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Abstract

County level interannual climate-yield relationships for winter wheat were
examined across a moisture gradient over primarily rainfed agricultural systems in
the Columbia Basin of the United States from 1980-2014. Wheat yields were most
strongly correlated with energy and moisture availability during the latter stages of
crop development. Estimated actual evapotranspiration calibrated for winter wheat
was typically the best predictor of interannual yield variability at the county level, with
the strongest relationships for counties with intermediate amounts of mean annual
precipitation. Crop yields were negatively impacted by warmer temperatures during
the latter stages of crop development, particularly in the climatologically cooler
counties as delayed crop phenology results in warmer temperatures during
phenostages when crops are most sensitive. A variety of multi-variate statistical
models explain an average of 29-37% of interannual county-level yield variance over
the Columbia Basin, yet show spatial heterogeneities in climate yield relationships

suggesting the importance of subregional climate-crop modeling.
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1. Introduction

Winter wheat (Triticum aestivum L.) is the most widespread cultivated crop in
the Pacific Northwest of the United States (US), occupying 1.32 million hectares and
yielding average 4.27 million metric tons annually from 2010-2014 (USDA).
Approximately 75% of winter wheat grown in US Pacific Northwest occurs in the
Columbia Basin encompassing much of the central and eastern Washington, and
parts of northeastern Oregon and northwestern Idaho. Collectively, winter wheat in
the Columbia Basin generates over 1 billion US dollars annually (USDA), contributing
substantially to the rural economy. However, as dryland farming accounts for nearly
all of winter wheat croplands grown in the region, yields can fluctuate from year to
year due to moisture limitations (Schillinger et al.,2008; Fuentes et al., 2003).
Interannual variability in winter wheat yields not only impacts local economies, but
also affects global wheat prices (e.g., Sternberg et al., 2012). Understanding the
factors that contribute to interannual variability in wheat production is thus of key

importance to local agribusiness, global wheat markets, and global food security.

Global wheat productivity increased substantially from 1960s to 1990s (Chen
et al., 2004; Cantelaube et al., 2004; Lobell and Field, 2007; Lin and Huybers, 2012)
due to advances in agricultural techniques (e.g., cultivars) and management (e.g.,
fertilizer usage, irrigation and crop rotation). However, yield increases have plateaued
in some regions since the 1990s, due to a less favorable climate (Lobell and Field,
2007) and decreased fertilizer usage (Lin and Huybers, 2012). Similar to global
wheat yields, winter wheat yields across the US Columbia Basin showed a 19.5%

increase from 1980-2000, with little overall increase since 2000 (Figure 1b). Whereas



human factors (e.g., cultivar choices, management) are typically more pronounced in
long-term trends of crop yields, interannual climate variability is better coupled with

interannual yield variability (Cantelaube et al. 2004).

Numerous studies have empirically or experimentally examined climate-yield
relationships, typically using monthly or seasonal temperature and precipitation
summaries. Climate variability has been shown to account for roughly one third of
wheat yield variability at global scales (Ray et al., 2015; Lobell and Field, 2007). The
influence of climate variability on crop yield includes both energy and moisture
constraints that can take on different relationships throughout crop development
(Schlenker and Roberts, 2009, Porter and Gawith, 1999; Asseng, 2012). Optimal
temperature ranges for wheat development have been identified for various crop
phenostages, with detrimental impacts for both warm and cold excursions from
identified thermal optimums (Porter and Gawith, 1999). For example, high
temperatures (>30°C) during flowering and grain-filling stages can reduce yields
(Gibson and Paulsen, 1999; Narayanan et al., 2015). Climate-yield relationships for
rainfed wheat cropping systems typically show linear relationships with moisture
availability (e.g., Zhang and Oweis, 1999; Schillinger et al., 2008). Water limitation
can decrease stomatal conductance and viable leaf area, lead to a decline in
photosynthesis, and result to reduced grain number and mass and increased grain

protein content (Asseng, 2012; Nicolas et al., 1984).

Prior studies have typically examined climate-yield relationships across broad
geographic scales (e.g., national and state level) and fixed calendar dates (e.g., Ray

et al., 2015). However, climate-yield relationships are likely to vary at spatial scales



finer than those typically examined due to heterogeneity in baseline moisture and
energy within a geographic region and their interplay with known energy and
moisture optimums for crop development. Additionally, climate metrics (e.g., water
balance) closely aligned with plant physiology during certain phenostages may have
more explanatory power for interannual variability in crop yields than summaries of
temperature and precipitation tied to static calendar dates. This study addresses
these knowledge gaps in climate-yield relationships for winter wheat across the
Columbia Basin using county-level crop and climate data. Collectively, the ability to
improve our understanding of the climatic factors that influence interannual variability
in wheat yields may improve seasonal outlooks for wheat yields and help inform

wheat future prices on the global market.



