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ABSTRACT

There is a significant need for low-cost, high-performance
prosthetic knee technology for transfemoral amputees in India.
Replicating able-bodied gait in amputees is biomechanically
necessary to reduce the metabolic cost, and it is equally im-
portant to mitigate the socio-economic discrimination faced by
amputees in developing countries due to their conspicuous gait
deviations. This paper improves upon a previous study of a fully
passive knee mechanism, addressing the issues identified in its
user testing in India. This paper presents the design, analysis
and bench-level testing of the three major functional modules of
the new prosthetic knee architecture: (i) a four-bar latch mecha-
nism for achieving stability during stance phase of walking, (ii)
an early stance flexion module designed by implementing a fully
adjustable mechanism, and (iii) a hydraulic rotary damping sys-
tem for achieving smooth and reliable swing-phase control.

INTRODUCTION
Background and Motivation

This paper is a continuation of the work to design a fully pas-
sive prosthetic knee to enable able-bodied gait for transfemoral
amputees in developing countries, based on a prior design and
analysis by Narang, Arelekatti and Winter [1–5]. It is estimated
that there are 200,000 above-knee amputees living in India and
that 47% of amputees experience change or loss of employ-
ment following the amputation [6–8]. Severe social stigma and
the economic consequences from having conspicuous disabilities
have been well-documented and articulated [5, 9–13], highlight-
ing the need for a low-cost prosthesis that can enable able-bodied
gait to mitigate discrimination and increase metabolic efficiency.

Relevant Terminology
A brief summary of the relevant terms from gait biomechan-

ics used in this paper are laid out briefly for the uninitiated reader
(Fig. 1).

Proceedings of the ASME 2017 International Design Engineering Technical Conferences and 
Computers and Information in Engineering Conference 

IDETC/CIE 2017 
August 6-9, 2017, Cleveland, Ohio, USA 

DETC2017-68278

1 Copyright © 2017 ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 05/31/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



K
ne

e 
A

ng
le

 (
F

le
xi

on
)

Gait Cycle (% time)

Stance Phase Swing Phase

   0    10    20     30     40     50    60     70     80    90       100

60O

  
  

45O

30O

     
15O

    
0O  

Early Stance Mid Stance Late Stance 

Ground Reaction Force Vector (GRF) acting through 
the Center of Pressure (COP) on the foot 

Flexion 
Moment


Extension 
Moment


Flexion 
Moment


B

A

FIGURE 1: A. Illustration of the stance phase of gait cycle, when

the foot is on the ground. The Ground Reaction Force (GRF)

acting through the Center of Pressure (COP) results in flexion or

extension moment through the stance phase. B. The human gait

cycle of each leg is divided into the stance phase, followed by

the swing phase when the foot leaves contact with the ground for

clearance. The knee flexion angle is defined as the relative angle

between the upper leg and lower leg as illustrated to the left of

the vertical axis on the graph. Extension direction at the knee

is defined to be in the opposite direction to the flexion direction.

The graph shows the normaive knee angle kinematics through the

gait cycle (red curve), along with the standard deviation shown in

grey band [14]. The illustration below the horizontal axis shows

the corresponding lower leg trajectory through the gait cycle

Existing Devices and their Limitations
A significant cost-performance gap exists in the realm of

current knee prostheses. Advanced, high-performance prosthetic

devices used in the developed world are typically active in order

to achieve optimal performance, making them inappropriate for

the developing world in terms of cost as well as sub-optimal for

large-scale, resource-constrained application [5, 15, 16]. Typical

developing world prostheses are passive and low-cost, but prim-

itive in functionality, inhibiting able-bodied gait and garnering

poor user satisfaction [12, 15]. Manually locked knees are cur-

rently the most widely distributed prosthetic knees in developing

countries. The four-bar polycentric four-bar knee is currently be-

ing adopted in India and other countries, and shows better perfor-

mance than previous single-axis joints [12]. While similar knees

have shown better performance than the locked or single-axis de-

vices, they notably fail to address early stance flexion or proper

timing in later flexion [5]. The LCKnee designed by Andrysek

et al. [17, 18] with a reliable single-axis mechanical latch ad-

dresses complaints of falling due to buckling in other devices.

