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ABSTRACT
21 cm cosmology is a promising new probe of the evolution of visible matter in our universe,
especially during the poorly constrained Cosmic Dawn and Epoch of Reionization. However, in
order to separate the 21 cm signal from bright astrophysical foregrounds, we need an exquisite
understanding of our telescopes so as to avoid adding spectral structure to spectrally smooth
foregrounds. One powerful calibration method relies on repeated simultaneous measurements
of the same interferometric baseline to solve for the sky signal and for instrumental parameters
simultaneously. However, certain degrees of freedom are not constrained by asserting internal
consistency between redundant measurements. In this paper, we review the origin of these
degeneracies of redundant-baseline calibration and demonstrate how they can source unwanted
spectral structure in our measurement and show how to eliminate that additional, artificial
structure. We also generalize redundant calibration to dual-polarization instruments, derive
the degeneracy structure, and explore the unique challenges to calibration and preserving
spectral smoothness presented by a polarized measurement.
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1 INTRODUCTION

21 cm cosmology – the mapping of neutral hydrogen in the uni-
verse using redshifted 21 cm hyperfine emission or absorption –
promises unprecedented insight into the intergalactic medium and
its density, ionization, thermal, and velocity structure. By probing
that evolution, we can better understand the astrophysics of the first
stars, galaxies, and black holes that eventually led to the Epoch
of Reionization (EoR) (Furlanetto, Oh & Briggs 2006; Morales &
Wyithe 2010; Pritchard & Loeb 2012; Loeb & Furlanetto 2013;
Zaroubi 2013) and precisely test our cosmological theories at both
low (Chang et al. 2008; Wyithe, Loeb & Geil 2008) and high red-
shifts (McQuinn et al. 2006; Mao et al. 2008).

Realizing that promise requires overcoming two key challenges.
The first is that 21 cm fluctuations are predicted to be extremely
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faint, requiring massive radio telescopes to detect. Masui et al.
(2013) used the Green Bank Telescope to detect the signal in cross-
correlation with a galaxy survey. The pioneering generation of EoR
observatories – including the Low Frequency Array (LOFAR; Patil
et al. 2017), the Giant Metrewave Radio Telescope (GMRT; Paciga
et al. 2013), the Murchison Widefield Array (MWA; Dillon et al.
2015b; Beardsley et al. 2016; Trott et al. 2016), and the Donald
C. Backer Precision Array for Probing the Epoch of Reionization
(PAPER; Ali et al. 2015) – have put upper limits on the signal, but it
is very difficult for them to achieve more than a tentative detection.
That is why the next-generation telescopes have invested in vastly
increased collecting area, including the Canadian Hydrogen Inten-
sity Mapping Experiment (CHIME; Bandura et al. 2014) and the
Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX;
Newburgh et al. 2016) at low z and the Hydrogen Epoch of Reion-
ization Array (HERA; Dillon & Parsons 2016; DeBoer et al. 2017)
and the Square Kilometre Array (SKA-low; Koopmans et al. 2015)
at high z.
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The second and perhaps greater challenge is avoiding the con-
tamination of the cosmological signal by astrophysical foregrounds
∼105 times brighter (Santos, Cooray & Knox 2005; Jelić et al.
2008; Bernardi et al. 2009; Ghosh et al. 2012; Kohn et al. 2016).
While foregrounds are spectrally very smooth, the 21 cm brightness
temperate fluctuations are expected to exhibit structure on fine �z
(and thus fine frequency) scales. The strategy of excising or down-
weighting foregrounds by simply excising a few low-k‖ Fourier
modes (Liu & Tegmark 2011; Chapman et al. 2013; Dillon, Liu &
Tegmark 2013; Dillon et al. 2014; Bonaldi & Brown 2015) is prob-
lematized by the spectrally complex response of any interferome-
ter, which generically features a position- and frequency-dependent
point-spread function that is very difficult to invert accurately (Dil-
lon et al. 2015a).

Fortunately, this effect on typical power-law foregrounds is lim-
ited to a region of 2DFourier space (i.e. k‖ and k⊥) known as the
wedge (Datta, Bowman & Carilli 2010; Morales et al. 2012; Parsons
et al. 2012b; Vedantham, Udaya Shankar & Subrahmanyan 2012;
Hazelton, Morales & Sullivan 2013; Pober et al. 2013; Thyagarajan
et al. 2013; Liu, Parsons & Trott 2014a,b). Avoiding foregrounds
by working outside the wedge (in the so-called EoR window) can
achieve more robust foreground isolation, but at the cost of losing
considerable sensitivity (Pober et al. 2014). This separation works
as long as foregrounds are intrinsically spectrally smooth and the
instrument does not impart additional spectral structure.

The instrumental response to polarized foregrounds is another
potential cause for concern. 21 cm experiments largely concentrate
on unpolarized (Stokes I) measurements because the cosmological
signal is essentially unpolarized (Mishra & Hirata 2017). However,
all instruments have frequency- and direction-dependent responses
to linear polarization (Stokes Q and Stokes U) and circular polar-
ization (Stokes V) that can be difficult to disentangle from unpolar-
ized emission without an exquisite instrument model (Jones 1941).
Galactic Faraday rotation can turn foreground Stokes Q into Stokes
U and back as a function of frequency – often many times over
the band of interest. Since Stokes Q and Stokes U generally leak
differently into our estimate of Stokes I, this can introduce spectral
structure into the observed foregrounds that depends on the rotation
measure. A Q- or U-contaminated estimate of Stokes I power spec-
trum will show leakage from low k‖ (inside the wedge) to higher
k‖, potentially introducing a bias to measurements made only in-
side the EoR window (Jelić et al. 2010; Moore et al. 2013; Asad
et al. 2015; Lenc et al. 2016; Nunhokee et al. 2017). Measurements
made to quantify the magnitude of the effect (e.g. Kohn et al. 2016;
Moore et al. 2017; Asad et al. 2018) generally show that, to current
sensitivity levels, it is not a show-stopper for EoR science.

Fundamentally, any solution to the problem of foregrounds –
polarized or unpolarized – relies on accurate instrumental knowl-
edge. Knowing antenna locations and their polarized, frequency-
dependent primary beam response functions is key to both fore-
ground subtraction and to making Stokes-I measurements free from
polarization leakage (Shaw et al. 2014, 2015).

Accurate instrumental knowledge requires an accurate calibra-
tion of our analogue signal chains. Complex antenna bandpasses
with complex spectral structure, if not accurately measured and ac-
counted for, can scatter foreground power outside the wedge far
in excess of the cosmological signal. As an example: an uncali-
brated ∼1 per cent sinusoidal ripple in visibilities due to cable re-
flections can produce foreground contamination ∼106 times larger
than the nominal power spectrum signal, obliterating the EoR win-
dow (Ewall-Wice et al. 2016).

Traditionally, antenna bandpass calibration has depended upon
producing an accurate sky model through iterative cycles of map-
making, source extraction, and recalibration (Pearson & Readhead
1984; Yatawatta et al. 2013). However, any realistic level of error
in one’s sky or instrument model leads to gain calibration errors.
These errors are chromatic because the visibilities used to create
them have spectral structure that depends on their length (among
other factors). Since the same antennas are involved in both long
and short baselines, short baseline measurements inherit chromatic
errors from long baselines with more intrinsic spectral structure.
This leakage of spectral structure via the gain errors can dramati-
cally restrict the size of the EoR window and thus the sensitivity to
the 21 cm signal. Avoiding this effect requires either assumptions
about the spectral and temporal smoothness of antenna bandpasses
(Yatawatta 2016; Barry et al. 2016) or a reweighting of baselines
(Ewall-Wice et al. 2017).

