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Abstract—Data multicast is an important data traffic pattern in
today’s data center running big data oriented applications. The
physical layer multicast capability enabled by the emerging
technologies used to build circuit switches exhibits huge benefit
in transferring multicast data. This paper tackles the problem
of scheduling multicast data transfer in high-bandwidth circuit
switch. The scheduler aims at minimizing the average demand
completion time to deliver the most benefit to the applications.
Our algorithm exhibits up to 13.4× improvement comparing
with the state-of-the-art solution.

1. Introduction
Technologies dealing with big data have been signifi-

cantly improving people’s daily life and at the same time
bring new challenges in building data center network sys-
tems supporting data transfer. Data multicast, or one-to-
many data dissemination, is a prevalent traffic pattern in data
center handling distributed big data processing. Specifically,
data multicast widely exists in various applications ranging
from big data analytics, such as iterative machine learning
and database queries, to data center infrastructures, such
as distributed storage system, virtual machine provisioning,
and software maintenance. In these applications, multicast
data could have a large volume (from tens of megabytes to
several gigabytes) and data multicast happens frequently [1].

Hybrid data center network exhibits great advantages in
transferring multicast flows. In a hybrid data center, the top-
of-rack (ToR) switches are connected via a high-bandwdith
circuit switch in addition to the traditional packet-switched
network, as shown in Fig. 1. The circuit switch is able
to build directed port-to-port [2], [3], [4] or port-to-multi-
port [1], [5] circuit (P2MPC) connections between the ToRs.
This capability drastically improves the performance in
transferring multicast flows since packets can be delivered
to multiple ToRs in a single transmission [1].

In order for the circuit switch to adapt to the current
inter-rack traffic demands, a scheduler is a required com-
ponent because, unlike packet switch, a circuit switch is
not able to by itself decide the output ports for the input
traffic unless the scheduler configures the circuits. More
importantly, the scheduler plays a crucial role in achieving
high-performance data multicast because the order and the
concurrency in serving the multicast data greatly impact the
transfer completion time. Driven by the urgent need of high-
performance data multicast and the desirable physical-layer
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Figure 1. Hybrid data center illustration

multicast capability of the circuit switch, this paper deals
with the problem of multicast data scheduling in the circuit
switch. The design of the scheduling algorithm ought to
address the following two challenges.

First, in hybrid data centers, the bandwidth of a circuit
switch port is much larger than the bandwidth of a server
NIC. This is driven by the following reasons. First, the
inter-rack traffic is hungry for bandwidth because it is the
aggregation of the traffic from/to tens of servers within the
rack. This requires the circuit switch to provide a consider-
ably larger bandwidth that can match the inter-rack traffic
demand. Second, connecting a rack and the circuit switch
with a high-bandwidth port is much more preferable than
using a large number of low-bandwidth ports. Otherwise,
it exacerbates the scalability problem of the circuit switch
especially for large data centers having hundreds of racks
each of which has tens of servers. This is because the
number of circuit switch ports is proportional to the num-
ber of ToR ports connecting to it. Third, circuit switch is
adopted for its capability in carrying high-bandwidth signal,
so restricting the circuit switch port bandwidth contradicts
the essential merit of using it. Thus, in a realistic hybrid
data center, the traffic from a single server cannot fully take
up the bandwidth of the circuit switch port. This means
that in order to achieve high utilization of the circuit switch
bandwidth, the scheduling algorithm must wisely share the
bandwidth among the multicast traffic from multiple servers.