However, early stance flexion and late phase damping required

for able-bodied kinematics [5] have not been satisfactorily ad-

dressed. Recent work by Arelekatti and Winter [3, 5] is moving

towards the development of a low-cost passive prosthetic knee,

addressing these outstanding needs and allowing for an efficient

walking gait. By modeling knee angle, moment, and power over

the course of a gait cycle, it was determined that a close approxi-

mation of healthy knee function could be achieved passively us-

ing a spring activated at early stance, and two dampers activated

over the course of the late stance and swing phases [1, 2]. This

analysis was used to develop low-cost, passive, prosthesis proto-

types [3–5] with an automatic stance phase lock for stability. The

prototypes were tested on four above-knee amputees in India.

The desired early-stance flexion was not observed in amputee

gaits, despite incorporating the necessary elastic module. Ad-

ditionally, these prototypes relied on zero order dampers (using

friction brakes) and friction-based automatic latch for stability

during early stance. This reliance on friction made the prototype

unsuitable for long term use [5].

Three Modules: Stance Stability, Early Stance Flexion
and Swing Control

This paper presents improvements that address the main

deficits identified in the earlier prototypes. This iteration of the

design was approached with the aim to deterministically enable

the desired gait kinematics, working specifically on the three

modules identified to be problematic in the previous device:

stance stability, early stance flexion, and swing-phase control.

This paper is divided into modules to describe the design and

analysis for each module, given the basic operation and archi-

tecture of the overall device has been discussed in the published

literature [1–5]. Results are discussed together for the first two

modules and separately for the third module.

MODULE 1: STANCE STABILITY
Overview and Strategy

Stance stability is a critical function of the knee prosthesis

as it is directly related to the user’s safety. The main design re-

quirements for this module are the ability to withstand a flex-

ion moment of 40Nm (caused by GRF) without buckling, allow

quick transition into the swing phase, ensure the mechanism is
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FIGURE 2: A. In early stance, the ground reaction force causes

flexion moments about both the knee axis (KA) and locking axis

(LA). B. In late stance, the ground reaction force causes a flexion

moment about the knee axis but an extension moment about the

locking axis.

latched before heel strike, and reduce backlash in the mechanism

to prevent hyperextension (to within 1◦) [7]. Hyperextension is

the knee extending backwards from the neutral standing position.

Various locking and braking mechanisms for single and multiple

axis knees were considered, before it was decided to focus on im-

plementing a single-axis, automatically locking mechanism [17].

This strategy was chosen for its absolute stability, simplicity, and

durability.

In an able-bodied gait cycle, the knee experiences a flexion

moment during both the early and late phases of stance (Fig. 1).

In early stance, the knee must stay locked to prevent buckling,

while in late stance the knee should be unlocked to initiate swing.

An innovative solution is to use a latch mounted on a locking axis

to control the engagement of a latch [15]. By carefully placing

this locking axis with respect to the ground reaction force and

knee axis, the locking axis can experience a flexion moment in

early stance and an extension moment in the late stance (Fig. 2).

The different moments can be used to engage and disengage the

latch. Similar to the latch design by Andrysek [17], this strategy

was implemented in Arelekatti and Winter’s previous design [3–

5] with some success, and a key improvement to its performance

has been made by switching from using a physical locking axis

to a virtual axis. The four-bar implementation of this virtual axis

is discussed in more detail in the next section.

Design and Analysis
Mechanism Design A sectional view of the stance sta-

bility module at key points during the gait cycle is shown in

Fig. 3. The main components of the design include: (i) the knee

piece, which is connected to the early stance flexion module and

the socket and rotates with respect to the knee axis, (ii) the latch

piece, which extends to the base and connects to the lower pylon,

and (iii) the linkages of the four-bar mechanism that create a vir-

tual locking axis. There are also two pieces that act as hard stops

and limit the rotational motion of the knee and latch (Fig. 3 cir-

cular inset). The latching mechanism involves four major steps,

the first two occurring during stance phase and the latter two oc-

curring during swing phase:

1. Locked position (Fig. 3A) - when the user’s heel first strikes

the ground, the knee experiences a flexion moment, but the

latch is in the locked position and flexion is prevented by the

mechanical engagement of the knee with the latch tip.

