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A B S T R A C T

A cascaded central moment based lattice Boltzmann (LB) method for solving low Mach number thermal con-
vective flows with source terms in two-dimensions in a double distribution function framework is presented. For
the passive temperature field, which satisfies the convection diffusion equation (CDE) with a source term to
represent internal/external local heat source, a new cascaded collision kernel is presented. Due to the use of a
single conserved variable in the thermal energy equation, the cascaded structure in its collision operator begins
from the first order moments and evolves to higher order moments. This is markedly different from the collision
operator for the fluid flow equations, constructed in previous work, where the cascaded formulation starts at the
second order moments in its collision kernel. A consistent implementation of the spatially and temporally
varying source terms in the thermal cascaded LB method representing the heat sources in the CDE that maintains
second order accuracy via a variable transformation is discussed. The consistency of the thermal cascaded LB
method including a source term for the D2Q9 lattice with the macroscopic convection–diffusion equation is
demonstrated by means of a Chapman–Enskog analysis. The new model is tested on a set of benchmark problems
such as the thermal Poiseuille flow, thermal Couette flow with either wall injection or including viscous dis-
sipation and natural convection in a square cavity. The validation study shows that the thermal cascaded LB
method with source term is in very good agreement with the analytical solutions or numerical results reported
for the benchmark problems. In addition, the numerical results show that our new thermal cascaded LB model
maintains second order accuracy.

1. Introduction

The lattice-Boltzmann (LB) method is a kinetic theory based nu-
merical method that has important features which make it attractive
compared to the traditional numerical methods in the simulation of
complex fluid flows and various other problems. While the latter in-
volves direct discretization of the continuum equations, the LB ap-
proach is a macroscopic method based on the streaming and collision of
the particle distribution functions. Some of the advantages of the LB
method are its ability to incorporate kinetic models for complex fluids
and flows, ease in dealing with complex boundary conditions and the
property of locality of computation that enable simulation of large scale
problems (Chen and Doolen, 1998; Aidun and Clausen, 2010; Succi,
2001; Guo and Shu, 2013; Krüger et al., 2017).

To simulate thermal convective flows, the solution of the tempera-
ture field, whose evolution is represented by a convection–diffusion
equation (CDE), for the energy transport is coupled to the fluid velocity,
which is represented by the Navier–Stokes (NS) equations. Classical

numerical methods can become challenging to apply for the simulation
of such flows, especially in complex geometries such as thermal flows in
porous media. Within the LB framework, broadly, three different ap-
proaches that have been developed to construct the thermal lattice
Boltzmann equation (LBE) equation models. These include (i) Multi-
speed approach (MS-LBE) (Alexander et al., 1993; Gan et al., 2011), (ii)
Hybrid approach (Lallemand and Luo, 2003; Mezrhab et al., 2004) and
(iii) Double distribution function approach (DDF) (He et al., 1998; Shi
et al., 2004; Mai et al., 2010; Chai and Zhao, 2014).

Briefly, the multi-speed approach uses the same distribution func-
tion to solve both the NS equations and the CDE by considering higher
order velocity moments of the density distribution function via a large
velocity set for the lattice. In the Hybrid approach, the LBE method is
used to solve the flow field while any conventional numerical method
such as a finite difference scheme is used to solve the energy equation.
In the DDF approach, two separate distributions functions are em-
ployed, one for the flow field and the other one for the temperature
field. The above three models have certain limitations. For example,
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multi-speed models suffer from numerical instability, and are restricted
to a limited temperature range and the treatment of boundary condi-
tions with large discrete velocity set is difficult. The hybrid approach
does not include terms such as viscous heat dissipation and compression
work, and it just represents a compromised solution (Li et al., 2012).
Unlike the above two models, many such limitations can be overcome
by the DDF models (Guo et al., 2007; Li et al., 2012) and they have,
hence, received significantly more attention recently.

Most of the developments related to the DDF-LBE methods con-
sidered single relaxation time (SRT) collisions models (Ponce Dawson
et al., 1993; Guo et al., 2002; Van der Sman and Ernst, 2000; Chopard
et al., 2009; Chai and Zhao, 2013). Various aspects relevant to the LBE
for correct representation of the CDE for the temperature field were
identified. For example, the choice of the equilibrium distribution
function with nonlinear velocity terms was found to be important in
this regard (Chopard et al., 2009). Concurrently, various boundary
condition schemes for the DDF-LBE were developed (Ginzburg, 2005;
Yoshida and Nagaoka, 2010; Zhang et al., 2012; Li et al., 2013; Khazaeli
et al., 2013; Huang and Yong, 2015). However, the use of SRT collision
models, though simple in structure and characterized by the relaxation
of all modes at the same rate, is known to suffer from instability issues,
particularly when the transport coefficients such as the fluid viscosity
and thermal diffusivity become relatively small. This limits the ability
to reach higher Reynolds or Peclet numbers. One possibility to address
this issue is to consider using multi-relaxation time (MRT) models for
DDF-LBE approach (Ginzburg, 2013; Rasin et al., 2005; Yoshida and
Nagaoka, 2010; Li et al., 2013; Wang et al., 2013; Chai and Zhao,
2014). In the MRT model, the collision process is mapped onto the raw
moment space through an orthogonal transformation matrix, where
different moments can relax at different rates. By representing the re-
laxation times of the hydrodynamic and non-hydrodynamic moments,
the stability of the MRT model can be significantly improved.

A further improvement is to consider another type of MRT model, in
which the collision step is executed in terms of the relaxation of central
moments, in which the particle velocities are shifted by the local fluid
velocity. Such type of collision model in a moving frame of reference
leads to a cascaded structure of the higher order moments in terms of
those at lower orders following collision and hence is referred to as the
cascaded LB method (Geier et al., 2006). This may shown to be
equivalent to adopting a generalized local equilibrium in the rest or
lattice frame of reference (Asinari, 2008). A second order scheme for
implementation of the body forces in the cascaded LBE and its con-
sistency to the NS equations was presented in our previous work
(Premnath and Banerjee, 2009). More recently, detailed comparisons of
various collision models and the superior stability characteristics of the
MRT cascaded LBE was demonstrated by Geier et al. (2015) and Ning
et al. (2016). Furthermore, a preconditioned formulation of the cas-
caded LBE to significantly improve the steady state convergence ac-
celeration was presented by Hajabdollahi and Premnath (2017).

In our present investigation, we will construct a new cascaded LBE
scheme for thermal convective flows in the DDF framework. We derive
a cascaded collision operator for the evolution of the temperature field
represented by the CDE with source term in two-dimensions on the two-
dimensional nine velocity (D2Q9) lattice. Since the number of con-
served variables for the CDE is different from that of the NS equations,
the structure of the cascaded collision operator for the evolution of the
temperature field constructed in this work is expected to be markedly
different from that for the flow field developed in the prior investiga-
tion. In order to maintain generality of the resulting thermal cascaded
LB scheme, we incorporate source terms representing locally spatially/
temporally varying heat sources. In this regard, a variable transfor-
mation will be introduced to maintain second order accuracy (He et al.,
1999). We will verify the consistency of the thermal cascaded LBE with
the macroscopic CDE with source term by means of a Chapman–Enskog
analysis. Finally, we will present a detailed numerical validation study
of the cascaded LB formulation for thermal flows by comparisons

against various benchmark problems. Recently, a three-dimensional
version of this approach has been presented in Hajabdollahi and
Premnath (2018).

This paper is structured as follows: Section 2 presents the derivation
of the cascaded-LBM for the CDE representing the evolution of the
temperature field. Here, the choice of the moment basis, continuous
and discrete forms of central moments for equilibrium and sources, and
an overview of the construction of the cascaded collision operator in-
cluding the source terms to represent local internal heat generation
using a variable transformation will be discussed. Details of the con-
struction of the cascaded collision operator will be provided in
Appendix A. A consistency analysis of the thermal cascaded LBE based
on a Chapman–Enskog multiscale moment expansion is presented in
Appendix B. Section 3 discusses the numerical results as part of the
validation study of the thermal cascaded-LBE against various bench-
mark problems. Finally, a summary and conclusions arising from this
work are presented in Section 4.