Second, improving the performance of applications
should be the ultimate objective of the scheduling algo-
rithm. Thus, to deliver the most benefit to applications
creating network flows, the scheduling algorithms ought to
be “application-aware”. That is to say, the scheduling algo-
rithm should consider the traffic demands from individual
applications and optimize the time it takes to finish the traffic
of each application [6], [7] rather than optimize for the
aggregated demands no matter which application a demand
belongs to [8], [9]. As previous works [6], [7] suggest,
“average demand completion time” is the right metric to
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Notation Definition
g∈Z+ total number of demands
n∈Z+ total number of racks
bl>0 bandwidth of the server NIC port
bh≥bl bandwidth of the circuit switch port
f∈Z+ upper limit on the port-to-multi-port circuit (P2MPC) fanout
δ≥0 circuit switch reconfiguration delay
demandk a multicast demand composed of a tuple of sk , rk and dk
sk∈{1, ..., n} sender rack index of Demand k
rkj∈{0, 1} indicate if Rack j is a receiver of Demand k
dk∈Z+ data size of Demand k

Ctij∈{0, 1}
indicate if a port-to-multi-port circuit (P2MPC) is set up
from Rack i to Rack j at Epoch t

Rtki∈{0, 1} indicate if Demand k uses Rack i as a relay at Epoch t
Dt>0 duration of Epoch t
Tk∈Z+ epoch index at which Demand k finishes
TABLE 1. NOTATIONS IN THE PAPER. LOWERCASE AND UPPERCASE

REPRESENT KNOWN AND UNKNOWN VARIABLES RESPECTIVELY.

evaluate the effectiveness of multicast traffic scheduling
on applications’ performance. However, how to design a
scheduling algorithm that optimizes the average completion
time of multicast data demands is an open question. In
addition to that, this algorithm should fully exploit the high-
bandwidth circuit switch port even though it has much larger
bandwidth than the NIC port of a single server.

This paper proposes a scheduling algorithm for multicast
data transfer in a high-bandwidth circuit switch. The algo-
rithm adopts multi-hopping and segmented transfer as the
approaches to (1) fully utilize the high bandwidth, (2) over-
come the fanout limit of P2MPCs and (3) effectively reduce
the average completion time. We formulate the scheduling
problem and show, using simulation, that our algorithm out-
performs the state-of-the-art by up to 13.4×. Our on-going
work is to realize an efficient algorithm implementation and
to conduct an experimental study in a hardware testbed.

2. Problem and Approaches
This section formulates the scheduling problem and

introduces the approaches used in the scheduling algorithm.
2.1. Network Model

We consider a data center (Fig. 1) with n ToRs (notations
are in Tbl. 1). These n ToRs connect to a circuit switch with
bandwidth bh at each port (e.g. 40GbE or 100GbE) and a
packet-switched network. The circuit switch is able to build
directed port-to-multi-port circuits (P2MPCs) between an
input port and multiple output ports. The P2MPC divides
the physical layer signal to multiple beams with reduced
power so the maximum fanout is limited to f whose value
depends on the transmission power and the sensitivity of the
transceiver. The connections in the circuit switch can be dy-
namically reconfigured with an overhead of reconfiguration
delay δ. We assume that each ToR provides an exclusive port
connecting to the circuit switch for multicast data transfer.
Each of the ToRs is connected to multiple servers via links
each with bandwidth bl (e.g., 10GbE). We do not require that
the ToRs have virtual output queues (VOQs) [10] buffering
the outgoing packets. Instead, the scheduling algorithm is
based on a more practical and general case where the
multicast data is transferred server-to-server.
2.2. Data Multicast Demands

The scheduling algorithm takes a set of g data multicast
demands as input. Each of the demands is identified by its
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Figure 2. An example of multicast demand scheduling. The example
involves ten racks with bh=20 Gbps, bl=10 Gbps (a P2MPC can be shared
among at most two multicast flows simultaneously) and a circuit switch
with δ=1 ms. (a) The input demands. (b) The optimal scheduling with
multi-hopping and segmented transfer. The established P2MPCs are shown
on all hops. The multicast flow is only marked on the hop it uses. (c) A
comparison between segmented and non-segmented transfer (average DCT
412/6 ms vs 508/6 ms).

index k and it includes the sender rack index sk, the receiver
racks represented by an indicator vector rk ∈ {0, 1}[1×n],
and the size of the multicast data dk. In rk, the jth element
rkj represents whether rack j is the receiver of demand k.
2.3. Scheduling Objective

To speed up the performance of applications, the objec-
tive of the scheduling algorithm is to minimize the average
demand completion time (average DCT) for the input de-
mands. The DCT of demandk, DCTk, is defined as the
time duration from 1) the time when the demand request
is received by the scheduler (demand arrival time, denoted
as tarrk ) to 2) the time when the data is received by all
the receivers (demand delivery time, denoted as tdelk ), i.e.,
DCTk=tdelk -tarrk . Minimizing average DCT is equivalent to
minimizing the sum of all the DCTs, i.e.,

∑g
k=1DCTk.

