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A Recursive Algorithm for Wideband
Temporal Spectrum Sensing

Joseph M. Bruno,Member, IEEE, and Brian L. Mark,Senior Member, IEEE

Abstract— Wideband spectrum sensing techniques determine
which portions of a given spectrum band are occupied or idle
in the frequency domain. The idle portions represent spectrum
holes that can potentially be exploited by secondary or unlicensed
users. Existing methods for wideband sensing, however, do not
take into account the temporal activity of the primary or licensed
users within the spectrum band. We propose an algorithm that
identifies primary user activity over a wide spectrum band and
provides a statistical characterization of the primary user signals
in the band. The algorithm applies hidden Markov modeling
to a hierarchically partitioned representation of the spectrum
band, together with a recursive tree search. Different from
existing wideband sensing algorithms, the proposed wideband
temporal sensing method is able to accurately detect spectrum
holes even in the presence of bursting primary user signals.
Moreover, the hidden Markov modeling of the primary user
signals enables the accurate detection and the prediction of
primary user activity over time. Numerical results demonstrate
the significant performance gain of the proposed algorithm over
existing wideband spectrum sensing algorithms, particularly in
the presence of low duty-cycle primary user signals.

Index Terms— Cognitive radio, spectrum sensing, wideband,
hidden Markov model.

I. INTRODUCTION

DUE to the rapidly increasing demand for capacity in
wireless networks, radio frequency (RF) spectrum access

becomes more precious every day. However, it has been shown
that fixed frequency allocations have left large portions of
the RF spectrum underutilized [2]. Cognitive radio aims to
increase utilization of those bands without disruption to the
licensed or primary user [3]. In order to maximize capacity
and minimize service disruptions to the primary user (PU),
a cognitive secondary user (SU) must employ sophisticated
sensing techniques to accurately detect or anticipate the pres-
ence or absence of a PU signal in a spectrum band.
Most of the early work on spectrum sensing focused on
a narrowband channel, where the PU signal is assumed to
be either active or idle at all times. Well-known detection
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algorithms for narrowband sensing include energy detection,
cyclostationary feature detection, and matched filter detec-
tion [4]. The energy detector is the simplest of the narrowband
detectors and requires no a priori knowledge of the channel,
but it performs poorly in the case of low signal-to-noise
ratio (SNR). The most sensitive of the listed sensing algo-
rithms is the matched filter, which requires a priori knowledge
of the PU waveform, but can detect PU activity at very
low SNR. Cyclostationary feature detection lies between the
matched filter and energy detector in terms of performance at
low SNR, but incurs significant computational cost and long
integration windows. Cyclostationary detector performance is
degraded in the case of low PU duty cycle [5].
In wideband spectrum sensing, several PUs may occupy por-
tions of a wide frequency band, but the center frequency and
bandwidth of each PU channel are assumed to be unknown.
A special case of wideband sensing, often referred to as
multiband spectrum sensing, operates under the assumption
that the PU channel spectrum parameters are known. Wide-
band sensing has been studied in a number of papers under
the assumption that the PU state is either on or off at all
times [6]–[13]. In other words, the temporal dynamics of the
PUs are not taken into account in the prior work on wideband
sensing. The wideband sensing techniques developed in these
works are based on energy detection, edge detection, or cyclo-
stationary feature detection. To reduce the sampling rate
required for estimating the power spectral density over a wide
frequency band, compressive sensing techniques have been
proposed in [14] and applied to wideband sensing based on
edge detection as in [12].
Temporal spectrum sensing, which takes into account the
dynamic behavior of the PU, has been studied primarily in
the narrowband setting. Given that many modern waveforms
employ some sort of time division multiple access (TDMA),
spectrum sensing algorithms that incorporate a dynamic
PU model, such as [15], are highly desirable. Hidden Markov
models (HMMs) have been proposed to characterize the
dynamic behavior of the PU and predict future tempo-
ral spectrum holes on a narrowband channel. The underly-
ing process of the HMM represents the state of the PU,
which can be detected only indirectly through the observable
process [16], [17]. In [16], a finite alphabet HMM is assumed.
In [17], the observable process is conditionally Gaussian
given the underlying state to model the effect of lognormal
shadowing and other channel impairments. The HMM itself is
extended to a hidden bivariate Markov model, which allows for
modeling a much more general class of PU state sojourn time
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distributions. Modeling of PU activity as a Markov process has
also been extended to the multiband case, where the allocation
of total sensing time among multiple known bands has been
studied [18]. A multichannel MAC (medium access control)
is proposed in [19], where the PU channels are modeled
as Markov on-off processes. In [18] and [19], the PU state
is assumed to be directly observable, such that the channel
impairments are not taken into account.
To our knowledge, there has been very little work on

spectrum sensing jointly in time and over a wide frequency
band. Narrowband or multiband temporal sensing algorithms
require prior knowledge of the locations of the PU channels
within a spectrum band, while wideband sensing algorithms
proposed in the literature assume that the PUs are static,
i.e., they are on at all times. In this paper, we develop
a framework forwideband temporalsensing, which tracks
dynamic PU signal activity in both time and frequency by seg-
menting the spectrum band into smaller subbands. We apply an
HMM-based temporal sensing algorithm to each of the chan-
nels, allowing for detection of PUs with low duty cycle in the
wideband regime. We model the set of subbands as a balanced
binary tree and perform a recursive search for spectrum holes.
Adjacent spectrum holes are merged into a single spectrum
hole. This process is carried out in a recursive manner with
the objective of determining a minimal set of PU channels,
of possibly different bandwidths, that spans all PU signals
in the spectrum band. In effect, our approach reduces the
wideband temporal sensing problem into a multiband sensing
problem.
Existing wideband sensing techniques generally compute
the power spectral density for a given spectrum band by
averaging power estimates over a time window. The implicit
assumption is that the power spectral density remains static,
at least for the duration of the averaging window. However,
such wideband sensing algorithms may fail to detect PUs
that change state dynamically over time, and are especially
inadequate in the presence of PUs with low duty cycle. Our
experimental results demonstrate that the proposed scheme for
wideband temporal sensing significantly outperforms existing
wideband sensing approaches, particularly in the presence of
PU signals with low duty cycles. More importantly, the incum-
bent techniques for wideband sensing are not able to fully
exploit temporal spectrum holes for dynamic spectrum access,
since they do not model the temporal behavior of spectrum
activity.
The main contribution of this paper is a systematic frame-
work and computationally efficient algorithms for wideband
sensing that explicitly take into account the temporal activity
of dynamic PUs. The proposed wideband temporal sensing
algorithm provides an efficient and practical solution to a
problem that has not previously been addressed in the literature
on spectrum sensing. The primary innovations of our approach
consist of (1) application of hidden Markov modeling to a
partitioned representation of the spectrum band, (2) a recursive
tree search for finding and aggregating spectrum holes to
identify dynamic PU signals in the given spectrum band. The
proposed wideband temporal sensing algorithm results in the
identification of a minimal setof PU channels that spans the