2. Data and methods

2.1 Study region

The agricultural lands of the Columbia Basin comprise the lower elevations
(170~1000m) of the Columbia River Basin in the US Pacific Northwest located
between the Cascade Range and the Rocky Mountains. Typical of much of the
Pacific Northwest, the region experiences a Mediterranean type climate with over
75% of its annual precipitation occurring from November-May. Annual average
precipitation varies across the region with around 200 mm in the rain-shadowed lee
of the Cascade Rage in central Washington to more than 800 mm across the eastern
portion of the basin where elevation rises on the windward flanks of the Northern
Rockies in Idaho. The mean annual temperature of the study area generally adheres
to elevational relationships with the highest temperatures in the lower elevations of
the western Columbia Basin and lowest temperatures at higher elevation in the

eastern Columbia Basin.

Winter wheat is the major crop in the Columbia Basin covering over 30% of
the 3.35 million hectares of cropland across the region. Dryland farming is primarily
used, except in the driest areas in the southwestern extent of the region where
irrigation is used. The average annual county yields from 1980-2014 vary
geographically across the region from 2600-5100 kg/ha (Figure 1a). Spatial variability
in winter wheat yields is evident with yields increasing west to east across the basin
generally tracking with the gradient of moisture availability. Crop rotations are
adopted across the region based on primarily mean annual precipitation, with annual

cropping in the wetter zones and annual-fallow cropping in the drier zones, in an



effort to balance sufficient soil moisture for wheat cropping and avoid wheat disease

and pests.

2.2 Yield and climate data

County level winter wheat yields from 1980-2014 for 27 counties from
Washington, Oregon and Idaho in the Columbia Basin were acquired from the
National Agricultural Statistics Service (NASS), US Department of Agriculture (2014).
Although there were several missing records in this dataset, each county had at least

28 years of valid data from 1980-2014.

Two approaches were considered to minimize conflating climate drivers with
long-term increases in yield (Figure 2). First, the 1980-2014 linear trend in yield was
separately estimated for each county using a linear least squares regression
following previous studies (Lobell et al., 2011; Olesen et al., 2000, Ray et al., 2015).
We refer to the resultant time series as detrended yields. Alternatively, long-term
changes in the wheat yields may not be adequately represented using a linear or
higher-order polynomial trend, but instead may occur as abrupt shifts in yield due to
the adoption of technological advancements, particularly at smaller geographic
scales. To account for this possibility, we also considered first differences (i.e.,
changes from the previous year) of wheat yields and climate data as used in previous
studies (Lobell and Field, 2007; Rao et al, 2015). We compare both detrended yield

records and first difference records in subsequent analyses.

Daily meteorological data at ~4km spatial resolution was acquired from
Abatzoglou (2013) for daily maximum and minimum temperature, specific humidity,

precipitation, solar radiation, and wind speed from 1979-2014. We averaged grid cell



values across the geographic extent of winter wheat cropland area derived from the
aggregation of NASS from 2007-2014 (Figure 1a) for each of the 27 counties to
create a county-level dataset. While most prior research examined relationships
between climate and yield using static calendar dates, we adopt an approach that
uses phenological dates tied to the development of winter wheat for each county and
year. Phenological stages of winter wheat were defined using a growing degree day
based (GDD) model for winter wheat (Ritchie, 1991). The model divides the wheat
growing season into seven phenostages based on cumulative GDD with a base
threshold of 0°C, consisting germination, emergence, tillering, booting, flowering, and

grain-filling and maturity (Table 1).