2. Cascaded lattice Boltzmann method for thermal convective
flow

Our main goal in this investigation is to construct a cascaded LB
model for the evolution of the temperature field represented by the
following CDE with source term

∂
∂

+ ∇ = ∇ ∇ +T
t

T α T Gu· ·( ) ,
(1)

where α is the thermal diffusivity coefficient, =T T x y t( , , ) and
= x yu u t( , , ) are local temperature and velocity field, respectively. In

addition, =G G x y t( , , ) is the local source term arising, for example,
due to internal heat generation or viscous dissipation. In general,
thermal transport can be significantly influenced by the presence of
internal heat generation, such as those related to nuclear or chemical
reactions generating local heating effects. Viscous heating effects due to
shear stresses is another example. All of these effects can be represented
as a prescribed local source term G(x, y, t) in the thermal transport
equation. To handle such a general case, here we develop a new cas-
caded LB model with a source term, which can recover the macroscopic
equation represented by the CDE given in Eq. (1) above with second
order accuracy. In Eq. (1), the local velocity field = x yu u t( , , ) satisfies
the Navier–Stokes equations (NSE) given by

∇ =u 0· , (2a)

∂
∂

+ ∇ = − ∇ + ∇ +
t ρ

P νu u u 1 u F· ,2

(2b)

where p is the pressure, ν is the kinematic viscosity of the fluid, ρ is the
reference density and = ρF a is the local external force field. The ve-
locity field u to be used in Eq. (1) is considered to be known, and can be
obtained by solving another cascaded LBE constructed in previous work
(Geier et al., 2006; Premnath and Banerjee, 2009). In particular, the
specific cascaded LBE with forcing term for obtaining the velocity field
u can be coupled to the new cascaded for the CDE to be developed in
this work. In such a double distribution function (DDF) formulation, we
refer the reader to the cascaded LBE with forcing term for the flow field
presented in Premnath and Banerjee (2009) to maintain brevity and
focus here on the construction of the cascaded LBE to solve for the
temperature field =T T x y t( , , ), whose evolution is represented by Eq.
(1)

The overall procedure to develop a thermal cascaded LBE involves
the following: (i) prescribe a suitable choice of an orthogonal moment
basis for the lattice velocity set, (ii) specify formulations for the con-
tinuous central moments of the equilibrium and the source term and
equate them to the corresponding discrete central moments involved in
the cascaded LBE for the CDE, (iii) transform the various discrete
central moments in terms of various corresponding raw moments by
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using the binomial theorem and (iv) construct the collision kernel ap-
pearing in the cascaded collision operator for solving the CDE with a
source term in the LB model.

First, we select a suitable moment basis for the two-dimensional,
nine velocity (D2Q9) lattice. We consider the usual “bra” and the “ket”
notations , i.e. . and . to denote 9-dimensional row and column
vectors, respectively. Then, we obtain the following nine non-ortho-
gonal basis vectors obtained from monomials e eαx

m
αy
n at successively in-

creasing orders:

T = +

−

T e e e e e

e e e e e e e e e

[ , , , ,

, , , , ],

αx αy αx αy αx

αy αx αy αx αy αx αy αx αy

2 2 2

2 2 2 2 2
(3)

where

=
= − − −
= − − −

T
e
e

(1, 1, 1, 1, 1, 1, 1, 1, 1) ,
(0, 1, 0, 1, 0, 1, 1, 1, 1) ,
(0, 0, 1, 0, 1, 1, 1, 1, 1) .

αx

αy

†

†

†

The above nominal set of basis vectors is then transformed into an
equivalent orthogonal set of basis vectors by means of the standard
Gram–Schmidt procedure arranged in the increasing order of moments:

= = =
= + − = − =

= − + = − +

= − + +

K T K e K e
K e e K e e K e e

K e e e K e e e

K e e e e

, , ,
3 4 1 , , ,

3 2 , 3 2 ,

9 6 4 1 .

αx αy

αx αy αx αy αx αy

αx αy αy αx αy αx

αx αy αx αy

0 1 2

3
2 2

4
2 2

5

6
2

7
2

8
2 2 2 2

By grouping the above set of vectors, we obtain an orthogonal
transformation matrix K as

K = K K K K K K K K K[ , , , , , , , , ],0 1 2 3 4 5 6 7 8 (4)

which can be explicitly written as

K =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

−
− −
− − −

− − − −
− − − − −

− −
− − −
− −

− − −

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

1 0 0 4 0 0 0 0 4
1 1 0 1 1 0 0 2 2
1 0 1 1 1 0 2 0 2
1 1 0 1 1 0 0 2 2
1 0 1 1 1 0 2 0 2
1 1 1 2 0 1 1 1 1
1 1 1 2 0 1 1 1 1
1 1 1 2 0 1 1 1 1
1 1 1 2 0 1 1 1 1

.

(5)

Next, in order to construct a cascaded LB collision operator for re-
presenting the evaluation of the temperature field, we need to present
the continuous moments of the equilibria and the source term. The
continuous equilibrium central moments of order +m n( ) can be de-
fined as

M ∫ ∫= − −
−∞

∞

−∞

∞
g ξ u ξ u dξ dξΠ ( ) ( )x y

eq T
x x

m
y y

n
x ym n (6)

which yields

         =

= T c T c T c T

Π (Π , Π , Π , Π , Π , Π , Π , Π , Π ) ,

( , 0, 0, , , 0, 0, 0, ) .
x y
eq eq

x
eq

y
eq

xx
eq

yy
eq

xy
eq

xxy
eq

xyy
eq

xxyy
eq

s s s

0
†

2 2 4 †

m n

(7)

Here, the equilibrium distribution function Mg T is obtained by making
an analogy with Maxwell–Boltzmann distribution function

M
⎜ ⎟
⎛
⎝

→ →⎞
⎠

f ρ u ξ, , in the continuous velocity space
→
ξ by replacing the

density ρ with temperature T in our DDF formulation. That is,

M M
⎜ ⎟= ⎛
⎝

→ →⎞
⎠

g T
ρ

f ρ u ξ, ,T

(8)

with

M
⎜ ⎟

⎜ ⎟

⎛
⎝

→ →⎞
⎠
=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

−

⎛
⎝

→
− →⎞

⎠

⎤

⎦

⎥
⎥
⎥
⎥
⎥

f ρ u ξ
ρ

πc

ξ u

c
, ,

2
exp

2
,

s s
2

2

2

(9)

where cs is the lattice speed of sound. Typically for the D2Q9 model we
consider =c 1/3s

2 .
Similarly, defining the continuous central moments of the source

term of order +m n( ) due to =G G x y t( , , ) appearing in Eq. (1) as

Ĝ ∫ ∫= − −
−∞

∞

−∞

∞
g ξ u ξ u dξ dξΓ Δ ( ) ( )x y x x

m
y y

n
x ym n (10)

where GgΔ is the change in the distribution function due to source G.
Since the source G is expected to influence only the lowest order
(zeroth) moment, we can prescribe the following ansatz:

̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂=
= G

Γ (Γ , Γ , Γ , Γ , Γ , Γ , Γ , Γ , Γ ) ,
( , 0, 0, 0, 0, 0, 0, 0, 0) .

x y x y xx yy xy xxy xyy xxyy0
†

†

m n

(11)

By using the above central moments, our goal is to develop the collision
operator and the source term of the cascaded LBE. We use the trape-
zoidal rule to evaluate the source term of the cascaded LBE to maintain
second order accuracy:

→ + → + = → + →

+ → + → + → +

g x e δ t δ g x t x t

S x t S x e t δ

( , ) ( , ) Ω ( , )
1
2

[ ( , ) ( , )].

α α t t α α

α α α t (12)

Here, the collision term Ωα can be represented as
K ≡ =g h hΩ Ω ( , ) ( · ) ,α α α where g ≡ = …g g g g( , , , )α 0 1 8

† is the vector of

distribution functions and h ̂ ̂ ̂ ̂≡ = …h h h h( , , , )α 0 1 8
†

is a vector re-
presenting the collision kernel which will be developed later. The dis-
crete form of the source term Sα in the cascaded LBE given above re-
presents the influence of the local heat source G in the velocity space
and is defined as ≡ = …S S S S SS ( , , , , )α 0 1 2 8

†. Noting that Eq. (12) is
semi-implicit, by using the standard variable transformation
= −g g Sα α

1
2 (He et al., 1999), the implicitness can be effectively re-

moved. This yields

→ + → + = → + → + →g x e δ t δ g x t x t S x t( , ) ( , ) Ω ( , ) ( , ),α α t t α α α (13)

which maintains second order accuracy in an effectively time explicit
method.

In order to obtain the expressions for the structure of the cascaded
collision operator h and the source terms Sα in the presence of a spa-
tially and/or temporally varying local heat source G, i.e. =G G x y t( , , ),
we define the following set of discrete central moments.

̂ ∑= − −κ g e u e u( ) ( ) ,x y
α

α αx x
m

αy y
nm n

(14a)

̂ ∑= − −κ g e u e u( ) ( ) ,x y
eq

α
α
eq

αx x
m

αy y
n

m n
(14b)

̂ ∑= − −κ g e u e u( ) ( ) .x y
α

α αx x
m

αy y
nm n

(14c)

̂ ∑= − −σ S e u e u( ) ( ) .x y
α

α αx x
m

αy y
nm n

(14d)

We then match the discrete central moments of the distribution
functions and source terms with the corresponding continuous central
moments at each order, i.e.
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M̂ =κ Π ,x y
eq

x ym n m n (15a)

̂̂ =σ Γ .x y x y
F

m n m n (15b)

Thus, we obtain

̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂=

=

κ κ κ κ κ κ κ κ κ κ

T c T c T c T

( , , , , , , , , ) ,

( , 0, 0, , , 0, 0, 0, ) .
x y
eq eq

x
eq

y
eq

xx
eq

yy
eq

xy
eq

xxy
eq

xyy
eq

xxyy
eq

s s s

0
†

2 2 4 †

m n

(16)

̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂=
=

σ σ σ σ σ σ σ σ σ σ
G

( , , , , , , , , ) ,
( , 0, 0, 0, 0, 0, 0, 0, 0) .

x y x y xx yy xy xxy xyy xxyy0
†

†

m n

(17)

