

High Pressure High Temperature Devitrification of $Fe_{78}B_{13}Si_9$ Metallic Glass with 2 Simultaneous X-ray Structural Characterization

3 Andrew K. Stemhorn,¹ Yogesh K. Vohra,¹ and Spencer J. Smith¹

4 *Department of Physics, University of Alabama at Birmingham, Birmingham,*
5 *AL 35294, USA*

Changes in bulk crystallization behavior following devitrification at high pressure are investigated for a $Fe_{78}B_{13}Si_9$ composition metallic glass using *in-situ* energy dispersive x-ray powder diffraction. Crystallization with time was evaluated for a series of measurements to a maximum pressure of 5.63 ± 0.15 GPa for the $Fe_{78}B_{13}Si_9$ glass. Pressure was found to strongly affect onset bulk crystallization temperature T_x . Crystallization at each pressure was found to progress in two stages. In the first stage α -Fe precipitates and in the second Fe_2B forms while α -Fe continues to crystallize. Complementary high pressure room temperature studies were conducted.

6 **Keywords:** x-ray diffraction, metallic glasses, crystallization, phase transformation
7 kinetics, high pressure

INTRODUCTION

9 Metallic glasses demonstrate superior material properties and show great potential for
10 science and industrial applications^{1,2}, but require considerable cooling rates to form. Al-
11 loys demonstrating a diminished critical cooling rate are often comprised of uncommon or
12 expensive elemental compositions, such as those composed of palladium or rare earth el-
13 ements as principal constituents or are intrinsically brittle showing inadequate plasticity
14 and demonstrating poor fracture strength limiting potential viable application³ or lack work
15 hardening ability further limiting potential longevity of metallic glass components⁴. Some
16 of these weakness can be improved by developing composites made by introducing intrinsic
17 particulate to the melt prior to casting, crystallized from the source material during casting
18 or by devitrifying and partially crystallizing the material^{3,5}. The present study explores the
19 role of pressure in the devitrification and crystallization of a monolithic metallic glass and
20 may be useful in creating nano-composites where pressure is utilized as an additional control
21 parameter in heating a partial crystallizing the glass^{6,7}.

22 Packing density of an amorphous phase is generally linked to glass forming ability⁸⁻¹⁰, but
23 correlation between density and glass forming ability has not been extensively demonstrated
24 experimentally^{11,12}. Understanding kinetics of bulk crystallization of metallic glasses is of
25 principal importance in understanding metallic glass formation^{1,13,14}, overcoming weaknesses
26 and important for the formation of precipitant type nano-composites¹⁵. High pressure stud-
27 ies of metallic glasses may offer insight in to the role of density in glass transition behavior
28 and glass forming ability. Additionally, glass behavior during devitrification near or around
29 the glass transition involves sluggish bulk crystallization kinetics permitting a detailed study
30 of material properties and bulk crystallization behavior on a laboratory time scale^{16,17}. Fi-
31 nally, high pressure die casting may be an important tool for the manufacture of metallic
32 glass components^{18,19}. The described work illustrates properties of metallic glasses which
33 could limit the applicability of high pressure die casting when used on similar alloys.

34 Ambient pressure devitrification and bulk crystallization kinetics studies of various Fe-Si-
35 B composition metallic glasses summarized by Illeková et al.²⁰ demonstrate Fe-Si-B metallic
36 glass system generally exhibit a two stage bulk crystallization following devitrification and
37 higher onset bulk crystallization temperature T_x is observed with higher percentage boron
38 and a smaller temperature separation of the two stages. The effect of increased pressure
39 on bulk crystallization kinetics of glasses in general demonstrate an over all trend of in-

case in bulk onset crystallization temperature following devitrification with the exception of a few notable examples of materials that exhibit negative pressure dependence of T_x for some range of pressure such as amorphous selenium or albite. Various compositions of metallic glass have displayed a dip or a short lived negative pressure dependence ($dT_x/dP < 0$) followed by a subsequent rise and return to positive pressure dependence ($dT_x/dP < 0$) of the onset bulk crystallization temperature T_x as dependent on rise in pressure including $Zr_{41}Ti_{14}Cu_{12.5}Ni_{10}Be_{22.5}$ ²¹ with the dip centered between 5.6 GPa and 6.5 GPa , $Al_{89}La_6Ni_5$ ²² with the minimum around one GPa and $Fe_{72}P_{11}C_6Al_5B_4Ga_2$ over the range 2.4 to 3.9 GPa . The two stage bulk crystallization was confirmed for the same $Fe_{78}B_{13}Si_9$ composition examined in this study at ambient pressure separately by Tong et al.⁷ and Bang et al.²³. The present study examines the effects of pressure on bulk onset crystallization temperature for a $Fe_{78}B_{13}Si_9$ metallic glass composition at high pressure and high temperature.

II. EXPERIMENT

The iron boron silicon composition metallic glass $Fe_{78}B_{13}Si_9$ purchased through Goodfellow was examined as representative of this class of metallic glasses. After devitrification and bulk crystallization, simple ternary alloys have a distinct advantage of having fewer end product phases diminishing ambiguity in crystallographic analysis. Additionally, the $Fe_{78}B_{13}Si_9$ composition of metallic glass is extensively studied and characterized at ambient pressure making $Fe_{78}B_{13}Si_9$ a logical choice for study at high pressure.

A. High Pressure Ambient Temperature

The sample was evaluated at high pressure and ambient temperature using *in-situ* angular dispersive x-ray diffraction and an image-plate area detector. The experiments were conducted at the Advanced Photon Source (APS) high pressure collaborative access team (HPcat) sector 16, Argonne National Laboratory (ANL) in Chicago²⁴. Fit2D was used in integration of the image plate data and to correct for polarization and geometric factors²⁵. High pressure x-ray structural measurements for $Fe_{78}B_{13}Si_9$ were carried out at HPcat BM-D using a 0.424603 \AA wavelength incident beam with a sample to detector distance was 318 mm . The incident beam cross-section was 24 μm vertical and 11 μm horizontal full width at

maximum. For the experiment two opposing $300\ \mu\text{m}$ diameter cutlets were used with
70 a pre-indented spring steel gasket and a $80\ \mu\text{m}$ cylindrical sample cavity. Copper foil was
71 placed within the sample chamber as a pressure marker. Pressure was evaluated using the
72 Birch-Murnaghan equation of state²⁶ of copper with the zero pressure ambient temperature
73 unit cell constant $a = 3.6148\ \text{\AA}$, bulk modulus $B_o = 121.6\ \text{GPa}$ and the first derivative $B' = 5.583$ ²⁷. A series of spectra are taken to a maximum pressure of $65.0\ \text{GPa}$. An additional
74 series of measurements were taken without a pressure marker. Pressure was determined by
75 comparison of first amorphous peak position to the pressure marker series. For $Fe_{78}B_{13}Si_9$
76 no compression induced bulk crystallization was apparent in the amorphous profile to the
77 maximum pressure.
78

79 B. High Pressure High Temperature

80 High pressure high temperature structural measurements were performed at ANL APS
81 HPcat beam line 16BM-B synchrotron radiation source²⁸. Pressure was generated using a
82 Paris Edinburgh type large volume press with tungsten carbide conical anvils. The setup
83 includes a custom made heater gasket assembly described here²⁹. For each run ten $1 \times 1\ \text{mm}$
84 sections of metallic glass foil were stacked in the boron nitrate (BN) crucible. The BN
85 cylinder was surrounded by the cylindrical graphite resistive heater. The cell gasket assembly
86 contains a magnesium oxide (MgO) internal pressure standard. Temperature was elevated
87 by increasing power supplied to the gasket heater. Structure was evaluated using an *in-situ*
88 $100 \times 100\ \mu\text{m}$ cross sectional area parallel white incident x-ray excitation beam with a 1-120
89 keV 4000 channel germanium x-ray radiation detector. The detector was set 15 degrees
90 from the incident beam path. Power, voltage and current are recorded with time and stored
91 in an experiment meta file. Energy dispersive x-ray diffraction spectra were recorded at 20
92 second intervals and stored as independent files.