spectrum band, together with HMM parameters characterizing
each of the channels in the set. The HMM parameters can
then be used to perform temporal spectrum sensing of the
identified channels as in [17]. In particular, the statistical
characterization of PUs signalsby HMMs (or more generally,
the hidden bivariate Markov models in [17]) enables accurate
detection and prediction of PU activity. This opens the door
for secondary users to exploit spectrum holes occurring both
in time and frequency.
The key technical challenge in extending the narrow-

band spectrum sensing algorithm in [17] lies in identify-
ing the unknown PU channel boundaries (or equivalently,
the spectrum holes), and characterizing each of the identified
PU channels by an HMM parameter in a computationally effi-
cient manner. This requires an efficient tree search procedure
combined with HMM parameter estimation applied to a large
set of subbands, as well as a fast and accurate method for
aggregating the subbands into spectrum holes. The remainder
of the paper is organized as follows. In Section II, we dis-
cuss and evaluate the performance of two existing wideband
spectrum sensing techniques. In Section III, we introduce a
system model for a dynamic PU under channel fading and
noise impairments. In Section IV, we develop our proposed
recursive tree search algorithm to perform wideband temporal
spectrum sensing. In Section V we describe the simulation
that was used to compare the proposed algorithm to existing
algorithms and present numerical results. Concluding remarks
are given in Section VI.

II. COMPARISON OFWIDEBANDSPECTRUM
SENSINGTECHNIQUES

In the wideband spectrum sensing scenario, an SU must
sense an entire band and determine channel boundaries. The
bandwidth that must be sensed can vary from the order
of 1 MHz to 1 GHz. Wideband spectrum sensing is required
if the SU cannot leverage any external information about
channel allocation. An example of external channel infor-
mation is provided by the television bands in the United
States, where 6 MHz channels have been clearly defined by
the Federal Communications Commission [20]. An SU can
perform wideband sensing during initialization and then revert
to multiband or narrowband sensing during normal operation.
To evaluate the incumbent wideband sensing tech-
niques, orthogonal frequency division multiplexing (OFDM)
and Gaussian minimum shift keying (GMSK) are used.
OFDM signals exhibit sharp rectangular band edges, whereas
GMSK signals exhibit gradual sloping band edges. Because
these signals represent extremes in the boundaries between
signals, the performance of the evaluated detectors on
other modulations should fall somewhere between that of
OFDM and GMSK. Not only do they have drastically different
band edges, but GMSK and OFDM are pervasive in modern
wireless standards such as GSM (GMSK), WiFi (OFDM), and
LTE (OFDM).
We assume that a channel can take on one of two states: an
idle state, in which the PU does not transmit, and an active
state, in which the PU transmits. We denote idle and active
states by 0 and 1, respectively. For a given channel, the steady-



28 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 66, NO. 1, JANUARY 2018

Fig. 1. Results of a wideband energy detector for OFDM signals
with 10 dB SNR and 100%, 50%, 25%, and 12.5% duty cycles.

state probabilities that the PU is idle and active are denoted,
respectively, byπ0andπ1. The duty-cycle of the channel
corresponds toπ1stated as a percent value.

A. Wideband Energy Detector

A very simple wideband sensing technique is a wideband
energy detector [21], [22] where the SU estimates the power
spectral density (PSD) over the entire band and employs an
energy threshold to determine PU activity. Many PSD frames
may be averaged to increase reliability. This simple algorithm
has many limitations. Like all energy detectors in additive
white Gaussian noise (AWGN), this technique has limited
sensitivity, and performance is severely degraded at low SNR.
Furthermore, the sensitivity of the averaged PSD estimate
will be degraded in the case where the PU exhibits dynamic
behavior. If the PU employs a bursting signal or frequency
hopping, idle periods may be averaged together with active
periods, which compromises the estimator’s accuracy.
Figures 1 and 2 qualitatively show the sensing results of

a frequency-domain energy detector for OFDM and GMSK
signals, respectively. Shaded areas represent detected spectrum
holes. All of the signals shown have an SNR of 10 dB, but
for the bursting signals, the magnitude of the PSD estimate
decreases with the duty cycle. This decreased PSD magnitude
degrades the performance of the energy detector for both
modulation schemes.
Performing a maximum hold operation rather than aver-

aging PSD frames has been proposed for detecting dynamic
PUs [23]. Maximum hold detectors have identical complexity
and memory requirements to averaging detectors with the
same number of frequency bins and sensing duration. How-
ever, maximum hold energy detectors are outperformed by
averaging detectors in low SNR [23]. Furthermore, maximum
hold energy detectors can actually result in higher probability
of false alarm as observation lengths are increased due to
increased likelihood of an abnormally high noise power during
the sensing interval. These two shortfalls make maximum hold

Fig. 2. Results of a wideband energy detector for GMSK signals with 10 dB
SNR and 100%, 50%, 25%, and 12.5% duty cycles.

Fig. 3. Results of a wideband edge detector for OFDM signals with 10 dB
SNR and 100%, 50%, 25%, and 12.5% duty cycles.

energy detectors inadequate for cognitive radio applications
and motivate the need for a wideband sensing algorithm that
adequately detects dynamic PU activity.