2.4. The Scheduling Problem and Approaches
In the design of the scheduling algorithm, we adopt two

approaches, i.e. multi-hopping and segmented transfer.
Multi-hopping: With multi-hopping, a multicast flow

can reach a receiver ToR via other ToRs (called relay ToR)
as intermediate hops. This brings the following benefits.
First, it enriches the reachability of a ToR because each
additional hop allows the source ToR to reach the ToRs
connected via the P2MPCs rooted from the relay ToRs. In
Fig. 2’s example, at Epoch 1 (epoch is defined later), Rack
5 (R5) is able to reach R1 & R4 via the P2MPC rooted
from R5 as the first hop and the P2MPC rooted from R3 as
the second hop. Thus, in transferring Demand 2 (D2), R3
acts as a relay ToR to enrich the reachability of R5 so as to
cover the destination ToRs of D2 (red dotted line). Second,
it increases the utilization of the circuit switch bandwidth.
With multi-hopping, the bandwidth of the circuit switch port
on a ToR can be shared among the multicast flows from the
servers in the rack and the multicast flows using the ToR



as a relay. For example, in Fig. 2(b) the P2MPC rooted
from R3 is shared between D1 & D2. Third, it reduces the
occurrence of circuit reconfigurations because P2MPCs can
be shared by more demands.

On a receiver ToR of a flow (e.g. R1 of D1 Fig. 2(b)),
the ToR is installed with the rules forwarding the flow to
the destination servers in that rack. On a relay ToR of a
flow (e.g. R3 of D2 Fig. 2(b)), the ToR is installed with
the rules forwarding the flow back to circuit switch port.
For the flow going to a ToR which is neither the relay nor
the receiver ToR (e.g. R1 of D2 Fig. 2(b)), the ToR simply
discards the packets of the multicast flow by installing no
rule for the flow, so that the packets are discarded by the
hardware of the ToR. Thus, discarding the packets does not
involve any extra overhead on the switch so it won’t slow
down the forwarding of any other packets.

Segmented transfer: With segmented transfer, the
scheduling may allocate multiple transfer sessions for a
single multicast demand rather than require the demand
to run to completion in a single session. This is directly
beneficial to the minimization of average DCT because
small demands are not blocked by large demands. Thus, the
scheduler creates multiple epochs in scheduling the given
demand set (Sec. 2.2). Each epoch includes (1) a fixed cir-
cuit configuration (Ct∈{0, 1}[n×n]), (2) the demands served
in the epoch and the set of relay racks of each of the served
demand (Rt∈{0, 1}[g×n]), and (3) the epoch duration (Dt).
In Fig. 2’s example, D1 & D2 are transferred in Epoch
1. However, D5 & D6 cannot be served in Epoch 1 due
to the contention at R4 with D1 & D2. In this situation,
D3 & D4 are served simultaneously with D1 & D2 for
better circuit switch bandwidth utilization. With segmented
transfer, a new epoch can be created at 21 ms (lower part in
Fig. 2(c)) to serve D5 & D6. Otherwise, these two demands
have to wait until the completion of D3 & D4 (101 ms in
Fig. 2(c) upper part), which results in larger average DCT.