93 The methodology of the experiment was chosen to reflect constant heating rate differential
94 scanning calorimetry³⁰. The setup was taken to elevated pressure prior to heating. Each
95 run was initially heated to 300°C as a common starting temperature. From 300°C power was
96 increased incrementally at a rate of one Watt every 80 seconds to the maximum temperature
97 for each run. To measure pressure, a series of MgO spectra are taken before the T_x bulk
98 crystallization begins and then immediately after the bulk crystallization was complete and
99 the x-ray spectra show no the apparent further change. To measure MgO, the cell was

101 moved with respect to the incident beam path until only the MgO x-ray profile was visible.

102 After measuring the trailing MgO spectra, the Paris Edinburgh cell was cooled to ambient
103 temperature and de-pressurized. A final spectrum of the devitrified fully crystallized sample
104 at ambient pressure and temperature was collected for structural evaluation. The final
105 spectra was exposed for a 10 minute or greater collection time. A single implementation of
the described method is executed for each pressure.

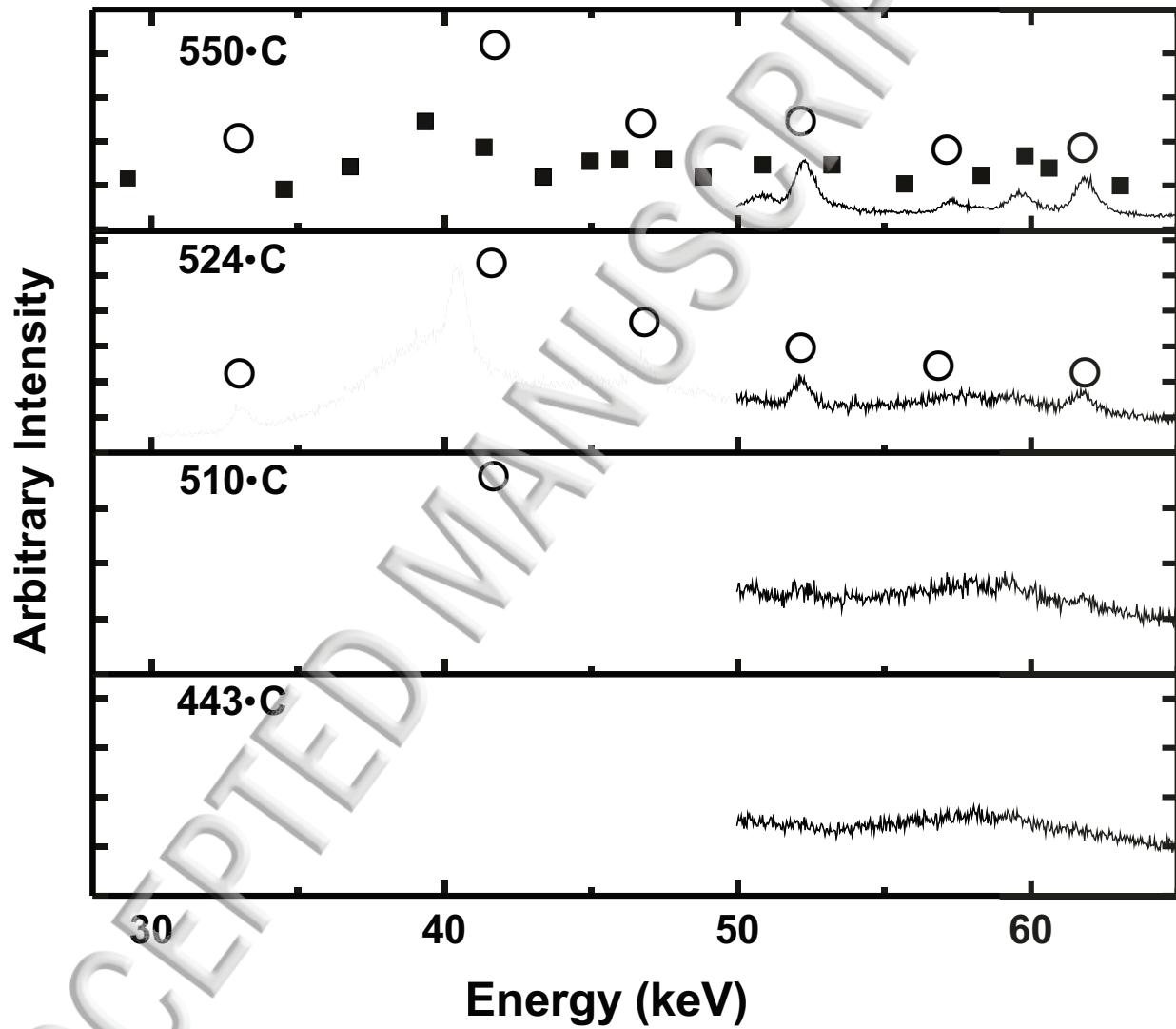


FIG. 1. Distinct phases of $Fe_{78}B_{13}Si_9$ at 0.57 ± 0.21 GPa during devitrification are shown. The temperature displayed is the middle of five averaged spectra. α -Fe peaks are indexed with circles. For 550°C the tetragonal Fe_2B peaks are indicated with solid squares.

106 Temperature was calculated using the cell pressure, power, voltage and current; for each
107 time in the experiment meta file^{28,29}. The recorded time for each 20 second x-ray spectra
108 was used to determine temperature by interpolation from the meta file temperatures. An

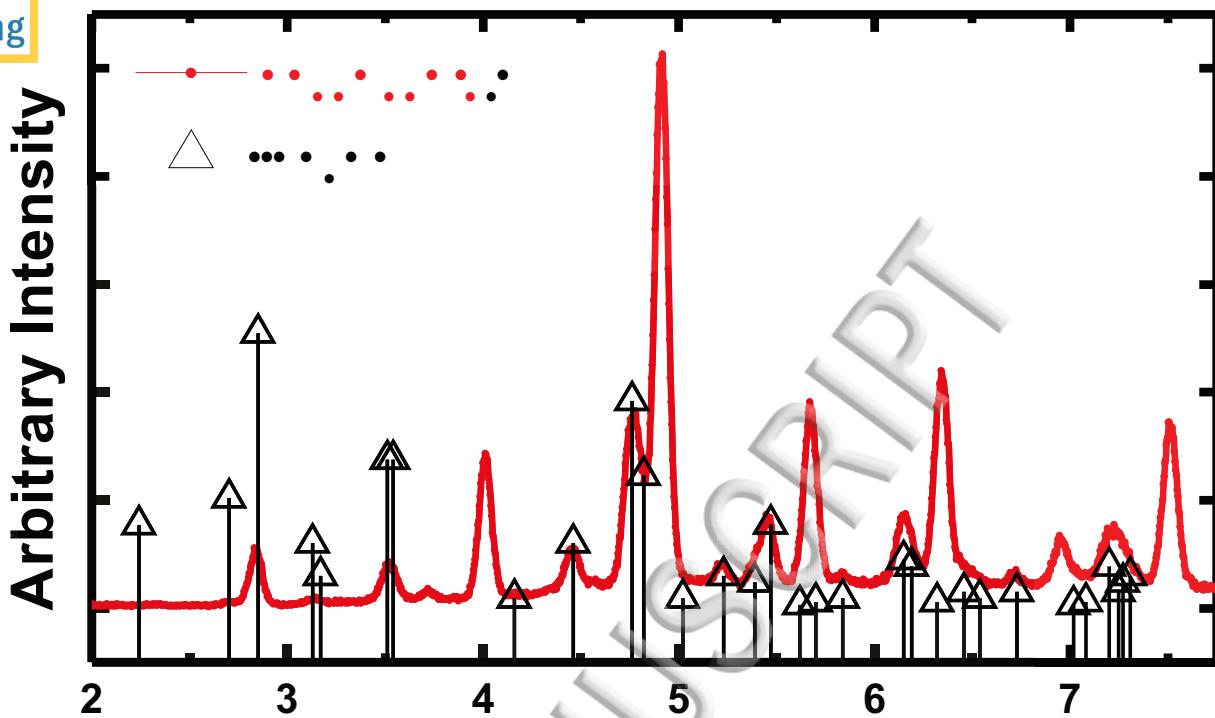


FIG. 2. Graph displays $Fe_{78}B_{13}Si_9$ after devitrification at 0.57 ± 0.21 GPa. The listed JCPDS 361332 tetragonal Fe_2B peaks are overlaid.