2. Latch unlocking (Fig. 3B)- as the user rolls over on the foot

and the GRF moves towards the toes and in front of the knee

axis, the knee experiences an extension moment which dis-

engages it from the latch tip and also presses the knee against

a hard stop. This allows the latch to move freely backwards

against the spring when the GRF passes in front of the lock-

ing axis. With the latch now in the unlocked position, the

knee is allowed to rotate under a flexion moment as the GRF

passes back behind the knee axis (Fig. 2).

3. Latch repositioning (Fig. 3C) - once the knee has flexed and

swing initiated, the restoring bias-spring force will return the

latch to the locked position.

4. Latch relocking (Fig. 3D) - as the lower leg and foot swing

forward to extend at the end of the gait cycle, the knee will

come down on the latch tip, pushing it back against the

spring until the knee has extended far enough to allow the

restoring spring force to relock the knee.

Note that in the relocking step (Fig. 3 circular inset), there

is a unique feature in the knee piece that allows for relocking at

two different points, which is referred to as a double latch. This

allows the knee to lock at an intermediate point before reaching

full extension (currently designed to be at 10◦ of knee flexion).

This is important for user’s safety because it means the knee will

lock even if the user does not fully extend the knee before heel

strike, as may happen when walking up inclines.

Placement of the Locking Axis In a normal gait cycle,

the center of pressure (COP) of the GRF moves from the heel to

the toe [14] (Fig. 4). This means the GRF’s orientation in space

can be deterministically used to unlock the latch at a desired in-

stance in the gait cycle. As the GRF passes a certain point, the

latch switches from being engaged to disengaged, allowing the

knee to swing. This GRF transition point is determined by the

projection down to the foot of the line that connects the knee axis

and the locking axis. So by determining a desired GRF transition

point, the placement of the locking axis can be limited to the line

connecting the GRF transition point and the knee axis (Fig. 4).

In order to imitate an able-bodied gait cycle, it was decided that

the GRF transition point should be placed at the COP when the

knee initiates late stance flexion, as shown in Fig. 4. From Win-
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FIGURE 3: The stance stability module at (from left to right): A. locked position, B. latch unlocking, C. latch repositioning, and D. latch

relocking. The red line represents the ground reaction force and the red dots are the knee axis and the virtual locking axis (KA and LA

respectively). The circular inset shows the different parts important in the function of the stability module. The step by step function of

the module is described in detail in the section on Mechanism Design.

ter’s gait data [14], it was that decided the GRF transition point

should be 18cm from the heel [14].

After deciding upon the GRF transition point to constrain the

locking axis to a line, the height and exact placement of the lock-

ing axis was determined to reduce hyperextension while main-

taining stance stability. Hyperextension results in a small wobble

the user feels as the latch unlocks during mid stance extension.

The relationship between the hyperextension angle and latch un-

locking movement can be modeled by a simple angle-arc length

relationship:

s = rθ (1)

where s is the latch movement when it unlocks, r is the vertical

distance between the knee axis and the locking axis (Fig. 4), and

θ is the hyperextension angle at the knee. Users were able to

distinctly notice hyperextension in the earlier knee design [3–5],

which had approximately 3◦ of hyperextension. Less than 1◦ of

hyperextension is desired. The latch movement was measured to

be 5mm. Therefore, to achieve the goal of reduced hyperexten-

sion, the locking axis was designed to be 30cm below the knee

axis. However, while a low locking axis can reduce hyperexten-

sion, it also means that a wider range of GRFs will be able to

unlock the knee.

The locking axis can be implemented in two ways: a phys-

ical axis or a virtual axis using a four-bar mechanism. Whereas

the physical axis uses fewer parts and is more robust (imple-

mented in the LCKnee by Andrysek [17]), the virtual axis allows

much more flexibility in placing the locking axis and can result in

a more compact design. Since the desired location of the locking

axis is far apart from the knee axis, a virtual implementation was

chosen as a physical, single-axis implementation of the locking

member (latch) would have been too bulky.

