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1. Introduction

Stochasticity is an integral aspect of biochemical 
systems, in which different species are often present 
at low counts. Mathematical characterization of 
such systems is done by employing the chemical 
master equation (CME) [1–3]. However, the CME is 
analytically intractable except for few special cases, 
and generally requires considerable computation 
effort if solved numerically [4–13]. The computational 
cost tends to become prohibitive if one is interested 
in studying the long-time (i.e. stationary or steady-
state) behavior of the system. Perhaps a reasonable 
goal is to determine a few lower-order moments (such 
as mean, variance, etc) of different species in the 
stationary state. Not only is moment computation of 
primary importance for many purposes, it can also be 
used to infer useful information about the probability 
density function using tools such as the Chebyshev’s 

inequality [14], moment-based reconstruction of the 
probability density function [15], etc.

The time evolution of moments of a biochemi-
cal system is governed by a system of differential   
equations which can be obtained from the CME [16–18].  
Consider a system of n species = …X j n, 1, 2, ,j { } 
and denote the state of the system by a vector 
= …x t x t x t x tn1 2( ) [ ( ) ( ) ( )]�, where x tj( ) rep-

resents the population of Xj at time t. Given a vector 
= …m m m mn1 2[ ]� of n non-negative integers, a sta-

tistical moment of x is defined as �x x xm m
n
m

1 2
n1 2 , where 

the sum ∑ = mj
n

j1  is referred to as the order of the moment. 

Using a short-hand notation �=x x x x:m m m
n
m

1 2
n1 2[ ] , the 

time derivative of x m[ ]  obtained from the CME is given 
by [16–18]

∑ α= + −
=

x
x x x

t
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where S represents the number of reactions Ri, 
∈ …i S1, 2, ,{ } through which the species interact. The 

term xf ti( ( )) denotes the propensity of the ith reaction 
Ri in the sense that the probability that it occurs in an 
infinitesimal small time interval +t t t, d[ ) is given by 

xf t tdi( ( )) . Upon occurrence of Ri, the state of the system 
is transitioned to α+x i, where αi is the stoichiometry 
vector that describes the change in population.

Typically the propensity functions xfi( ) for mass 
action kinetics are taken as polynomials in x [1–3]. 
In that case, it follows from equation (1) that if all 
moments up to order M are stacked in a vector μ, then 
the time evolution of μ is given by

μ
μ μ= + +a A B

t

d

d
. (2)

Here μ consists of moments of order higher than M 
[17]. The elements of the vector a and the matrices A 
and B depend upon the reaction parameters. Assuming 
that a stationary distribution (not necessarily unique) 
with valid moments exists, equation (2) implies that the 
stationary moments must satisfy the following:

μ μ+ + =a A B 00. (3)

When the reaction propensities are constants (zero-
order reactions), linear (first-order reactions) or the 
system has some special structure [19], then =B 00 
and the steady-state moments in μ can be determined 
exactly by solving equation (3). However, in general the 
matrix ≠B 00, which implies that equation (3) represents 
an underdetermined system of equations. One widely 
used approach for handling such cases is to employ an 
appropriate moment closure technique. Based on dif-
ferent assumptions, these techniques approximate the 
vector μ as a, possibly nonlinear, function of μ [20–44]. 
Although presumed to be reasonably accurate, moment 
closure schemes typically do not provide any mathemat-
ical guarantee on the accuracy of the approximation.

In this paper we present an alternative method that 
provides both upper and lower bounds on the stationary 
moments. Instead of finding an approximation of μ, we 
use the fact that the elements of μ and μ are moments 
of some probability distribution. Therefore these ele-
ments cannot take arbitrary values and must satisfy 
some constraints (e.g. variance is non-negative). These 
constraints are compactly represented in terms of posi-
tive semidefiniteness of moment matrices [45]. We show 
that solving the moment equations in equation (3) along 
with the positive semidefiniteness of moment matrices 
results in the lower and upper bounds on elements of μ. 
Furthermore, increasing the order of truncation, i.e. the 
size of μ, and corre spondingly increasing the number 
of moment constraints often results in improvement in 
these bounds. We describe the constraints on moments 
of a random variable in the following.