example of the datasets is shown in figure 3 with the interpolated temperature for each point. Pressure was determined using the Mie-Gruneisen-Einstein approach for MgO as derived by Kono et al.³¹ and for comparison using a version prepared by Dorogokupets et al.³². The two scales are compared by Ye et al.³³. The x-axis for each spectra was converted from keV to 2θ with a virtual wavelength of 0.1 Å for analysis³⁴. The unit cell volume for each MgO spectra was evaluated using the program CMPR³⁵ and PowderCell³⁶. Pressure was assumed linear with respect to time from the range between the MgO measurements preceding and following the bulk crystallization of the sample. The MgO spectra preceding T_x were taken near 500°C for the two highest pressure $Fe_{78}B_{13}Si_9$ spectra. The other MgO spectra preceding T_x in each run were taken at 450°C. The trailing MgO spectra was taken after complete bulk crystallization and the x-ray spectra showed no the apparent further change. In all runs the pressure change was less 0.1 GPa in the time between onset bulk crystallization to completion.

RESULTS

123 Each phase observed through devitrification persists to ambient conditions. As observed
124 with ambient pressure devitrification studies bulk crystallization for each pressure occurs in
125 two stages. The first stable phase to precipitate in every run is identified as α -Fe or BCC
126 iron shown in figure 1. The α -Fe phase is observed as the first stable phase to precipitate
127 under various conditions for Fe-based metallic glasses^{17,20,23,37-41}. For Si containing alloys,
128 the α -Fe phase is often cited as α -(Fe,Si) to indicate disordered incorporation of silicon into
129 the BCC iron phase^{7,20,42,43}. The α -Fe phase was indexed with JCPDS database number
130 060696, Space group (229) $Im\bar{3}m$, with a lattice parameter $a = 2.8664 \text{ \AA}$ ⁴⁴. The second
131 stage of bulk crystallization was identified as primarily tetragonal Fe_2B . The tetragonal
132 Fe_2B second phase was observed to precipitate for Fe-based metallic glasses under various
133 conditions^{20,23,37,39-41,43}. For the binary Fe_xB system, Wang et al. observed that the most
134 stable end products are Fe_2B and α -Fe³⁹. The tetragonal Fe_2B phase was indexed as
135 JCPDS database number 361332, Space group I4/mcm (140), with lattice parameters $a =$
136 5.1103 \AA and $b = 4.2494 \text{ \AA}$. Depending on pressure a minor phase appears in the second
137 stage during bulk crystallization. The second stage of bulk crystallization consists entirely
138 of tetragonal Fe_2B for $Fe_{78}B_{13}Si_9$ devitrified at pressures $0.57 \pm 0.21 \text{ GPa}$, $1.77 \pm 0.12 \text{ GPa}$
139 and $5.63 \pm 0.15 \text{ GPa}$. A mixed second stage consisting of primarily tetragonal Fe_2B and
140 a minority phase was found in $Fe_{78}B_{13}Si_9$ for devitrification pressures $0.65 \pm 0.20 \text{ GPa}$,
141 $2.76 \pm 20 \text{ GPa}$ and $4.59 \pm 0.09 \text{ GPa}$.

142 Figure 2 shows the $0.57 \pm 0.21 \text{ GPa}$ devitrification of the $Fe_{78}B_{13}Si_9$ sample after the
143 run is complete. The peak intensities of the minority second phase are insufficient for
144 classification. Figure 1 illustrates the various stages of bulk crystallization. Each EDXD
145 pattern consists of five 20 second spectra added together to increase resolution and decrease
146 white noise. The temperature displayed is in the middle of five averaged spectra. At 443°C
147 the glass was well below the observed bulk crystallization temperature of 510°C and was still
148 amorphous. The 510°C pattern shows the α -Fe phase starting to grow from the amorphous
149 background. By 524°C the α -Fe phase was distinctly visible while the amorphous pattern
150 has diminished. At 550°C the second stage tetragonal Fe_2B phase was visible and the
151 amorphous profile is no longer present in the pattern.

152 In each run the α -Fe phase x-ray peaks continue to increase in intensity while the second
153 phase x-ray peaks appear and the gain intensity. The intensity of the 200 α -Fe crystalline

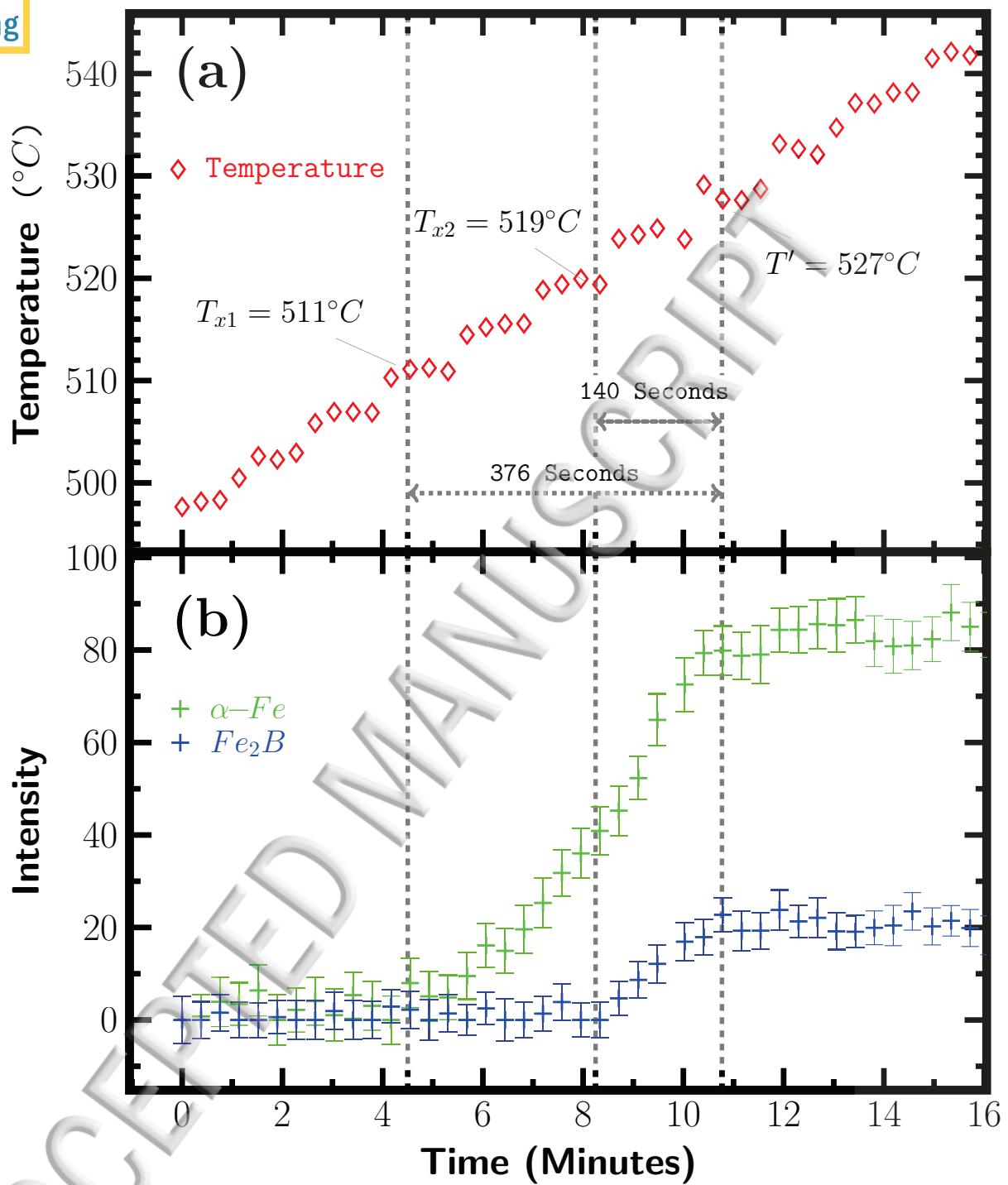


FIG. 3. pressure $0.57 \pm 0.21 \text{ GPa}$ $\text{Fe}_{78}\text{B}_{13}\text{Si}_9$, (a) Temperature for the 20 second spectra. (b) The peak intensity for the two phases during bulk crystallization. T_{x1} is the onset temperature for the α -Fe phase. T_{x2} is the onset temperature for the tetragonal Fe_2B . T' is the termination point for the transformation. Error for temperature and time are within the markers for each graph.