With these two approaches, we define the output of the
scheduling algorithm as a series of epochs (Ct, Rt and
Dt). Denote Tk as the index of the epoch where demand k
finishes. Then, the total number of epochs is maxk(Tk). We
assume that the sender transfers multicast flows at the full
rate bl since this helps minimize the flow completion time.
To handle the case having multiple flows going to a receiver
server, the data can be sent to another server within the same
rack and transferred from that server to the receiver. This can
be done efficiently since it only involves intra-rack traffic.
The constraints to the solution are shown in Equ. 1.

subject to: ∀t, j,
n∑
i=1

C
t
ij ≤ 1, one circuit port per ToR

∀t, i,
n∑
j=1

C
t
ij ≤ f, C

t
ii = 0 P2MPC fanout limit

∀t, j, k,
n∑
i=1

R
t
kiC

t
ij ≥ rkjR

t
ksk

, cover receivers

∀t, j 6= sk , k,
n∑
i=1

R
t
kiC

t
ij ≥ R

t
kjR

t
ksk

, cover relays

∀t, i,
g∑
k=1

R
t
ki ≤

bh

bl
, bandwidth limit

∀k,
Tk∑
t=1

R
t
ksk

D
t ≥

dk

bl
, data transfer completion

(1)

The goal of the scheduling can be written as Equ. 2.

goal: minimize
g∑
k=1

DCTk

=

g∑
k=1

((

Tk∑
t=1

D
t
)− ((

Tk∑
t=1

R
t
ksk

D
t
)−

dk

bl
) + Tkδ)

(2)

NP-hardness of the problem: We prove by contradic-
tion that the scheduling problem is NP-hard. In a special
case of the scheduling problem, each of the multicast de-
mands has only one receiver rack, the data sizes are the
same, bh equals to bl, and δ is zero. In such special case,
the problem is equivalent to the problem of scheduling the
unicast flows in a packet switch where a flow exclusive takes
the entire bandwidth of the input and output ports when
it is transferred. We assume that our scheduling problem
can be solved with a polynomial algorithm. Then, such
algorithm can also solve the problems in the special case
in polynomial time. However, the special case is a sum
coloring problem [11] which is NP-hard. This contradicts
the assumption. Thus, the original problem is also NP-hard.

3. Related Work
Scheduling algorithm: The problem of traffic schedul-

ing in hybrid data centers is being actively investigated in
recent years. Previous works propose scheduling algorithms
for different types of traffic with various optimization goals.
These works either deal with unicast traffic parttern or do
not optimize for individual demands. Solstice [8] minimizes
the makespan of a batch of unicast traffic demands (a
demand matrix) in a hybrid data center. It decides the
amount of traffic to be transferred through the circuit switch
and the packet-switched network and creates a schedule for
the circuit switch traffic. Eclipse [9] maximizes the circuit
switch utilization within a given time duration for a unicast
demand matrix. However, Solstice [8] and Eclipse [9] do
not optimize for the demand from individual applications,
instead, they achieve optimization goal for the aggregated
traffic demands. To bring impactful performance improve-
ment to applications, Sunflow [7] minimizes the average
coflow completion time as the improved scheduler beyond
Solstice and Eclipse (coflow is defined as a set of unicast de-
mands comes from an appliation [6]). However, Sunflow is
designed for unicast flows as well. For multicast scheduling,
Blast [1] picks the multicast demands that should be served
by the circuit switch and leaves the rest demands to the
packet-switched network in order to maximize the number
of multicast demands (or the bytes of multicast demands)
being served by the circuit switch. However, Blast does not
optimize for the demands of individual applications and does
not consider exploiting the high-bandwidth circuit switch.

High-bandwidth circuit switch: Composite-path
switching [12] in a hybrid data center leverages the
high-bandwidth in the circuit switch. A Composite-path
is a high-bandwidth link connecting the packet-switched
network and the circuit switch. The composite path can be
simultaneously shared by multiple unicast flows going to or
coming from the same ToR. Our work differs from [12] in
that the high-bandwidth link is shared by multicast flows.