Since the actual computations in the cascaded LBE are performed in
terms of the various raw moments, we define the following set of dis-
crete raw moments (denoted with a prime symbol):

̂ ∑=′κ g e e ,x y
α

α αx
m

αy
nm n

(18a)

̂ ∑=′κ g e e ,x y
eq

α
α
eq

αx
m

αy
n

m n
(18b)

̂ ∑=
′

κ g e e .x y
α

α αx
m

αy
nm n

(18c)

̂ ∑=′σ S e e .x y
α

α αx
m

αy
nm n

(18d)

By using Eqs. (14d), (17) and (18d) and the binomial theorem, we
obtain the following sets of discrete raw moments for the source term at
different orders:

̂= =′σ S T G,α0 (19a)

̂= =′σ S e u G,x α αx x (19b)

̂= =′σ S e u G,y α αy y (19c)

̂ = =′σ S e u G,xx α αx x
2 2 (19d)

̂ = =′σ S e u G,yy α αy y
2 2

(19e)

̂ = =′σ S e e u u G,xy α αx αy x y (19f)

̂ = =′σ S e e u u G,xxy α αx αy x y
2 2

(19g)

̂ = =′σ S e e u u G,xyy α αx αy x y
2 2

(19h)

̂ = =′σ S e e u u G.xxyy α αx αy x y
2 2 2 2

(19i)

In order to obtain the source terms in the velocity space, we first
compute the source moments projected to the orthogonal moment
space, i.e.  =m K S ,β β α where = …β 0, 1, 2, ,8

= =m K S G,α0 0 (20a)

= =m K S u G,α x1 1 (20b)

= =m K S u G,α y2 2 (20c)

= = + −m K S u u G(3 3 4) ,α x y3 3
2 2

(20d)

= = −m K S u u G( ) ,α x y4 4
2 2

(20e)

= =m K S u u G,α x y5 5 (20f)

= = − +m K S u u u G( 3 2 ) ,α x y y6 6
2

(20g)

= = − +m K S u u u G( 3 2 ) ,α x y x7 7
2

(20h)

= = − + +m K S u u u u G(9 6( ) 4) .α x y x y8 8
2 2 2 2

(20i)

Since there is only one conserved scalar for the thermal transport
equation, the components of the raw moments of sources ̂′σx ym n are
different from those appearing in the cascaded LBE for fluid flow with
forcing terms (Premnath and Banerjee, 2009). Then, using
K    = …m m m mS( · ) ( , , , , )α 0 1 2 8

† and inverting it by exploiting the ortho-
gonality of K , we get the following expressions for the source terms
Sα in velocity space:

= − +S m m m1
9

[ ],0 0 3 8 (21a)

= + − + + −S m m m m m m1
36

[4 6 9 6 2 ],1 0 1 3 4 7 8 (21b)

= + − − + −S m m m m m m1
36

[4 6 9 6 2 ],2 0 2 3 4 6 8 (21c)

= − − + − −S m m m m m m1
36

[4 6 9 6 2 ],3 0 1 3 4 7 8 (21d)

= − − − − −S m m m m m m1
36

[4 6 9 6 2 ],4 0 2 3 4 6 8 (21e)

= + + + + − − +S m m m m m m m m1
36

[4 6 6 2 9 3 3 ],5 0 1 2 3 5 6 7 8 (21f)

= − + + − − + +S m m m m m m m m1
36

[4 6 6 2 9 3 3 ],6 0 1 2 3 5 6 7 8

(21g)

= − − + + + + +S m m m m m m m m1
36

[4 6 6 2 9 3 3 ],7 0 1 2 3 5 6 7 8

(21h)

= + − + − + − +S m m m m m m m m1
36

[4 6 6 2 9 3 3 ].8 0 1 2 3 5 6 7 8 (21i)

In addition, in order to construct the cascaded collision operator for
the solution of the temperature field, we need the raw moments of the
collision kernel of different orders, i.e. ∑α

K  ̂= ∑e e K e e hh( · )α αx
m

αy
n

β β αx
m

αy
n

β. Since the temperature field T is a

collision invariant, it follows that ̂ =h 00 . Using this and considering the
orthogonal basis vector Kβ in Eq. (4), we get

K  ̂∑ ∑= =K T hh( · ) 0,
α

α
β

β β
(22a)

K  ̂ ̂∑ ∑= =e K e h hh( · ) 6 ,
α

α αx
β

β αx β 1
(22b)

K  ̂ ̂∑ ∑= =e K e h hh( · ) 6 ,
α

α αy
β

β αy β 2
(22c)

K  ̂ ̂ ̂∑ ∑= = +e K e h h hh( · ) 6 2 ,
α

α αx
β

β αx β
2 2

3 4
(22d)

K  ̂ ̂ ̂∑ ∑= = −e K e h h hh( · ) 6 2 ,
α

α αy
β

β αy β
2 2

3 4
(22e)

K  ̂ ̂∑ ∑= =e e K e e h hh( · ) 4 ,
α

α αx αy
β

β αx αy β 5
(22f)

K  ̂ ̂ ̂∑ ∑= = −e e K e e h h hh( · ) 4 4 ,
α

α αx αy
β

β αx αy β
2 2

2 6
(22g)

K  ̂ ̂ ̂∑ ∑= = −e e K e e h h hh( · ) 4 4 ,
α

α αx αy
β

β αx αy β
2 2

1 7
(22h)
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K  ̂ ̂ ̂∑ ∑= = +e e K e e h h hh( · ) 8 4 .
α

α αx αy
β

β αx αy β
2 2 2 2

3 8
(22i)

Notice that ̂ ̂≠ ≠h h 01 2 in the present case, which differs from the
cascaded LBE for fluid flow (Premnath and Banerjee, 2009). This dif-
ference arises from the fact that the cascaded LBE for the flow field has
three collision invariants, i.e. mass and momentum, and hence its
corresponding zeroth and first order collision kernels are zero; on the
other hand, in the case of the cascaded LBE for the thermal transport
equation, there is only one collision invariant, i.e. the temperature field,
and therefore only its zeroth order collision kernel, i.e. ̂h ,0 is zero. As a
result of these differences the cascaded collision operator for the tem-
perature field is markedly different from that for the flow field.

We now need to find the expressions of = ∑ =g e e g e eα αx
m

αy
n

α α αx
m

αy
n

0
8

to proceed further. For the conserved basis vector, we have in terms of
the collisional invariant ∑ = −= g T G,α α0

8 1
2 and for the non-conserved

basis vectors we have

̂ ∑= = − + − − +
′

=

κ g e g g g g g g ,x
α

α αx
0

8

1 3 5 6 7 8
(23a)

̂ ∑= = − + + − −
′

=

κ g e g g g g g g ,y
α

α αy
0

8

2 4 5 6 7 8
(23b)

̂ ∑= = + + + + +
′

=

κ g e g g g g g g ,xx
α

α αx
0

8
2

1 3 5 6 7 8
(23c)

̂ ∑= = + + + + +
′

=

κ g e g g g g g g ,yy
α

α αy
0

8
2

2 4 5 6 7 8
(23d)

̂ ∑= = − + −
′

=

κ g e e g g g g ,xy
α

α αx αy
0

8

5 6 7 8
(23e)

̂ ∑= = + − −
′

=

κ g e e g g g g ,xxy
α

α αx αy
0

8
2

5 6 7 8
(23f)

̂ ∑= = − − +
′

=

κ g e e g g g g ,xyy
α

α αx αy
0

8
2

5 6 7 8
(23g)

̂ ∑= = + + +
′

=

κ g e e g g g gxxyy
α

α αx αy
0

8
2 2

5 6 7 8
(23h)

Now, we are in a position to determine the structure of the cascaded
collision operator with source terms to solve for the thermal transport
equation represented by the CDE. The procedure can be briefly sum-
marized as follows: Starting from the lowest order non-conserved post-
collision central moments (i.e. the first order components in the present
case), we tentatively set them equal to their corresponding equilibrium
states. Once the expressions for the collision kernel ̂hβ (β≥ 1) is de-
termined, we discard the equilibrium assumption and multiply it with a
corresponding relaxation parameter λβ to allow for a relaxation process
during collision (Geier et al., 2006; Premnath and Banerjee, 2009). The
details of the various intermediate steps involved in the derivation of
the collision kernel are presented in Appendix A. In addition, as in
Meng and Guo (2015), in order to maintain additional flexibility in the
representation of the emergent transport coefficient (i.e. the thermal
diffusivity of the CDE), we also introduce extended moment equilibria
involving temperature gradient terms with an adjustable coefficient D,
which acts as an effective relaxation parameter, in the first order
equilibrium moments. The resulting final expressions of the collision
kernel are given as follows:

̂ =h 0,0 (24a)

̂ ̂̂ = − − + ⎛
⎝
∂′ ′{ }h λ u T κ σ Dδt T

6
1
2

1
3

) ,x x x x1
1

(24b)

̂ ̂̂ = − − + ⎛
⎝
∂′ ′{ }h λ u T κ σ Dδt T

6
1
2

1
3

) ,y y y y2
2

(24c)