2. Constraints on moments

In the proposed method, our aim is to exploit the 
constraints satisfied by moments of any random 

variable [45]. For simplicity, let us first consider the case 
of a scalar random variable x. Suppose we construct 

a vector 
�⎡

⎣⎢
⎤
⎦⎥= …v x x x1 d2  that consists of 

monomials up to degree d of x. Then the outer product 
�vv  is positive semidefinite (denoted by 0⪰ ), and the 

semidefiniteness is preserved if expectation is taken (see 
appendix A). That is, we have

=

…
…
…
…

+

+
� � �

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
vv

x x

x x x

x x x

1

0,

d

d

d d d

2 1

1 2

⪰� (4)

for all = …d 1, 2,{ }. Furthermore, if the random 
variable x is non-negative, which is the case when 
x represents the level of some biochemical species, 
another semidefinite constraint can be obtained as

=

…
…
…
…

+

+

+ + +
� � �

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
vvx

x x x

x x x

x x x

0,

d

d

d d d

2 1

2 3 2

1 2 2 1

⪰� (5)

for all = …d 1, 2,{ }. More generally, any matrix of the 
form �vvg x( ) , where g is a non-negative polynomial 
function of x, is positive semidefinite. This fact can 
be further exploited if x has bounded support. For 
example, if  ∈x L U,[ ] then �− vvx L 0( ) ⪰  and 

�− vvU x 0( ) ⪰ .
These constraints can be generalized to multivariate 

random variables. For example, for an n-dimensional 

random variable 
�⎡

⎣⎢
⎤
⎦⎥= …x x x xn1 2 , a matrix anal-

ogous to the one in equation (4) can be constructed by 
taking the expectation of the outer product �vv  where 
the vector v (with slight abuse of the notation) consists 
of all monomials of x up to order d

�⎡
⎣⎢

⎤
⎦⎥= … … … …v x x x x x x x x x1 .n n n n

d
1 1

2
1 2 1

2 (6)

Furthermore, n matrices analogous to equation (5) can 
be generated as vvx 0i ⪰�  for = …i n1, 2, , . Additional 
constraints can also be encoded via �x vvg 0( ) ⪰ .

The constraints described by equations (4)–(5) and 
their multivariate analogues essentially ensure that the 
higher-order moments appearing in equation (3) do 
not take arbitrary values. To see this, we can use the 
fact that a matrix is positive semidefinite if and only 
if all of its principal minors are non-negative (this is 
known as the Sylvester criterion [46]). Therefore, for 
=d 1, the non-negative determinants of the matrices 

in equation (4) and equation (5) result in

x x x
x

x
, ,2 2 3

2 2

⩾ ⩾ (7)

respectively. Note that the first inequality above is 
nothing but the well-known inequality representing 
non-negativity of variance. Similarly, for =d 2, the 
determinant of the matrix in equation (4) yields
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+ −
−

x
x x x x x

x x

2
.4

3 2 2 3 3 2

2 2
⩾ (8)

In essence, these determinants for varying d allow 
higher-order moments to be bounded from below by 
nonlinear functions of the lower-order moments.

Another point to note is that the matrix �vv  gen-
erates inequalities for even-order moments whereas 

�vvx  generates inequalities for odd-order moments. 
Likewise, for the multivariate random variable x, non-
negativity of the principal minors of matrix �vv  gives 

bound on the moments xi
d2 , = …i n1, 2, ,{ }. As an 

example, for 
�⎡

⎣⎢
⎤
⎦⎥=x x x1 2 , the following is obtained 

for =d 1

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

x x

x x x x

x x x x

1

0,

1 2

1 1
2

1 2

2 1 2 2
2

⪰ (9)

which results in x x1
2

1
2⩾ , and the following 

inequality bounding x2
2

+ −

−
x

x x x x x x x x

x x

2
.2

2 1 2
2

1
2

2 1 2 1 2

1
2

1
2

⩾ (10)

The moments whose form is different from xi
d2  can 

be bounded by taking expectation of �xg vv( )  with 
an appropriately chosen g. For instance, when x takes 
positive values, =xg x1( )  gives the constraint

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

x

x x

x x x x

x x x x

1

0,1

1 2

1 1
2

1 2

2 1 2 2
2

⪰ (11)

which can be used to find a lower bound on x x1 2
2 .