154 peak was fitted to reflect bulk crystallization following devitrification in the first and second

stage of bulk crystallization. The combined 202/310 peak for the tetragonal Fe_2B phase was fit to reflect progress of progress of bulk crystallization of Fe_2B in the second stage of bulk crystallization. Both peaks are distinct separate from all other observed peaks throughout the devitrification Figure 3 shows an example of a single bulk crystallization profile of each sample at lowest pressure and is a representative correlation of temperature, time and bulk crystallization at one pressure for each sample. The error bars represent the standard error for the Gaussian function fit after polynomial background subtraction. For each run, after bulk crystallization completes the peak height does not change to the maximum temperature. In the $Fe_{78}B_{13}Si_9$ sample at each pressure the rate of increase in peak height with time accelerates through the appearance of the second stage of bulk crystallization. Figure 3 illustrates the calculated temperature for each point in the top graph, with the absolute peak intensity of α -Fe 200 peak and the 202/310 peak for the tetragonal Fe_2B below. Table I lists the summary of observed T_x values for each pressure.

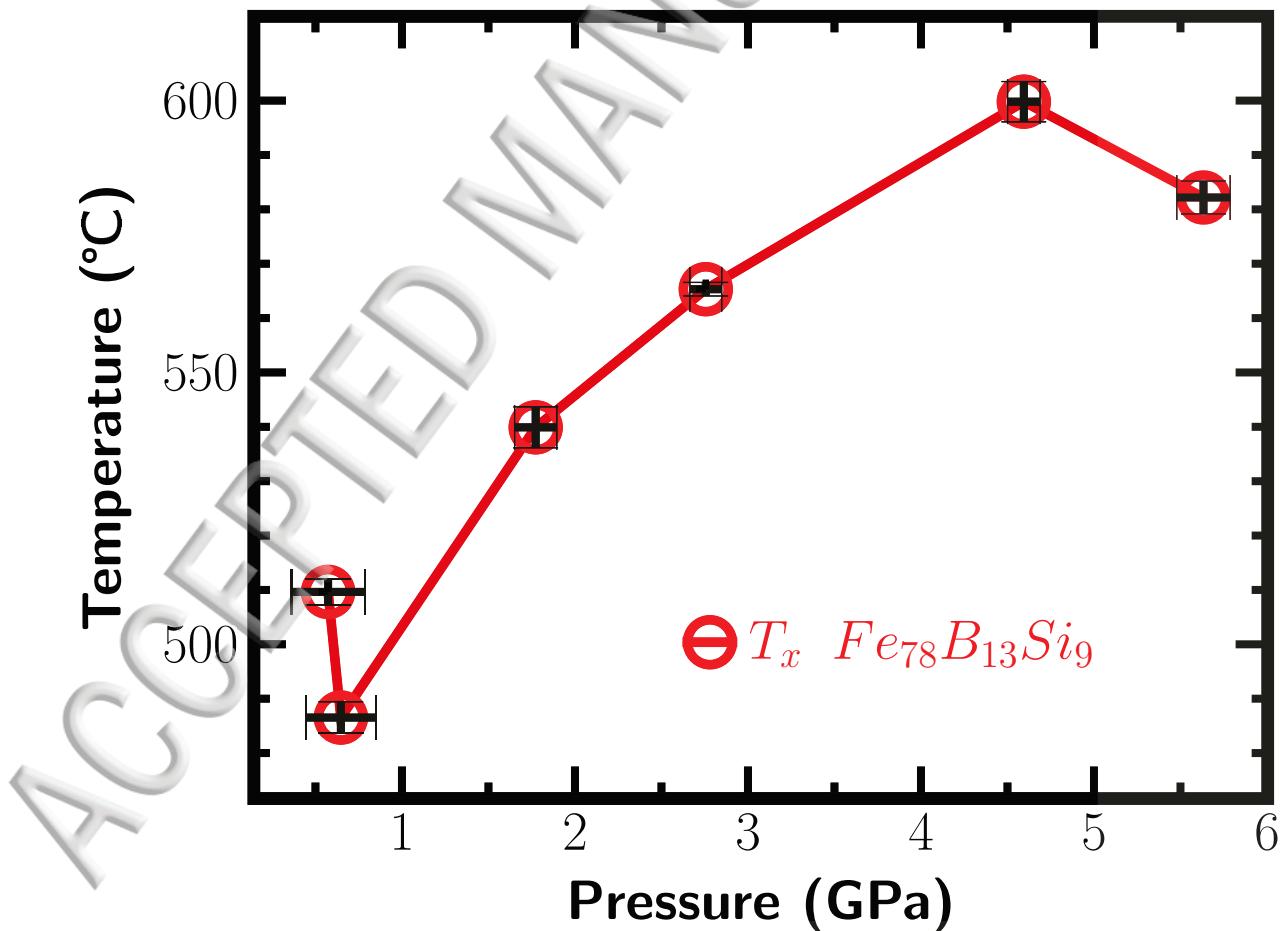


FIG. 4. Crystallization onset T_x for $Fe_{78}B_{13}Si_9$ vs. pressure. The error is shown at each point in black. Values and errors are in table I.

DISCUSSION

¹⁶⁹ The crystal nucleation rate I_ν can be written^{16,45}

$$I_\nu = \frac{A_\nu}{\eta(T)} \exp\left(-\frac{\Delta G^*}{k_B T}\right) \quad (1)$$

¹⁷⁰ where η is the viscosity term, A_ν is a constant, k_B is Boltzmann's constant and ΔG^* is the
¹⁷¹ nucleation barrier for forming a spherical nucleus. The nucleation barrier energy ΔG^* can
¹⁷² be written^{45,46}:

$$\Delta G^* = \frac{\frac{16}{3}\pi\sigma^3}{(P\Delta V + \Delta g)^2} \quad (2)$$

¹⁷³ where σ is the inter-facial energy of the nucleus, ΔV change in volume from the liquid
¹⁷⁴ to crystalline form, and Δg is the Gibb's free energy difference between the liquid and
¹⁷⁵ crystal states. Lower pressures have little effect on the interface energy and $\Delta g \gg P\Delta V$,
¹⁷⁶ as a result pressure has minimal effect on the nucleation barrier energy^{47,48}. Increase in
¹⁷⁷ the onset bulk crystallization temperature can be attributed to the effect of pressure on
¹⁷⁸ diffusion activation energy within viscosity term η ^{45,49}. Figure 4 displays T_x with respect to
¹⁷⁹ pressure and indicates a dip in bulk crystallization temperature T_x with a minimum between
¹⁸⁰ 0.63 ± 0.20 and 1.77 ± 0.12 GPa.