̂ ̂

̂ ̂ ̂ ̂ ̂

̂ ̂

⎜ ⎟= ⎧
⎨⎩

− + − ⎛
⎝

+ ⎞
⎠
+ +

+ + ⎫
⎬⎭
+ +

′ ′ ′ ′

′ ′

h λ T u u T κ κ u κ u κ

σ σ u h u h

12
2
3

( ) 2 2

1
2

( ) ,

x y xx yy x x y y

xx yy x y

3
3 2 2

1 2
(24d)

̂ ̂

̂ ̂ ̂ ̂ ̂

̂ ̂

⎜ ⎟= ⎧
⎨⎩
− − − ⎛

⎝
− ⎞

⎠
+ −

+ − ⎫
⎬⎭
+ −

′ ′ ′ ′

′ ′

h λ u u T κ κ u κ u κ

σ σ u h u h

4
( ) 2 2

1
2

( ) 3 3 ,

x y xx yy x x y y

xx yy x y

4
4 2 2

1 2
(24e)

̂̂ ̂ ̂ ̂ ̂ ̂= − − + + + + +
′ ′ ′ ′{ }h λ u u T κ u κ u κ σ u h u h

4
1
2

3
2

( ),x y xy x y y x xy x y5
5

2 1

(24f)

̂̂ ̂ ̂ ̂ ̂ ̂

̂ ̂ ̂ ̂ ̂

= − + − − + + +

+ + ⎛
⎝
+ ⎞

⎠
− − −

′ ′ ′ ′ ′ ′{ }h λ u u T κ u κ u κ u κ u u κ σ

u u h u h u h u h u h

4
2 2 1

2

3 1 3
2

3
2

1
2

2 ,

x y xxy y xx x xy y y x y x xxy
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2 3 4 5

(24g)

̂̂ ̂ ̂ ̂ ̂ ̂

̂ ̂ ̂ ̂ ̂

= − + − − + + +

+ ⎛
⎝
+ ⎞

⎠
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′ ′ ′ ′ ′ ′{ }h λ u u T κ u κ u κ u u κ u κ σ

u h u u h u h u h u h
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2 2 1

2

1 3
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(24h)
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u u h u h u h

4
1
9

2 2

4 2 2 1
2

(2 3 )

(2 3 ) 2 3
2

3
2

1
2

( )

4 2 2 .

x y xxyy x xyy y xxy x yy y xx

x y xy x y x x y y xxyy x x y

y x y x y x y

x y y x

8
8 2 2 2 2

2 2 2
1

2
2

2 2
3

2 2
4

5 6 7

(24i)

where, λβ, = …β 1, 2, 3, ,8, are the relaxation parameters, satisfying the
bounds 0< λβ<2. Notice the cascaded structure for the second and
higher order moment kernels, i.e. their dependence on the lower order
moments for our thermal cascaded LBE. By contrast, the cascaded LBE
for the fluid flow is significantly different, with the cascaded structure
appearing only for third and higher order moments. When a Chapma-
n–Enskog expansion (C–E) is performed on the above cascaded LB
model (see Appendix B for details), it can be shown to recover the
convection–diffusion thermal transport equation, with the relaxation
parameters for the first order moments λ1 and λ2 and the adjustable
coefficient D controlling the thermal diffusivity coefficient α (see Eq.
(1)):

= − −( )α D δt,λ
1
3

1 1
2j

=j 1, 2. The rest of the parameters can be

adjusted independently to improve numerical stability. In this work,
=λ λ1 2 is selected based on the specified diffusivity, while the re-

maining relaxation parameters are set to be unity. It may be noted that
−λ D1/ j for =j 1, 2. may be treated as an effective relaxation para-

meter.
Moreover, the temperature gradients ∂xT and ∂yT appearing in the

above (see Eqs. (24b) and (24c)) can be calculated locally in terms of
the first order non-equilibrium moments (see the C–E analysis given in
Appendix B for details). Thus, we have
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̂ ̂
∂
∂

=
− ⎛

⎝
− ⎞

⎠
−

′ ′
T
x

λ κ κ

Dλ

3

(1 )
,

x x
eq

1

1 (25a)

̂ ̂
∂
∂

=
− ⎛

⎝
− ⎞

⎠
−

′ ′
T
y

λ κ κ

Dλ

3

(1 )

y y
eq

2

2 (25b)

where ̂ = ∑′

=κ e g ,x α αx α0
8 ̂ = ∑′

=κ e g ,y α αy α0
8 ̂ =′κ u T,x

eq
x and

̂ =′κ u Ty
eq

y . Then, the thermal cascaded LBE given in Eq. (13) can be
written in terms of the following collision and streaming steps:

→ = → + → + →g x t g x t x t S x t( , ) ( , ) Ω ( , ) ( , ),α
p

α α α (26a)

→ + → + = →g x e t g x t( , 1) ( , ).α α α
p

(26b)

By expanding K h( · )α in →x tΩ ( , )α the explicit expressions for the
post-collision distribution functions are given as follows:

̂ ̂ ̂= + − − +g g h h h S[ 4( )] ,p
0 0 0 3 8 0 (27a)

̂ ̂ ̂ ̂ ̂ ̂= + + − + + − +g g h h h h h h S[ 2( )] ,p
1 1 0 1 3 4 7 8 1 (27b)

̂ ̂ ̂ ̂ ̂ ̂= + + − − + − +g g h h h h h h S[ 2( )] ,p
2 2 0 2 3 4 6 8 2 (27c)

̂ ̂ ̂ ̂ ̂ ̂= + − − + − + +g g h h h h h h S[ 2( )] ,p
3 3 0 1 3 4 7 8 3 (27d)

̂ ̂ ̂ ̂ ̂ ̂= + − − − − + +g g h h h h h h S[ 2( )] ,p
4 4 0 2 3 4 6 8 4 (27e)

̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂= + + + + + − − + +g g h h h h h h h h S[ 2 ] ,p
5 5 0 1 2 3 5 6 7 8 5 (27f)

̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂= + − + + − − + + +g g h h h h h h h h S[ 2 ] ,p
6 6 0 1 2 3 5 6 7 8 6 (27g)

̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂= + − − + + + + + +g g h h h h h h h h S[ 2 ] ,p
7 7 0 1 2 3 5 6 7 8 7 (27h)

̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂= + + − + − + − + +g g h h h h h h h h S[ 2 ] .p
8 8 0 1 2 3 5 6 7 8 8 (27i)

Finally, based on the solution of the thermal cascaded LBE given in
Eqs. (26a) and (26b), the temperature field T can be obtained as

∑ ∑= = +T g g δt G
2

.
α

α
α

α
(28)

3. Numerical results

In this section, numerical simulations of some illustrative bench-
mark problems are conducted to validate the accuracy of our proposed
cascaded LBE model for thermal convective flows. The test problems
without source terms in the energy equation are thermal Poiseuille
flow, thermal flow in a channel with wall injection, and natural con-
vection in a square cavity. Also, problems considered with variable
source terms in the energy equation are a reaction-diffusion problem,
and Couette flow with temperature gradients (i.e. thermal Couette flow
with viscous heat dissipation). In this study, the halfway bounce-back
scheme is employed to treat velocity boundary conditions while the
general anti-bounce-back scheme (Zhang et al., 2012) is adopted to deal
with temperature boundary conditions. In problems involving LBM
solution of fuid flow all relaxation parameters are set to 1.0 except ω4

and ω5 (the relaxation rates for the first order moments) which are both
equal to −τf

1. In the thermal model all relaxation parameters are set to
1.0 except λ1 and λ2 which are both equal to −τg

1.

3.1. Unsteady reaction–diffusion problem: variable source term

The unsteady reaction diffusion problem is a good problem to test
the accuracy of the present LBE cascaded model for the equivalent

energy equation with a variable source term. Such a system defined in
the region 0≤ x, y≤ l, with the macroscopic governing equation
written as (Meng and Guo, 2015):

∂
∂

= ∇ +T
t

α T C πx l πy l2 sin( / )sin( / )2
(29)

where =G x y C πx l πy l( , ) 2 sin( / )sin( / ) is the spatially varying source
term, l is the width of the region, C is a constant, and α is the diffusion
coefficient. The initial and boundary conditions of this system are:

=T x y( , , 0) 0, = =T y t T l y t(0, , ) ( , , ) 0, = =T x t T x l t( , 0, ) ( , , ) 0.
The analytical solution of this problem is given by

⎜ ⎟= ⎡
⎣⎢
− ⎛

⎝
− ⎞

⎠
⎤
⎦⎥

T x y t l
π α

C π αt
l

πx l πy l( , , ) 1 exp 2 sin( / )sin( / ),
2

2

2

2 (30)

We conduct our numerical simulation with a grid resolution of
61× 61, =C 10 and with the thermal diffusivity coefficients = −α 10 3

and = −α 10 4. The simulation results and the analytical solutions are
compared at three different times =t 50, =t 100, and =t 150 as used in
Meng and Guo (2015). The relaxation time is set to =τ 0.503g . Figs. 1
and 2 show the temperature profiles for the above two values of dif-
fusivity coefficients showing very good agreement with the analytical
solutions. We also examine the spatial accuracy of the present model. In
this regard, a set of simulations are performed at four different grid
resolutions, i.e., 25× 25, 51× 51, 101× 101, and 201×201 for both
values of the diffusion coefficient, i.e. = −α 10 ,3 and = −α 10 4. The
global relative error of temperature (ET) used to measure the accuracy
of the model is calculated as