Structural Analysis of the Latching Mechanism
The structural integrity of the latching mechanism at heel strike

is critical to keep the knee locked and prevent buckling. A free

body diagram of the relevant forces on the system at heel strike

is shown in Fig. 5. The sum of moments on the latch about the

locking axis, ΣMLA is:

ΣMLA = GRF ·dGRF + fspring ·dspring + f ·d f +N ·dn − fhs ·dhs
(2)

where dGRF , dspring, d f , dn and dhs are the lever arm dis-
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FIGURE 4: A. Placement of the locking axis along the line be-
tween the knee axis and GRF transition point. B. Movement of
COP during a gait cycle, mapped to the corresponding knee an-
gle kinematics. The placement of GRF transition point is at the
beginning of late stance flexion of the knee.

FIGURE 5: Free body diagram of the knee and latch at heel
strike.

tances from the knee axis of the respective forces (Fig. 5). All
forces on the latch create a positive moment that helps to keep it
in the locked position, other than the reaction force from the hard

stop the latch presses against. This means that the only reason
the latch might unlock at this stage is structural failure at the tip,
but beam bending and tensile strength calculations show that the
latch tip can withstand the applied normal forces. To increase the
factor of safety, the latch tip will be machined from the stronger
Aluminum 7075, while the rest of the parts can be machined from
the more common Aluminum 6061 alloy (or injection molded in
plastic in future iterations). This analysis suggests that this de-
sign provides robust locking and will successfully mitigate the
risk of buckling at heel strike.

It is a key point that this stance stability mechanism relies on
mechanical engagement to keep the knee locked. This addresses
the main drawback of Arelekatti and Winter’s previous design
[3–5], which relied on friction between the knee and latch pieces
to keep the knee locked. Any issues with the unreliability or
variability of friction forces, or with the knee unlocking under
forces high enough to overcome friction, are no longer seen in
the current design.

MODULE 2: EARLY STANCE FLEXION
Overview and Strategy

The development of an early stance flexion (ESF) module
was one of the three main focuses of the design of this pros-
thesis. While prostheses designed for the developing world ig-
nore early stance flexion, it is critical that it be accommodated
to a magnitude of 20 degrees to replicate able-bodied kinematics
during the early stance phase of walking gait (shown in Fig. 1B,
the ∼20 degree bump in the knee angle curve). The lack of early
stance flexion is detrimental to the user because of both the social
stigma associated with the conspicuous gait deviation, as well as
the potential long term health issues of lacking cushioning pro-
vided after heel strike, and having to compensate for lack of such
flexion through over-exertion at the the hip. This design aims to
build off of the previous work by Narang, Arelekatti and Win-
ter, improving the design and increasing its adjustability to try to
achieve early stance flexion in future user trials. While the previ-
ous design had implemented ideal parameters calculated through
biomechanical analysis, this one aims to allow for a wider range
of adjustment in order to experimentally determine the proper
parameters that will be necessary in order to ensure early stance
flexion in the future devices.

The previously developed prosthesis determined the posi-
tioning and stiffness for the early stance flexion axis of rotation
by looking at the changing ground reaction force (GRF) vector
of an able-bodied subject over the gait cycle. Since the GRF
changes direction over the gait cycle, it is possible to position a
rotational axis such that the axis is torqued in one direction by
the GRF at one point in time, and torqued in the opposite di-
rection at a later time in the gait cycle. In order to accurately
determine the proper position to locate this axis in order to get
the desired transition point, the GRF profile must be accurately
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known. However, one of the largest sources of uncertainty in

this process is the GRF profile of a transfemoral amputee during

testing. Particularly, because of variation among users in choice

of prosthetic feet, previous prosthetic knee experience, and gen-

eral experience using a prosthetic limb, it is expected that differ-

ent users will have developed their own slightly different GRF

profiles. These forms of variability in the GRF profiles make

it difficult to determine the appropriate knee parameters such as

joint stiffness and axis placement prior to testing. This uncer-

tainty motivates the focus on maximizing the adjustability of this

module.