More recently, another approach has been employed to consid-
erable success. Instead of calibrating by reference to a sky-model,
arrays with highly redundant configurations can use internal consis-
tency between repeated measurements to solve for most of the cal-
ibration degrees of freedom. The idea was developed in the present
formalism by Liu et al. (2010), though it has its antecedents in older
work (e.g. Wieringa 1992). This redundant-baseline calibration re-
lies on a simple counting argument. Since baselines with the same
separation between antennas measure an identical integral over the
sky, if the number of instantaneous visibility measurements is sig-
nificantly larger than the number of unique baselines, then it may
be possible to solve for antenna-based calibration parameters and
unique visibilities simultaneously.

A number of 21 cm arrays have been designed or were reconfig-
ured to take advantage of redundant-baseline calibration. This is in
part due to the synergy with the many short baselines measuring
the same modes over and over, which helps more economically
meet the extraordinary sensitivity requirements for 21 cm cosmol-
ogy (Parsons et al. 2012a). The technology demonstrator MITEoR
pioneered the approach for EoR science, showing for the first time
calibration residuals largely consistent with thermal noise (Zheng
et al. 2014). PAPER was reconfigured in a redundant configuration
for its 32-element observing season (Parsons et al. 2014). The MWA
was recently expanded to include a pair of 36-element redundant
hexes (Li et al., in review). HERA was designed to be completely
redundantly calibratable, including its outrigger antennas (Dillon &
Parsons 2016; DeBoer et al. 2017).

That said, redundant-baseline calibration is not the end of the
story. Like any calibration scheme based on internal consistency, it
falls a bit short of a complete solution for every signal-chain calibra-
tion parameter.1 Roughly speaking, redundant-baseline calibration
reduces the calibration problem from one number per frequency
channel per antenna element to just a few numbers per frequency
for the whole array. Still, the power of redundant calibration is that
it vastly reduces the number of degrees of freedom in the calibra-
tion problem, yielding precise relative calibration and reducing the
complexity of any future absolute calibration referenced to the sky.

The linear combinations of gains and visibilities that redundant-
baseline calibration cannot solve for, the degeneracies of its under-
lying system of equations, have been the source of much confusion.
What exactly can redundant-baseline calibration solve for? And

1These are similar but not identical to the integer multiple of π phase
ambiguities that arise in self-calibration (Yatawatta 2012; Lannes & Prieur
2014).
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what are the degeneracies? In this paper, we present a pedagogi-
cal explanation of the degeneracies and show their importance by
demonstrating the pitfalls they may present. For redundant-baseline
calibration to be useful for 21 cm cosmology, it must preserve the
spectral smoothness of the observation and it must be possible to
understand and undo any modifications made to the degenerate part
of the calibration solutions. In principle, any two solutions that dif-
fer only in their degeneracies can be transformed and be brought
in line with a good absolute calibration by reference to the sky. In
practice, this can be somewhat perilous – especially if one wants
to use prior knowledge about the instrument to restrict the spectral
degrees of freedom in bandpass calibration in a way that enforces
relative smoothness and cannot account for discontinuities in fre-
quency. Redundant-baseline calibration as a single modular analysis
step has seen increasing use recently (e.g. Zheng et al. 2014, 2017;
Ali et al. 2015) and therefore it is valuable to consider the subtleties
of maintaining spectral smoothness.

In this paper, we show how the degeneracies be cleanly and self-
consistently accounted for so that the resultant calibration solutions
can later be combined with a sky-referenced absolute calibration.
In Section2, we review the mathematical formalism underpinning
redundant-baseline calibration, explain the mathematical origin of
the degeneracies, and show how careless handling of the degenera-
cies can lead to considerable spectral structure. Then, in Section 3,
we generalize the derivation of degeneracies to observations with
dual-polarized antennas and highlight new complications and anal-
ysis choices that arise.

2 A PEDAGOGICAL REVIEW OF
REDUNDANT-BASELINE CALIBRATION

We begin this section with a review of the antenna calibration prob-
lem in the context of a single visibility polarization and how it can be
addressed by taking advantage of redundant baselines (Section 2.1).
Drawing heavily on Liu et al. (2010), we then present an iterative al-
gorithm for minimizing the error in our solution (Section 2.2). Next
we explain what exactly redundant-baseline calibration can and
cannot solve for (Section 2.3) and how these unsolvable quantities
can introduce spectral structure into our calibration solutions if we
are not careful (Section 2.4). Finally we step back with an overview
of the key assumptions that underlie the use of redundant-baseline
calibration (Section 2.5).

2.1 The calibration problem

Fundamentally, the problem of calibration2 boils down to one key
equation:

V obs
ij (ν) = gi(ν)g∗

j (ν)V true
ij (ν) + nij (ν). (1)

The observed visibility Vij between antennas i and j at a given time
and frequency is related to the true, underlying visibility by a pair
of complex and frequency-dependent gain factors, gi and g∗

j , along
with Gaussian random noise nij. These gain factors incorporate the
frequency response of the analogue signal chain, including ampli-
fiers, attenuators, cable reflections, and of course the phase factor

2For the purposes of this work, we mean signal-chain calibration of antenna-
based gains. This is sometimes called direction-independent calibration to
contrast it with direction-dependent calibration that corrects for the shape
and possible antenna-to-antenna variation of the primary beam response.
The two effects can always be factored, though it can be useful to consider
them together in the context of sky-based calibration.

e−2π iτν due to the light-travel time delay τ along the signal path.
When we calibrate, we want to solve for both those gains and vis-
ibilities. In essence, we have a system of equations for all antenna
pairs i and j given by

V obs
ij (ν) = gi(ν)g∗

j (ν)V sol
i−j (ν), (2)

and we want to find the optimal gain and visibility solutions that
minimize the error in this system.

In equation (2), we write our visibility Vi − j as shorthand for
V (r i − rj ), the visibility for the baseline vector bij ≡ r i − rj . Two
pairs of identical elements with precisely the same baseline sep-
aration between are sensitive to the same mode on the sky. The
measured visibilities may be quite different due to differences in
signal chains between the four elements, but that fact is incorpo-
rated into the gains. In a highly redundant array, there are many
more measurements than there are unique baselines.

Consider the example of HERA, which is made of 14 m dishes
with a core of 320 hexagonally packed elements. The simplest
proposed configuration of a HERA-like instrument – a densely
packed hexagonal array of 331 elements (11 on each edge) – has
331(331 − 1)/2 = 54, 615 baselines and thus measures 54615
visibilities. However, it only has 630 unique baseline separations
(Dillon & Parsons 2016). That means we have a non-linear system
of 54615 equations to determine 630 unique visibilities and the 331
complex gains; the system is vastly overdetermined.3 With uncor-
related Gaussian noise and an overdetermined system of equations,
it is useful to minimize χ2, defined as

χ2(ν) =
∑

all pairs i,j

∣∣V obs
ij (ν) − gi(ν)g∗

j (ν)V sol
i−j (ν)

∣∣2

σ 2
ij (ν)

, (3)

where σ 2
ij (ν) is the variance of nij(ν).