= −E T T
T

( )
T

c a

a

2

2 (31)

where ||.||2 is the Euclidean norm, i.e. − = ∑ −T T T T( ) ( ) ,c a i c i a i2 , ,
2

= ∑T T( ) ( ) ,a i a i2 ,
2 and Tc and Ta are the computed and the analytical

solutions respectively. The relative global error of temperature for each
value of diffusivity coefficient are plotted in Fig. 3. It can be seen that
the global error for temperature decreases with increase in grid re-
solution with a slope of − 2 in the log-log plot. Hence, our present
cascaded LBM model for the CDE with source term is second order
accurate.
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Fig. 1. Temperature profiles for the unsteady reaction-diffusion problem with a variable
source term at and diffusion coefficient = −α 10 3 at different times. Markers represent the
Cascaded LBE results and lines represent the analytical solution.
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3.2. Thermal Couette flow in a channel with wall injection

In this section, the present cascaded LBE model for thermal con-
vective flow is employed to simulate the fully developed thermal flow
in a channel, where the upper plate moves along the x-direction with
velocity Up, and a fluid is injected in the positive y-direction with a
constant velocity v0 through the stationary bottom wall. The upper wall
is maintained at a higher temperature (Th) and the bottom wall is fixed
at a lower temperature (Tc). The computational domain of the problem
is 0≤ x, y≤ L. In the steady state case, the analytical solutions for both
velocity and temperature fields are, respectively, given by.

=
−

−
u y

Re y L
Re

( )
exp( . / ) 1

exp( ) 1
,x

(32)

= + ▵
−

−
T T T

PrRe y L
exp PrRe

exp( . / ) 1
( ) 1c

(33)

where Re is the Reynolds number defined by =Re v L ν/0 , L is the width
of the channel and △T is the temperature difference. In our numerical
test, we set = =U v 0.01,p 0 =T 1,h =T 0,c =Pr 0.71, with a grid size
31× 61 at three different Reynolds numbers, =Re 5, 10, and 15.

The relaxation rates for the flow and thermal equation cascaded LB
solvers are obtained based on the value of Pr and Re for each case where
=ν Lv Re/ ,0 and =α ν Pr/ . Periodic boundary conditions are imposed at

the inlet and outlet of the channel. The profiles of velocity and tem-
perature along the y-direction at different Reynolds numbers and
=Pr 0.71 are plotted in Figs. 4 and 5, respectively.
It is found that the numerical results agree well with the analytical

solutions for this test case. We also study the grid convergence rate by
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Fig. 2. Temperature profiles for the unsteady reaction-diffusion problem with a variable
source term at and diffusion coefficient = −α 10 4 at different times. Markers represent the
Cascaded LBE results and lines represent the analytical solutions.

Fig. 3. Temperature global relative error at different values of the diffusion coefficient
= −α 10 ,3 =D 0.397, and = −α 10 ,4 =D 0.3997 for the unsteady reaction-diffusion pro-

blem with variable source term.
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Fig. 4. Velocity profiles for thermal Couette flow in a channel with wall injection at
Reynolds numbers: =Re 5, 10, 15. Markers represent the Cascaded LBE results and lines
represent the analytical solutions.
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Fig. 5. Temperature profiles for thermal Couette flow in a channel with wall injection at
Reynolds numbers: =Re 5, 10, 15. Markers represent the Cascaded LBE results and lines
represent the analytical solutions.
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considering the following grid resolutions in the y-direction
=Ny 31, 61, 91, and 121. In these simulations, we conduct the con-

vergence study at Reynolds numbers =Re 5, 10, and 15 for the above
set of grid resolutions with corresponding values of the tunable para-
meter D as 0.05, 0.1, and 0.15, respectively. The relaxation rates are
= =τ τ 0.8f g .
The relative global errors of velocity and temperature are plotted in

Figs. 6 and 7, respectively. It can be seen that the relative errors have
slopes nearly equal to − 2, which again confirms that the present cas-
caded LBM model for thermal flow is second order accurate. In the
above, the relative global error of temperature and velocity are defined,
respectively, by

= −E T T
T

( )
T

c a

a

2

2 (34)

= −E u u
u

( )
u

c a

a

2

2 (35)

where ||.||2 is the Euclidean norm, − = ∑ −T T T T( ) ( ) ,c a i c i a i2 , ,
2

− = ∑ −u u u u( ) ( ) ,c a i c i a i2 , ,
2 = ∑T T( ) ( )a i a i2 ,

2 ,

= ∑u u( ) ( )a i a i2 ,
2 . Here, Tc, uc and Ta, ua are the computed and the

analytical solutions, respectively.

3.3. Diffusion in 2D Poiseuille flow

Next, we consider a 2D Poiseuille flow between two parallel plates
in the streamwise direction driven by a constant body force Fx. Both the
upper and bottom walls are stationary and subjected to higher (Th) and
lower (Tc) uniform temperature respectively. The computational do-
main is 0≤ x, y≤ L. Where L is the channel width. A periodic
boundary condition is applied at the entrance and the exit for both
velocity and temperature fields, while the halfway bounce back scheme
is implemented at the solid boundaries (upper and bottom walls) for the
velocity field to represent the no-slip boundary condition. The general
bounce-back scheme (Zhang et al., 2012) is employed to the solid
boundaries for the temperature Dirichlet boundary conditions. The
analytical solution for the velocity in Poiseuille flow (parabolic profile)
is given by

= −u y u y L( ) (1 ( / ) ),max H
2 (36)

where =u F L ν/2max x H
2 is the maximum velocity occurring halfway be-

tween the plates, ν is the kinematic viscosity related the to relaxation
time τ. Here, LH is the half distance between the two parallel plates. The
analytical solution for the temperature in Poiseuille flow is given by

= + ▵T T T y L( / ),c (37)

where ▵ = −T T Th c is the temperature difference. In our simulation, a
grid size of 30× 60 is employed. We consider two cases corresponding
to different sets of Reynolds numbers =Re u L ν/ ,max Peclet numbers
=Pe u L α/max and Prandtl number =Pr ν α/ . In the first case, we set
=Pr 0.71, =Re 10 and =Pe 7. In the second case, we consider
= =Re Pe 10, i.e. =Pr 1. Where, we consider =T 1.1,h =T 1,c and
= =τ τ 0.674f g in both cases. Fig. 8 presents a comparison of the velo-

city and temperature profiles for these cases. Excellent agreement with
the analytical solution is exhibited in the figures.

3.4. Natural convection in a square cavity

We now present a validation study involving coupled thermal con-
vective flow. In this regard, our cascaded LBE model is employed to
simulate natural convection in a square cavity. Here, the flow is driven
by the buoyancy force due to the local temperature difference against a
reference temperature in the presence of gravity. The left wall is
maintained at higher temperature Th and the right wall at lower tem-
perature Tc, while the top and bottom walls are considered to be
adiabatic.The macroscopic governing equations are the con-
vection–diffusion equation (Eq. (1)) , and the Navier–Stokes equations
(Eq. (2a) and Eq. (2b)) where F is the body force which is based on the
Boussinesq approximation and is given by

= −F jgβ T T( ) .0 (38)

Here, β is the thermal expansion coefficient, g is the acceleration due to
gravity, = +T T T( )/2h c0 is the reference temperature, j is the unit
vector in the positive y-direction. This classical natural convection
problem is governed by two non-dimensional parameters: The Prandtl
number Pr and the Rayleigh number Ra, which are given by

=Pr ν
α

, (39)

=
▵

Ra
gβ TH

να
,

3

(40)

where ▵ = −T T Th c is the temperature difference between hot and cold
walls, and H is the height of the square cavity.

The boundary conditions on the cavity walls can then be
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summarized as:
On the left wall:

= = = =u u T T0, 21,x y h (41)

On the right wall:

= = = =u u T T0, 1,x y c (42)

On the top wall:

= = ∂
∂

=u u T
y

0, 0,x y
(43)

On the bottom wall:

= = ∂
∂

=u u T
y

0, 0.x y
(44)

In these simulations, =Pr 0.71, the relaxation times for fluid flow and
temperature are set as =τ 0.55f and =τ 0.57g , respectively. The
streamlines and the isotherms for the ranges of Rayleigh number Ra
between 103 and 106 are shown in Fig. 11. Also, the vorticity contours
for = −Ra 10 103 6 are shown in Fig. 12. The streamlines, isotherms and
vorticity contours are in very good correspondence and consistent with
prior benchmark solution results (de Vahl Davis, 1983; Hortmann et al.,
1990). The natural convection flow patterns become more complex as
Ra increases. In order to characterize this in more detail, the tem-
perature at the vertical and horizontal mid-planes of the square cavity,
i.e. =x H/ 0.5 and =y H/ 0.5, respectively, for various Rayleigh num-
bers = −Ra( 10 10 )3 6 are presented in Figs. 9 and 10. From Figs. 9 and
10, it is seen that the temperature contour lines become almost hor-
izontal around the center of the cavity as the Rayleigh number Ra

increases. The streamlines become more packed next to the side wall as
Ra increases, i.e. the fluid moves faster as natural convection is in-
tensified. In these cases, the value of the factor gβ needed in the si-
mulation is obtained as a function of Rayleigh number Ra using
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Fig. 8. Velocity and temperature profiles of Poiseuille flow with thermal diffusion at different values of Re and Pe. Markers represent the Cascaded LBE results and lines represent the
analytical solution.
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Fig. 9. Temperature profiles along horizontal centerline of the cavity at various Rayleigh
numbers: =Ra 10 , 10 , 10 ,3 4 5 and 106 computed using the cascaded LBM.
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=
▵

gβ ναRa
TH

.3 (45)

The representative values of gβ corresponding to each Ra is shown in
Table 1.