¹⁸¹ V. CONCLUSIONS

¹⁸² For each pressure examined bulk crystallization proceeds in two stages in a similar process-
¹⁸³ sion to ambient pressure studies. The general increase in onset bulk crystallization tempera-
¹⁸⁴ ture $Fe_{78}B_{13}Si_9$ was attributed to increase in diffusion activation energy $Q(T)$ with pressure.
¹⁸⁵ An apparent deviation of this trend is found for the first two data points indicating negative
¹⁸⁶ pressure dependence of T_x for this range.

¹⁸⁷ VI. ACKNOWLEDGMENTS

¹⁸⁸ We would like to thank Yoshio Kono and the staff of HPcat for all of their help. We
¹⁸⁹ would like to acknowledge support from the US National Science Foundation (NSF) under
¹⁹⁰ Metals and Metallic Nanostructures program Grant No. DMR-1608682. Portions of this
¹⁹¹ work were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne
¹⁹² National Laboratory. HPCAT operations are supported by DOENNSA under award No.

$R^{\circ}\text{C}/\text{min}$	$T_{x1}(\text{°C})$	$P_{x1}(\text{GPa})$	$T_{x2}(\text{°C})$	$P_{x2}(\text{GPa})$	$t_{x2}(\text{s})$	$T'_{x1}(\text{°C})$	$P'_{x1}(\text{GPa})$	$t'_{x1}(\text{s})$	$T'_{x2}(\text{°C})$	$P'_{x2}(\text{GPa})$	$t'_{x2}(\text{s})$
2.81	510 (3)	0.57 (21)	521 (2)	0.58 (22)	227	528 (2)	0.58 (23)	377	527 (2)	0.58 (23)	367
2.74	487 (3)	0.65 (20)	496 (3)	0.63 (21)	202	507 (2)	0.61 (23)	425	509 (2)	0.61 (23)	451
2.43	540 (4)	1.77 (12)	552 (4)	1.80 (13)	257	561 (2)	1.82 (14)	473	563 (3)	1.82 (14)	505
2.44	565 (2)	2.76 (09)	576 (2)	2.79 (10)	284	584 (2)	2.82 (10)	472	584 (2)	2.82 (10)	473
2.26	600 (4)	4.59 (09)	610 (2)	4.63 (09)	261	617 (2)	4.65 (10)	453	616 (2)	4.65 (10)	430
2.06	582 (3)	5.63 (15)	592 (3)	5.64 (16)	224	598 (2)	5.65 (16)	426	598 (2)	5.65 (16)	410

TABLE I. For each run, the heating rate (R), (T_{x1}) the onset bulk crystallization temperature for the first stage α -Fe bulk crystallization, (P_{x1}) pressure at the onset bulk crystallization temperature T_{x1} , T_{x2} onset bulk crystallization temperature of the second stage of bulk crystallization, (P_{x2}) pressure at the second stage onset bulk crystallization temperature T_{x2} , (t_{x2}) interval of time from T_{x1} to T_{x2} , (T'_{x1}) the temperature at completion of the first stage α -Fe bulk crystallization, (P'_{x1}) the pressure at completion of the first stage α -Fe bulk crystallization, (t'_{x1}) time from T_{x1} for the completion of α -Fe bulk crystallization, (T'_{x2}) the temperature at completion of the second stage Fe_2B bulk crystallization, (P'_{x2}) the pressure at completion of the second stage Fe_2B bulk crystallization, (t'_{x2}) the time at completion of the second stage Fe_2B bulk crystallization from T_{x1} . The number in parenthesis represents uncertainties in the last digit. Times are rounded to the nearest second. Rate was rounded to the second digit.

¹⁹³ DE-NA0001974 with partial instrumentation funding by NSF. The Advanced Photon Source ¹⁹⁴ is a U.S. Department of Energy (DOE) Office of Science User Facility operated for the ¹⁹⁵ DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-¹⁹⁶ 06CH11357.

¹⁹⁷ VII. REFERENCES

¹⁹⁸ REFERENCES

¹⁹⁹ ¹W. L. Johnson, “Bulk glass-forming metallic alloys: Science and technology,” MRS Bull. ²⁰⁰ **24**, 42–56 (1999).
²⁰¹ ²M. Ashby and A. Greer, “Metallic glasses as structural materials,” Scr. Mater. **54**, 321–326 ²⁰² (2006).

204 C. Hofmann, "Bulk metallic glasses and their composites: A brief history of diverging
fields," *Journal of Materials* **2013**, 8 (2013).

205 ⁴S. Madge, "Toughness of bulk metallic glasses," *Metals* **5**, 1279–1305 (2015).

206 ⁵J. Eckert, J. Das, S. Pauly, and C. Duhamel, "Mechanical properties of bulk metallic
glasses and composites," *J. Mater. Res.* **22**, 285–301 (2007).

207 ⁶A. M. Leary, M. S. Lucas, P. R. Ohodnicki, S. J. Kernion, L. Mauger, C. Park, C. Kenney-
Benson, and M. E. McHenry, "The influence of pressure on the phase stability of nanocom-
posite $Fe_{89}Zr_7B_4$ during heating from energy dispersive x-ray diffraction," *J. Appl. Phys.*
211 **113**, 17A317 (2013).

212 ⁷H. Y. Tong, B. Z. Ding, H. G. Jiang, S. L. Li, G. S. Li, and J. T. Wang, "Nanostructured
transformation mechanism of amorphous Fe-B-Si alloys by the crystallization method," *J.*
214 *Phys. D: Appl. Phys.* **27**, 396–401 (1994).

215 ⁸A. R. Yavari and A. Inoue, "Volume effects in bulk metallic glass formation," *MRS Pro-
ceedings* **554** (1998), 10.1557/PROC-554-21.

217 ⁹Y. Li, Q. Guo, J. A. Kalb, and C. V. Thompson, "Matching glass-forming ability with
218 the density of the amorphous phase," *Science* **322**, 1816–1819 (2008).

219 ¹⁰D. Miracle, W. Sanders, and O. N. Senkov, "The influence of efficient atomic packing on
220 the constitution of metallic glasses," *Philos. Mag.* **83**, 2409–2428 (2003).

221 ¹¹X. Hu, S. C. Ng, Y. P. Feng, and Y. Li, "Cooling-rate dependence of the density of
222 $Pd_{40}Ni_{10}Cu_{30}P_{20}$ bulk metallic glass," *Phys. Rev. B* **64**, 172201 (2001).

223 ¹²Q. Hu, X.-R. Zeng, and M. W. Fu, "Characteristic free volumes of bulk metallic glasses:
224 Measurement and their correlation with glass-forming ability," *J. Appl. Phys.* **109**, 053520
225 (2011).

226 ¹³M. E. McHenry, M. A. Willard, and D. E. Laughlin, "Amorphous and nanocrystalline
227 materials for applications as soft magnets," *Prog. Mater Sci.* **44**, 291–433 (1999).

228 ¹⁴A. H. Taghvaei and J. Eckert, "A comparative study on the isochronal and isothermal crys-
229 tallization kinetics of $Co_{46.45}Fe_{25.55}Ta_8B_{20}$ soft magnetic metallic glass with high thermal
230 stability," *J. Alloys Compd.* **675**, 223–230 (2016).

231 ¹⁵J. Qiao, H. Jia, and P. K. Liaw, "Metallic glass matrix composites," *Materials Science
and Engineering: R: Reports* **100**, 1 – 69 (2016).

233 ¹⁶J. F. Löffler, "Bulk metallic glasses," *Intermetallics* **11**, 529 – 540 (2003).

234 ¹⁷M. Duarte, A. Kostka, D. Crespo, J. Jimenez, A. Dippel, F. Renner, and G. Dehm,
235 "Kinetics and crystallization path of a fe-based metallic glass alloy," *Acta Mater.* **127**,

341–350 (2017).

²³⁷ ¹⁸P. Ramasamy, A. Szabo, S. Borzel, J. Eckert, M. Stoica, and A. Bárdoš, “High pressure die casting of fe-based metallic glass,” *Sci. Rep.* **6**, 35258 (2016).