B. Wideband Edge Detector

A popular approach to wideband spectrum sensing involves
performing frequency-domain edge detection to determine
channel boundaries. The edge detector proposed in [12] uses
the continuous wavelet transform to decompose edge detection
into multiple resolutions and then multiplies the resolutions
together, which has a beneficial effect of reducing the noise.
While edge detectors do offer an improvement over energy
detectors in terms of performance at low SNR, they come with
several limitations. Most importantly, edge detectors require
that PU signals have sharp transitions in the frequency domain.
This allows them to work well with the rectangular spectra
of signals like OFDM (see Fig. 3) and quadrature amplitude
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Fig. 4. Results of a wideband edge detector for GMSK signals with 10 dB
SNR and 100%, 50%, 25%, and 12.5% duty cycles.

modulation (QAM) with low excess bandwidth, but edge
detectors tend to perform poorly on signals with gradual slopes
on their band edges, such as QAM with large excess bandwidth
and GMSK.
The performance of an edge detector using the multi-

resolution enhancements from [12] is shown for GMSK
in Fig. 4. The figure shows that wideband edge detectors
suffer from the same shortfall as wideband energy detectors
in that they are also degraded by dynamic behavior of the PU.
Because received signal samples from both idle and active
cycles are averaged into the PU detector, the performance of
the detector deteriorates with decreasing duty cycle of the PU.

C. Compressive Sensing

A class of sensing algorithms known as compressive sens-
ing has been proposed for surveying very wide bandwidths
with sub-Nyquist sampling rates. Because much of the radio
spectrum is underutilized, available bands may be represented
as a sparse dataset, and depending on the sparsity order of
the dataset, the wideband signal may be sensed at a fraction
of the Nyquist rate [24]. To perform sub-Nyquist sampling,
the signal time series is divided into length-M blocks of
Nyquist-rate samples, of whichKsamples are kept, giving an
undersampling fraction ofK/M. Reconstruction of the sparse
PSD from the undersampled data is accomplished by solving
for a linear inverse, which in the sparse case requires a numer-
ical solution [14]. To select an appropriate undersampling
fraction, the cognitive receiver must have prior knowledge of
the PU sparsity order. An online sparsity estimator has been
proposed in [25] that can quickly determine an undersampling
ratio.
Although compressive sensing can be utilized to sense much
wider bandwidths than can be done with traditional analog to
digital conversion hardware, the result of compressive sensing
typically involves a static PSD estimate. For example, in [14],
the estimated sparse PSD is analyzed with the wavelet-based
edge detector proposed in [12]. Since current compressive
sensing methods rely on a static PSD estimate, the presence of

low duty-cycle PU signals can drastically reduce the detector
sensitivity. In [24] it is stated that current compressive sensing
cannot be used to properly handle sparsity in time and space.
Although our proposed sensing algorithm requires sampling
at the Nyquist rate and therefore cannot be used for ultra
wideband sensing, its success does not rely on signal sparsity
in any domain, and it more flexibly detects bursting signals
by leveraging time-domain sensing methods.

III. SYSTEMMODEL

Over a spectrum band of total widthBHz, an unknown
number of PU signals are operating with temporal duty cycles
in the range 0 to 100 percent. Each PU signal has an unknown
center frequency,fcHz, and bandwidth,WHz. It is assumed
that PU channels are non-overlapping in frequency. In practice,
the PU channels would typically be separated by guard bands
to avoid interference with each other. The channel over which
theithPU is observed is assumed to be flat Rayleigh fading
with parameterσf,icombined with additive white Gaussian
noise (AWGN), defined by the circularly symmetric complex

normal distributionC 0,σ2n,i. The mean SNR of the received

signal on channeli, given that the PU is transmitting is

SNRi=
σ2f,i

σ2n,i
. (1)

A. PU Traffic Model

A PU may be transmitting or idle at any given time. The
state of theithPU, denoted by random variableXi, may
alternate between the idle stateXi= 0, where the PU is
not transmitting, and the busy stateXi = 1, where the
PU is transmitting. ThekthPU state is denotedXi,k. Each
PU is modelled by a discrete-time Markov chain with transi-
tion matrixGiand initial distributionνi,definedas

Gi= gi,ab:a,b∈{0,1}, (2)

gi,ab=PXi,k=a,Xi,k+1=b, (3)

νi,0=PXi,1=0,vi,1=PXi,1=1. (4)

B. Cognitive Receiver Model

1) Received Wideband Signal:A transmitting PU will gen-
erate a bandpass signalt̃i,k. The transmitted signal for PUi
at any timekis

ti,k=t̃i,k·1{Xi,k=1}, (5)

where 1Ais the indicator function on the event or conditionA.
TheithPU signal is multiplied at timekby a fading signal

fi,k ∼ C 0,σ
2
f,i.AllM PU signals are received simul-

taneously and added to the noise signalnk∼ C 0,σ
2
n,i.

The received wideband signal is represented by a sequence of
samplesznwb= zwb,1,...,zwb,n,wherezwb,k,thek

thI-Q
sample from the wideband channel, is defined as

zwb,k=

M

i=1

ti,kfi,k+nk. (6)
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2) Channelized Received Signal:The SU will divide the
wideband received signal into Jnarrowband subchannels.
Initially this division must be done arbitrarily, but after
wideband sensing, the set of subchannels should describe all
PU statistics as well as the statistics of the spectrum holes
between PU signals. Thejthsubband is denotedzj.
3) Energy Detected Signal:For spectrum sensing, the chan-

nelized narrowband signals are processed with an averaging
energy detector, which estimates the power of each sample and
averagesNavgsamples together. The resulting random variable
for the received energy in subchanneljis denoted byYj,and
the sequence of energy estimates for subchanneljis denoted
ynj= yj,1,...,yj,n.Thek

thsample in the energy detection
sequence,yj,k,isdefinedas

yj,k=
1

Navg

Navg

i=1

|zj,(k−1)Navg+i|
2. (7)

An SU will need to detect slow changes in PU state to properly
leverage spectrum holes, and because of this, we assume
that the probability of a state change occurring during the
energy estimation of a single sample to be minimal. There-
fore, we assume that during an energy detection window the
samples ofyjare independent, identically distributed (IID).
For relatively largeNavg,Ywill approach a normal random
variable due to the Central Limit Theorem. IfYjrepresents the
energy estimates of a subchannel with PUi,thekthsample
from the received narrowband signal,zj, will be generated by
a random variable with conditional distribution

zj,k∼

⎧
⎨

⎩

C 0,σ2n,i , Xi,k=0,

C 0,σ2f,i+σ
2
n,i ,Xi,k=1.