Finally, Table 2 shows quantitative comparison between the key
parameters for this problem (average Nusselt number, maximum ve-
locity magnitudes and their locations) between the present cascaded
LBE results and benchmark data (de Vahl Davis, 1983; Hortmann et al.,
1990). Excellent agreement is seen (within 0.01%). The streamlines and
isotherms for all Rayleigh numbers = −Ra (10 10 )3 6 as shown in Fig. 11
indicate that the computed results using the present cascaded LBM are
in excellent agreement with results given by de Vahl Davis (1983) and
Hortmann et al. (1990).

3.5. Thermal Couette flow with viscous heat dissipation: modeling a heat
source

Finally, we consider the simulation of Couette flow with tempera-
ture gradient to test the ability of the present thermal cascaded LB
model with a source term to describe the viscous heat dissipation. We
consider 2D thermal Couette flow between two parallel plates, where
the upper plate moves along x-direction with a velocity U, and at higher
temperature Th, whereas the bottom wall is stationary and maintained
at lower temperature Tc; L is the distance between the two plates. In this
case, the source term G in the thermal energy equation, Eq. (1) is the
viscous heat dissipation given by

= S SG ν
C
2 ( : ),

p (46)

 = +S u u1
2

( ( ) ),T
(47)

where S is strain rate tensor, and Cp is the specific heat at constant
pressure. The macroscopic governing equations for momentum and
energy can be written, respectively, as:

∂
∂

=u
y

0,
2

2 (48)

∂
∂

+ ⎡
⎣⎢
∂
∂
⎤
⎦⎥
=α T

y
ν

C
u
y

0.
p

2

2

2

(49)

The analytical solutions for the velocity and temperature are then given
by:

= =u y U y
L

v( ) , 0,
(50)

−
−

= + ⎛
⎝
− ⎞

⎠
T T
T T

y
L

Br y
L

y
L

0.5 1 ,c

h c (51)

where = −Ec U
Cp T T( )h c

2
is the Eckert number, and =Pr ν α/ is the Prandtl

number, and the effect of viscous heat dissipation is controlled by the
Brinkman number =Br EcPr . In this simulation, we set the relaxation
time =τ 0.9,f and the lower temperature =T 1c with a grid resolution of
5×41, =Re 10, and =Pr 0.71 at Eckert numbers 7, 14, and 28. For the
solution of this problem, it is important to note that the convection
diffusion equation with a source term (1) is coupled with Navier–Stokes
(N–S) Eqs. (2a) and (2b). The cascaded LB fluid model (Geier et al.,
2006) is used to solve the N–S equations. The source term G in Eq. (46)
can be written as

= + +G ν
cp

S S S2 [ 2 ].xx yy xy
2 2 2

(52)

In this case, we have

⎜ ⎟= ∂
∂

= = ∂
∂

= = ⎛
⎝

∂
∂

+ ∂
∂
⎞
⎠

S u
x

S v
y

S u
y

v
x

0, 0, 1
2

.xx yy xy
(53)

These strain rate components can be computed locally using the non-
equilibrium moments in the cascaded LBE for the fluid flow as men-
tioned in Premnath and Banerjee (2009). Fig. 13 shows the temperature
profiles for different Eckert numbers. In addition, we carried out si-
mulations for different values of Prandtl numbers, 0.25, 1.25, and 2.5
with the Eckert number being fixed at 8 with a grid size 5× 41. Fig. 14
shows the temperature profiles for different Prandtl numbers. In both
these cases, very good agreement between the cascaded LBM results
and analytical solutions are exhibited. Next, we study the grid con-
vergence rate for the case with a fixed =Ec 8 at different values of the
Prandtl number: 0.25, 1.25, and 2.5.Here, we set =U 0.07, =τ 0.9g . The
values of the tunable parameter D at these Prandtl numbers are −1.2,
0.08, and 0.24, respectively. We also conduct a grid convergence study
for the case where the Prandtl number is fixed at =Pr 0.71 while the
Eckert number is changed as 7, 14 and 28, =τ 1.0638,g and =D 0.
Three grid resolutions in the y-direction (Ny=41,81, and 161) are
employed in the convergence study. Figs. 15 and 16 show that the slope
of the temperature relative global error is about − 2, i.e. the present
thermal cascaded LB model is of second order accuracy in space.

Couette flow with viscous heat dissipation was also used to test the
ability of the present thermal cascaded lattice Boltzmann model to si-
mulate relatively high Peclet numbers at a low grid resolution of
5×23. The analytical solution for temperature is given by Eq. (51),
Here, the Brinkman number Br is rewritten as =Br PeEc

Re

−
−

= ⎡
⎣
+ ⎛

⎝
⎞
⎠
⎛
⎝
− ⎞

⎠
⎤
⎦

T T
T T

y
L

PeEc
Re

y
L

1 0.5 1 ,c

h c (54)

where Pe is the Peclet number. In this case study, the temperature
profiles for a fixed Reynolds number =Re( 10), and Eckert number

=Ec( 0.1) at different values of Peclet numbers 10, 102, 103, 104, 105

and 106 (corresponding to Brinkman numbers = −Br 10 , 1, 10 , 10 , 101 1 2 3

and 104) are shown in Fig. 17. Here, we set =T 1,h =T 0,c and =τ 0.94g .
The values of the tunable parameter D corresponding to the above
Peclet numbers are 0, 0.3970,0.4366,0.4406,0.4409, and 0.4410,
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Fig. 10. Temperature profiles along the vertical centerline of the cavity flow at various
Rayleigh numbers =Ra 10 , 10 , 10 ,3 4 5 and 106 computed using the cascaded LBM.
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respectively. Excellent agreement between the cascaded LBM results
and the analytical solution is seen for relatively high Peclet numbers.
This result is indicative of the improved stability properties of the
cascaded LBM as researchers utilizing SRT LBM (Shi et al., 2004) only
presented results for Brinkman numbers up to =Br 100. A convergence

study was done for this problem at different values of Peclet numbers
10, 102, and 103 for grid resolutions Ny=81,161, and 321, =τ 0.9,g and
tunable parameters D at each Peclet number is set to be 0, 0.36, and
0.696, respectively. The relative global error of temperature against the
various grid resolutions is shown in Fig. 18. It is evident that the slope

Fig. 11. Isotherms and streamlines at different values of Rayleigh numbers =Ra 10 , 10 , 103 4 5 and 106 for natural convection in a square cavity computed using the cascaded LBM.
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of the temperature relative global error is near − 2, i.e. the present
thermal cascaded LB model is second order in space at relatively high
Peclet numbers.

3.6. Convection–diffusion of a Gaussian hill: stability test

Finally, we consider the convection diffusion equation (Eq. (1))
where = +u vu i j^ ^

o o is a prescribed 2-D uniform velocity field and
subjected to the Gaussian hill initial condition

⎜ ⎟= ⎛
⎝

− + ⎞
⎠

T x y T
πσ

x y
σ

( , , 0)
2

exp [ ]
2

,o

o o
2

2 2

2
(55)

where the parameter σo controls the width of the profile. The analytical
solution of this problem is given by

⎜ ⎟=
+

⎛
⎝

− − + −
+

⎞
⎠

T x y t T
π σ αt

x u t y v t
σ αt

( , , )
2 ( 2 )

exp [( ) ( ) ]
2( 2 )

.o

o

o o

o
2

2 2

2
(56)

We set =σ 0.05o and advect the profile with the diagonal velocity vector
with components = =u v c0.25o o s. We choose =T πσ2o o

2 so that the in-
itial profile has a peak magnitude of 1.0. Periodic boundary conditions
for the temperature are employed. In what follows we vary the fluid
diffusivity to compare the stability characteristics of the cascaded
centeral moment LBM with the SRT and MRT implementations of the
LBM. We consider the MRT method in Meng and Guo (2015) and we set
the tunable parameter D in both methods to be zero. In the three
methods, the fluid diffusivity is given by = −( )α cs λ

2 1 1
2 where λ is the

relaxation rate of the first order moments corresponding to the equili-
brium moments uxT and uyT in the cascaded and MRT LBM. We use a
521× 521 grid and vary the diffusivity by varying the relaxation time
=τg λ

1 . Comparison of the cascaded and MRT LBM methods is compli-
cated by the large number of relaxation parameters associated with
each method. We set the relaxation time for the first order moments to
τg based on flow parameters. We then set all other relaxation times to
1.0. With this choice of parameters we are relaxing the energy fluxes
(first order moments) at the same rate in both methods. This choice of
parameters is not necessarily optimal for either method but it does gives
us a rational basis for comparison.