There were three main factors of adjustability incorporated

into this design. The first was the ability to change the effective

torsional stiffness in order to make it easier or harder for the knee

to flex. The second was the ability to preload the spring within

the ESF module, in order to both eliminate backlash and deter-

mine the minimum desired force for flexion. Finally, the third

was the ability to change the location of the axis of rotation, in

order to account for varying GRF profiles from transfemoral am-

putee users.

Design and Analysis
Changing Effective Torsional Stiffness The tor-

sional stiffness of the axis is created by having a simple com-

pression spring connected to the module at a distance D from the

axis of rotation (Fig. 6A, 6C). When the knee attempts to flex,

the spring is compressed (Fig. 6B), and when the knee is locked

for stance stability, the spring hits a hard stop and to prevent hy-

perextension. The torsional stiffness is therefore directly related

to both the spring stiffness, K, and the distance, D. The design

incorporates a large slot such that D can be changed within the

range of 2.4cm to 5.4cm. This allows the doubling of the mo-

ment arm and a commensurate increase in the effective stiffness

about the ESF axis. Additionally, the design allows for the easy

replacement of different springs into the module. By allowing

for the substitution of multiple varying springs into the module

for testing, it is possible to vary the K value and cover a wide

range of effective axial stiffnesses. By combining these two tech-

niques, the design is capable of achieving a coarse adjustment

through its stiffness, and a fine adjustment through its moment

arm. Based on the range of compression springs sourced, the

design was capable of reaching torsional stiffness in the range

of 0.8−7.0Nm/kg− rad, well encompassing and going beyond

the calculated ideal stiffness for this axis by Narang and Winter

(2.96Nm/kg− rad [1]).

Spring Preload The preload is applied by the use of a

wide nut with a conical surface for the spring to rest on (Fig. 6C).

By rotating the nut on its base screw, the nut can be moved up-

wards in order to preload the spring. This preload works to elimi-

nate backlash that would otherwise be inherent within the design

Knee 
Axis 

ESF Axis 

D A

B

C

Preload 
adjustment 

ESF Axis position 
adjustment 

Stiffness 
adjustment 

FIGURE 6: A. Knee assembly cross section: stiffness adjustment

in the early stance flexion module by lateral movement of the

spring. The spring slot was changed to be open on the ends for

easier loading and unloading of springs. Note the distance, D,

between the spring and the ESF axis. B. ESF module flexion

shown about the ESF axis. C. Sectional view: axle nuts on the

ends of ESF axis to hold the module in place in the slot, as well

as a preload device on the bottom of the spring.

and was reported to be uncomfortable in the past trials [5]. Ad-

ditionally, by preloading the spring, the tester can set a specific

threshold torque that must be applied to the knee before it will

overcome the preload and begin to flex in early stance. This is

important because if the users begin to feel flexion at the begin-

ning of early stance, they may suspect that the knee is buckling

and will be overtly cautious to apply their proper weight to it.

However, if the spring is preloaded, flexion would not be felt
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immediately, and could only become apparent once the user is
applying the proper weight to the prosthesis.

Changing Position of the Early Stance Flexion Axis
The design of the ESF module that is flexed and released at dif-
ferent points in the gait cycle is reliant on the GRF vector even-
tually passing from one side of the ESF axis of rotation, to the
other. When testing with users that have potentially varying GRF
profiles, such as transfemoral amputees, it is important that the
design be adaptable in its ESF axis location. This adaptability is
achieved using a set of axle nuts as well as a lead screw mech-
anism (Fig. 6B,C). The axis itself is a steel rod with a threaded
hole down its center, and an 8-32 screw passing perpendicularly
through it. This screw is held in place by an end cap, such that
when it is turned, the axis will be moved backwards and for-
wards, as in a lead screw mechanism. Once a desired location
for the axle is found, a nut is tightened down on either side of
the axle, in order to ensure that it does not slip from the desired
location. The length of this adjustability is 3.2cm. The farthest
anterior that the axis may be moved is such that it is in line with
the knee axis. It would be undesirable to begin moving the axis
further anterior to this point, because it would then become likely
that the axis would be constantly torqued in flexion and the GRF
would never pass anterior to it in order to release the spring and
allow straightening of the knee.