It should also be noted that the univariate inequali-
ties obtained from equations (4)–(5) are valid for both 
x1 and x2. Furthermore, as x1 and x2 are positive random 
variables, additional inequalities as follows can also be 
written

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥x

x

x x
x

x

x x

1
0,

1
0.1

2

2 2
2 2

1

1 1
2⪰ ⪰ (12)

These inequalities translate to lower bounds on 

moments x x1
2

2  and x x1 2
2 . To sum up, one can write 

a multitude of positive semidefinite matrix constraints 
satisfied by the moments. In the following section, 
we discuss how these constraints can be used to find 
bounds on moments.

3. Bounds on steady-state moments

In this section, we provide a general methodology to 
obtain bounds on stationary moments of a biochemical 
system, and illustrate it using examples.

3.1. Method
Broadly speaking, the method utilizes the linear 
equations in equation (3) and constraints on the higher-
order moments discussed in the previous section. The 
key steps are enumerated below.
 (i) Obtain the system of linear equations 

μ μ+ + =a A B 00 for the stationary 
moments.

 (ii) Solve μ μ+ + =a A B 00 for the elements of 
μ in terms of the elements of μ.

 (iii) Use inequalities which bound the elements 
of μ in terms of elements of μ in conjugation 
with equations in step (ii). This yields 
inequalities for the elements of μ.

 (iv) Usually, there are multiple solutions; the 
spurious solutions can be discarded based on 
moment inequalities satisfied by the lower-
order moments.

 (v) Reverting to step (ii), the bound on elements 
of μ are readily obtained by substituting the 
corresponding bounds on μ.

These steps can be easily implemented in a 
computational tool such as Mathematica or Matlab, 
and can even give analytical bounds if the problem 
at hand is small enough. However, it turns out that as 
the size of the problem grows, solving the inequalities 
becomes difficult for these off-the-shelf tools. A more 
specialized approach is to recognize the fact that we 
are essentially looking for a minimum or maximum 
value taken by a moment of interest, subject to linear 
constraints arising from the moment equations in 
equation (3) and the semidefinite constraints in 
equations (4)–(5) (or their multivariate analogues). 
Thus, the problem could be posed as a semidefinite 
program whereby maximizing (minimizing) a 
moment gives upper (lower) bound [47, 48], and these 
programs could be solved using specialized algorithms 
[49]. In what follows, we will illustrate the proposed 
method via examples.

3.2. Example 1: stochastic logistic growth with a 
constant immigration rate
Consider the following biochemical system, where a 
species X arrives in the system via two modes, a constant 
immigration rate k and a species-dependent rate r, and 
each species degrades or leaves the system with a rate 

rx C/

⟶    ⟶    ⟶/
∅ + −X X X X X, 1, 1,

k r rx C (13)

where x denotes the population level of the species. 
With =k 0, this model essentially represents a logistic 
growth model which is widely used to model the 
growth of populations in ecology and virus dynamics 
[28, 50–52]. In the deterministic sense, the population 
grows with a rate r and saturates once it reaches a finite 
carrying capacity C due to resource limitations. The 
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term k here represents a constant rate of immigration 
so as to avoid the extinction of the population.

In this example, there are three reactions with pro-
pensity functions and stoichiometric vectors tabulated 
in table 1. Using equation (1), we can write the moment 

dynamics for a mth-order moment as

= + + −

+ − −

x

t
k rx x x

r

C
x x x

d

d
1

1 .

m
m m

m m2

( )(( ) )

(( ) )
 (14)

Note that these equations are not closed because of 
the quadratic propensity function, and time evolution 
of an mth-order moment depends upon a moment 
of +m 1 th( )  order. Thus, if we construct a vector μ 
consisting of the first M moments, then μ = +xM 1[ ].

To see how the moment inequalities lead to bounds, 
we start with the simplest case of =M 1. From equa-
tion (14), the steady-state moment satisfies

= + − =x k r x
r

C
x 0.2⟨ ⟩˙ (15)

Solving the above equation gives

=
−

x
r x kC

rC
.

2

 (16)

Using this with the non-negative variance inequality 
x x2 2⩾  gives a quadratic inequality in x2

− + +r x krC r C x k C2 0,2 2 2 2 2 2 2 2( ) ⩾ (17)

whose solution can be used in equation (16) to obtain 
bounds on x

−
+ +

+
C kC C r

r
x

kC C r

r

C

2

1

2

4 1

2

4

2
.