(8)

The resulting energy estimates,yj,k, will be scaled chi-squared
random variables with 2Ndegrees of freedom. We will denote
a chi-squared distribution withDdegrees of freedomX2(D).
The conditional distribution of the energy detector is therefore

yj,k∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σ2n,i
Navg
X22Navg, Xi,k=0,

σ2f,i+σ
2
n,i

Navg
X22Navg,Xi,k=1.

(9)

The mean and variance of a chi-squared distribution with
Ddegrees of freedom areDand 2Drespectively. Assuming
thatNavgis sufficiently large,yj,kwill be conditionally normal
with distribution

yj,k∼

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

N 2σ2n,i,
4σ4n,i
Navg

, Xi,k=0,

N

⎛

⎜
⎝2σ2f,i+2σ

2
n,i,
4σ2f,i+σ

2
n,i

2

Navg

⎞

⎟
⎠,Xi,k=1.

(10)

IV. RECURSIVEALGORITHM FOR
WIDEBANDTEMPORALSENSING

In this section, we propose an approach that extends narrow-
band temporal sensing techniques to the wideband scenario.

Narrowband techniques that use HMMs [26] to model the
dynamic behavior of the PU are leveraged to overcome the
limitations of current wideband spectrum detectors. In partic-
ular, we shall rely on the narrowband sensing approach in [17],
which is based on a generalization of the HMM referred to
as a hidden bivariate Markov model (HBMM). For simplicity,
we shall restrict ourselves tothe HMM characterization of a
PU channel, but our approach can straightforwardly accom-
modate the HBMM. The proposed wideband search algorithm
may also be adapted to leverage other narrowband sensing
techniques for various special purposes. For example, for
channels with high duty cycle but very low SNR, the pro-
posed wideband algorithm could be adapted to work with a
cyclostationary detector.

A. Wideband Tree Search

In our proposed algorithm for wideband temporal sensing,
the spectrum band is organized as a balanced binary tree,
where each node has two child nodes representing the upper
and lower halves of the band. The band is recursively divided
into smaller pieces as depth increases [27]. A maximum
depth is selected based on a desired resolution for the wide-
band sensing algorithm. The depth of the tree is given by
d= log2(W0/Wr),whereW0is the bandwidth, andWris
the maximum frequency resolution. The resulting number of
channels at the finest resolution,Nc,isgivenbyNc=2

d.The
frequency resolutionWrmust be selected by the implementer,
as a smaller sensing resolution allows finer spectral compo-
nents to be observed, but increases computational complexity
resulting from increasedNc, as shown in Eq. (31). The division
of a band into subbands using a balanced binary tree is shown
in Fig 5.
The algorithm recursively divides a given channel in half
until the desired resolution is reached. An inorder traversal,
a recursive search where child nodes are visited before parent
nodes [27], is performed on the balanced binary tree that
is used to model the spectrum band. At the highest resolu-
tion, each subband or channel is sensed using a narrowband
temporal spectrum sensing technique based on hidden
Markov mdoels.

B. Channel Selection

A channelizer must be employed to divide the wide-
band channel into 2dsubbands, wheredis the search tree
depth. A conceptually simple channelizer is a bank of dig-
ital downconverters (DDCs), with one DDC for each sub-
band. A diagram for a simple DDC is shown in Fig. 6.
Given a sequence{ak}

∞
k=1, we use the convenient notations

ank ={ak,...,an}anda
n ={a1,...,an}. The received

wideband signal can then be represented by a sequence of
samplesznwb={zwb,1,...,zwb,n},wherezwb,kdenotes thekth
I-Q sample from the wideband channel. When the received
wideband signalznwbis passed into the DDC, it will first be
mixed down by center frequency fc, such that the center of
the band of interest is now at baseband. The baseband signal is
next lowpass filtered with FIR tapsh(n)to isolate the band of
interest. Finally, the signal is decimated by rate dec, keeping
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Fig. 5. A wideband channel, i.e., a spectrum band with bandwidthW0, organized into a balanced binary tree.

Fig. 6. A simple digital downconvertor for signal channelization.

1 sample out of every dec. The channelized narrowband signal
is denotedzn.
Because all subbands are eventually channelized by the

recursive search, a frequency-domain channelizer using the
fast Fourier transform (FFT) [28], [29] can substantially reduce
the computational cost of the channel selection. Frequency-
domain channelizers have been studied in detail [28], and
while faster computationally, use of a frequency-domain chan-
nelizer would not alter the outcome of the proposed algorithm.
Therefore, for the sake of simpler algorithm description,
a simple filter-and-decimate channelizer was discussed above.
For spectrum sensing, the channelized narrowband signals are
processed with an averaging energy detector, which estimates
the power of each sample and averagesNavgsamples together.
The received power estimate of the samplezkin linear units,
e.g., mW, is denotedyk, and is calculated as follows:

yk=
1

Navg

Navg

i=1

|zk+i|
2. (11)

C. Hidden Markov Modeling for Narrowband Sensing

Although the recursive tree search that we propose can
leverage a variety of narrowband techniques, we are address-
ing the specific issue of PU dynamics such as bursting
and frequency hopping. An HMM is used to model the
channel dynamics, assuming a lognormal shadowing model.
In [17] and [30], a more general form of HMM referred to
as a hidden bivariate Markov model (HBMM) is applied to
narrowband temporal spectrum sensing. An extension of the
Baum-Welch algorithm was developed in [17] for estimating
the parameter of a HBMM. The Baum-Welch algorithm is
an offline algorithm, which iteratively produces a sequence
of parameter estimates with increasing likelihood, based on a

given an observation sequence.An online parameter estimation
algorithm for the HBMM was developed in [30]. Since the
focus of the present paper is on wideband sensing, we will
restrict ourselves to the simpler HMM and the standard
Baum-Welch algorithm for parameter estimation.
We usePto denote a generic probability measure andPφto

denote a probability measure that depends on a parameterφ.
Similarly, we usepandpφto denote a probability density
function or probability mass function as appropriate. In the
notationp(xk)=P(Xk=xk), the lowercase symbolxkon
the left-hand side implicitly implies the associated random
variable represented by the uppercase symbolXk. The HMM,
denoted by(Y,X), consists of an observable sequence of
received signal strengths,Y ={Yk}