The simulation is run for 1000 time increments at which time the
Gaussian profile has convected from the center of the domain to the
upper right corner. Temperature contours for the analytic solution and
the results from a cascaded LBM simulation at the initial and final state
are shown in Fig. 19. A closer view of the final profiles along with the
lattice coordinates is given in Fig. 20.

Finally, we consider numerical stability results from the SRT, MRT,
and cascaded LBM at various values of the relaxation time τg. Table 3
provides the numerical stability and global relative error (given by Eq.

Fig. 12. Vorticity contours at various Rayleigh numbers =Ra 10 , 10 , 103 4 5 and 106 for natural convection in a square cavity computed using the LBM.

Table 1
Values of gβ corresponding to each Rayleigh number used in the simulation of natural
convection in a square cavity.

Rayleigh number Ra Grid size (Nx×Ny) =
▵

gβ Ra ν α
TH
. .

3

103 128×128 × −9.44 10 9

104 128×128 × −9.44 10 8

105 128×128 × −9.44 10 7

106 128×128 × −9.44 10 6
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(31)) indicates the accuracy of the three methods is similar. The table
also indicates that the SRT LBM is not stable at the smaller diffusivities
and that the MRT is eventually not stable at the still smaller diffusivity
for which the cascaded LBM is stable. It is likely that relaxation rates for
the higher moments of the MRT and cascaded LB methods may be
found that result in more stable behavior but this short study on the
CDE concurs with other work that indicate superior stability char-
acteristics of the cascaded LBM (Geier et al., 2015; Ning et al., 2016).

4. Summary and conclusions

In this work, we presented a thermal cascaded (LB) MRT model
based on central moments and including a source term. This model
solves the convection–diffusion equation (CDE) for the temperature
field within the double distribution function framework for the D2Q9
lattice, where the fluid motion is represented by another cascaded LB
model constructed in prior work. The collision operator for the thermal
field has significantly different cascaded structure for its collision
kernel when compared to that for the flow field due to the differences in
the number of collision invariants between them. A consistent second
order scheme to incorporate the effect of locally varying heat sources by
means of a variable transformation for the thermal cascaded LB model
is also discussed. A Chapman–Enskog analysis of the thermal cascaded

Table 2
Comparison between numerical results obtained using the cascaded LBM and the pub-
lished results (de Vahl Davis, 1983; Hortmann et al., 1990) at different Rayleigh numbers
( = −Ra 10 103 6).

Ra Parameter Present cascaded
LBM

de Vahl Davis
(1983)

Hortmann et al.
(1990)

103 N u 1.117 1.116 NA
umax 3.605 3.634 NA
ymax 0.816 0.813 NA
vmax 3.654 3.679 NA
xmax 0.176 0.179 NA
|Ψ|max 1.16 1.174 NA

104 N u 2.237 2.234 2.24475
umax 16.182 16.182 16.1759
ymax 0.824 0.823 0.8255
vmax 19.551 19.509 19.6242
xmax 0.12 0.12 0.12
|Ψ|max 5.079 5.098 NA

105 N u 4.509 4.51 4.521
umax 35.137 34.81 34.7398
ymax 0.856 0.855 0.85312
vmax 68.511 68.22 68.6465
xmax 0.064 0.066 0.0656
|Ψ|max 9.189 9.144 NA

106 N u 8.797 8.798 8.825
umax 65.57 65.33 64.8659
ymax 0.856 0.851 0.85312
vmax 219.95 216.75 219.861
xmax 0.032 0.0387 0.0406
|Ψ|max 16.519 16.53 NA
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Fig. 13. Temperature profiles in Couette flow at various values of Eckert number.
Markers represent the cascaded LBE simulations and lines represent the analytical solu-
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LB model shows its consistency with the CDE including a source term. It
also provides expressions for temperature gradients in the augmented
moment equilibria in terms of locally known non-equilibrium moments.

The new thermal cascaded LBE is validated for a number of
benchmark problems, including thermal Poiseuille flow, thermal
Couette flow and natural convection in a square cavity. Comparison of
the temperature profiles under different conditions for these problems,
as well as the average Nusselt number at different Rayleigh numbers in
the case of the natural convection within a square cavity, with prior

benchmark results demonstrate high accuracy of the thermal cascaded
LBE model. Furthermore, it is shown numerically that the model is
second order accurate in space for a range of thermal convective flow
problems. Finally, the thermal cascaded LB model exhibits improved
stability characteristics over the SRT LBM and the conventional MRT
LBM. The cascaded LBM for fluid flow has been shown to improve
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Fig. 16. Temperature global relative error at different Prandtl numbers 0.25, 1.25, and
2.5 for thermal Couette flow with viscous heat dissipation.
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103 for thermal Couette flow with viscous heat dissipation.

Fig. 19. Temperature contours for the convection–diffusion of a Gaussian hill problem
with =τ 0.55g . Bottom left: Analytic solution initial condition. Top left: Analytic solution

after 1000 time increments. Bottom right: Cascaded LBM solution initial condition. Top
right: Cascaded LBM solution after 1000 time increments. Temperature contours are from
0.05 up to 0.95 in increments of 0.05.
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stability at high Reynolds numbers typically encountered in turbulent
flows (Geier et al., 2015) and the improved stability of the thermal

cascaded LB MRT model should be useful for simulating turbulent flows
such as the high Rayleigh number DNS simulations found in Dixit and
Babu (2006). We note also that Dixit and Babu (2006) used an SRT
model and hence were restricted to Prandtl numbers near 1/2, while
the conventional MRT as well as the thermal cascaded LB MRT model
would relieve this restriction.
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Appendix A. Construction of the Cascaded Collision Operator for the Temperature Field

The collision operator for the thermal cascaded LBE can be constructed by starting from the lowest order non-conserved (i.e. first order) post-
collision central moments, tentatively setting them to their equilibrium states and then multiplying the resulting expression for the collision kernel,

̂h ,β by a corresponding relaxation parameter λβ to allow for a relaxation process during collision (Geier et al., 2006). Here, only those terms that are
not in the post-collision states for the lower order moments are multiplied by the relaxation parameters. Thus, we start from the first order post-
collision central moment, i.e. −g e u( )α

p
αx x and −g e u( )α

p
αy y and tentatively set them equal to ̂κx

eq and ̂κ ,y
eq respectively. In particular,

̂ = = − = −κ g e u g e u g T0 ( ,x
eq

α
p

αx x α
p

αx x α
p (A.1)

where from Eq. (27b) raw moments of the post-collision distribution function in terms of its pre-collision value, the collision kernel, and the source
term are used to obtain the right hand sides of the above equation. That is,

K
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αx α αx α αx α αx x x

α
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1

Substituting the above expressions in Eq. (A.1) and rearranging, and solving for the first component of the collision kernel we get the following
tentative expression

̂ ̂̂ ̂= − −′ ′ ′{ }h κ κ σ1
6

1
2x

eq
x x1 (A.2)

where ̂ =′κ u Tx
eq

x . In order to provide further flexibility in adjusting the transport coefficient in the CDE, the raw moment equilibrium ̂′κx
eq will be

augmented with an extended moment equilibrium ∂Dδt T( ),x
1
3 where D is the adjustable parameter. See Appendix B for an analysis of such a scheme.

In addition, we apply a relaxation parameter λ1 in the equation above Eq. (A.2) to reflect the collision as a relaxation process. Thus, we get

̂ ̂̂ ̂= − − + ⎛
⎝
∂′ ′ ′{ }h λ κ κ σ Dδt T
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1
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3

) .x
eq
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(A.3)

Similarly, setting −g e u( )α
p

αy y to ̂ =κ 0y
eq and using

K  ̂̂ ̂= + + = + +
′ ′g e g e e S e κ h σh( · ) 6 ,α

p
αy α αy α αy α αy y y2

and following the same procedure as above, we obtain

̂ ̂̂ ̂= − − + ⎛
⎝
∂′ ′ ′{ }h λ κ κ σ Dδt T
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1
2

1
3

) .y
eq
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(A.4)

Here, ̂ =′κ u Ty
eq

y . In the above, the temperature gradient needed in the extended moment equilibria can be locally computed in terms of the first
order non-equilibrium moments (see Appendix B for details). Next, consider the second order diagonal central moments and tentatively set them to
their corresponding equilibrium states, i.e.
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Fig. 20. Temperature contours for the convection–diffusion of a Gaussian hill problem with =τ 0.55g after 1000 time increments.(a) Analytic solution. (b) Cascaded LBM solution.

Table 3
Global relative error and stability characteristics after 1000 time increments for SRT,
MRT, and Cascaded LBM for different relaxation times for the convection–diffusion of a
Gaussian hill problem at a Mach number of 0.25.