If all one wishes to minimize is the difference between the cal-
ibration solution and the data, equation (3) is sufficient. However,
one may also wish to impose additional prior information about
the sky or the instrument. To enforce that gains are relatively
spectrally smooth, as in the consensus optimization of Yatawatta
(2016), one could add a penalty factor χ2 for gain discontinuities
between nearby frequency channels.4 Likewise, Sievers (2017) pro-
poses adding information about sky sources and their statistics into
χ2, as well as information about known deviations from redundancy
between putatively identical baselines, to bridge the gap between
sky-based calibration and redundant calibration. That said, our fo-
cus is the simplest and most straightforward approach to redundant-
baseline calibration in which we aim to minimize the χ2 in equation
(3). This non-linear least-squares optimization can be done indepen-
dently between frequencies (and times, for that matter), so we drop
the explicit dependence on ν for now.

2.2 Linearizing and minimizing χ2

There are many methods for finding set of gains and visibilities that
minimize χ2. They generally involve linearizing equation (2) in

3Ignoring for the moment the degeneracies in this system of equations that
we will return to in Section 2.3.
4Alternatively, one can take the approach of Zheng et al. (2014) and use
a Weiner filter to smooth the gains after redundant-baseline calibration
based on an estimate of how much time-to-time and frequency-to-frequency
variation is due to thermal noise. This will generally not produce the same
result the Yatawatta (2016) method, since it smooths about a different χ2

minimum – one without that penalty factor for non-smoothness in the gains.
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order to find parameter solutions, often iteratively. Liu et al. (2010)
suggests two. The first involves linearizing equation (2) by taking
the logarithm of both sides and then solving independently for the
real and imaginary parts of the gains and visibilities. Unfortunately,
this method produces biased solutions that do not actually minimize
χ2.

That is why Liu et al. (2010) also advance a linearized method
that implements the Gauss–Newton algorithm. Given some starting
gains g0

i and visibilities V 0
i−j , we can rewrite equation (2) as

V obs
ij = (g0

i + �gi)(g
0
j + �gj )∗(V 0

i−j + �Vi−j ). (4)

Here, the � terms are solved for at each iteration, allowing us to
update our guesses until we converge on the global minimum. If we
assume they are all small because our initial guess is close, we drop
the �2 terms and get a linear system of equations for the � terms:

V obs
ij − g0

i g
0∗
j V 0

i−j = �gig
0∗
j V 0

i−j + g0
i �g∗

j V
0
i−j + g0

i g
0∗
j �Vi−j .

(5)

The complex conjugation of the system in equation (5) requires
us to break it into real and imaginary parts in order to write the
system as a matrix. This yields

Re
[
V obs

ij − g0
i g

0∗
j V 0

i−j

]
= Re[�gi]Re

[
g0∗

j V 0
i−j

] − Im[�gi] Im
[
g0∗

j V 0
i−j

]
+ Re

[
�gj

]
Re

[
g0

i V
0
i−j

] + Im
[
�gj

]
Im

[
g0

i V
0
i−j

]
+ Re

[
�Vi−j

]
Re

[
g0

i g
0∗
j

] − Im
[
�Vi−j

]
Im

[
g0

i g
0∗
j

]
(6)

and

Im
[
V obs

ij − g0
i g

0∗
j V 0

i−j

]
= Im[�gi]Re

[
g0∗

j V 0
i−j

] + Re[�gi] Im
[
g0∗

j V 0
i−j

]
+ − Im

[
�gj

]
Re

[
g0

i V
0
i−j

] + Re
[
�gj

]
Im

[
g0

i V
0
i−j

]
+ Im

[
�Vi−j

]
Re

[
g0

i g
0∗
j

] + Re
[
�Vi−j

]
Im

[
g0

i g
0∗
j

]
. (7)

We can now write this set of equations compactly as

d = Ax. (8)

Here, d contains both the real and imaginary components of the
differences between our guesses and V obs

ij . x contains the real and
imaginary parts of our �gi and �Vi − j terms, and A contains all the
coefficients in equations (6) and (7). d has a length equal to twice
the number of observed visibilities while x has a length equal to
twice the sum of the number of unique visibilities and the number
of antennas.

If N is noise covariance between visibility measurements, then
the optimal estimate of the � terms is given by

x̂ = (
AᵀN−1 A

)−1
AᵀN−1d. (9)

Since visibility measurements have uncorrelated noise, N is diag-
onal and has the form Nij,kl = σ 2

ij δikδjl where δik is the Kronecker
delta. However, if all baseline variances σ 2

ij are identical, equation
(9) reduces to

x̂ = (AᵀA)−1 Aᵀd. (10)

Thus, to find the set of gains and visibilities that minimizes χ2,
we iteratively set up and solve equation (10) until we reach the
desired level of convergence. In practice, this is complicated by
the fact that AᵀA is not invertible – a consequence of the inherent
degeneracies in the system of equations that we will discuss at
length in Section 2.3 – and therefore requires a modified inversion
technique like the Moore–Penrose pseudo-inverse.

This method is sufficient for understanding how the structure
of AᵀA relates to χ2, but we also want to emphasize that the
Gauss–Newton method of Liu et al. (2010) is not the only approach
to redundant-baseline calibration. Noorishad et al. (2012) advance
the weighted alternating least-squares technique, which linearizes
equation (2) by alternatingly holding gains and visibilities con-
stant and zeroing-in on the minimum. Though this can take more
steps to converge, it can also be much faster because it can cut the
size of the matrix inversions, the rate-limiting step in most least-
squares minimizations. Theomnical code developed for MITEoR
(Zheng et al. 2014, 2017) is based on this approach.5 Ram Marthi &
Chengalur (2013) explore another well-known approach, steepest
descent, which is much faster per iteration (no matrix inversion is re-
quired) but can take many more steps to converge to high precision.
The Levenberg–Marquardt algorithm would be a natural compro-
mise between steepest descent and Gauss–Newton, but it and the
many other non-linear least-squares minimization techniques are
outside the scope of this work.

2.3 Degeneracies in redundant-baseline calibration

Regardless of the technique for solving for gains and visibilities
and regardless of how overdetermined the system in equation (2) is,
the structure of χ2 (and thus A) guarantees that there will always
be a few terms that we cannot solve for with redundant-baseline
calibration. These unsolvable quantities are the degeneracies of the
system.6 They manifest as changes that one can make to gi or V sol

i−j or
both such that gig

∗
j V

sol
i−j is unchanged, leaving χ2 also unchanged.

Once χ2 is minimized, any change in these degeneracies keeps χ2

minimized. In single-polarization calibration, there are exactly four
such degeneracies per frequency and per time. They are as follows:

(1) The overall amplitude. If gj → Agj and V sol
i−j → V sol

i−j /A
2,

then gig
∗
j V

sol
i−j is unchanged.

(2) The overall phase. If gj → gjeiψ , the changes in gi and g∗
j

always exactly cancel out.
(3) The x-phase gradient. If gj → gj ei�xxj and V sol

i−j →
V sol

i−j e−i�x�xij , then gig
∗
j V

sol
i−j is unchanged for all baselines.

(4) The y-phase gradient. Likewise, if gj → gj ei�yyi and
V sol

i−j → V sol
i−j e−i�y�yij , then gig

∗
j V

sol
i−j is similarly unchanged.

The first two degeneracies are due to straightforward cancella-
tions. The third and fourth are a bit more subtle. They rely on
the fact one can add a linear phase gradient � ≡ (�X, �Y ) in an-
tenna position rj ≡ (xj , yj ) which, due to the complex conjuga-
tion of g∗

j , produces a phase factor that depends only on baseline
bij ≡ (�xij , �yij ) = (xi − xj , yi − yj ). This can be exactly can-
celled by rephasing the unique visibility solutions, which can de-
pend on baseline vector but not on absolute antenna position. The
phase gradient terms are often referred to as the tip-tilt terms since
they correspond to moving the phase centre and thus the apparent
position of sources on the sky (Zheng et al. 2014, 2017).