Algorithm 1 Skeleton of the scheduling algorithm
1: procedure SCHEDULE(demand1,...,g , δ)
2: mset←Set(demand1,...,g) . convert to a set of demands
3: t← 0 . initialize epoch index
4: Elist←List() . initialize the returned list of epochs
5: while not mset.isEmpty() do
6: Ct[n×n], R

t
[g×n]←CreateEpochSchedule(mset) . Sec. 4.1 & Alg. 2

7: Dt←DecideEpochDuration(Rt[g×n], δ) . Sec. 4.2
8: Et←Tuple(Ct[n×n], R

t
[g×n], D

t) . get an epoch
9: mset←Serve(mset, Et) . update the remaining demands

10: Elist.append(Et) . add the epoch to the schedule
11: t←t+ 1 . increase epoch index
12: return Elist

4. Scheduling
We propose a heuristic scheduling algorithm as the

solution whose skeleton is shown in Alg. 1. The algorithm
works in an iterative manner until all the demands have been
completely scheduled (Line 5 (L5)). Each iteration creates
an epoch. Creating the circuit configuration (Ct) and picking
the demands to be served (Rt) are closely related questions
because the demands are served by the circuit. So creating a
circuit configuration should consider the senders and the re-
ceivers of the demands to be served. Determining the epoch
duration (Dt) is relatively independent from determining Ct
and Rt. However, given an Rt, as we will show in Sec. 4.2,
Dt has a great impact on the effective utilization rate of
the circuit switch. Thus, the algorithm first determines Ct
and Rt (L6 & Sec. 4.1) and then determines Dt according
to Rt (L7 & Sec. 4.2) After the epoch is created (L8), the
remaining bytes of the demands are updated so that only
the incomplete demands are given to the next iteration (L9).
Time complexity of the algorithm is O(g2n(g + n)).
4.1. Create the Circuit Configuration and Choose the

Demands to be Scheduled in an Epoch
Alg. 2 shows the function that creates the circuit config-

uration and picks the demands to be served in an epoch. The
algorithm iteratively considers the demands in the increasing
order of the remaining data bytes (L2); in each iteration,
the algorithm may assign the circuit resources to a demand
(L7,10). By doing this, the demands with smaller remain-
ing data bytes have higher chances in getting the circuit
resources, which is beneficial in minimizing average DCT.

Previous work [1] models the circuit configuration as a
hypergraph where the vertices are the racks in the data center
and the P2MPCs are directed hyperedges. The hyperedge
originates from a single vertex in the hypergraph and points
to multiple vertices. In our problem, each hyperedge has a
capacity limit of bh/bl, which limits the number of multicast
demands simultaneously transferred through the P2MPC. In
order to serve a multicast demand, the sender vertex must
connect to the receiver vertices via hyperedges having free
capacities. A demand can be served by multiple cascaded
hyperedges since multi-hopping is adopted. Thus, the prob-
lem to be addressed in each iteration is to find a set of
P2MPCs (hyperedges) that satisfy the connectivity required
by the demands and have free capacity. New P2MPCs
(hyperedges) may be created if necessary.

In the function, hyperedges are added to hypergraph
G in two stages. In the first stage (L5-7), when a new
hyperedge is added to the graph, loop is not allowed. That

Algorithm 2 Create the circuit configuration and choose the demands
to be scheduled in an epoch

1: procedure CREATEEPOCHSCHEDULE(mset)
2: mlist←sort(mset, key=λ mk:mk .remain())
3: G←HyperGraph() . initialize a hyper-graph
4: M←List() . initialize the list of demands to be served
5: for d in mlist do
6: if pset←SolveConflict(G, d, True) then . Line 16
7: DecideToServeDemand(d, M , pset) . Line 13
8: for d in mlist do
9: if d not in M and pset←SolveConflict(G, d, False) then . Line 16

10: DecideToServeDemand(d, M , pset) . Line 13
11: C,R←ConvertRepresentation(G, M )
12: return C,R
13: procedure DECIDETOSERVEDEMAND(d, M , pset)
14: p.addDemand(d) for p in pset
15: M .append(d); d.addP2MPC(pset)
16: procedure SOLVECONFLICT(G, d, loopfree)
17: crlist←List([r for r in d.rcvrs() if G.vertex(r).indegree==1])
18: ncrlist←d.rcvrs()-crlist