2 2

⩽ ⟨ ⟩ ⩽
 (18)

The lower bound on x  can be discarded from the fact 
that x 0⩾ . Thus, we have the following lower and 
upper bounds on x

+
+x

kC C r

r

C
0

1

2

4

2
.

2

⩽ ⟨ ⟩ ⩽ (19)

Next, consider the case of =M 2. In this case, the 
steady-state moment equations are given by

= + − =x k r x
r

C
x 0,2⟨ ⟩˙ (20)

〈 〉˙ = + + + + − =⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠x k k

r

C
x r

r

C
x

r

C
x2 2

2
0.2 2 3

 (21)

Solving these equations results in

= −
+ −
+ +

=
+
+ +

x
kC kC r x

C k Cr r
x

k C r x

r k Cr r
, .

2 3
2

2 2 3

( ) ( )
 (22)

Using the above expressions in the second inequality 
from (7) leads to a quadratic inequality in x3 . 
Substituting the solution back to expressions of x  and 
x2  results in bounds on them. Upon rejecting the 

spurious solutions by using inequalities x x2 ⩾  
and x 0⩾ , a more useful lower bound for x  is found 
compared with the =M 1 case

+ + +
+

+
−
+

+
+

k C k C r k Cr k r

r k r

k C

k r
x

kC C r

r

C

1

2

4 2 1

2

1

2

4

2
.

3 2 2 2 2

2

2

( )
( )
( )

⩽ ⟨ ⟩

⩽
 (23)

As the order of truncation M is increased, the same 
approach can be used: take steady-state  equations of 
first M moments, use the inequality bounding the 
+M 1 th( )  moment and apply the inequalities for 

lower-order moments to prune solutions. Though the 
resulting expressions do not lead to closed-form analyt-
ical bounds, numerical solutions are still possible. Inter-
estingly, the solutions for odd values of M improve the 
upper bounds on the average population level whereas 
the solutions for even values of M improve the lower 
bounds (figure 1(Left)). At =M 9, the lower and upper 
bounds obtained are respectively given by 18.9711 and 
19.1635. The exact average population level obtained 
from Monte Carlo simulations of the process is 19.1495.

Although we have so far discussed the bounds only 
on x , this approach yields bounds on all moments up 
to order M. These bounds can be straightforwardly used 
to infer the bounds on other statistical quantities of 
interest, for example coefficient of variation, skewness, 
etc. In particular, the coefficient of variation squared is 
equal to −x x 12 2( / ) . Thus, a lower (upper) bound 
on the coefficient of variation can be computed by 
using the lower (upper) bound of x2  and the upper 
(lower) bound of x .

To illustrate this point, we compute the bounds on 
the coefficient of variation squared as k r/  is varied. It is 
worth noting that both the upper and lower bounds on 
x  in equation (23) depend only on k r/  and not on indi-

vidual values of k and r. This holds true for all bounds 
obtained here, as evident from the steady state of the 
moment equation in equation (14). We call the ratio k r/  
the relative immigration rate and show its effect on the 
coefficient of variation in figure 1(Right). It is seen that 
both the upper and lower bounds on the coefficient of 
variation decrease with increase in k r/ , thus suggesting 
that the coefficient of variation decreases. Interestingly, 
the difference between the bounds is large for small 
values of k r/  and it becomes negligible for high values 
of k r/ . Thus, depending upon the parameter regime, 

Table 1. Description of reactions for the logistic growth model.

Reaction, Ri Stoichiometric  

vector, αi

Propensity 

function, xfi( )

∅ +k
X 1⟶

�⎡
⎣⎢

⎤
⎦⎥1

k

+X
r

X 1⟶ �⎡
⎣⎢

⎤
⎦⎥1

rx

⟶ −X
rx C

X
/

1
�⎡

⎣⎢
⎤
⎦⎥−1

r C x2( / )
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a lower- or higher-order truncation might be used to 
obtain bounds within a desired accuracy.