5The most recent version of hera cal has interfaces to both omnical,
which is based on the alternating least-squares method, and redcal, which
implements the full matrix-inversions of the Gauss–Newton method using
the linsolve package. The former is much faster, but more vulnerable to
false-minima (Li et al., in review).
6For more concise but less pedagogical discussions of these degeneracies,
see Liu et al. (2010), Zheng et al. (2014), Zheng et al. (2017), or Li et al. (in
review).
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We can think of these four degeneracies as four different vectors
in the solution space of the gains and visibilities. Movement along
any of these directions does not affect χ2, so there is no way to
know the ‘optimal’ amount to move along these directions at each
iterative step. This is manifested in the structure of AᵀA, which has
four zero-eigenvalues and a nullspace spanned by the locally lin-
earized versions of these vectors. That said, it is difficult to simply
compute the eigenvectors and eigenvalues of AᵀA and verify that
they are the same four vectors by inspection. Eigenvalue decomposi-
tion algorithms will produce some unpredictable linear combination
of the four degeneracies precisely because they are degeneracies.
However, if one adds extra constraints to the system in equation
(2) that fix the degeneracies, AᵀA becomes full-rank. Since these
degeneracies are independent between frequencies, nothing in the
χ2 minimization algorithm requires that they be spectrally smooth.

2.4 Avoiding spectral discontinuities in the degeneracies

The immediate question posed by these degeneracies is simply
‘what should we do about them?’ Ultimately, we need to know how
bright the sky is and we need to know where our array is pointed.
We will need to fix the degeneracies with a sky-referenced absolute
calibration, either through a diffuse sky-model (Zheng et al. 2014,
2017) or via imaging and traditional self-calibration (Li et al., in
review). However, uncertainties about both our sky-model and our
beams can lead to enough spectral structure to bias the entire EoR
window (Ewall-Wice et al. 2017). Though we need to calibrate four
degeneracies per frequency (and time), we will likely want to restrict
the degrees of freedom in our absolute calibration so as to avoid
adding spectral structure to our overwhelmingly bright foregrounds.
If we plan to constrain our absolute calibration in this way, we must
ensure that redundant-baseline calibration does not add any spectral
structure within the degenerate subspace that absolute calibration
may not take out.

Fixing the amplitude degeneracy to achieve this goal is easy;
all we have to do is ensure that the degeneracy is constant over
frequency and time. There are several ways to do this. We could fix
the amplitude of the gain of a particular reference antenna or we
could fix the mean amplitude of all antennas. We choose to set the
mean amplitude of the gain products (as they appear in equation 3)
to 1. This preserves the mean visibility amplitude, though none of
these choices make much difference and or risks adding any spectral
structure.

Phase calibration is trickier. Naively approaching the three phase
degeneracies in the same way – for example by setting the mean
gain phases and gain phase slopes to zero – is problematized by
phase-wraps. Antenna gain phases generically evolve with fre-
quency. When one antenna’s phase-wraps from π to −π , the ψ

that we need to add to all phases to make the average 0 might be
quite different from one frequency to the next. This creates a phase
discontinuity in the gains and in the visibilities. Unless it is fixed by
absolute calibration, such a discontinuity in frequency space will
leak foreground power to all modes in Fourier space and will con-
taminate the EoR window. Working in terms of real and imaginary
parts of the gains and visibilities does not solve the phase-wrap
problem because the degeneracies are inherently degeneracies in
amplitude and phase.

To understand how fixing the degeneracies to a constant value
can produce this sort of spectral structure, let us consider separating
antenna gains into the form

gj (ν) ≡ |gj (ν)|eiφj (ν)−2πiτj ν . (11)

τ j is the delay for the jth antenna and φj is its residual phase.
In practice, the phase structure of gj(ν) is dominated by τ j which
comes from light-travel time delays along the cable and other delays
in the analogue and digital signal chain. While φj generally does
not phase-wrap over the band of interest, typical delays for EoR
instruments like MWA, PAPER, and HERA of the order of 10s
or 100s of ns over the typical ∼100 MHz bandwidth create many
phase-wrappings for each antenna.

In Fig. 1, we show this effect more clearly for a noise-free simu-
lation of a 7-element version of HERA (14.6 m separation between
seven dishes arranged in a hexagon). We simulate φj(ν) with 1 MHz
channels over a fiducial 100 MHz bandwidth to be small and spec-
trally smooth (i.e. describable by only a few Fourier modes). We
also simulate random delays, τ true

j , but then pre-calibrate them out
imperfectly with estimated delays τ est

j :

V
pre-cal
ij (ν) = V obs

ij (ν) exp
[
2πi(τ est

i − τ est
j )

]
. (12)

To the extent that τ true
j ≈ τ est

j , equation (12) reduces to

V
pre-cal
ij (ν) ≈ ∣∣gi(ν)g∗

j (ν)
∣∣ eiφi (ν)−iφj (ν)V true. (13)

In our simulation, however, we intentionally introduce residual
delay errors on each antenna at the ∼ 50, ∼ 5, or ∼0.5 ns levels.
These realistically represent the cases where delays are unaccounted
for, where delays are corrected for but poorly, and where delays are
well-measured and taken out. We then perform redundant-baseline
calibration, perfectly minimizing χ2 in all three cases,7 and show
how our decision to fix the three phase degeneracies to zero creates
spectral structure in the gain solutions.

Fig. 1 shows us that if we do not do a good job correcting the
delays before redundant-baseline calibration and degeneracy-fixing,
the difference between the true delays and the delay guesses will
phase-wrap (Fig. 1, top row, left-hand and middle panels), causing
phase jumps in all antenna gains (bottom row, left-hand and middle
panels). While a few such jumps may be easily spotted, increasing
the number of antennas or the delay error level makes this effect
so complicated that it becomes difficult to perform sky-referenced
absolute calibration.8 Assuming that phases are zeroed at the centre
of the band and phase-wraps occur at π and −π , then we need
|�τmax| < (νmax − νmin)−1. This yields a maximum delay error
of 10 ns for 100 MHz of bandwidth. The requirement gets more
stringent if instead phases have φ = 0 at 0 MHz; in the above
example we needed to restrict phase errors to |�τmax| < 2.5 ns
to avoid phase-wraps, which is conservative but not too terribly
challenging.

