this example. The
corresponding stoichiometric vectors and propensity
functions are given in table 3.

The time evolution of a moment {x]"x} x5 *x} *) can
be computed using equation (1). For example, the first-
order moment equations in the steady state are given by

<x1> = kon,\ - konA<x1> - koff,\<-x1x4> =0, (32)
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Table 3. Description of reactions for the activator repressor motif.

Reaction, R; Stoichiometric vector, c; Propensity function, f;(x)
k. U Kony(1 — x7)
Geneagy —2 Geneaoy 100 o] o
k ffy X. i k 4 X1X.
Gene gy N 4Gene,\OFF -100 0] ot
k . T kax
Geney oy RN Geneppy + By X Proteing 0 By 0] M
. Vs U
Proteiny —> & 0 -1 0 0] R

konR X
Genepopr —  Genepgy

konRxZ(l — X3)

k ff) B k fIRX:
Genegy = Geneg oy 00 —1 0] offes
k B kgx:
Genegy £ Genegy + Br X Proteing 000 BR] A
o T
Proteing L 000 —1 TR

?—_H—_|I—_H—O_H—_H—_H—_|I—_|
o
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taken to be same as those for the left part.

Figure 3. Estimated bounds on steady-state moments for the activator—repressor motif. Left: upper and lower bounds on the mean of
both the activator and repressor are shown for different orders of truncation M. As M is increased, the bounds obtained get tighter.
The exact mean values of 1.23 for the activator and 4.24 for the repressor are obtained by averaging 30 000 Monte Carlo simulations
performed using SSA [53]. Parameters are taken askon, = kong = Lkofry = 5 koig = Lka = kg = 10,7, = 93 = LandBy = Bp = 1
with probability one. Right: the bounds on the second-order moments of the steady-state activator/repressor levels are shown for
different orders of truncation. The bounds improve with increase in the order of truncation. The exact second-order moments of
4.48 for the activator and 30.98 for the repressor are shown as obtained from 30 000 Monte Carlo simulations. The parameters are
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Order of truncation

(%) = ka(Ba)(x1) — (%) = 0, (33)
<X3> = konR<x2> - konR<x2x3> - koffR<x3> =0, (34)

(x4) = k(Br)(x3) — Yg(xs) = 0. (35)

These equations are not closed as the first-order
moments depend upon the second-order moments
(x1x4) and (xx3). Solving the first-order moments gives

() = 1 — Koffe ey, (36)

ony

(o) = ka(By) [1 kot

—<x1x4)) (37)

Ta Kon,

kong [ ka(B ko,
(x5) = — M(1 - —H<x1x4>) — (%x3) |,
ko Ta Kony

(38)
(xa) = F(Br) @[—k‘*w‘\) (1 - @(xpm)) - <xzx3>].
TR kot \ A k

ony

(39)

Using the property mentioned in (26) of
Bernoulli random variables x; and x3, we have that
0 < (xxa) < (x4) and 0 < (x0x3) < (). Applying these
inequalities in the moment equations yields the trivial
bounds, such as0 < (x;) < 1. As the order of truncation
is increased, the number of moment equations and
corresponding inequalities grows significantly such
that the bounds cannot be obtained with off-the-
shelf tools. We therefore employ the semidefinite
programming based optimization to obtain lower and
upper bounds on moments of interest. As expected,
these bounds improve as more moment equations and
subsequently semidefinite matrices with higher-order
momentsare used (figure 3). For M = 7,thebounds for
both mean and second-order moments of the activator
and repressor are fairly close to each other.