RESULTS: MODULE 1 AND MODULE 2
Module 1: Stance Stability

FIGURE 7: Testing the knee prototype with a knee simulator,
showing both the latch and the early stance flexion modules.

After design and analysis of the two modules, the metal parts
for both the latch and the early stance flexion modules were CNC
machined and assembled at MIT. A pylon and a passive pros-

thetic foot (Jaipur foot [19, 20]) were attached to the lower leg,
and the knee top was attached to a knee simulator, to allow us to
test the knee (Fig. 7).

Three authors of the paper used the knee simulator to quali-
tatively test the knee. Testers were able to walk normally without
the knee buckling or failing to unlock. One tester was also able
to walk with the knee at both slow and normal speeds across
the length of MIT’s Killian Court without issues. Qualitative
feedback showed that testers felt stable on the knee, and trusted
putting their body weight on it more than during previous tests
of the 4-bar prosthetic knee [5, 16].

Prior to testing on the ground, the locking mechanism for
stance stability was tested by hand by rolling over the foot to sim-
ulate the loads applied during a gait cycle. Various stiffness bias
springs were tested (Fig. 3 inset), and it was observed that a bias
spring with a stiffness constant greater than the calculated, al-
lowable range resulted in an inability to unlock the knee. On the
other hand, for a spring with a spring constant less than the allow-
able range, the knee would not reliably relock. This proved that
the calculated range of spring constants was reasonable. Overall,
a latching mechanism to provide stance stability was designed,
prototyped, and tested. Stance stability was emphasized as the
most critical function of the knee prosthesis, and user testing and
feedback showed that the prototype performed well, in terms of
stance stability.

Future work includes testing the latching mechanism on in-
clines or uneven terrain. The prototype knee was tested only on
flat surfaces, but the design and analysis suggest that the knee can
function well on inclines, as the locking axis placement can be
chosen such that the expected GRFs will unlock the knee at the
appropriate time. The double latch’s intermediate locking point
allows the knee to lock before reaching full extension, which is
particularly advantageous for walking uphill.

Module 2: Early Stance Flexion

While the prosthesis must still be validated in user trials,
this prototype was capable of covering a very broad range of
functional parameters for achieving early stance flexion. Using
springs with a stiffness of up to 175N/mm, the axial stiffness
possible exceeded 7Nm/kg− rad, whereas the previously cal-
culated ideal was 2.96Nm/kg− rad. Additionally, the axis of
rotation was capable of being shifted by up to 3.2cm, and the
maximum deflection achievable was over 22◦. These parameters
are dependent highly on the specific springs used during testing,
but because of the modularity of the system and the ability to eas-
ily replace springs, the ESF module will be capable of covering
very broad ranges of stiffness, axial placement, and preload.
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MODULE 3: SWING-PHASE CONTROL
Overview and Strategy

The last critical module is the swing-phase control, which
controls the motion of the leg during late-stance flexion and
swing-phase flexion and extension (Fig. 1B). Narang [1], in pre-
vious work, identified the need for a damping system during the
late-stance phase and the swing phase, since negative work is
performed during these two phases of the gait cycle. Narang also
developed a model, based on the weight distribution of prosthe-
ses for transfemoral amputees, that identifies the moment needed
about the knee axis over the gait cycle, thus allowing him to iden-
tify a disparity in the amount of damping needed between flexion
(during late stance and early swing) and extension (during late
swing): approximately four times as much damping is needed
during flexion compared to swing phase extension at normal gait
speed [1]. Previous work by Arelekatti and Winter [3, 5] used
this information to create a low-cost damping system that in-
cluded two dampers with friction pads with a one-way clutch.
This allowed both friction dampers, the larger and the smaller, to
be engaged during flexion, while only the smaller was engaged
during extension [5].