∞
k=1, and an underly-

ing or hidden state sequenceX={Xk}
∞
k=1, which is assumed

to be a discrete-time Markov chain. At timek,Ykrepresents
the averaged received signal power, after processing, in linear
units (mW) andXkrepresents the state of the PU, i.e.,Xk=0
when the PU is idle andXk= 1 when the PU is active.
Assuming a standard path loss plus Rayleigh fading model,
the received signal powerYkcan be expressed as follows
(see [30]):

Yk=
μ0+ 0,Xk=0,

μ1+ 1,Xk=1,
(12)

whereμarepresents the mean received signal power when
the PU is in statea∈{0,1},andais a zero-mean Gaussian
random variable with standard deviationσa, which may repre-
sent impairments such as receiver noise, fading, or shadowing.
A similar model was validated empirically in the context of
temporal spectrum sensing of a narrowband channel in [17].
In this paper, Rayleigh fading was simulated, resulting in
Eq. (10) forYk.
LetG=[gab:a,b∈{0,1}]denote the transition matrix

of the underlying Markov chainX,wheregabdenotes the
transition probability from stateato stateb.Letν=[ν0,ν1]
denote the initial state probability distribution, where

ν1=P(X1=0), ν2=P(X1=1).

The parameter of the HMM is given byφ=(ν,G,μ,R),

whereμ=[μ0,μ1]andR=[σ
2
0,σ

2
1].
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D. Baum-Welch Algorithm and MAP Detector

The Baum-Welch algorithm [31] is applied to obtain an
estimate of the HMM parameter for a given channel, as part
of the recursive tree search. The input to the algorithm is an
initial parameter estimateφsand an observed sequenceyn

obtained from the channel. Starting with the initial estimate,
φ̂0=φ

s,theιth iteration (ι≥1) of the algorithm produces a
new estimateφ̂ιwith likelihood greater than or equal to that
ofφ̂ι−1. Each iteration of the algorithm involves the compu-
tation of forward and backward recursions [26, Sec. V.A].
Letφdenote the current parameter estimate at the start of

an iteration of the Baum-Welch algorithm. Define a diagonal
matrix

B(yk)=diag{pφ(yk|xk=0),pφ(yk|xk=1)}.

We denote the (scaled) forward and backward variables by
ᾱ(xk,y

k)andβ̄(ynk+1|xk), respectively. The forward vector
is defined as a row vector

ᾱk=[̄α(xk=0,y
k),̄α(xk=1,y

k)],

while the backward vector is defined as a column vector

β̄k=[β̄(y
n
k+1|xk=0),̄β(y

n
k+1|xk=1)],

where denotes matrix transpose. Let1denote a column vector
of all ones, of appropriate dimension depending on the context.
The forward recursion is given by

ᾱ1=
νB(y1)

c1
, ᾱk=

ᾱk−1GB(yk)

ck
,k=2,...,n, (13)

where c1 = πB(y1)1,andck = ᾱk−1GB(yk)1for
k=1,...,n. The forward variables have the following inter-
pretation:ᾱ(xk,y

k)=p(xk|y
k). The backward recursion is

given by

β̄n=1; β̄n=GB(yn+1)
β̄n+1

cn
,k=n−1,...,1. (14)

The state conditional probability can be obtained from

pφ(xk|y
n)=̄α(xk,y

k)̄β(ynk+1|xk). (15)

The joint state conditional probability can be calculated as
follows:

pφ(xk−1,xk|y
n)

=
ᾱ(xk−1,y

k−1)̄β(ynk+1|xk)gxk−1,xkpφ(yk|xk)

xk−1,xk
ᾱ(xk−1,yk−1)̄β(y

n
k+1|xk)gxk−1,xkpφ(yk|xk)

.

(16)

The re-estimation formulas for the new parameter estimate are
given in terms of (15) and (16) as follows:

ĝab=
n
k=2pφ(xk−1=a,xk=b|y

n)
n
k=2pφ(xk−1=a|y

n)
,

μ̂a=
n
k=1pφ(xk=a|y

n)yn
n
k=1pφ(xk=a|y

n)
, (17)

σ̂2a=
n
k=1pφ(xk=a|y

n)(yk−̂μa)
2

n
k=1pφ(xk=a|y

n)
, (18)

wherea,b∈{0,1}.

After the Baum-Welch algorithm converges to a final para-
meter estimateφ, the maximum a posteriori (MAP) decisions
may be obtained from the a posteriori state probabilities,
as given in (15), as follows:

x̂k=arg max
xk∈{0,1}

pφ(xk|y
n). (19)

Since the MAP decisions take into account the tempo-
ral dynamics of the PU signal, the MAP detector can be
significantly more accurate than a standard energy detec-
tor (see [17]). The MAP detector (19) can be used for online
spectrum sensing of the given channel.