3.3. Example 2: stochastic gene expression with 
negative auto-regulation
Consider stochastic expression of an auto-regulating 
gene represented by the following reactions:

γ
× ∅

�

k
B

Gene Gene ,

Gene Protein .

k x

k

OFF ON

ON
p p

off 2

on

⟶
   

⟶
    

(24)

Here the gene is assumed to reside in one of the two 
states: ON (active) and OFF (inactive). The protein is 
produced at a rate kp from the ON state whereas there is 
no protein production when the gene is in the OFF state. 
Each production event produces B protein molecules 
where B follows a geometric distribution. The gene 
state is represented by x1, which is a Bernoulli random 
variable ( =x 1 01 ( ) for the ON (OFF) state), and the 
protein level is represented by x2. The gene negatively 
regulates itself by switching to the OFF state in a protein 
copy number-dependent fashion with a rate k xoff 2. 
Finally, the protein molecules can degrade with a rate γp. 
This gene expression model has been studied previously 
[34, 54–56]; exact solutions to its moments are available 
which allows us to validate the bounds obtained using 
our method.

In this example, the state of the system is 
�⎡

⎣⎢
⎤
⎦⎥=x x x1 2 . There are four reactions whose propen-

sity functions and stoichiometric vectors are described 
in table 2. Using equation (1), the time evolution of a 

moment x xm m
1 2

1 2  is given as

γ

= − + −

+ − −

+ + −

+ − −

x x

t
k x x x x

k x x x x x

k x x B x

x x x x

d

d
1 1

1

1 .

m m
m m m

m m m

m m m

m m m

1 2
on 1 1 1 2

off 1 2 1 1 2

p 1 2 2

p 2 1 2 2

1 2

1 1 2

1 1 2

1 2

1 2

( )(( ) )
(( ) )

(( ) )
(( ) )

 

(25)

Note that dynamics is unclosed due to the nonlinearity 
arising from the negative feedback: a moment x xm m

1 2
1 2  

depends upon +x xm m
1 2

11 2 . Furthermore, ∈x 0, 11 { } 

is a binary random variable for which the following 
relations hold

= ∈ …

∈ …

x x x x m

m

, 1, 2, 3, ,

0, 1, 2, 3, .

m m m
1 2 1 2 1

2

1 2 2 { }
{ }

 
(26)

The above relations imply that the moment vector 
μ does not need to contain all cross moments. For 
example, the moments up to order 3 can be stacked as 

�⎡
⎣⎢

⎤
⎦⎥μ = x x x x x x x x1 2 1 2 2

2
1 2

2
2
3 . In this 

case, the corresponding μ is given by [ ]μ = x x1 2
3

.
As with the one-dimensional example, here too we 

are interested in obtaining bounds on moments of the 
state x. Towards this end, we begin by writing the first-
order moment equations in steady state

= − − =x k k x k x x 0,1 on on 1 off 1 2
˙ (27)

γ= − =x k B x x 0.2 p 1 p 2
˙ (28)

To obtain a bound on x1  and x2 , we require a bound 
on the second-order moment x x1 2 . Generally, the 
only bound that we can use is x x 01 2 ⩾ . However, 

because x1 is a binary random variable, we have that 

=x x x x1
2

2 1 2 . Thus, using the inequality obtained from 

Upper bound

Lower bound
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Figure 1. Estimated bounds on steady-state moments for the logistic growth model. Left: upper and lower bounds on the second 
moment of the population level are shown for different orders of truncation M. As M is increased, the bounds obtained get tighter. 
The exact mean value of 19.149 is obtained by averaging 100 000 MC simulations performed using the stochastic simulation 
algorithm (SSA) [53]. Parameters in (13) are taken as =k 1,  =r 5 and =C 20. Right: the bounds on the coefficient of variation 
(standard deviation/mean) of the steady-state population level are shown as the relative immigration rate k r/  is changed. Both lower 
and upper bounds decrease as the relative immigration rate increases. These bounds are obtained via a fifth-order truncation.

Table 2. Description of reactions for an auto-regulating gene.

Reaction, Ri Stoichiometric  

vector, αi

Propensity 

function, xfi( )

k
Gene GeneOFF

on
ON⟶

�⎡
⎣⎢

⎤
⎦⎥1 0

−k x1on 1( )

k x
Gene GeneON

off 2
OFF⟶

�⎡
⎣⎢

⎤
⎦⎥−1 0

k x xoff 1 2

+ ×
k

B ProteinGene GeneON
p

ON⟶
�⎡

⎣⎢
⎤
⎦⎥B0

k xp 1

γ
∅Protein

p⟶
�⎡

⎣⎢
⎤
⎦⎥−0 1

γx2
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first matrix of equation (12), a bound x x x1 2 2⩽  can be 
found. Plugging this in the moment equations yields

γ

γ

γ

γ

γ γ

+

+

k

k k k B
x

k B k

k k k B
x

k B

1,

.

on p

on p off p
1

p

p

on p

on p off p
2

p

p

⩽ ⩽

⩽ ⩽
 

(29)

In the similar fashion to the above, we can write 
moment equations up to order two and use the 

inequality for x x1 2
2  obtained from the second matrix of 

equation (12). This eventually leads to an improvement 
in the lower bounds on both x1  and x2 .