Although the use friction pads by Arelekatti and Winter in
the earlier prototype was consistent with the findings of Narang
[1], relying on friction pads fails to meet the requirement for
robustness and durability as they are susceptible to wear over
time and are subject to environmental elements like water and
dust. More importantly, friction-based damping exhibited stick-
slip phenomenon, i.e. a non-zero torque was required to initiate
motion to overcome the static friction. This was reported to be
undesirable by all the users in past trials [5]. Additionally, fric-
tion pads offered only a constant damping value, failing to ac-
commodate changes in gait speed [1]. The task for this module
was to improve upon the Arelekatti and Winter damping system
by addressing these drawbacks while keeping the system low-
cost and robust.

Many damping alternatives to friction pad dampers were in-
vestigated. Pneumatic and hydraulic systems were considered
for first and second order damping. Size limitations make pneu-
matic systems impractical choices for damping because of rela-
tively high compressibility of air. Therefore, the new design con-
sidered two hydraulic based designs: a linear hydraulic damper
and a rotary hydraulic damper.

Design and Analysis
Optimization analysis of different damping sys-

tems Two initial damping models were created (Fig. 8). The
first included a linear hydraulic damper in a slider-crank arrange-
ment (Fig. 8A): the piston’s revolute joint connected to the ro-
tating knee part on the upper leg and the bottom revolute joint
was fixed to the lower leg. This linear damper model assumed
bi-directional damping within the linear damper due to one-

way valves in the piston head. The other model was two ro-
tary dampers connected on either side of the knee axis, mounted
coaxially on one-way roller clutch bearings (Fig. 8B). Similar to
the previous design with friction pad dampers, this would allow
for one rotary damper to be engaged during flexion and the other
engaged during extension.

A B

FIGURE 8: A. Two-dimensional model of linear damper connec-
tion geometry. B. Three-dimensional model of rotary dampers
incorporated into the final design

A MATLAB script was created to analyze how well these
new damping systems and the previous friction pad damping sys-
tem matched the knee moment curve modeled by Narang [1, 2],
using the able-bodied gait biomechanics including knee angle
and knee angular velocity [14]. From 0 to 40 percent of the gait
cycle, i.e. during early stance phase (Fig. 1B), the ideal spring
for ESF identified by Narang, was used [1]. From 40 to 100 per-
cent of the gait cycle (Fig. 1B), the damping systems would be
engaged on the prosthesis.

In the friction damping system, the moment, M, is a con-
stant value during flexion and a different constant value during
extension, due to the differential damping system with friction
pad dampers mounted on one-way roller clutch bearings [5].

For a linear viscous damper, the moment, M, created from
the linear damper with piston velocity, v, and damping coeffi-
cient, bl , is:

M =−blv2 (3)

The rotary damper design depends on a very viscous fluid
between two rotating components and therefore depends on the
angular velocity ω . The moment, M, created from the hydraulic
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rotary damper with angular velocity, ω , and rotary damping co-

efficient, br, is the product of the damping coefficient and the

angular velocity:

M =−brω (4)
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FIGURE 9: Ideal knee moment curve for a knee prosthesis as

modeled by Narang [1]. An ideal ESF spring is incorporated

between 0 and 40 percent of the gait cycle and different damping

systems of this study engaged from 40 to 100 percent of the gait

cycle.

The results of the model optimization are shown in Fig. 9.

The correlation between the ideal moment profile and the mo-

ment profiles from these different damping systems was found

by calculating R2 (coefficient of determination) values. The R2

values were 0.74, 0.88, and 0.84 for the friction pad dampers,

linear hydraulic damper, and the hydraulic rotary dampers, re-

spectively. The R2 values of the two hydraulic damping systems

were both greater than the R2 value for the friction pad dampers,

showing either would be an improvement to the previous design.

Although the R2 value of the linear hydraulic damper was greater

than that of the rotary implementation, both designs were consid-

ered, and the benefits and drawbacks of each were analyzed. The

rotary damper system was eventually chosen because of the ad-

vantages of simple integration, less leakage due to the dynamic

seal being a rotating one rather than a sliding one, and the sim-

ple design of the damper which does not need an accumulator or

orifices as would be required in a linear damper.

l 
R2 

t 

ω
A

B

R1 

FIGURE 10: A. Rotary damper prototype showing the plunger

(tan) and the cylindrical chamber (gray); the relevant parame-

ters are related in equation 5. B. Photograph of the disassem-

bled damper showing chamber (white) with O-ring and plunger

(black).