²³⁹ ¹⁹L. Liu, J. Ma, C. Yu, X. Huang, L. He, L. Zhang, P. Li, and Z. Liu, “Determination of forming ability of high pressure die casting for zr-based metallic glass,” *J. Mater. Process. Technol.* **244**, 87 – 96 (2017).

²⁴² ²⁰E. Illekova, I. Mat’Ko, P. Duhaj, and F.-A. Kuhnast, “The complex characteristics of crystallization of the $Fe_{75}Si_{15}B_{10}$ glassy ribbon,” *J. Mater. Sci.* **32**, 4645–4654 (1997).

²⁴⁴ ²¹C. Yang, W. K. Wang, R. P. Liu, Z. J. Zhan, L. L. Sun, J. Zhang, J. Z. Jiang, L. Yang, and C. Lathe, “Crystallization of $Zr_{41}Ti_{14}Cu_{12.5}Ni_{10}Be_{22.5}$ bulk metallic glass under high pressure examined by *in situ* synchrotron radiation x-ray diffraction,” *J. Appl. Phys.* **99**, 023525 (2006).

²⁴⁸ ²²Y. X. Zhuang, J. Z. Jiang, T. J. Zhou, H. Rasmussen, L. Gerward, M. Mezouar, W. Crichton, and A. Inoue, “Pressure effects on $Al_{89}La_6Ni_5$ amorphous alloy crystallization,” *Appl. Phys. Lett.* **77**, 4133–4135 (2000).

²⁵¹ ²³J. Y. Bang and R. Y. Lee, “Crystallization of the metallic glass $fe_{78}b_{13}si_9$,” *J. Mater. Sci.* **26**, 4961–4965 (1991).

²⁵³ ²⁴G. Shen, P. Chow, Y. Xiao, S. Sinogeikin, Y. Meng, W. Yang, H.-P. Liermann, O. Shebanova, E. Rod, A. Bommannavar, and H.-K. Mao, “Hpcat: An integrated high-pressure synchrotron facility at the advanced photon source,” *High Pressure Res.* **28**, 145–162 (2008).

²⁵⁷ ²⁵A. P. Hammersley, S. O. Svensson, M. Hanfland, A. N. Fitch, and D. Hausermann, “Two-dimensional detector software: From real detector to idealised image or two-theta scan,” *High Pressure Res.* **14**, 235–248 (1996).

²⁶⁰ ²⁶F. Birch, “Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K,” *Journal of Geophysical Research: Solid Earth* **83**, 1257–1268 (1978).

²⁶³ ²⁷N. Velisavljevic and Y. K. Vohra, “Distortion of α -uranium structure in praseodymium metal to 311 GPa,” *High Pressure Res.* **24**, 295–302 (2004).

²⁶⁵ ²⁸Y. Kono, C. Park, C. Kenney-Benson, G. Shen, and Y. Wang, “Toward comprehensive studies of liquids at high pressures and high temperatures: Combined structure, elastic wave velocity, and viscosity measurements in the paris-edinburgh cell,” *Phys. Earth Planet. Inter.* **228**, 269 – 280 (2014).

²⁹A. Yamada, Y. Wang, T. Inoue, W. Yang, C. Park, T. Yu, and G. Shen, "High-pressure x-ray diffraction studies on the structure of liquid silicate using a paris-edinburgh type large volume press," *Rev. Sci. Instrum.* **82**, 015103 (2011).

³⁰A. K. Stemshorn, *Devitrification of Iron Based Metallic Glasses at High Pressures and High Temperatures*, Ph.D. thesis (2014).

³¹Y. Kono, T. Irfune, Y. Higo, T. Inoue, and A. Barnhoorn, "P–v–t relation of MgO derived by simultaneous elastic wave velocity and *in situ* x-ray measurements: A new pressure scale for the mantle transition region," *Phys. Earth Planet. Inter.* **183**, 196–211 (2010).

³²P. I. Dorogokupets, "P–V–T equations of state of MgO and thermodynamics," *Phys. Chem. Miner.* **37**, 677–684 (2010).

³³Y. Ye, V. Prakapenka, Y. Meng, and S.-H. Shim, "Intercomparison of the gold, platinum, and MgO pressure scales up to 140 GPa and 2500 K," *Journal of Geophysical Research: Solid Earth* **122**, 3450–3464 (2017).

³⁴P. Ballirano and R. Caminiti, "Rietveld refinements on laboratory energy dispersive x-ray diffraction (EDXD) data," *J. Appl. Crystallogr.* **34**, 757–762 (2001).

³⁵B. H. Toby, "CMPR – a powder diffraction toolkit," *J. Appl. Crystallogr.* **38**, 1040–1041 (2005).

³⁶W. Kraus and G. Nolze, "POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting x-ray powder patterns," *J. Appl. Crystallogr.* **29**, 301–303 (1996).

³⁷M. Ohnuma, O. Sasaki, H. Kuwano, S. Katano, Y. Morii, S. Funahashi, H. R. Child, and Y. Hamaguchi, "Crystallization process of $(Fe_{80}P_{20})_xSi_y$ amorphous alloys," *Mater. Trans., JIM* **34**, 874–881 (1993).

³⁸R. V. Ramanujan and Y. R. Zhang, "Solid state dendrite formation in an amorphous magnetic $Fe_{77.5}Si_{13.5}B_9$ alloy observed by *in situ* hot stage transmission electron microscopy," *Appl. Phys. Lett.* **88**, 182506 (2006).

³⁹W. K. Wang, H. Iwasaki, and K. Fukamichi, "Effect of high pressure on the crystallization of an amorphous $Fe_{83}B_{17}$ alloy," *J. Mater. Sci.* **15**, 2701–2708 (1980).

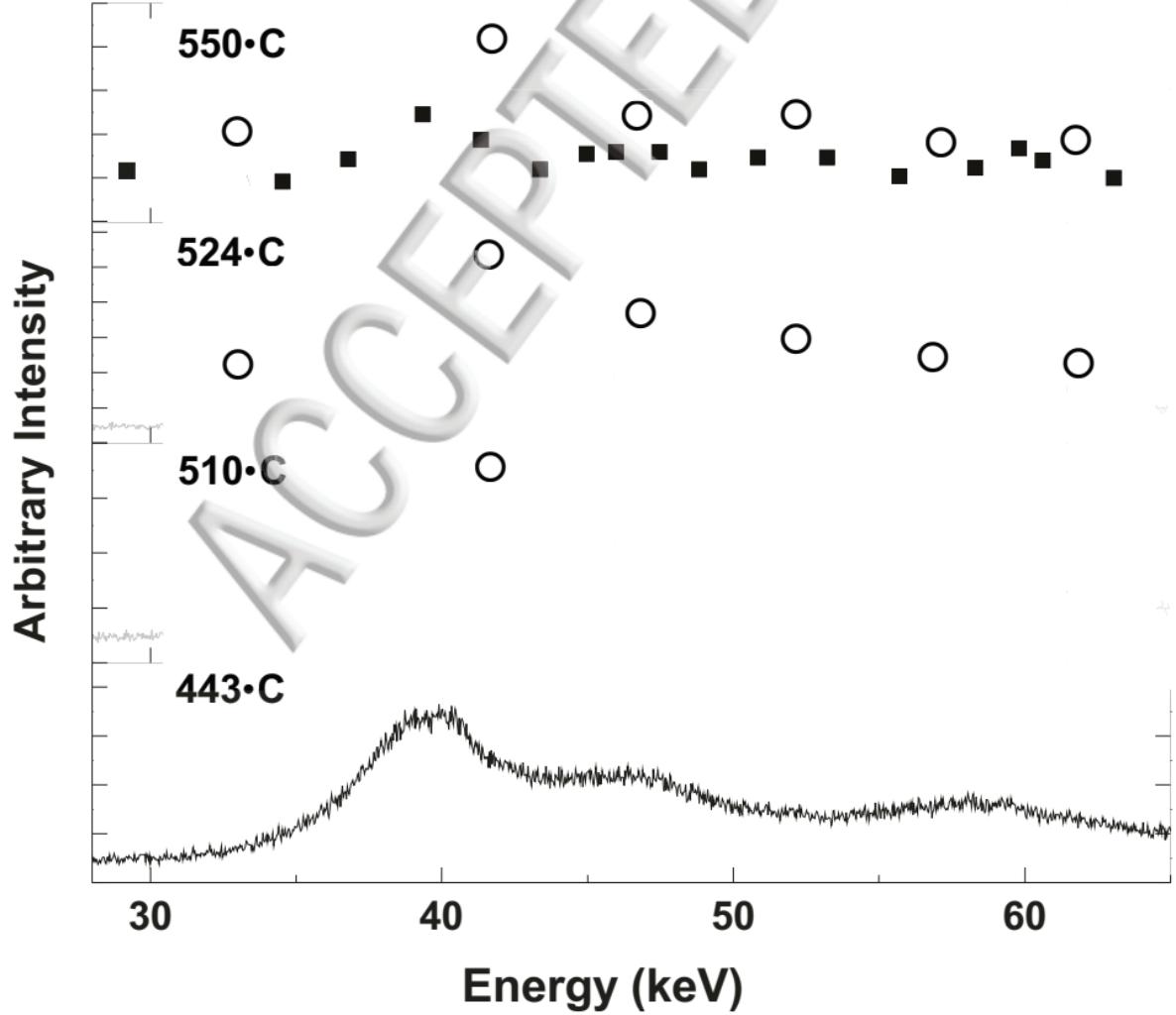
⁴⁰S. Guo and C. Su, "Micro-nano ductile-phases reinforced fe-based bulk metallic glass matrix composite with large plasticity," *Materials Science and Engineering: A* **707**, 44–50 (2017).