Continuing in similar way, we obtain improve-
ments  in the lower bounds for  =M 4 and 
=M 6, and improvements in the upper bounds for 
=M 3, =M 5 and =M 7. The bounds up to =M 4 

are shown in figure 2(Left). The lower and upper 
bounds obtained for x1  via seventh-order trunca-
tion are 0.667 463 and 0.667 465 respectively. These 
are quite precise, as the exact solution for x1  is 
0.667 464 obtained using the exact solution from 
[56]. It is worth noting that as discussed below equa-
tion (5), we can also use additional bounds arising 
from the fact that ∈x 0, 11 [ ], so x1 and − x1 1 both 
would be positive. However, in this particular exam-
ple, they do not lead to significant improvements in 
the bounds.

As done in the logistic growth example, we also 
obtain the bounds on the second-order moment and 
compute the bounds on coefficient of variation. In 
particular, we study the effect of varying the param-
eter kon (gene activation rate). Our results show that 
there is a U-shaped curve, and the noise is minimized 
at an optimal value of kon (figure 2(Right)). Further-
more, the coefficient of variation approaches a limit-
ing value for large values of kon (i.e. the gene is always 
ON). Similar results were obtained in [34] for an auto-
regulating gene expression model using the moment 

closure techniques. Notably, here the lower and upper 
bounds remain reasonably close to each other for 
the range of kon considered as opposed to the logistic 
growth example.

3.4. Example 3: activator–repressor gene motif
Next we apply the proposed method to estimate bounds 
on moments of a slightly more complicated example 
of a gene network motif that consists of two genes as 
described by the following reactions:

⟶    ⟶
   γ

× ∅

�

k
B

Gene Gene ,

Gene Protein

k x

k

A A

A
A

A A
A

OFF
offA 4

onA

ON

ON

 

(30)

γ
× ∅

�

k
B

Gene Gene ,

Gene Protein

R
k

k

R

R
R

R R
R

x

OFF
offR

onR 2

ON

ON ⟶    ⟶
   

 

(31)

Here the notations with subscript A denote the activator 
whereas those with subscript R represent the repressor. 
The state of the system is represented by the vector 

�⎡
⎣⎢

⎤
⎦⎥=x x x x x1 2 3 4 , where x1 and x3, respectively, 

represent the activator and repressor gene state. The 
corresponding proteins are represented by x2 and x4. 
As with the previous example, the genes are assumed to 
reside in two states: OFF and ON. The activator turns 
the repressor gene ON whereas the repressor turns 
the activator gene OFF, thereby creating a feedback 
loop. There are eight reactions in this example. The 
corresponding stoichiometric vectors and propensity 

functions are given in table 3.
The time evolution of a moment x x x xm m m m

1 2 3 4
1 2 3 4  can 

be computed using equation (1). For example, the first-
order moment equations in the steady state are given by

= − − =x k k x k x x 0,1 on on 1 off 1 4A A A
˙ (32)

Figure 2. Estimated bounds on moments for a stochastic gene expression model. Left: the lower and upper bounds for the average 
gene activity (left axis)/protein level (right axis) for different orders of truncation M is shown. The bound for =M 1 corresponds 
to equation (29). As M is increased, the bounds obtained get tighter. The exact mean values are obtained from the analytical 

solution of the system from [56]. Parameters in equation (24) taken as =k 10on , =k 0.1off , =k 15p , =B 5, and γ = 1p . Right: 
the coefficient of variation (standard deviation/mean) of the steady-state protein level as a function of the gene activation rate 
kon is plotted. The steady-state protein level in the deterministic sense is kept constant at 50 molecules by varying kp with kon such 

that γ= +k k k k B50 50p p off on on( )/( ). The lower and upper bounds on the coefficient of variation are obtained for =M 5 and 
they exhibit U-shaped profiles, thus showing that the noise is minimizing at a specific value of kon. Other parameters are taken as 
=k 0.1off , =B 5 and γ = 1p .
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γ= − =x k B x x 0,2 A A 1 A 2
˙ (33)