Rotary damping A prototype of the rotary damper was

constructed in three parts (Fig. 10). First, a cylindrical cham-

ber was milled from Delrin. Next, a plunger was turned and

milled from Teflon-infused Delrin (for low friction) and inserted

into the chamber. Finally, an acrylic lid was laser-cut to size and

screwed on top of the device. A rubber O-ring was used between

the cylindrical chamber and the acrylic lid to prevent leaking,

and a small spring was used to hold this rotating plunger tight

against the lid. The plunger rotates inside the stationary cylin-

drical chamber, exerting a force on the viscous fluid inside the

chamber that causes the damping torque.

The rotary damper prototype is governed by the following

analytical relationship:

Bviscous =
T
ω

=
πμ
t

(
2lR3

2 +

(
R4

2

2
− R4

1

2

))
(5)

where Bviscous is the rotary damping coefficient, T is the

damping torque, ω is rotational velocity, μ is liquid viscosity.
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Parameters R2, R3, l, and t are labeled in Fig. 10. This relation-
ship was arrived at by summing up the viscous torque exerted by
the relative rotation of concentric cylinders in a viscous medium
and the torque due to the a annular plate rotating on top a fixed
flat plate with a viscous medium in between [21].

The damper was assembled and tested with pure Silicone oil
(kinematic viscosity 1.0m2/s), because it is one of the highest
viscosity fluids available, and it is commonly used in hydraulic
dampers of similar design. Using a flexural torque wrench, the
torque required to rotate the damper 180◦ in a given time was
measured. Thus, the outputs of this experimental test were torque
and angular velocity, which were compared to the expected
torque value from Equation (5) on the preceding page. The vis-
cous material has a crucial impact on the amount of damping this
prototype could achieve.

RESULTS: MODULE 3
The torque values measured for the rotary damper prototype

were in the range of 3Nm-5Nm at moderate angular velocities
between 3.14 and 6.28rad/s (30 rpm to 60 rpm, common range
for walking gait), compared to the expected range of 2.67Nm
and 3.04Nm, respectively (Equation (5) on the previous page)
. Due to the shear thinning properties of silicone oil, the torque
does not increase linearly with angular velocity. This is a neces-
sary consideration in future iterations of the damper in order to
determine proper scaling relationships. Another consideration is
that the maximum damping force required to match abled-bodied
kinematics is up to 21Nm at moderate angular velocities. Based
on Equation (5) on the preceding page, increased torque can be
achieved by increasing the number of concentric circular walls
and by decreasing the gap between the walls, as is available in
some commercial dampers.

Having validated the feasibility of the concept, the final de-
vice will utilize two rotary dampers mounted on the knee axis,
one engaged on a one-way roller clutch bearing to provide damp-
ing in flexion, and the other engaged on an opposite one-way
clutch to provide the damping required during extension.

DISCUSSION AND CONCLUSION
Given the pressing social and physiological need for high

performance, low-cost prosthetic devices in the developing
world, greater research in the field of low-cost passive prostheses
is critical. This paper describes a new analytical and mechanical
approach through which to realize the theoretical prosthesis pre-
sented in the past work in the literature [1,3,5]. Through various
deterministic design changes within the mechanisms of the pros-
thesis, a passive knee was designed with the goal of enabling
able-bodied gait and higher metabolic efficiency in transfemoral
amputees.

A working ESF module was designed with the goal of en-
abling able-bodied gait during stance; a latch to ensure complete
stance stability; the fluid dampers to ensure reliable swing-phase
control. All three modules together have been designed to work
together to enable able-bodied gait over the entire gait cycle. The
initial bench level testing that was performed showed promising
results. Rotary dampers of the correct torque values still need to
be prototyped and then added to the prosthetic knee. Patient test-
ing is also needed to qualitatively validate the current approach.
Future iterations of the prototype are slated to be tested on ex-
perienced subjects, both in India and the US. Once the operation
of the device has been validated in the field, the prosthesis will
be redesigned for manufacture at scale, with increased focus on
meeting the cost and aesthetic design requirements.
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