We cannot just do anything – we must fix the degeneracies if
we want to keep any later degeneracy-fixing to match the sky (i.e.
absolute calibration) as simple and smooth as possible. But in doing
so, we must make sure we avoid phase-wraps from relatively small
delay errors. It follows then we must begin degeneracy-fixing with a
smooth, approximate solution. A single delay per antenna is usually

7Technically, a noise-free simulation has undefined χ2, but we simply mean
that all the differences in the numerator of equation (3) are zero to within
numerical precision.
8Zheng et al. (2017) propose an alternative degeneracy-fixing scheme where
three antennas have their phases set to zero. This can ameliorate the problem
seen in Fig. 1, which presents the worst-case scenario in the left column.
However, the alternative approach relies on prior knowledge that the refer-
ence antennas are stable and working properly – which may not always be
the case. It also is more likely to phase the array far from zenith, making
absolute calibration somewhat more difficult.
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Figure 1. Getting accurate delays before performing redundant-baseline calibration is key to avoiding spectral structure introduced by degeneracy-fixing.
Here, we show the phases of complex antenna gains as a function of frequency for each element in a simulated 7-element HERA observation, comparing the
case where the errors in our estimate of the random delays are ∼ 50, ∼ 5, and ∼0.5 ns. Each line is a different antenna. Different levels of delay errors produce
different amounts of phase-wrapping, seen most clearly in the difference between the true delays, τ true

j , and the estimated delays, τ est
j (top row). When the

true delays are taken out of the true full gains (middle row), the residual phase, φj from equation (11), is small and simulated to have little intrinsic spectral
structure. However, when the true gains are pre-calibrated with differing levels of delay errors, the ensuing phase-wraps combine with our degeneracy-fixing
method to produce discontinuities in the calibration solution if the delay errors are large enough (bottom row). In all three noise-free simulations, the gain
and visibility solutions converge to perfect redundancy with the input simulation; redundant-baseline calibration does its job minimizing χ2. Examining the
5 ns case, it is clear that individual antenna phase-wraps in the delay error (top row) correspond to and in fact cause dramatic phase jumps in the gain errors
(bottom row). The 0.5 ns case, which does not phase-wrap, still shows some differences between the true gains and the gain solutions, but this is expected.
While redundant-baseline calibration did not give exact the right answer inside the degenerate subspace, its errors are as spectrally smooth as the simulated
gains and therefore much more easily removed with absolute calibration.

sufficient. Since antenna delays are generally stable over time, using
the same delays for multiple integrations also gives us consistent
degeneracy structure from integration to integration, making abso-
lute calibration easier. Also, since we need a good starting point
for linearized redundant-baseline calibration anyway, an accurate
per-antenna delay kills two birds with one stone.

Thankfully, good methods for finding antenna delays already
exist, including both a sky-based approach (Kern et al. 2017) and
one using only redundant-baseline pairs instead of a sky model.
This technique, called firstcal,9 fits the ratio of two redundant
visibilities to a single τ which is a combination of the four antenna
τ s involved in the ratio. By building up a system of equations much
like that of redundant-baseline calibration, τ i can be largely solved
for. A similar method was used in Parsons et al. (2014), though
a more complete and formal description can be found in Li et al.

9Also available in the most recent version of hera cal.

(in review). This improves upon Zheng et al. (2014) which uses a
sky and instrument model for so-called rough calibration. It also
improves upon Zheng et al. (2017) which suggests a per-frequency
technique that is invulnerable to phase-wrapping but can create
much more temporal structure than the more physically motivated
delay approach of firstcal. There are still three firstcal
degeneracies, very similar to the ones in Section 2.3, and they
affect whether source images appear in the right place on the sky.
However, since these degeneracies do not source the kind of spectral
structure in the gains that causes the phase-wrapping we are focused
on in this work, we forgo a more detailed exploration of them
here.

2.5 Assumptions of redundant-baseline calibration

The need for an accurate delay for each antenna in order to avoid
spectral structure highlights the fact that redundant-baseline cali-
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bration relies on a number of assumptions to work well. While a
single delay per antenna has, in our experience, been close enough
to restrict our calibration space to the −π to π range, there is no
a priori reason for this to be true. It is possible that we need to
initialize our redundant calibration with a low-order polynomial in
ν, instead just a linear phase slope created by a delay. As long as
we can get within a phase-wrap, we do not have to worry about
degeneracy-fixing.

That said, there are many other possible deviations from redun-
dancy. It is beyond the scope of this work to quantify the impact
of these on cosmological measurements. However, our pedagogical
review would be incomplete with an explicit enumeration of the
possible future issues with redundant-baseline calibration:

(i) As we already discussed above, it is essential that we can
find a spectrally smooth starting solution, ideally a single delay per
antenna, that lets redundant-baseline converge to the right answer
and prevents degeneracy-fixing from introducing spectral structure
into the gain and visibility solutions.

(ii) If antennas are not placed perfectly redundantly or if the array
is not perfectly coplanar, we break the assumption that nominally
redundant baselines are actually measuring the same mode on the
sky. Since small model errors can create worrisome spectral struc-
ture (Ewall-Wice et al. 2017), this deserves further investigation.
However, this effect can potentially be ameliorated by a couple of
extensions to standard redundant-baseline calibration framework. If
the deviations from the redundant grid are well-measured, one can
add additional degrees of freedom that admit such non-redundancy
self-consistently by Taylor expanding the visibility solutions as a
function of baseline (Liu et al. 2010). Alternatively, the framework
of Sievers (2017) incorporates partial redundancy statistically into
χ2, penalizing not-quite redundant baselines less for having differ-
ing visibility solutions. Both require further investigation outside
the scope of this work.

(iii) While one generally seeks to make one’s elements as iden-
tical as possible, some variance from primary beam to primary
beam is inevitable. Unfortunately, no method we know of can fully
absorb this effect into redundant calibration if the actual beam-
to-beam variation is poorly characterized. This is likely to induce
spectral structure into calibration as well, as was seen in simula-
tions of sky-based calibration with primary beam errors (Ewall-
Wice et al. 2017). This can also manifest as an antenna-to-antenna
variation of polarized leakage, which we will discuss in detail in
Section 3.3.

(iv) Correlated noise between two antennas, either due to trans-
mission by one or due to communication between nearby inputs on
a printed circuit board, leads to apparent signal that is not redundant
between baselines (Kohn & Aguirre 2015). This crosstalk can be
mitigated by good antenna design (DeBoer et al. 2017), in the elec-
tronics with Walsh modulation (Zheng et al. 2014), or by filtering
signals that apparently do not change as the sky rotates (Parsons
et al. 2016), but the exact magnitude of the effect remains an open
question.

(v) Pairs of nominally redundant baselines that are separated
from each other by several km see a different isoplanetic patch
of the ionosphere (Vedantham & Koopmans 2015), leading to two
slightly differently warped skies and thus different visibilities. At
these distances we might also begin to worry about array non-
coplanarity and pointing errors due to the curvature of the Earth.
We include this effect for completeness; it is not expected to affect
the redundant-baseline calibration of any operational or planned
highly redundant interferometer.

3 INCORPORATING POLARIZATION IN
REDUNDANT-BASELINE CALIBRATION

Having summarized the challenges presented by the challenges of
redundant-baseline calibration, we now are ready to relax the simpli-
fication that we only need to calibrate a single antenna polarization.
Most 21 cm interferometers (including LOFAR, GMRT, MWA, PA-
PER, CHIME, HIRAX, HERA, and SKA-low) are dual-polarization
instruments. They simultaneously measure electromagnetic signals
from two orthogonal antenna polarizations, n and e.10 These are
correlated to form four visibility polarizations, V ee

ij , V en
ij , V ne

ij , and
V nn

ij . The cross-polarized visibilities, V en
ij and V ne

ij , will generally
have much lower signal-to-noise (SNR) ratios than the parallel-
polarized visibilities, V ee

ij and V nn
ij , though they have the same noise

levels. This is because the cross-polarized visibilities are only sen-
sitive to intrinsically linearly polarized emission (<1 per cent of the
foregrounds) and leakage from unpolarized emission (∼10 per cent
of the foregrounds near the horizon) which usually dominates in
21 cm cosmology (Lenc et al. 2016; Kohn et al. 2016; Nunhokee
et al. 2017). However, all four visibility polarizations are necessary
to make images of each of the four Stokes parameters I, Q, U, and
V (Thompson, Moran & Swenson 2017). The generalization to po-
larized redundant-baseline calibration has not been addressed in the
literature and presents new and unique challenges.