19: psndr←G.vertex(d.sndr()).P2MPC()
20: rtsset←Set()
21: if psndr is not None then . Case 1
22: for c in crlist do
23: if G.isConnected(d.sndr(), c) then
24: if not G.freeCapacity(d.sndr(), c) then
25: return None . demand skipped
26: else
27: root←G.rootAncestor(c)
28: if not (root and G.freeCapacity(root, c)) then
29: return None . demand skipped
30: rtsset.add(root)
31: psetnew , petnd←extendP2MPC(psndr , rtsset, ncrlist, G)
32: else . Case 2
33: for c in crlist do
34: root←G.rootAncestor(c)
35: if not (root and G.freeCapacity(root, c)) then
36: return None . demand skipped
37: rtsset.add(root)
38: psetnew←addP2MPC(psndr , rtsset, ncrlist, G)
39: if psetnew is None then return None . demand skipped
40: if loopfree and adding psetnew (and extending petnd) make G cyclic then
41: return None . demand skipped
42: G.addP2MPC(psetnew , petnd) . add new hyperedges to the graph
43: return G.getP2MPCs(d.sndr(), d.rcvrs()) . return the set of P2MPCs the

demand uses

is to say, a demand is skipped by the first stage if serving
the demand results in creating a loop in G. This is because
having a loop in the graph reduces the chance of sharing
the hyperedges in the loop by more demands (explained in
following paragraphs and evaluated in Sec. 5.3). After the
first stage, the hypergraph forms a forest. In order to increase
the utilization of the circuit switch, in the second stage (L8-
10), loop is allowed when adding new hyperedges. This is
to serve the demands skipped by the first stage.

When considering a demand in either stage, the receiver
racks of the demand may already have the output ports
of P2MPCs connected. We call these racks as “conflicting
racks” which are expected to be connected via a new
P2MPC but they have already been occupied by other
P2MPCs (L17). For example, in Fig. 3(a), receiver rack
R11 & R15 of D8 and receiver rack R5 & R14 of D9
are conflicting racks. Solving the conflicting racks is the
fundamental crux in leveraging the high-bandwidth of the
circuit switch. Our algorithm solves the conflicting racks by
multi-hopping as follows (L16).

There are two cases in solving the conflicting racks. In
Case 1 (L21), the sender rack connects to the input of a
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P2MPC. In this situation, the sender rack is connected to
some of the conflicting racks via existing P2MPCs (L23).
In Fig. 3(a)’s example, the sender rack of D8 has connected
to the input of a P2MPC, via which the receiver rack R11
can be reached from the sender rack R7. For the conflicting
racks that cannot be reached from the sender rack (L26), the
algorithm finds the roots of these conflicting racks (L27) and
extends the sender’s P2MPC to connect these roots as well
as the non-conflicting racks (L31). The roots and the racks
on the path from the roots to the receiver racks become the
relay racks of the demand. In Fig. 3(a), the P2MPC rooted
from R7 is extended to R10 (root of conflicting rack R15)
and the non-conflicting rack R9. Finding the root of a rack
fails if the rack is in a loop. In Fig. 3(b), three P2MPCs
form a loop in the hypergraph where all racks cannot be
reached from any racks out of the loop by neither adding
new P2MPCs nor extending existing P2MPCs since these
racks are connected to the outputs of P2MPCs. Thus, once a
demand has conflicting racks in loops, the demand cannot be
served in the current epoch. This is why the algorithm avoids
creating a loop in the first stage when adding P2MPCs.

In Case 2 (L32), the sender rack is not connected to
a P2MPC. The algorithm creates a new P2MPC from the
sender rack and connects the new P2MPC to all the roots
of the conflicting racks as well as the non-conflicting racks
(L38). In Fig. 3(a)’s example, when considering D9, a new
P2MPC is created and it connects to R4 (root of conflict
rack R14), R3 (non-conflicting rack, root of conflict rack
R5), and R2 (non-conflicting rack).

When extending the outputs of a P2MPC or adding a
new P2MPC, the expected number of outputs may exceed
the upper limits f . The algorithm uses the racks not con-
necting to any P2MPC input/output as relays to expand the
reachability of the sender’s P2MPC (L31,38).