E. Channel Usabilityand Channel Capacity

A heuristic test based on the HMM parameter estimate for a
channel is performed to determine whether the channel can be
used by the SU. Given the transition matrixG, the stationary
state distributionπ=[π0,π1]can be computed from the
equations

π=πG, π1=1. (20)

The channel is deemed to be aholeif the probability that the
PU is idle,π0, exceeds a thresholdπmin,0(see Algorithm 1,
line 13). Note thatπ1represents the duty cycle of the channel.
If the sensed channel is determined to be a hole, the center
frequency, bandwidth, MAP decisions on the PU state, and
filtered decimated samples of the channel are passed to the
parent node in the tree.
Given an estimate of the HMM parameter for a channel,
an estimate of the SNR for the channel can be obtained. Let
μadenote the mean received signal strength in linear units,
e.g., mW, fora=0,1. The SNR estimate is computed as

SNR=
μ1−μ0

μ0
. (21)

The capacity of the channel can then be estimated using
the sensed bandwidth, the estimated SNR, and the stationary
distribution of the HMM. The capacity is derived from the
capacity for a single user with availabilityπ0in a TDMA
system [32, eq. 15.150]. We have definedπ0as the stationary
probability that the PU is not using a given band. With
these considerations, the capacity in (bits/s/Hz) is computed
as follows:

C=π0log2(1+SNR). (22)

The proposed estimate for channel capacity does not play a
direct role in our algorithm for wideband temporal sensing, but
is useful for assessing the potential capacity gains achievable
through spectrum sensing.

F. Channel Aggregation

As the algorithm recurses upward through the binary tree
depicted in Fig. 5, the parent nodes combine two lists of
spectrum holes: one from the lower half of the band, and
the other from the upper half of the band. If the highest-
frequency hole from the lower band and the lowest-frequency
hole from the upper band are adjacent, the two holes can
possibly be combined. The objective of wideband sensing
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is to determine a minimal set of narrowband PU channels
that spans the given spectrum band, which can be sensed
independently and shared temporally with SUs during the
idle periods of the PUs. To achieve this objective, the adja-
cent holes will only be combined if they are sufficiently
correlated in a statistical sense to be defined shortly. The
channel aggregation scheme proposed in this paper is based
on the time-domain cross-correlation. The rationale behind
doing so is that the resulting narrowband PU channels will be
approximately uncorrelated and may therefore be treated as
being independent. This enables multiband spectrum sensing
techniques to be applied to the set of PU channels obtained via
the recursive search procedure. It is important to note that the
PU channels are treated as independent from the perspective
of the receiver. Thus, in the presence of frequency-selective
fading, a single PU signal could appear to the receiver as
two or more independent PU channels, requiring tracking of
additional PU channels on the receiver side. This would be
necessary in this scenario due to the lack of coherence across
the true PU channel.
The proposed channel aggregation function, while based

on time-domain correlation, must account for dynamic sig-
nals. Two perfectly correlated bursting signals will appear
uncorrelated during idle periods, since white noise signals
are inherently uncorrelated. The MAP detector given by (19)
can be used to determine the periods during which the
PUs are most likely idle for both adjacent channels. Based
on the MAP decisions, a correlation metric between two
adjacent channels can be computed. LetZlo={Zlo,k}

∞
k=1

andZhi={Zhi,k}
∞
k=1denote the observation sequences for

the lower and higher frequency channels, respectively. The
observed sequences fromn-sample realizations are denoted
byznloandz

n
hi, respectively. The HMM parameter estimates

φloandφhiare obtained for the two channels using the
Baum-Welch algorithm. Let x̂nlo = {̂xlo,1,...,̂xlo,n}and
x̂nhi ={̂xhi,1,...,̂xhi,n}denote the corresponding decision
sequences determined according to (19).
The normalized cross-correlation at zero lag between the
sequencesznloandz

n
hiis given by

ρznlo,z
n
hi =

|znlo,z
n
hi|

znlo znhi
, (23)

where

znlo,z
n
hi =

n

k=1

zlo,kz
∗
hi,k, (24)

denotes the Hermitian inner product betweenznloandz
n
hi,

z∗ denotes the complex conjugate ofz,and · denotes
the standard 2-norm. The normalized cross-correlation is
bounded, i.e.,

0≤ρznlo,z
n
hi ≤1. (25)

However, for the purpose of channel aggregation, we require
a correlation metric that takes into account the idle periods
that coincide for the two channels. We denote the indicator
function on the event or conditionAby 1A, and the indicator
function for the complement ofAby 1Ac. Using this notation,

TABLE I

ALGORITHMCOMPLEXITYPARAMETERS

we define modified observation sequences for the two channels
by zeroing out the samples for which the PU is detected to be
idle on both channels, i.e.,

z̃lo,k=zlo,k·1{̂xlo,k=̂xhi,k=0}c,

z̃hi,k=zhi,k·1{̂xlo,k=̂xhi,k=0}c, (26)

fork= 1,...,n. The fraction of observation samples for
which the PU is detected to be idle on both channels is
given by

γ=
1

n

n

k=1

1{̂xlo,k=̂xhi,k=0}. (27)

For such samples, the correlation should be assigned the
value 1, indicating perfect correlation. The idle ratio is
bounded, i.e.,

0≤γ≤1. (28)

We then define a modified correlation metric as follows:

ρ̃=γ+(1−γ)ρz̃nlo,̃z
n
hi. (29)

It is easy to see from Eq. (25) and (28) that 0≤ ρ̃≤1.
In our channel aggregation algorithm, two channels are
merged if their correlationρ̃, computed using (29), exceeds a
thresholdρ̃min (see Algorithm 2, line 7). When holes are
combined, their MAP decisions must be combined as well.
This combination of decisions is given by

x̂k=
0,if̂xlo,k=̂xhi,k=0,

1,otherwise.
(30)

The PU in the combined channel is determined to be idle at
timekif the PU in both subbands is determined to be idle
at timek. Otherwise, the PU is determined to be active at
timek.