Dryland wheat production in the Columbia Basin is dependent on soil moisture
captured in winter precipitation in combination with spring precipitation. While most
prior climate-yield studies have relied on first-order climate variables of temperature
and precipitation (e.g., Ray et al., 2015), we hypothesized that water balance metrics
should be better aligned with crop water use and thus may better relate to
interannual variability in yields. We applied a modified Thornthwaite water balance
model (Willmott et al., 1985) that considers temperature, precipitation and reference
evapotranspiration using the Penman-Montieth method (Allen et al., 1998). Since
reference evapotranspiration assumes a static reference grass surface, we used a
seasonally varying single crop coefficient for winter wheat that varied from 0.7, 1.15
and 0.3 for the initial, mid-season and the end of late season, respectively, with linear
transitions during the development phase and late season based on GDD (Table 2,

Saadi et al. 2015). We used county-level available water content data aggregated



from winter wheat growing regions from the USDA-NRCS STATSGO database and
the water balance model to calculate actual evapotranspiration (AET) and the water
deficit (DEF, the difference between the potential evapotranspiration and AET) for

each county.

Heat stress can have negative impacts on crop growth (Liu et al., 2014;
Prasad and Djanaguiraman, 2014, Talukder et al., 2014; Porter and Gawith, 1999).
We calculated cumulative heat degree days (HDD) from flowering to physical
maturity using a base threshold of 30°C for daily maximum temperature as a proxy

for heat stress (Porter and Gawith, 1999; Liu et al., 2014).

2.3 Climate-yield relationships and models

Pearson’s correlation coefficients were calculated between each climate
metric and wheat yield for each county from 1980-2014. We calculated correlations
for each phenology stage and all combinations of consecutive phenological stages.
Correlations were run separately for both detrended yields as well as first difference
time series. We sought to identify phenological windows during which climate-yield
relationships across the region were maximized. This was accomplished by
identifying the maximum county-average squared correlation for temperature,
precipitation, AET and DEF. Correlation coefficients and linear regressions were
calculated between wheat yield and climate for each county using the optimum

phenological window to assess spatial variability across the study region.

Forward stepwise linear regression models were used to estimate climate
impact on wheat yield variability (e.g., Tao et al., 2012) separately for each county

using the optimized phenological windows from the four climate variables and HDD.



Two modeling schemes were developed, one using linear detrended yields (Y), the
second using first difference yields (AY). The linear detrended yield model used five
climate predictors and their square terms: (i) mean temperature from flowering to
maturity (Tm), (i) cumulative precipitation from booting to maturity (Pom), (iii) AET
from grain filling to maturity (AETgm), (iv) DEF over the entire growing season, and (v)
HDD from flowering to maturity (HDD). The first-difference model used five first-
difference climate predictors and their square terms: (i) first difference of mean
temperature from grain filling to maturity (ATgm), (ii) first difference of cumulative
precipitation from booting to maturity (APwm), (iii) first difference of AET from grain
filling to maturity (AAETgm), (iv) first difference of DEF over the entire growing season
(ADEF), and (v) the first difference of HDD from flowering to maturity (AHDD).
Stepwise linear regression fits variables in order of importance, and is often used to
develop models where there are a number of independent variables that may explain
variance of the dependent. Independent variables were allowed to enter the model
when the p-value for an F-test was <0.05, and removed from the model when p

was > 0.10.

As an alternative to constructing separate models from each county, we
considered the first difference panel linear model using county-level wheat yields and
five predictors (Ttm, Pom, AETgm, DEF, HDD) not including their square-terms. The
first difference panel model can be viewed as differencing each term in the fixed
effect model. Fixed effect panel regression model was used to depict global and
provincial climate-yield relationships in recent years (Lobell, et.al., 2011; Tao, et.al.,

2014). This approach can incorporate time series information with cross-section



(geographic units) information to general a universal climate-yield response. Each
section has a unique model intercept to reflect cross-section differences which are
implied as different yield levels. First differencing approach removes the time-
invariant term from the model, which removes the cross-section difference in the
model equation. Unlike the stepwise regression approach, the panel model

generates a single equation that is used across the entire study area.
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3. Results

3.1 Univariate climate correlations

The strength of the interannual relationship between climate and winter wheat
yield exhibited more widespread and significant correlations with moisture related
metrics than temperature (Figure 2). The strongest correlations for both temperature
and moisture metrics covered time periods that include the latter stages of crop
development. The county mean squared Pearson’s correlation coefficient (r?)
between detrended yield and temperature showed an optimum (r? = 0.11) during the
period from flowering to maturity (Trm). Similarly, the strongest county mean r?
between detrended yield and both precipitation (r> = 0.18) and AET (r? = 0.25)
occurred during the latter stages of crop development from booting to maturity, and
flowering to maturity, respectively. Significant, but weak correlations (r?> <0.1) were
evident between yield and early season precipitation from germination to tillering.
Finally, the strongest correlations between detrended yield and DEF were for
phenological periods that included grain filling stage, such as from grain filling to

maturity (r?> = 0.22).