= − − =x k x k x x k x 0,3 on 2 on 2 3 off 3R R R
˙ (34)

γ= − =x k B x x 0.4 R R 3 R 4
˙ (35)

These equations are not closed as the first-order 
moments depend upon the second-order moments 
x x1 4  and x x2 3 . Solving the first-order moments gives

= −x
k

k
x x1 ,1

off

on
1 4

A

A

 (36)

⎛
⎝⎜

⎞
⎠⎟γ

= −x
k B k

k
x x12

A A

A

off

on
1 4

A

A

 (37)

⎛
⎝⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟⎟γ

= − −x
k

k

k B k

k
x x x x1 ,3

on

off

A A

A

off

on
1 4 2 3

R

R

A

A

 (38)

γ γ
= − −

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟x

k B k

k

k B k

k
x x x x1 .4

R R

R

on

off

A A

A

off

on
1 4 2 3

R

R

A

A
 

(39)

Using the proper ty mentioned in (26) of 
Bernoulli random variables x1 and x3, we have that 

x x x0 1 4 4⩽ ⩽  and x x x0 2 3 2⩽ ⩽ . Applying these 
inequalities in the moment equations yields the trivial 
bounds, such as x0 11⩽ ⩽ . As the order of truncation 
is increased, the number of moment equations and 
corresponding inequalities grows significantly such 
that the bounds cannot be obtained with off-the-
shelf tools. We therefore employ the semidefinite 
programming based optimization to obtain lower and 
upper bounds on moments of interest. As expected, 
these bounds improve as more moment equations and 
subsequently semidefinite matrices with higher-order 
moments are used (figure 3). For =M 7, the bounds for 
both mean and second-order moments of the activator 
and repressor are fairly close to each other.

4. Discussion

Biochemical systems are inherently stochastic owing 
to random motion of particles, coupled with the low 
copy number of species. Mathematical description 
of these systems is usually based on CME; however, 

Table 3. Description of reactions for the activator repressor motif.

Reaction, Ri Stoichiometric vector, αi Propensity function, xfi( )

k
Gene GeneA

on
AOFF

A
ON⟶

�⎡
⎣⎢

⎤
⎦⎥1 0 0 0

−k x1on 1A( )

k x
Gene GeneA

off 4
AON

A
OFF⟶

�⎡
⎣⎢

⎤
⎦⎥−1 0 0 0

k x xoff 1 4A

+ ×
k

BGene Gene ProteinA
A

A A AON ON⟶
�⎡

⎣⎢
⎤
⎦⎥B0 0 0A

k xA 1

γ
∅ProteinA

A⟶
�⎡

⎣⎢
⎤
⎦⎥−0 1 0 0

γ xA 2

k x
Gene GeneR

on 2
ROFF

R
ON⟶

�⎡
⎣⎢

⎤
⎦⎥0 0 1 0

−k x x1on 2 3R ( )