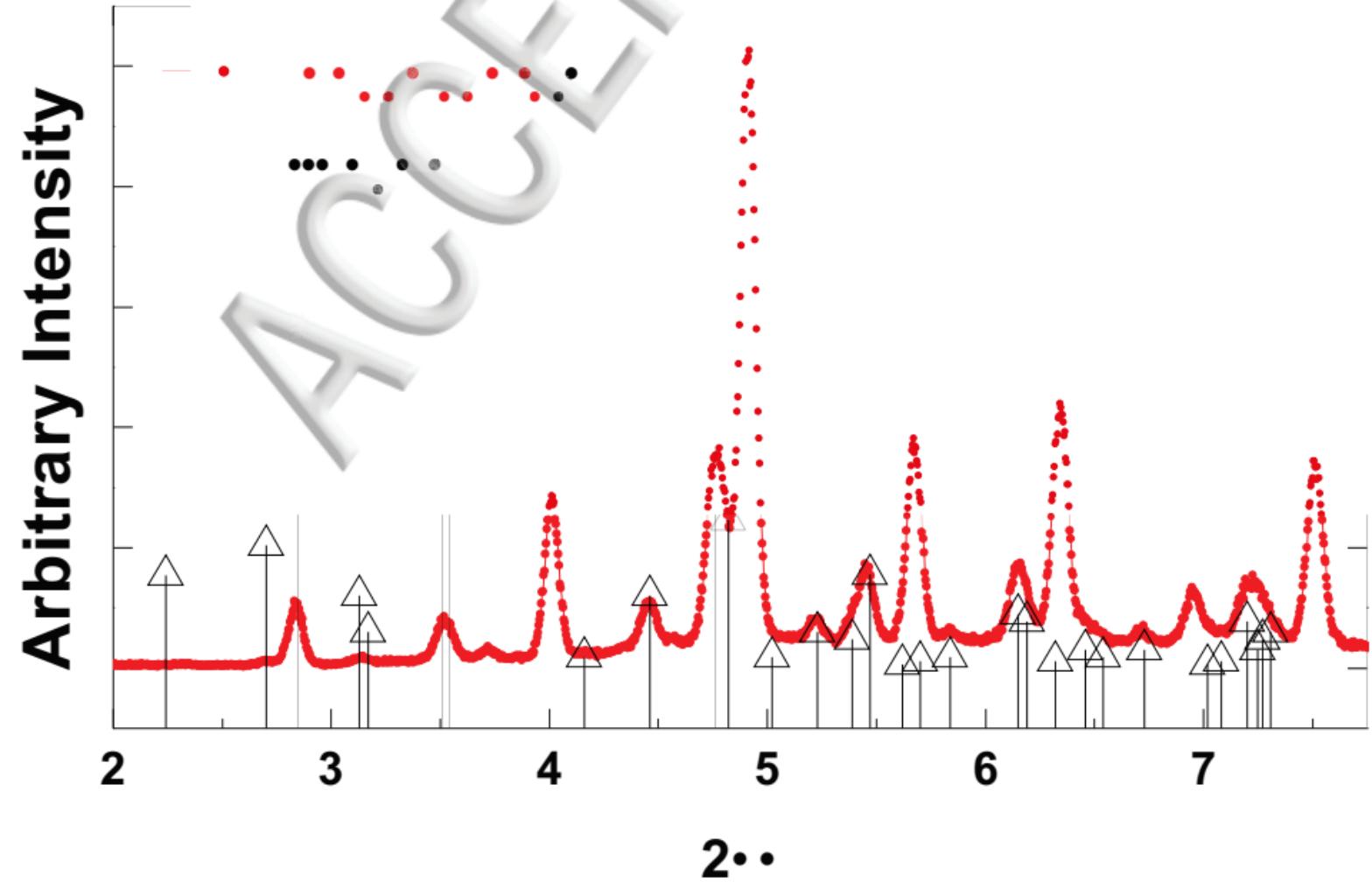
301 ⁴¹M. Minić, V. A. Blagojević, D. M. Minić, and T. Žák, “Influence of microstructural
302 inhomogeneity of individual sides of $Fe_{81}Si_4B_{13}C_2$ amorphous alloy ribbon on thermally
303 induced structural transformations,” Mater. Chem. Phys. **130**, 980–985 (2011).