Generalizing equation (2), we now model our observations as

V
ab,obs
ij = ga

i g
b∗
j V

ab,sol
i−j (14)

where a and b stand in for either e or n for antennas i and j,
respectively, and we have again omitted the explicit frequency
dependence.11 If we only want to calibrate the highest SNR vis-
ibilities – V ee

ij and V nn
ij – then this problem decouples into the

independent calibration of the East–West visibilities with the East–
West gains and the North–South visibilities with the North–South
gains. Degeneracy-fixing is the same as in Section 2.3, effectively
leaving the problem of relative calibration between e and n for later
absolute calibration.

Though we have four times as many visibilities, we only have
double the number of complex gains; this gives us a new way to
connect together visibilities self-consistently via the gains. Ideally,
we would solve for everything simultaneously, minimizing a χ2

generalized from equation (3) to

χ2 =
∑

a,b∈e,n

⎡
⎢⎣ ∑

all pairs i,j

∣∣∣V ab,obs
ij − ga

i g
b∗
j V

ab,sol
i−j

∣∣∣2

(
σab

ij

)2

⎤
⎥⎦ , (15)

This couples all four visibility polarizations via the antenna gains
into one large system of equations. It produces a very similar A
matrix to that described in equations (6) and (7), but with four times
as many equations, nearly four times as many parameters to solve
for.12

10These are often referred to x- and y-polarizations (to highlight their orthog-
onality), but we use e and n (for East–West and North–South orientations)
to avoid confusion with antenna position. Of course, there is no requirement
that the polarizations must line up with the cardinal directions, but we are
assuming that they are orthogonal to one another.
11Though for now we assume that a single complex gain per antenna is
sufficient, we will relax this assumption in Section 3.3.
12An explicit derivation of A for full-polarization χ2 minimization is not
particularly illuminating and so we omit it here.
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3.1 Degeneracies in polarized redundant-baseline calibration

Just as in the single polarization case, the form of χ2 in equation (15)
features several different ways to modify the gains and visibilities
so as to leave χ2 unchanged. Once again, these degeneracies are key
to maintaining spectral smoothness and depend on precisely what
analytical approach we take.

The polarized extension of redundant-baseline calibration where
we only consider the high-SNR parallel-polarized visibilities, V ee

ij

and V nn
ij , ignoring V en

ij and V ne
ij , is trivial. The e and n polarizations

decouple and there are precisely eight degeneracies – the same four
we saw in Section 2.3 for each of the two antenna polarizations. This
approach, which we refer to as 2-pol calibration (in contrast 1-pol
above or 4-pol below), is simpler and computationally cheaper, but
comes at the cost of throwing away some information. The cross-
polarized visibilities are left to be calibrated later using the gains
from the 2-pol solution.

The best approach in an ideal world would be to minimize the
χ2 for both gain polarizations and all four visibility polarizations
simultaneously. Decomposing the associated A matrix reveals that
the nullspace is spanned by six eigenvectors, not eight. Bringing
in V en

ij and V ne
ij apparently allows us to solve for two of the eight

degeneracies. In retrospect, this is not surprising as there are six
independent ways that gains and visibilities can be modified without
changing χ2 in equation (15). Those 4-pol degeneracies are as
follows:

(1) The overall e-polarization amplitude. All ge
j −→ Aeg

e
j .

(2) The overall n-polarization amplitude. All gn
j −→ Ang

n
j .

The combined effect of these two can be perfectly cancelled by
transforming the visibility solutions as

V
ab,sol
i−j → V

ab,sol
i−j /(AaAb) (16)

where both a and b stand in for either e or n.
(3) The e-polarization overall phase. All ge

j −→ ge
j e

iψe .
(4) The n-polarization overall phase. All gn

j −→ gn
j e

iψn . Once
again, these effects can be cancelled by transforming the visibility
solutions as

V
ab,sol
i−j → V

ab,sol
i−j ei(ψa−ψb). (17)

Here V nn
i−j and V ee

i−j are unmodified, as in the 1-pol case.
(5) The x-phase gradient. Just as in the 1-pol case, if ga

j →
ga

j ei�xxj and V
ab,sol
i−j → V

ab,sol
i−j e−i�x�xij , then χ2 is unchanged.

(6) The y-phase gradient. Likewise, if ga
j → ga

j ei�yyj and

V
ab,sol
i−j → V

ab,sol
i−j e−i�y�yij , then χ2 is unchanged.

It is notable that the last two degeneracies are polarization-
independent. By introducing V en

ij and V ne
ij , we have broken the

two independent phase gradient degeneracies that we get in
the 2-pol case. To understand this, consider the alternative case
where ge

i → ge
i ei�e

xxi and . We would need to transform V en
i−j −→

V en
i−j e−i(�e

xxi−�n
xxj ). If �e

x �= �n
x , then the phase factor cannot be

factored in the exponent and the new visibility becomes an explicit
function of antenna position, not just the baseline vector. But, as-
suming antennas are identical and perfectly positioned, the unique
visibility V en

i−j cannot depend on position. This contradiction is only
resolved only if �e

x = �n
x = �x and �e

y = �n
y = �y .

3.2 Difficulties of 4-polarization redundant-baseline
calibration

Breaking two additional degeneracies – and therefore having to rely
on absolute calibration to solve for two fewer numbers per frequency

Figure 2. While 4-pol calibration has the potential to break two of the eight
redundant-baseline calibration degeneracies, these are only broken by the
addition of cross-polarized visibilities that tie e and n polarizations together.
These visibilities generally have much less sky-signal, which means that
they have low SNR. Fixing only the six true degeneracies described in
Section 3.1 to 1 (for amplitudes) or 0 (for phases) gives smaller errors on
the gains at the cost of much nosier gain solutions. Here, we plot the error in
the phase of a subset of the antenna gains of a 19-element array with three
different calibration techniques. First, we show the result of 4-pol redundant-
baseline calibration after fixing the six degeneracies (top panel). Next we
show the result of the same χ2 minimization procedure but after fixing
the eight degeneracies of 2-pol calibration (middle panel). This essentially
throws out the information in those degenerate modes, saving the problem
for later absolute calibration. It produces very similar results to having
simply excluded the cross-polarized visibilities from both χ2 minimization
and degeneracy-fixing (bottom panel).

and time – sounds really useful. Unfortunately, it is not so simple.
Cross-polarized visibilities, as we mentioned above, have much
lower SNR than parallel-polarized visibilities. Since introducing
V en

ij and V ne
ij broke two of the four phase gradient degeneracies, it

follows that our constraint within that subspace comes only from
cross-polarized observations. While we have information to break
the degeneracy, it is very noisy compared to the rest of the data that
informs our calibration.

The effect of this is shown most clearly in Fig. 2. We simulate
spectrally smooth gains and visibilities for a 19-element HERA-
like array, much like we did in Fig. 1 (without delay errors), but
now for both e and n antenna polarizations and all four visibility
polarizations. Then we add white noise at equal levels to all ‘ob-
served’ visibilities, but only after decreasing the signal level in the
cross-polarized visibilities by a factor of 10. This gives our parallel-

MNRAS 477, 5670–5681 (2018)Downloaded from https://academic.oup.com/mnras/article-abstract/477/4/5670/4987227
by University of California, Berkeley/LBL user
on 31 May 2018



5678 J. S. Dillon et al.

polarized visibilities an SNR of ∼10 and our cross-polarized visi-
bilities an SNR of ∼1.