τg 0.55 0.51 0.501
α × −1.67 10 2 × −3.33 10 3 × −3.33 10 4

SRT 0.0097 Unstable Unstable
MRT 0.0086 0.0096 Unstable
Cascaded 0.0101 0.0108 0.0110
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and
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and substituting the above two expressions in Eqs. (A.5) and (A.6), respectively, and rearranging we get

̂ ̂̂ ̂ ̂ ̂ ̂+ = − − + − + − +
′ ′ ′ ′h h T u T κ u κ σ u σ u G u h6 2 1
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̂ ̂̂ ̂ ̂ ̂ ̂− = − − + − + − +
′ ′ ′ ′h h T u T κ u κ σ u σ u G u h6 2 1

3
2 2 1

2
12 .y yy y y yy y y y y3 4

2 2
2 (A.8)

Solving for ̂h3 and ̂h4 from the above two equations and then applying the relaxation parameters λ3 and λ4, respectively, for ̂h3 and ̂h ,4 while
excluding the lower order collision kernel terms (i.e. ̂h1 and ̂h2) as they are already in the post-collision state, we finally get

̂ ̂

̂ ̂ ̂ ̂ ̂

̂ ̂
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(A.9)

̂ ̂̂ ̂ ̂ ̂ ̂ ̂ ̂⎜ ⎟= ⎧
⎨⎩
− − − ⎛
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− ⎞
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4

( ) 2 2 1
2

( ) 3 3 .x y xx yy x x y y xx yy x y4
4 2 2
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(A.10)

Clearly, a cascaded structure is already evident in the collision kernels of the second order moments, which is unlike that for the fluid flow LBE
solver, where the cascaded structure starts to appear only at the third order moment collision kernels. This arises due to differences in the number of
collision invariants between the two cascaded LBE models. Next, considering the post-collision state of the off-diagonal, second order central
moment as

̂ = = − −
= − − +

κ g e u e u
g e e u g e u g e u u g T

0 ( )( )
.

xy
eq

α
p

αx x αy y

α
p

αx αy y α
p

αx x α
p

αy x y α
p

(A.11)

Using ̂ ̂̂= + + ′g e e κ h σ4α
p

αx αy xy
eq

xy5 in the above equation and simplifying it as a tentative expression for ̂h5 and then applying the relaxation
parameter λ5 to those terms that are not yet in the post-collision states, we get

̂̂ ̂ ̂ ̂

̂ ̂
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Now, consider the determination of the third order moment collision kernel. Setting tentatively

̂ = = − −κ g e u e u0 ( ) ( ) ,xxy
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α
p
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and using
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in Eqs. (A.13) and (A.14), respectively, and simplifying to obtain the tentative expressions for ̂h6 and ̂h ,7 respectively, and applying relaxation
parameters to terms that are not yet post-collision states we obtain
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Finally, by tentatively setting the post-collision state of the fourth order central moment to its corresponding equilibrium state we have
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( ) ( )xxyy
eq

α
p
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(A.17)

and applying ̂̂ ̂ ̂= + + +
′ ′g e e κ h h σ8 4α

p
αx αy xxyy

eq
xxyy

2 2
3 8 then simplifying Eq. (A.17) and applying the relaxation parameter λ8 to obtain
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Appendix B. Chapman–Enskog multiscale analysis of the thermal cascaded LBM

In this appendix, a Chapman–Enskog (C–E) analysis of the thermal cascaded LBE is presented and the results of the analysis provide the
macroscopic emergent equations,viz., the convection–diffusion equation (CDE) with a source term given in Eq. (1) earlier. In this regard, we consider
the strategy of rewriting the central moment LBM in terms of the relaxation to a generalized equilibrium in the rest frame of reference. To facilitate
analysis and its establish consistency to the CDE, it is sufficient to consider terms only up to second order in Mach number in such an equivalent
formulation (Asinari, 2008; Premnath and Banerjee, 2009). In this regard, we consider performing calculations in terms of various raw moments
(designated with “prime symbols”) with respect to the non-orthogonal moment basis vectors collected in the matrix T and given in Eq. (3).

First, the base raw moment equilibrium ̂ ′κx y
eq
m n can be obtained from the corresponding central moment equilibria ̂κx y

eq
m n given in equation Eq. (16).

This reads as

̂ =′κ T,eq
0 (B.1a)

̂ =′κ u T,x
eq

x (B.1b)

̂ =′κ u T,y
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y (B.1c)

̂ = +′κ c T u T,xx
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s x
2 2 (B.1d)

̂ = +′κ c T u T,yy
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s y
2 2

(B.1e)

̂ =′κ u u T,xy
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x y (B.1f)

̂ = +′κ c u T u u T,xxy
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s y x y
2 2

(B.1g)

̂ = +′κ c u T u u T,xyy
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s x y x
2 2

(B.1h)

̂ = + + +′κ c T c u u T u u T( ) .xxyy
eq

s s x y x y
4 2 2 2 2 2

(B.1i)

Similarly, the raw moment for the source terms can be obtained from their corresponding central moments Eq. (17), which are presented in Eq.
(19a). Now, for convenience, the various raw moments can be related to their corresponding states in the velocity space via the non-orthogonal
transformation matrix T . We now define raw moments of distribution functions (including the transformed one), equilibrium and sources for
convenience as

T T T T̂̂ ̂ ̂= = = =g g g g g g S S, , , ,eqeq (B.2)

where
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In order to maintain flexibility in the specification of the transport coefficient (i.e. the thermal diffusivity) appearing in the emergent CDE, we specify
the raw moment equilibrium ̂geq by augmenting the base moment equilibria given in Eq. (B.1) with an extended first order moment equilibria
involving the components of the temperature gradients with an adjustable coefficient (designated as D below). That is
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T̂ =g g .eq eq (B.3)

Here

̂ ̂ ̂= +g g g .eq eq eq(0) (1) (B.4)

where, ̂geq (0) and ̂geq (1) are the base and extended moment equilibria, respectively, and are given as follows:
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We can then rewrite post-collision state of the thermal cascaded LBE in Eq. (13) in terms of the following:

T I ̂̂ ̂= + ⎡
⎣
− − + ⎛

⎝
− ⎞

⎠
⎤
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−g g g g SΛ( ) 1
2
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(B.7)

where Λ is a diagonal collision matrix given by

= …diag λ λ λ λ λΛ ( , , , , , ).0 1 2 3 8 (B.8)

Now, we apply a Chapman–Enskog multiscale analysis by expanding the raw moments ̂g and the time derivative in terms of a small perturbation
parameter = δtϵ (which will be set to 1 at the end of the analysis) using the following multi-scale expansions:
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2
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Notice that in the above we have used the moment equilibria ̂geq in terms of the sum of the base moment equilibria ̂geq (0) and the extended
moment equilibria ̂geq (1). In addition, a Taylor expansion is used for the representation of the streaming operator, which is carried out in its natural
velocity space:

∑→ + → + = ∂ + → ∇
→ →

=

x e t
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e x tg g( ϵ, ϵ) ϵ
!
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The resulting zeroth, first and second order equations are

̂ ̂=O gg(ϵ ) : ,eq0 (0) (B.11a)
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where T I T = ∈−E e i x y( ) , ,i αi
1 . In to order derive the macroscopic CDE, up to the first order moment components in O(ϵ) (Eq. (B.11b)) are

relevant, which are listed as follows:

∂ + ∂ + ∂ =T Tu Tu G( ) ( ) ,t x x y y0 (B.12a)
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Similarly, the zeroth order moment component in Eq. (B.11c) is needed in deriving the CDE which reads as
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(B.13)

Now, combining Eqs. (B.12a) with ϵ times Eq. (B.13) and setting ∂ = ∂ + ∂ϵ ,t t t0 1 we get the dynamical equations for the conserved moment after
setting the parameter ϵ to unity. That is,
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In the above equation, Eq. (B.14), we need the first order non-equilibrium raw moments ̂g1
(1) and ̂g2

(1). They can be obtained from Eqs. (B.12b) and
(B.12c), respectively. Thus,
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The above equations can be simplified by considering the results from the C–E expansion of the cascaded LBM for fluid flow (NSE) (Premnath and
Banerjee, 2009) and neglecting all terms of O(u2) and higher, which is sufficient to establish consistency with the CDE as the LBE are used for flow
simulations in the incompressible limit. Thus, after some simplifications and rearrangements we get
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Now, by substituting these simplified expressions for the non-equilibrium moments, Eqs. (B.17) and (B.18), into Eq. (B.14) it follows that

∂ + ∂ + ∂ = ∂ ∂ + ∂ ∂ +T Tu Tu α T α T G( ) ( ) [ ] [ ]t x x y y x x y y1 2 (B.19)

which represents the convection–diffusion equation (CDE) with a source term. The coefficients α1 and α2 represent the thermal diffusivity and are
related to their relaxation parameters λ1 and λ2 ,and the adjustable parameter D in the extended moment equilibria:
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For isotropy of thermal diffusion, we have = =α α α ,1 2 and it follows that =λ λ ,1 2 and the rest of the higher order relaxation parameters can be tuned
to improve the numerical stability. Finally, the temperature gradients ∂xT and ∂yT needed in the extended moment equilibria Eq. (B.6) can be

computed locally from Eqs. (B.17) and (B.18), i.e. the first order non-equilibrium moments. Using ̂̂ ̂ ̂ ̂= − = −
′ ′g g g κ κeq

x x
eq

1
(1)

1 1
(0) and

̂̂ ̂ ̂ ̂= − = −
′ ′g g g κ κeq
y y

eq
2
(1)

2 2
(0) in Eqs. (B.17) and (B.18), and rearranging, we get
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where ̂ =′κ u T,x
eq

x and ̂ =′κ u Ty
eq

y .
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