A similar pattern was found using first-differences, although with slightly higher
r2 values for each of the optimums (Figure 2). For example, the county mean r?
between the first difference of yield and AAET from grain filling to maturity was 0.29,
and the county mean r? between the first difference of yield and AP from booting to
maturity was 0.22. Minor differences in the timing of the optimum correlations were

seen for temperature and AET, with the peak r? occurring from grain filling to maturity
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stages (ATgm, AAETgm), rather than flowering to maturity stages as found in the

detrended yield relationship.

The spatial variability in county-level univariate correlations between wheat
yields and optimums for the temperature, precipitation, AET, and DEF, as well as
HDD from flowering to maturity are shown in Figure 3. Temperature (Tfm, ATgm)
exhibited negative correlations with yields across the study area. However, most of
the significant correlations were found in counties across the northeastern portion of
the basin where temperatures are climatologically cooler. The strength of the
interannual temperature-yield relationship showed significant positive correlations
with mean county annual temperatures (Figure 4a, b), where cooler counties have
stronger negative r-values between temperature (T, ATgm) and wheat yields.
Correlations between HDD and yield were mainly weak and non-significant across
the Columbia Basin. However, there is a longitudinal dipole whereby a few counties
in the warmer southwestern portion of the basin had significant negative correlations,
while a few counties in the cooler eastern portion of the basin had significant positive

correlations.

Spatially coherent relationships were realized between yield and moisture
related variables across much of the study area. Significant positive correlations
between yield and both precipitation (Pom, APbm) and AET (AETgm, AAETgm) were
found over much of the region, with the strongest correlations found in the central
and southern portion of the basin. Widespread significant negative correlations were
found between the cumulative water deficit (DEF, ADEF) and wheat yields, with the

strongest correlations for counties in the central basin. Non-significant correlations
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with precipitation, AET, and DEF were found for counties along the western and
eastern flanks of the basin. While the spatial pattern in correlation coefficients to
moisture variables did not exhibit significant linear correlation with the county level
mean annual precipitation (Figure 4 c-f), the strongest correlations typically were
present in counties that intermediate precipitation zones, defined by annual mean

precipitation between 300-550mm.

Univariate regression coefficients for temperature, precipitation, AET and DEF
to winter wheat yields are shown in Figure 5. Coefficients for Tm and ATgm were
negative across nearly the entire basin with county-average values of -144.0 kg ha™’!
°C-'and -143.4 kg ha'°C-', respectively. The strongest negative coefficients were
present across counties in the northern and eastern portion of the basin, exhibited a
strong negative correlation with the pattern of county-level annual mean temperature
(Figure 6 a,b). This suggests that wheat yields in cooler counties are more sensitive
to interannual variability in temperature during the latter stages of crop development
than in warmer counties. Coefficients for Pom and APbm were positive across the
basin with county-average values of +6.6 kg ha”' mm-' and +7.0 kg ha™ mm-",
respectively. The highest coefficients were present across counties in the central
northern portion of the basin. Regression coefficients for Pom exhibited significant
negative correlation with mean annual precipitation, which suggests wheat yields in
drier counties are more sensitive to precipitation during the latter stages of crop
development than in wetter counties (Figure 6c). Coefficients for AET and AAET
were positive all over the basin with county-average values of +13.4 kg ha” mm-! and

+14.5 kg ha”* mm-', respectively. The strongest coefficients for AET were apparent
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across counties in southeastern Washington state. A similar, but inverted pattern was
seen for DEF and ADEF with county-average values of -6.7 kg ha” mm' and -7.9 kg
ha' mm™, respectively. Significant negative correlations were evident between
regression coefficients for ADEF and county-level mean annual precipitation, which
suggests yields in wetter counties are more sensitive to water deficit changes during

the growing season than in drier counties.

3.2 Climate yields models

Stepwise linear regression models explained an average of 30.0% of county-
level interannual variability in detrended wheat yields (Figure 7a). Only Yakima
County, Washington had no model, whereas climate explained 69.0% of the yield
variance in Garfield County, Washington (Table 3). The most frequently selected
variable for county level stepwise regression of detrended yields was AETgm. DEF
was selected as a predictor in the central and southern portion of the basin, whereas
Tim was the only variable to explain yield variability in the northernmost three counties

in Idaho.