We then assess three different calibration techniques and plot the
gain phase errors they produce. The first is standard 4-pol redundant-
baseline calibration (top panel). The second is standard 2-pol cal-
ibration (bottom panel). The third is a hybrid approach where we
minimize χ2 as in the 4-pol approach with all four visibility po-
larizations, but then throw away V en

i−j and V ne
i−j and fix the eight

degeneracies of the 2-pol case (middle panel).
The 4-pol approach has smaller phase errors than the other two,

but it is much noisier. The additional constrained degrees of freedom
in the 4-pol approach, the two phase gradient degeneracies, are only
informed by the low SNR cross-polarized visibilities. No inverse
noise variance weighting scheme can help us here. It is not that the
high-SNR parallel-polarized visibilities are given too little weight
relative to the low-SNR cross-polarized visibilities. The parallel-
polarized visibilities get zero weight in the determination of these
two modes, regardless of how much we up-weight them, because
they contain no information about the modes. The rest of the χ2

landscape is dominated by the parallel-polarized visibilities, even
when they get equal noise weighting, because they have much larger
signals. The extra noise effect goes away if cross-polarized and
parallel polarized visibilities have the same SNR. Likewise, the
improvement in the phase errors goes away as the signal level in the
cross-polarized visibilities goes to zero.

The smaller errors are unlikely to be worth the additional cost.
This extra noise gets spread through the gains to the calibrated
parallel-polarization visibilities, giving them a much higher effec-
tive noise level that will integrate down more slowly with repeated
observations. It seems better to effectively impose a strong prior that
we trust sky-based absolute calibration for these modes – which ul-
timately correspond to the relative pointing of the array between n
and e – in order to not introduce additional spectral structure into
the gains and high-SNR visibilities.

It may be possible to extract a constrained or smoothed solution
for the two additional degeneracies that has many fewer degrees
of freedom and thus is less noisy. Doing so will require additional
assumptions about true relative phase gradients and so we leave that
investigation to future work.

Likewise, one possible instrumental solution would be to rotate
some of the antenna feeds by ±45◦, producing a dipole pattern
that looks, for example, like + × + × from above. We would then
have four dipole orientations, e, n, +, and −, and up to 16 visibility
polarizations per baseline. While cross-polarized visibilities have
very low SNR, visibilities like V e+

ij should actually exhibit only
a moderate hit to SNR. This could connect together all visibility
in one redundant-calibration system through relatively high-SNR
measurements. On the other hand, it increases the complexity of the
calibration and mapping problems and reduces the number of si-
multaneously redundant baselines for any particular separation. Not
all array configurations that are redundant with two dipole orienta-
tions polarizations are still redundant when some of the antennas
are rotated. The possibility merits further investigation, though be-
cause no current or planned experiment features a mix of e/n and
+/− orientated feeds, we again leave it for future work.

This all raises another question: is it worthwhile to bother includ-
ing the cross-polarized visibilities in χ2 minimization at all? It is
certainly more computationally difficult to perform fully polarized
redundant-baseline calibration. By doubling the number of gains
and quadrupling the number of visibilities solved for simultane-
ously, we increase the cost of matrix inversion in equation (9) by
up to a factor of 64, though if we only have to perform the inver-

sion half as often as in the 2-pol case. However, if our chief aim is
to make a measurement of polarized foregrounds, then excluding
cross-polarized visibilities from χ2 will generally lead to calibrated
cross-polarized visibilities that are less redundant with each other
– effectively a noisier measurement. Even if all we care about is
parallel-polarized visibilities for a PAPER-style power spectrum
analysis (Parsons et al. 2014), we should expect that including
cross-polarized visibilities leads to lower noise. More information
is always better, even if it is noisy.

That decrease in noise is real, though difficult to see in Fig. 2. It
turns out to be quite small in our simulation. Comparing the gains
only in the non-degenerate subspace of 2-pol redundant calibration,
we find that χ2 minimization with all four visibility polarizations
decreases the errors in the gains by 0.62 per cent. This improvement
is small for a number of reasons: the number of data points doubled,
but the new ones all had low SNR. The number of new variables
also increased for the cross-polarized visibility solutions, though
it did not quite double. The improvement in the parallel-polarized
visibility solutions, only 0.0044 per cent, is roughly the fractional
improvement squared because cross- and parallel-polarized visibil-
ities are connected only indirectly in the linear system in equation
(14). Apparently, as long as the assumption of redundancy holds,
we need to choose between a small decrease in noise and a sizable
increase in computational cost.

3.3 The effect of non-redundant polarization leakage

Another concern about 4-pol χ2 minimization is the possibility that
cross-polarized visibilities may be less redundantly calibratable than
parallel-polarized visibilities. The sources of non-redundancy like
position errors and beam-to-beam variation, which we discussed in
Section 2.5, affect both types of visibilities in similar ways. This is
not the case with antenna polarization leakage, often referred by its
symbol asD-terms.13 D-terms represent the complex response of the
e or n antenna feed to the n- or e-polarized component, respectively,
of the local electric field (Hamaker, Bregman & Sault 1996; Sault,
Hamaker & Bregman 1996). They are also another way for Faraday
rotation to produce spectral structure in our Stokes I estimate due to
varying Stokes U and Stokes V leakage as a function of frequency.

Following Thompson et al. (2017), we can write the observed
visibilities in terms of the ‘true’ visibilities as

V
ee,obs
ij

ge
i g

e∗
j

= V ee
ij + Dn→e

i V ne
ij + Dn→e∗

j V en
ij + Dn→e

i Dn→e∗
j V nn

ij

V
en,obs
ij

ge
i g

n∗
j

= V en
ij + Dn→e

i V nn
ij + De→n∗

j V ee
ij + Dn→e

i De→n∗
j V ne

ij

V
ne,obs
ij

gn
i g

e∗
j

= V ne
ij + De→n

i V ee
ij + Dn→e∗

j V nn
ij + De→n

i Dn→e∗
j V en

ij

V
nn,obs
ij

gn
i g

n∗
j

= V nn
ij + De→n

i V en
ij + De→n∗

j V ne
ij + De→n

i De→n∗
j V ee

ij , (18)

13Two different effects are called ‘polarization leakage,’ and it is important
to be clear what we mean. Our earlier discussions of visibility polarization
leakage (Sections 1 and 3) were focused on leakage from Stokes I into cross-
polarized visibilities and from Stokes Q and U into the parallel-polarized
visibilities. These effects are largely due to beam geometry and are biggest
near the horizon for a zenith-pointed instrument. They peak at ∼10 per cent
for PAPER (Nunhokee et al. 2017), though they can vary substantially
between feed and element designs. In this paper, we mean only the direction-
independent polarization leakage terms described by equation (18).
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Figure 3. Antenna polarization leakage due to the ∼1 per cent sensitivity
of an antenna to a perpendicularly polarized electric field, known as D-
terms, is a potentially important source of non-redundancy. Here, we see
the resulting average relative gain errors (as defined in equation 19) from a
simulation of a HERA-19-like array with smooth spectrum gains, visibili-
ties, and D-terms, much like in Figs 1 and 2. We calibrate our simulation
using only parallel-polarized visibilities (2-pol) and with both parallel- and
cross-polarized visibilities (4-pol). Both calibrations produce gain errors
because antenna-to-antenna variation in D-terms breaks the assumption of
redundancy that underlies equation (14). However, because cross-polarized
visibilities generally have lower magnitudes than parallel-polarized, D-term
leakage biases cross-polarized visibilities more than parallel-polarized visi-
bilities. This makes them less redundant, leading to larger errors in the 4-pol
χ2 minimization approach.

where, for example, Dn→e
j represents leakage from intrinsic n-

polarized electric field to e-oriented antenna feed on the ith an-
tenna. D-terms are generally small (∼1 per cent), but their effect
on cross-polarized visibilities can be important. They provide a
mechanism by which parallel-polarized visibilities with ∼10 times
larger magnitudes can significantly affect the cross-polarized
antennas.