4.2. Decide the Epoch Duration
Determining epoch duration can greatly affect the per-

formance of the scheduling algorithm because the circuit
reconfiguration introduces a non-trivial delay δ and it varies
from 10 µs to 100 ms in different circuit switching tech-
nologies. Specifically, for the circuit switch having large δ,
frequently reconfiguring the circuits results in paying too

much overhead due to circuit reconfiguration. On the other
hand, for the circuit switch having small δ, after some of the
demands finishes in the current epoch, keeping the circuit
configuration for extra long time results in a sub-optimal
circuit configuration for the remaining demands. Thus, the
algorithm should wisely choose the duration of an epoch.

Epoch duration has a direct impact on the effective
circuit switch utilization rate (denoted as EU(Rt,δ)(D

t)),
which is a function of the epoch duration Dt given the
demand schedule of the epoch (Rt) and δ. EU represents
the effective usage of the circuit switch bandwidth in serving
the demands in an epoch and it is defined as Equ. 3.
EU(Rt,δ)(D

t
) =

bytes of the demands transfered in Dt

bytes can be transfered by circuit switch in (Dt + δ)

=
Σk(Rtksk

×min(dk .remain(), bl ×Dt)× Σjrkj)

bh × n× (Dt + δ)

(3)

We prove that EU(Rt,δ)(D
t) is a continuous and weakly

unimodal piecewise linear function (we skip the proof due
to the space constraint). That is to say, EU(Rt,δ)(D

t) has a
unique extreme value, which is also the maximum effective
utilization rate. To maximize the effective utilization rate of
the circuit switch, in determining the duration of an epoch,
the duration that maximizes EU is chosen. This also greatly
helps in reducing the average DCT (evaluated in Sec. 5.3).

5. Evaluation
5.1. Simulation Setup

Multicast demands: The simulation takes input mul-
ticast demands synthesized based on the execution of real
applications. We run iterative natural language processing
algorithms, i.e. Word2Vec and LDA, and a database query
benchmark, i.e. TPC-H, on Apache Spark. The sizes of the
multicast models in Word2Vec with Wikipedia corpus input
and LDA with 20 Newsgroups dataset input are 480 MB
and 700 MB respectively. The size of the multicast data
created in the execution of the TPC-H benchmark ranges
from 24 MB to 5.9 GB when the aggregated database
table size is 16 GB. We adopt this empirical distribution
in creating the multicast data sizes. This distribution (size
in GB) fits well to a beta distribution with α=0.7 and β=1.7.
The number of receiver racks is a uniform distribution from
2 to the half of the racks in the data center. The sender
and receiver racks are uniformly distributed among all the
racks. We use traffic intensity to quantify the total amount of
input multicast demands given to the scheduling algorithm.
The traffic intensity is defined as Σk(dk×Σjrkj) divided by
bl×n, which shows the finishing time when all the multicast
traffic is sent at the aggregated circuit switch bandwidth
when bh=bl. In the simulation, the traffic intensity of the
input multicast demands ranges from 1 s, 5 s and 10 s.

Circuit switch properties: In the simulation, the num-
ber of racks ranges from 32 to 256, which are typical data
center sizes and cover the network scales evaluated in all the
related works. The server NIC bandwidth is 10 Gbps and the
circuit switch port bandwidth are set to 10 Gbps, 40 Gbps
and 100 Gbps. δ ranges from 10 µs to 100 ms, which covers
all the recently proposed circuit switch designs. The limit on
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Figure 4. Box plot of the speed-up of average DCT using Blast as the
baseline. The center quartile and the ‘x’(and numbers) are median and av-
erage respectively; the upper(lower) quartiles and the upper(lower) whiskers
shows 75(25)- and 95(5)-percentile respectively. Each box represents a
hundred sets of input demands in the setting with n=128, bl=10 Gbps.
(a) Various circuit switch port bandwidth and traffic intensity. δ=1 ms. (b)
Various δ and algorithm policies. bh=100 Gbps, traffic intensity=10 s.