4. Discussion

Biochemical systems are inherently stochastic owing
to random motion of particles, coupled with the low
copy number of species. Mathematical description
of these systems is usually based on CME; however,
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solving a CME is usually not possible, particularly if
the system contains nonlinearities. Another possible
mathematical characterization involves computing
statistical moments of the species counts, although the
moment computations for systems with nonlinearities
require solving a system of infinite-hierarchical
coupled differential equations. Computing, or even
estimating, moments of specieslevel in such systems has
implications not only for quantitative understanding
of such systems but also for parameter inference [30,
57—-60]. Furthermore,accurate estimation of moments
is desirable for identification of the molecular
underpinnings of biochemical processes [61].
Whereas current methods to approximate moments
are based on ad-hoc assumptions, here we proposed
amethod to obtain both lower and upper bounds on
stationary moments of a biochemical system without
any assumption. The method uses the steady-state
moment equations obtained from the CME along
with semidefinite constraints that are required to be
satisfied by moments of a random variable. These
inequalities are constructed from positive semidefinite
constraints on moments of a positive random variable.
Using three examples of biochemical reaction systems,
we show that not only can one obtain upper and lower
bounds on a given stationary moment, but also both
upper and lower bounds improve considerably as one
uses more moment equations. Thus, there is a trade-
off between the computational cost and the accuracy
of bounds.

An explanation is warranted for why we obtain
bounds by using inequalities, and why these bounds
improve with the order of truncation and use of corre-
sponding inequalities for higher-order moments. The
moment equations in equation (3) can be viewed as
values assigned to elements of p in terms of elements
of fz. Therefore, if the higher-order moments in fz are
allowed to take arbitrary values, the elements of gt also
take arbitrary values. However, the moment inequali-
ties restrict the values that can be taken by the higher-
order moments. As a result, the values taken by the
lower-order moments are restricted as well, and we get
arange of feasible values with lower and upper bounds.
Now suppose that we increase the order of truncation,
i.e. we add more moment equations (equality con-
straints) and use more inequalities. By adding more
constraints, the feasible values taken by the lower-order
moments cannot get worse; they would be at least as
large as they were earlier. However, as illustrated by the
examples, the feasible range often gets smaller and we
would expect to obtain exact moments as the order of
truncation M — o0.

The examples also illustrate that whether the use
of a certain inequality improves a lower bound or an
upper bound depends upon the structure of the prob-
lem. For example, in the one-dimensional example of
stochasticlogistic growth, the truncationsat M = land
M = 2, respectively, yield upper and lower bounds. On
the other hand, in the two-dimensional example of gene

W Letters

expression with feedback regulation, the truncations at
M = land M = 2 both result in lower bounds. Future
work will systematically address the effect of structures
of the vector a, and the matrices A and B on the nature
of bound that is improved by increasing the order of
truncation and the rate at which the bounds converge.

Another openissue s the scalability of the approach.
Theoretically speaking, obtaining the bounds on
moments in a transient state can be done in the same
manner. However, the problem size often gets out of
hand even if it is solved at some sampled time points
because the semidefinite inequalities are to be satis-
fied at all times. Future work will develop specialized
optimization tools for stochastic chemical kinetics. This
would enable the species-level moment estimates to be
used to compute moments of other statistical quantities
such as first-passage times [62] and also to study inter-
esting phenomena such as the apparent Poissonization
of the kinetics [63, 64].
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Appendix A. Semidefiniteness of the outer
product

A symmetric n X n matrix M is said to be positive
semidefinite if

z'Mz>0 (A.1)

foranyn x 1vectorz.Let M = vv' foran x lvectorv.
We have

zZiwlz= )W) =|zv[]?>0. (A2)

Therefore, the outer product vv' is always positive
semidefinite. Recall that the moment matrix is
generated by taking expectation of the outer product.
Its positive semidefiniteness can be proved as follows

2wz = (EWEV) ) = (V) >0, (a3)

Appendix B. Numerical implementation

For the first two examples in the paper, the proposed
method was implemented in Mathematica. For the
third example, the moment equations for the first
order of truncation were solved in Mathematica.
For higher orders, the problem was solved as a
semidefinite program in MATLAB. To this end, the
YALMIP wrapper [65] was used with SDPA-GMP as
the solver [66].
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