G. Algorithm Descriptions

A formal description of the proposed recursive wideband
temporal sensing framework is given in Algorithm 1. The
computational complexity is given by

O Nclog2Nc·NtNs+NcNiNs, (31)

where the various parameters involved are shown in Table I.
The terms of the complexity expression are derived as follows:
Nclog2Ncis the number of nodes in the binary tree [27] and
is therefore the maximum number of narrowband channels
that can be sensed;NtNsis the complexity of the filtering
operation used to select a narrowband channel for sensing.
The termNiNsrepresents the per-channel complexity of the
Baum-Welch algorithm.
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Algorithm 1Wideband Temporal Sensing Algorithm

1:functionRSense(fc,W,Wr,z
n
wb)

2: ifW>Wrthen
3: Llo=RSense(fc−W/2,W/2,Wr,z

n
wb);

4: Lhi=RSense(fc+W/2,W/2,Wr,z
n
wb);

5: ifLhiandLloare not emptythen
6: L=AggregateCh(Lhi,Llo,z

n
wb);

7: else
8: L=empty list;
9: else
10: h(n)=LPF(W,Nt);
11: dec=Floor(W0/W);
12: zn=DDC(znwb,fc,h(n),dec);
13: yn=EnergyDet(zn);
14: (ν,G,μ,R,̂xn)=BaumEst(yn);
15: π=StatDistr(G);
16: ifπ1>πmin,1then
17: L=list with single entry(fc,W,z

n,̂xn);
18: else
19: L=empty list;
20: returnL;

Algorithm 2Aggregate Channels

1:functionAggregateCh(Lhi,Llo,z
n
wb)

2: (flo,c,Wlo,z
n
lo,̂x

n
lo)=LowestCh(Lhi);

3: (fhi,c,Whi,z
n
h,̂x

n
h)=HighestCh(Llo);

4: L=CombineLists(Lhi,Llo);
5: iffhi,c−Whi/2==flo,c+Wl/2then
6: ρ=Correlate(n,znlo,̂x

n
lo,z

n
hi,̂x

n
hi);

7: ifρ̃>ρ̃minthen
8: Remove(flo,c,Wlo,z

n
lo,̂x

n
lo)and

9: (fhi,c,Whi,z
n
hi,̂x

n
hi)fromL;

10: h(n)=LPF(Wlo+Whi,Nt);
11: dec=Floor(W0/(Wlo+Whi));
12: fc=flo,c+Wlo/4+Whi/4;
13: zn=DDC(znwb,fc,h(n),dec);
14: x̂n=Merge(̂xnlo,x̂

n
hi);

15: Add(fc,Wlo+Whi,z
n,̂xn)

16: toL;
17: returnL;

We shall not formally describe any of the other functions
used in Algorithms 1 and 2, but basic descriptions will be
given. The function AggregateCh(Lhi,Llo,z

n
wb), as specified

in Algorithm 2, determines whether two adjacent holes should
be combined. The function Correlate(n,znlo,̂x

n
lo,z

n
hi,̂x

n
hi)

computes the modified correlation metric given
by (29). The function LPF(W) designs a finite impulse
response (FIR) lowpass filter with bandwidthW. The
function DDC(znwb,fc,h(n),dec) performs channelization
as discussed in Section IV-B. The wideband signalznwb
is mixed down by center frequencyfc, lowpass filtered
by a FIR filter with discrete tapsh(n), and decimated
by dec. The function EnergyDet(zn) performs energy
detection based on the processed received power samples given
in (11).

Fig. 7. Results of wideband temporalspectrum detector for OFDM signals
with 10 dB SNR and 100%, 50%, 25%, and 12.5% duty cycles.

Fig. 8. Results of wideband temporalspectrum detector for GMSK signals
with 10 dB SNR and 100%, 50%, 25%, and 12.5% duty cycles.

The function BaumEst(yn) estimates the parameter of
the PU in the selected narrowband channel with processed
received power samples,yn, using the Baum-Welch algorithm
as summarized in Section IV-D. The function StatDistr(G)
computes the stationary state distribution corresponding to the
transition matrixGusing (20). The functions HighestCh(L)
and LowestCh(L) select the highest-frequency narrowband
channel and the lowest-frequency narrowband channel, respec-
tively, from a list of estimated channel parametersL.The
function CombineLists(L1,L2) merges two lists of esti-
mated channel parameters into a single list and sorts the
list in decreasing order of center frequency. The function
Merge(x̂nlo,x̂

n
hi) combines the MAP decisions from the two

channels as in (30).

V. SIMULATION ANDNUMERICALRESULTS

A. Simulation 1: Comparison of Techniques

We tested the wideband energy detector, the wideband
edge detector, and the proposed wideband temporal spectrum
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Fig. 9. ROC curve for wideband energy detector for OFDM signals
with 10 dB SNR and 100%, 50%, 25%, and 12.5% duty cycles.

detector against OFDM and GMSK signals with duty cycles
varying among 1.0, 0.5, 0.25, and 0.125. We used an energy
detection averaging window ofNavg=1 samples. We assumed
a minimum duty cycleπmin,1=0.1 and a minimum modified
correlation threshold for combining channels ofρ̃min =0.7.
For each modulation scheme and duty cycle tested, a wideband
capture was generated with signals of random center frequency
and symbol rate over a 10 MHz band. We used a minimum
sensing resolution of 10 kHz, resulting in a search tree depth
ofd=10. The modulated data on the signals was generated
by a uniform random number generator. All of the signals
were received through a simulated AWGN and Rayleigh fading
channel with 10 dB SNR and used the currently tested modu-
lation and duty cycle. A total of 10,000 simulation iterations
were performed for each modulation and duty cycle pair.
Wideband signals were also generated specifically for plot-

ting qualitative results. These wideband signals contained
4 narrowband signals with 1 MHz bandwidth and carrier
spacing of 2 MHz. The four signals have duty cycles
of 1.0, 0.5, 0.25, and 0.125 from lowest-frequency to highest-
frequency. All highlighted PSD plots in this paper show the
results of applying a wideband sensing algorithm to one
of these wideband signals, where the shaded areas are the
detected holes and the white areas are the detected signals.

B. Simulation 2: Performance at Varying SNR

To test the performance of the proposed wideband temporal
detector, we tested the detector against OFDM and GMSK
signals with duty cycle of 0.125 and SNR ranging between
−20 and 20 dB. We varied the energy detection window size,
Navg, among 1, 10, 100, and 1000 samples. We assumed a
minimum duty cycleπmin,1=0.1 and a minimum modified
correlation threshold for combining channels ofρ̃min =0.7.
For each modulation scheme, a wideband capture was gener-
ated with signals of random center frequency and symbol rate
over a 10 MHz band. We used a minimum sensing resolution
of 10 kHz, resulting in a search tree depth ofd= 10.
The modulated data on the signals was generated by a uniform

Fig. 10. ROC curve for wideband energy detector for GMSK signals
with 10 dB SNR and 100%, 50%, 25%, and 12.5% duty cycles.