P2MPC fanout, f , is set to 16, which can be easily handled
by the sensitivity of today’s optical transceivers.

Comparison baseline: We compare our scheduling al-
gorithm against the algorithm proposed in Blast [1]. Blast
schedules the multicast demands in hybrid data centers and
shows 37× better performance comparing against overlay
peer-to-peer multicast. When scheduling demands in the
circuit switch, Blast models the problem as a maximum
weighted hypergraph matching problem where the weight of
an edge is the data size. The algorithm proposed in Blast first
sorts the demands in a decreasing order of dk/Σjrkj , and
checks if the demands can be served based on this order. In
our simulation, the algorithm runs multiple rounds until all
the demands are scheduled. Multi-hopping and segmented
transfer are not considered in Blast.
5.2. Greatly Improved Average DCT

We have analyzed the results of all the settings listed
in Sec. 5.1. We found that, for different numbers of racks,
our solution shows similar trends. For the settings having
δ≤1 ms, the results are similar as well since in these
cases, δ is negligible compared with the time to transfer
the data. Due to space limitation, we present the results of
the settings having 128 racks and δ≥1 ms as representative
cases. Fig. 4(a) presents the box plot of the speed-ups in
average DCT. Each box plot corresponds to 100 data points
in a setting. For each data point, the speed-up is defined as
the average DCT of Blast divided by that of our solution. So
the higher the speed-up is, the larger improvement shown
by our solution. We summarize our observation as follows.

Our solution exhibits up to 13.4× speed-up com-
paring against the algorithm in Blast. The improvement
comes from two aspects. The first aspect is the order in
which the demands are considered. In each iteration, our
solution starts picking the demand having the smallest
remaining size, which is beneficial in reducing average
DCT. The improvement can be seen in the cases where
bh=bl=10 Gbps. The speed-up is about 2.0×. The second
aspect is that our solution is capable of leveraging the
high-bandwidth of the circuit switch port, which can be
demonstrated by the following observations. (1) Given the
same input demands (fixed traffic intensity), as bh increases,
the speed-up increases significantly, e.g., in the case with

10s traffic intensity, the speed-up increases from 2.4× to
13.4× as bh increases from 10 Gbps to 100 Gbps. (2) Given
the same bh, as the traffic intensity increases, the speed-up
increases as well, e.g., in the case having 100 Gbps circuit
switch port, the speed-up increases from 6.1× to 13.4×.
5.3. Effective Algorithm Features

Our algorithm design is carefully considered, which
is shown by comparing our solution against an algorithm
having some algorithm features turned off.

Requiring loop-freedom in adding P2MPCs in the
first stage significantly improves the speed-up. We com-
pare our algorithm against a similar algorithm whose only
difference is that loops are allowed in adding P2MPCs to
the graph in the first stage. Fig. 4(b) shows that the loop-
freedom requirement exhibits more than 67% increase in
speed-up. This is because that maintaining P2MPCs as a
forest increases the chance of solving conflicting racks,
which effectively reduces average DCT.

Maximizing circuit switch effective utilization rate
significantly improves speed-up when δ is large. We
compare our solution against a similar algorithm whose only
difference is that the epoch duration is always the time used
to finish the demand with the smallest remaining size. As
δ increases from 1 ms to 100 ms (Fig. 4(b)), maximizing
EU exhibits increasing benefits. This is because with large
δ, frequently reconfiguring the circuit makes δ dominate
the DCT. Maximizing EU effectively helps to reduce the
number of reconfigurations so as to minimize average DCT.
6. Conclusion

We propose an algorithm scheduling the multicast de-
mands in a high-bandwidth circuit switch capable of build-
ing P2MPC connections. We adopt multi-hopping and seg-
mented transfer as the approaches. The algorithm effectively
leverages the high-bandwidth of the circuit switch ports and
minimizes the average DCT of the multicast demands. Our
solution exhibits significant improvement comparing against
the state-of-the-art scheduling algorithm.
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