k
Gene GeneR

off
RON

R
OFF⟶

�⎡
⎣⎢

⎤
⎦⎥−0 0 1 0

k xoff 3R

+ ×
k

BGene Gene ProteinR
R

R R RON ON⟶
�⎡

⎣⎢
⎤
⎦⎥B0 0 0 R

k xR 3

γ
∅ProteinR

R⟶
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Figure 3. Estimated bounds on steady-state moments for the activator–repressor motif. Left: upper and lower bounds on the mean of 
both the activator and repressor are shown for different orders of truncation M. As M is increased, the bounds obtained get tighter. 
The exact mean values of 1.23 for the activator and 4.24 for the repressor are obtained by averaging 30 000 Monte Carlo simulations 
performed using SSA [53]. Parameters are taken as = =k k 1on onA R , =k 5offA , =k 1offR , = =k k 10A R , γ γ= = 1A R , and = =B B 1A R  
with probability one. Right: the bounds on the second-order moments of the steady-state activator/repressor levels are shown for 
different orders of truncation. The bounds improve with increase in the order of truncation. The exact second-order moments of 
4.48 for the activator and 30.98 for the repressor are shown as obtained from 30 000 Monte Carlo simulations. The parameters are 
taken to be same as those for the left part.
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solving a CME is usually not possible, particularly if 
the system contains nonlinearities. Another possible 
mathematical characterization involves computing 
statistical moments of the species counts, although the 
moment computations for systems with nonlinearities 
require solving a system of infinite-hierarchical 
coupled differential equations. Computing, or even 
estimating, moments of species level in such systems has 
implications not only for quantitative understanding 
of such systems but also for parameter inference [30, 
57–60]. Furthermore, accurate estimation of moments 
is desirable for identification of the molecular 
underpinnings of  biochemical processes [61]. 
Whereas current methods to approximate moments 
are based on ad-hoc assumptions, here we proposed 
a method to obtain both lower and upper bounds on 
stationary moments of a biochemical system without 
any assumption. The method uses the steady-state 
moment equations obtained from the CME along 
with semidefinite constraints that are required to be 
satisfied by moments of a random variable. These 
inequalities are constructed from positive semidefinite 
constraints on moments of a positive random variable. 
Using three examples of biochemical reaction systems, 
we show that not only can one obtain upper and lower 
bounds on a given stationary moment, but also both 
upper and lower bounds improve considerably as one 
uses more moment equations. Thus, there is a trade-
off between the computational cost and the accuracy 
of bounds.

An explanation is warranted for why we obtain 
bounds by using inequalities, and why these bounds 
improve with the order of truncation and use of corre-
sponding inequalities for higher-order moments. The 
moment equations in equation (3) can be viewed as 
values assigned to elements of μ in terms of elements 
of μ. Therefore, if the higher-order moments in μ are 
allowed to take arbitrary values, the elements of μ also 
take arbitrary values. However, the moment inequali-
ties restrict the values that can be taken by the higher-
order moments. As a result, the values taken by the 
lower-order moments are restricted as well, and we get 
a range of feasible values with lower and upper bounds. 
Now suppose that we increase the order of truncation, 
i.e. we add more moment equations (equality con-
straints) and use more inequalities. By adding more 
constraints, the feasible values taken by the lower-order 
moments cannot get worse; they would be at least as 
large as they were earlier. However, as illustrated by the 
examples, the feasible range often gets smaller and we 
would expect to obtain exact moments as the order of 
truncation ∞M → .

The examples also illustrate that whether the use 
of a certain inequality improves a lower bound or an 
upper bound depends upon the structure of the prob-
lem. For example, in the one-dimensional example of 
stochastic logistic growth, the truncations at =M 1 and 
=M 2, respectively, yield upper and lower bounds. On 

the other hand, in the two-dimensional example of gene 

expression with feedback regulation, the truncations at 
=M 1 and =M 2 both result in lower bounds. Future 

work will systematically address the effect of structures 
of the vector a, and the matrices A and B on the nature 
of bound that is improved by increasing the order of 
truncation and the rate at which the bounds converge.

Another open issue is the scalability of the approach. 
Theoretically speaking, obtaining the bounds on 
moments in a transient state can be done in the same 
manner. However, the problem size often gets out of 
hand even if it is solved at some sampled time points 
because the semidefinite inequalities are to be satis-
fied at all times. Future work will develop specialized 
optim ization tools for stochastic chemical kinetics. This 
would enable the species-level moment estimates to be 
used to compute moments of other statistical quantities 
such as first-passage times [62] and also to study inter-
esting phenomena such as the apparent Poissonization 
of the kinetics [63, 64].
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Appendix A. Semidefiniteness of the outer 
product

A symmetric ×n n matrix M  is said to be positive 
semidefinite if

�z Mz 0⩾ (A.1)

for any ×n 1 vector z. Let �=M vv  for a ×n 1 vector v. 
We have

( )( ) ∥ ∥ ⩾� � � � � �= =z vv z z v z v z v 0.2 (A.2)

Therefore, the outer product �vv  is always positive 
semidefinite. Recall that the moment matrix is 
generated by taking expectation of the outer product. 
Its positive semidefiniteness can be proved as follows

� � � � � �= =z vv z z v z v z v 0.2( )( ) ∥ ∥ ⩾ (A.3)

Appendix B. Numerical implementation

For the first two examples in the paper, the proposed 
method was implemented in Mathematica. For the 
third example, the moment equations for the first 
order of truncation were solved in Mathematica. 
For higher orders, the problem was solved as a 
semidefinite program in MATLAB. To this end, the 
YALMIP wrapper [65] was used with SDPA-GMP as 
the solver [66].
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