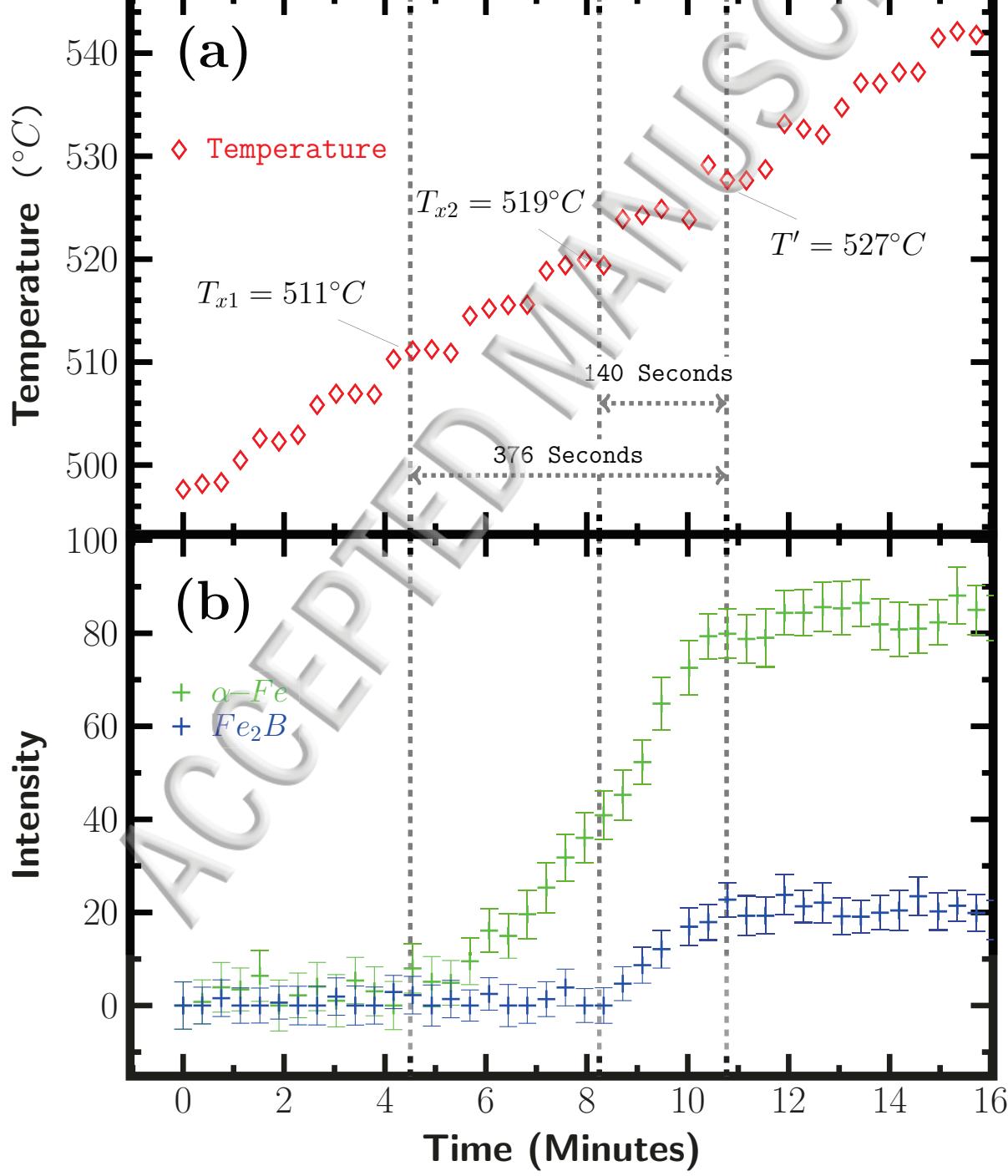
304 ⁴²R. C. O’Handley, “Physics of ferromagnetic amorphous alloys,” J. Appl. Phys. **62**, R15–
305 R49 (1987).

306 ⁴³K. Lu, “Nanocrystalline metals crystallized from amorphous solids: Nanocrystallization,
307 structure, and properties,” Materials Science and Engineering: R: Reports **16**, 161–221
308 (1996).

309 ⁴⁴F. M. Wang and R. Ingalls, “Iron bcc-hcp transition: Local structure from x-ray-absorption
310 fine structure,” Phys. Rev. B **57**, 5647–5654 (1998).


311 ⁴⁵W. H. Wang, Z. X. Wang, D. Q. Zhao, M. B. Tang, W. Utsumi, and X.-L.
312 Wang, “High-pressure suppression of crystallization in the metallic supercooled liquid
313 $Zr_{41}Ti_{14}Cu_{12.5}Ni_{10}Be_{22.5}$: Influence of viscosity,” Phys. Rev. B **70**, 092203 (2004).


314 ⁴⁶J. Z. Jiang, L. Gerward, and Y. S. Xu, “Pressure effect on crystallization kinetics in
315 $Zr_{46.8}Ti_{8.2}Cu_{7.5}Ni_{10}Be_{27.5}$ bulk metallic glass,” Appl. Phys. Lett. **81**, 4347–4349 (2002).


316 ⁴⁷Z. Han, X. Huang, A. A. Luo, A. K. Sachdev, and B. Liu, “A quantitative model for
317 describing crystal nucleation in pressurized solidification during squeeze casting,” Scr.
318 Mater. **66**, 215–218 (2012).

319 ⁴⁸A. Setyawan, H. Kato, J. Saida, and A. Inoue, “Evidence for effect of hydrostatic pressure
320 during casting on glass-forming ability in $(Zr_{65}Al_{7.5}Ni_{10}Cu_{17.5})_{1-x}Pd_x$ (x=0-17.5) alloys,”
321 Materials Science and Engineering: A **449**, 903 – 906 (2007).

322 ⁴⁹R. S. J., “New challenges for the pressure evolution of the glass temperature,” Front.
323 Mater. **4**, 33 (2017).

Temperature (°C)

600

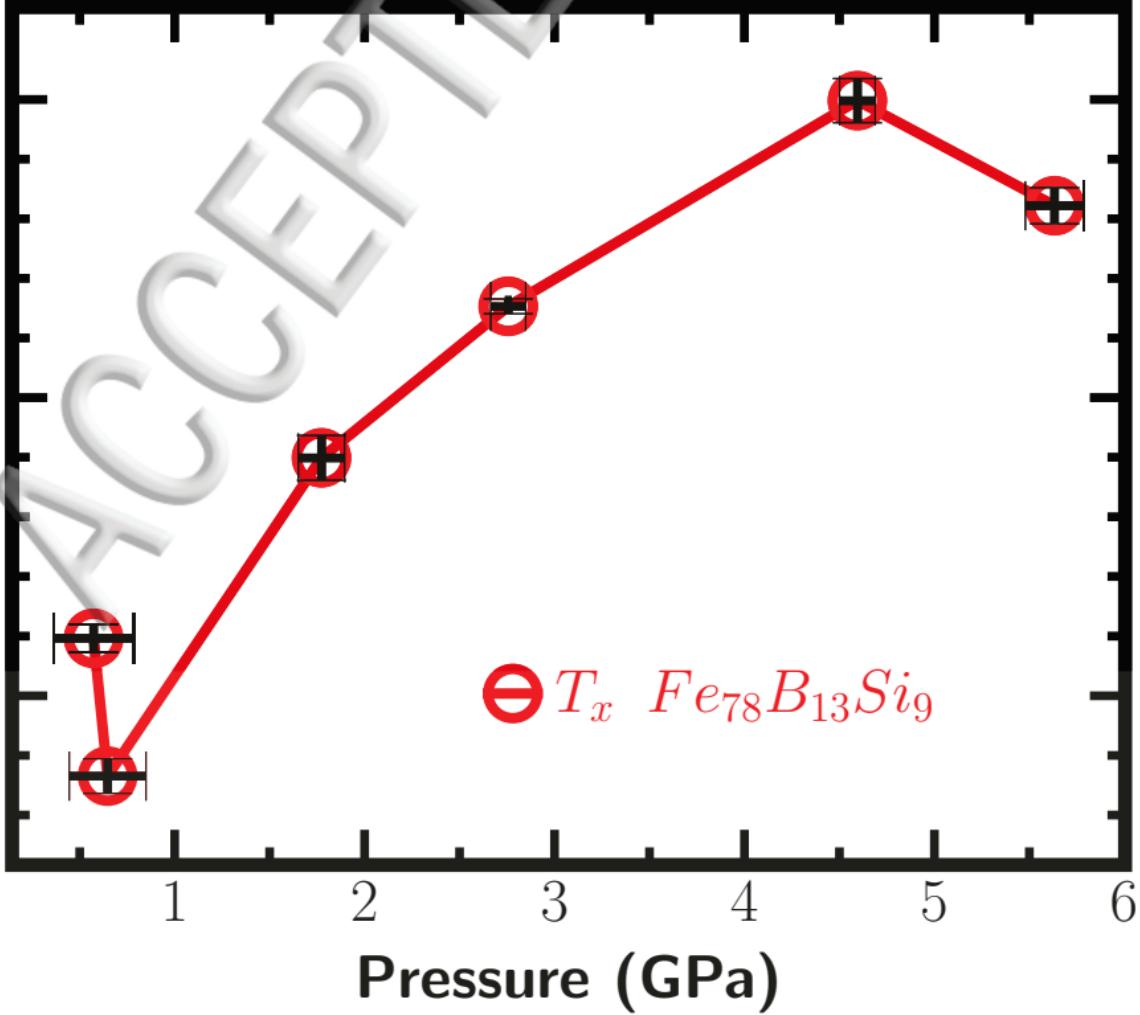
550

500

1

2

3


4

5

6

Pressure (GPa)

Θ T_x $Fe_{78}B_{13}Si_9$