Fig. 11. ROC curve for wideband edge detector for OFDM signals
with 10 dB SNR and 100%, 50%, 25%, and 12.5% duty cycles.

random number generator. All of the signals were received
through a simulated AWGN and Rayleigh fading channel.
A total of 10,000 simulation iterations were performed for
each modulation and energy detection window.

C. Simulation 1 Results: Qualitative Comparison
of Techniques

Qualitative results of the proposed wideband temporal
sensing algorithm are depicted in Fig. 7 for OFDM and
Fig. 8 for GMSK. Shaded areas represent detected spectrum
holes. It can be seen that the proposed wideband temporal
spectrum detector performed well for all tested duty cycles
and both simulated modulation schemes. The qualitative sim-
ulation results of the proposed spectrum detector can be
compared to the qualitative results from Section II. Comparing
Fig. 7 to Figs. 1 and 3 shows that reducing the duty cycle
does not degrade the performance of the proposed detector for
OFDM like it does for wideband energy detection. Similarly,
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Fig. 12. ROC curve for wideband edge detector for GMSK signals
with 10 dB SNR and 100%, 50%, 25%, and 12.5% duty cycles.

Fig. 13. ROC curve for wideband temporal spectrum detector for OFDM
signals with 10 dB SNR and 100%, 50%, 25%, and 12.5% duty cycles.

comparing Fig. 8 to Figs. 2 and 4 shows that the proposed
detector is also not degraded by reduced duty cycles for
GMSK. Furthermore, comparing Fig. 8 to Fig. 4 shows that the
smooth band edges of GMSK do not degrade the performance
of the proposed detector like they do for the wideband energy
detector.

D. Simulation 1 Results: Quantitative Comparison
of Techniques

Quantitative sensing results are depicted by ROC (receiver
operating characteristic) curves generated by the simulation.
The probability of true detect, defined as the proportion of
trials in which the detector correctly identified that an active
PU was transmitting, is plotted against the probability of false
detect, defined as the proportion of trials in which the detector
incorrectly identified an idle PU to be an active PU. The
ROC curves represent the average detector performance over

Fig. 14. ROC curve for wideband temporal spectrum detector for GMSK
signals with 10 dB SNR and 100%, 50%, 25%, and 12.5% duty cycles.

Fig. 15. CFAR curves for wideband temporal spectrum detector for OFDM
signals with duty cycle of 12.5%, SNR ranging from−20 to 20 dB, and
energy detection window of 1, 10, 100, or 1000 samples.

many random wideband captures using the same modulation,
duty cycle, and SNR. Performance of the wideband energy
detector is shown in Fig. 9 for OFDM and Fig. 10 for GMSK.
Performance of the wideband edgedetector is shown in Fig. 11
for OFDM and Fig. 12 for GMSK. In the wideband energy
and edge detector results, it can clearly be observed that
detector performance degrades as PU duty cycle decreases.
In the case of GMSK, the performance of the wideband edge
detector is substantially degraded, due to the edge detector’s
hindered ability to detect gradual changes. Performance of the
wideband temporal spectrum detector is shown in Fig. 13 for
OFDM and Fig. 14 for GMSK. It is clear from these results
that the proposed detector’s performance was not significantly
degraded by reduced duty cycles.

E. Simulation 2 Results

For simulation 2, false alarm and true positive rates were
collected for a variety of thresholds at all tested SNR and
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Fig. 16. CFAR curves for wideband temporal spectrum detector for GMSK
signals with duty cycle of 12.5%, SNR ranging from−20 to 20 dB, and
energy detection window of 1, 10, 100, or 1000 samples.

energy detection windows. To impose many ROC curves onto
a single plot, true positive rate at a constant false alarm
rate (CFAR) of 0.01 is shown. In Fig. 15, the true detect rate
for a CFAR of 0.01 is shown for the proposed detector against
OFDM signals with duty cycle of 0.125 and varying SNR.
In Fig. 16, the true detect rate is shown for GMSK signals. As
the energy detection window increases, the sensitivity of the
detector increases. However, increasing energy detector length
increases the likelihood that samples from idle and busy cycles
are averaged together, degrading detector performance.

VI. CONCLUSION

The proposed wideband temporal spectrum sensing frame-
work performed comparably for bursting signals with various
duty cycles to the wideband energy detector applied to sig-
nals with 100% duty cycle. In the case of bursting signals,
the recursive wideband temporal spectrum sensing algorithm
proved to be much more robust than the frequency-only
sensing algorithms. The power of the proposed sensing algo-
rithm comes at the cost of computation time:O(Nclog2Nc)
narrowband sensing operations must be performed, as well
as FIR filtering for channel selection. We suggest that a
cognitive radio would use this wideband sensing algorithm
during initialization and revert to narrowband or multiband
sensing once the set of PU channels for temporal sensing has
been determined. The Baum-Welch algorithm may continue
to be leveraged, in the narrowband or multiband case, both
for refining parameter estimation and prediction of future
PU state. To accommodate time-varying RF environments,
an SU can alternate between wideband temporal sensing for
channel acquisition and multiband sensing for PU tracking.
Several extensions of the proposed wideband temporal spec-

trum sensing algorithm could be explored further. To reduce
overall computation, use of a frequency-domain channel-
izer that allows the channel selection operators to share
filter computations and leverages heavily optimized imple-
mentations for the FFT could be investigated. To improve

PU state detection and prediction accuracy for a wider range of
PU behaviors, the HMM could be extended to a hidden
bivariate Markov model [17], which has phase-type, rather
than geometric state sojourn time distributions. In the present
paper, a simple energy detector was used as a front-end for the
HMM-based parameter estimator and state detector. Even with
the performance gain that could be achieved by extending our
scheme using a hidden bivariate Markov model, detection of
a PU at very low SNR using an energy detector may perform
poorly. For such low SNR scenarios, better performance could
be achieved by means of a matched filter or cyclostationary
detector in conjunction with the recursive channel search.
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