While the presence ofD-terms makes polarized mapmaking more
challenging, it is not inherently a problem for redundant calibration.
If the D-terms were all identical from antenna to antenna, we could
simply redefine our ‘true’ visibilities to be the right-hand side of
equation (18) and solve for model visibilities that are actually some
unknown linear combination of all four visibility polarizations. In
practice, that is not the case.

To explore the effect of D-terms that vary from antenna to an-
tenna, we again simulate a noise-free HERA-like 19-element array
with relatively smooth foregrounds, gains, and D-terms. Gains are
set to have an average value of 1.0 with random, antenna-varying but
spectrally smooth real and imaginary components at the 15 per cent
level. Likewise, D-terms have an average of zero but have a ran-
dom, smooth component that varies from antenna to antenna the
at the 1 per cent level. Our cross-polarized visibilities have lower
signal amplitudes by ∼10 than our parallel polarized visibilities.
To compare the results from 2-pol and 4-pol χ2 minimization, we
first take the gains, ga

i coming out of both algorithms and fix all
eight 2-pol degeneracies. Next we replace those degeneracies with
the true simulated gains to produce ḡa

j and compute gain errors for
each antenna as a function of frequency. Due to our degeneracy-
fixing and replacement, the errors are only in the non-degenerate
subspace of 2-pol redundant-baseline calibration and are due solely
to D-terms, not noise. Finally, in Fig. 3, we plot the average of those

errors defined as

ε =
∑

a∈e,n

∑
j

∣∣ḡa
j − g

a,true
j

∣∣∑
a∈e,n

∑
j g

a,true
j

. (19)

Both methods have identical degeneracy-fixing, substituting the
degenerate subspace of the true gain solutions into the eight degen-
erate degrees of freedom, in order to make the errors directly com-
parable. Without D-terms, both techniques would produce the exact
correct answer. As expected, introducing D-terms of the order of
∼1 per cent produces comparable errors in the gain estimates, gen-
erally less than 0.5 per cent, independent of array size. The simple
redundant calibration model from equation (14) that we are opti-
mizing cannot possibly perfectly reproduce the observed visibilities
from equation (18) when the D-terms vary. The precise magnitude
of the error should not be taken too literally since the average mag-
nitude of D-terms depends on antenna design choices, like using a
dish or a dipole, and on the precision of element construction.

Interestingly, the effect is about 40 per cent worse when using 4-
pol χ2 minimization compared to 2-pol χ2 minimization, even with
the same degeneracy-fixing method. This makes sense:D-terms leak
more signal from parallel-polarized visibilities into cross-polarized
visibilities than vice versa precisely because there is more signal
to leak. This means that D-terms make cross-polarized visibilities
less redundant than their parallel-polarized counterparts and thus
the assumptions underlying 4-pol redundant-baseline calibration
weaker. Thankfully the errors do not introduce additional spectral
structure beyond what was already in the simulation, though 4-
pol calibration clearly magnifies the error associated with ignoring
D-terms compared to the 2-pol approach.

It may be possible to simultaneously calibrate D-terms, gains,
and visibilities through a generalized redundant-baseline calibration
formalism based on equation (18). It is not clear if D-terms are the
leading-order deviation from non-redundancy and therefore the best
way to extend the degrees of freedom in the calibration model. It
is also likely that such a generalization will introduce additional
degeneracies which will need to fix in a frequency-smooth way. We
leave those questions for future work.

4 DISCUSSION OF ANALYSIS CHOICES FOR
REDUNDANT-BASELINE CALIBRATION

In this paper, we explored some of the subtleties of calibrating
antenna gains and phases by taking advantage of repeated, sup-
posedly identical measurements. Using redundant baselines, one
can solve for most – but not all – of the calibration degrees of
freedom. These remaining unsolved quantities, the degeneracies of
redundant-baseline calibration, must be resolved using information
about the sky. Redundant-baseline calibration makes the problem of
subsequent absolute calibration much easier. Instead of calibrating
one complex number per polarization per antenna per frequency,
one only needs to calibrate six to eight numbers per frequency for
the whole array, depending on one’s analysis approach. Good cal-
ibration is key to preserving the separation in Fourier space of the
21 cm signal and the spectrally smooth foregrounds that are ∼105

times brighter. Small errors can make a big difference.
Our strategy for dealing with the redundant calibration degenera-

cies focuses on simplifying the later absolute calibration that will
ultimately resolve them. In principle, any solution that redundant
calibration produces in the degenerate subspace can be removed
and recalibrated. In practice, we will likely want to restrict the de-
grees of freedom that go into absolute calibration to avoid adding
spectral structure on scales we have an a priori reason to believe
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that the instrument’s spectral response is smooth. Enabling these
sorts of restrictions on absolute calibration means that we must be
very careful to avoid adding extra spectral structure in the degen-
eracies. We saw in Section 2.4 how large delay errors could cause
exactly such a problem and showed the accuracy necessary to avoid
introducing spectral structure.

We also explored the generalization of redundant-baseline cali-
bration to observations with both orthogonal antenna polarizations
(and thus four visibility polarizations). We derived the new degen-
eracies in Section 3.1, showing how the expansion to two antenna
polarizations doubles the number of degeneracies to eight per fre-
quency, and how the inclusion of cross-polarized visibilities breaks
two of those eight. However, because cross-polarized visibilities
generally have much lower SNR than the parallel-polarized visibil-
ities, that degeneracy breaking is noisy and risks adding spectral
structure that will integrate down more slowly that the rest of the
thermal noise (see Fig. 2).

This problem can be solved in two ways. Either we simply ignore
the cross-polarized visibilities and calibrate the instrumental polar-
izations completely separately, the 2-pol approach, or we calibrate
all four visibilities together (4-pol χ2 minimization) but ignore the
two weakly broken degeneracies (2-pol degeneracy-fixing). The for-
mer approach throws away information, raising noise slightly, and it
can lead to less redundant calibrated cross-polarized visibilities. The
later approach also solves the pressing problem of high noise across
the entire band and produced slightly less noisy calibration solu-
tions, but it introduces extra vulnerability to the antenna-to-antenna
variation of polarization leakage D-terms. These non-redundancies
break the assumptions of redundant-baseline calibration asymmet-
rically, biasing the cross-polarized visibilities more strongly than
the parallel-polarized visibilities.

For cosmological measurements, the 2-pol approach seems to
be most conservative approach for now. For polarized foreground
studies, the case may be different. The calibration simulations in this
work are physically motivated, but are still somewhat simplistic.
Further simulation with realistic beams is needed to quantify the
difference between the 2-pol and 4-pol approaches. It may be that
the right answer is not the same for every instrument. The 2-pol
approach also happens to be the cheapest, computationally.

That said, much work remains to make redundant-calibration
robust to deviations from redundancy due to position errors, beam
variations, D-terms, etc. Perhaps the question of polarization will
be worth revisiting in the context of techniques for incorporating or
mitigating non-redundancy (e.g. Liu et al. 2010 or Sievers 2017). As
our instrumental knowledge and the sophistication of our calibration
methods improves, we may be able to take advantage of the extra
information and degeneracy breaking power of the cross-polarized
visibilities that we lose by conservatively excluding them from
redundant-baseline calibration.
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