Stepwise linear regression models explained an average of 36.9% of county
level interannual variability in first-difference wheat yields (Figure 7b). Yakima
County, Washington and Union County, Oregon had no model, and climate explained
77.4% of the yield variance in Garfield County, Washington. The three most
frequently selected predictors for the first-difference stepwise model were AAETgm,
APvm and ADEF. However, due to the collinearity among moisture variables, typically
only a single moisture variable was used in each county. One of these three moisture

variables was used in all but one county for which a first-difference model was built.
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The first difference panel model explained 28.6% of the temporal variance in
county level yield records (Figure 7c). The form of the equation (Table 4) suggests
negative relationship with ATsm and AHDD of -18.6 kg ha™* C-' and -1.42 kg ha' DD,
respectively. Similarly, the model showed positive relationships with moisture
availability with regressions of +1.66 kg ha' mm-', +7.66 kg ha' mm-", and -2.45 kg
ha' mm-1, for APbm, AAETgm, and ADEF, respectively. By comparison, univariate first
difference panel models using only AAETgm, and only APbvm had coefficients of +14.5

kg ha’ mm and +6.42 kg ha'' mm-', respectively.

The geographic pattern of explained variance was similar for all three
modeling approaches with a larger portion of explained variance for counties in the
central portion of the basin than for counties on the periphery. However, the spatial
variability in r? did not exhibit any apparent relationship to underlying spatial variability
in climate unlike for the univariate correlations (e.g., Figures 4 and 6). Part of the
spatial variability is likely a function of the underlying non-climatic factors such as
irrigation across parts of the study area. For example, the first-difference model
explained an average of 25% of the variance in interannual wheat yields in counties
where at least 10 percent of harvested land was irrigated, whereas first-difference

models explained an average of nearly 40% of the variance in all remaining counties.
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4. Discussion and Conclusion

Our modeling results suggest that climate explains between an average of 29-
37% of the county-level interannual variability in winter wheat yield across the
Columbia Basin from 1980-2014. These results are similar to proportion of explained
variance in global wheat yields by climate factors (Ray et al., 2015). Interannual
variability in winter wheat yields were found to be more sensitive to moisture and
energy variability during the latter stages of the crop development, especially during
flowering and grain filling, than during the earlier growing season. These results are
consistent with previous studies that have shown wheat yields are more sensitive to
temperature during its reproductive phase (from flowering to maturity) than during its
vegetative phase (Porter and Gawith, 1999; Asseng et al., 2012). Collectively, we
suggest that moisture is the primary climatic constraint of winter wheat yields in the
Columbia Basin, and that water balance metrics provide more explanatory power

than precipitation alone.

Our correlative analysis and models show an inverse relationship between
wheat yield and temperature from flowering to maturity, consistent with previous
studies that found elevated temperatures during this period reduce grain numbers
and grain weight (Al-Khatib and Paulsen, 1990; Ferris et al.,1998; Narayanan et al.,
2015). Liu et al. (2016) suggested a 4.1-6.4% decline in global wheat yield per 1°C
warming. Our results support this hypothesis for the study region, although we only
address temperature impacts directly through temperature-yield relationships —

ignoring the indirect influences through AET and DEF. Univariate regression between
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wheat yields and temperature variability suggest an average 3.7% decline in wheat

yield per 1°C warming across the Columbia Basin.

Paradoxically, the strongest negative relationships between temperature and
yield were generally found in the climatologically cooler counties over the eastern
portion of the domain. However, our use of phenological calendars allows wheat to
reach this phenostage later in the year when day lengths are longer and
temperatures are higher. The Trm was over 1.2°C warmer for the climatologically
coolest tercile of counties than the rest of the domain. Thus, the delayed phenology
in these cooler counties allows them to be more susceptible to temperature variability
during a climatologically warmer time of the year. Similarly, we hypothesize that
relatively weak relationships between HDD and yields across the Columbia Basin are
a consequence of the seasonal mismatch between the phenology of winter wheat
and extreme temperatures across the region with wheat reaching maturity in warmer

counties before the onset of very warm temperatures.

The univariate regression coefficients for AET suggest slightly lower moisture
impacts on wheat yields than shown in previous field studies within the region by
Schillinger et al., (2008). The county average coefficients for AETgm (AAETgm) in
detrended (first-difference) univariate regression models were 13.4 kg ha”' mm-’
(14.5 kg ha' mm-"). By contrast, Schillinger et al., (2008) showed a regression
coefficient of 19.2 kg ha™’ mm-" to total available moisture. While there are
differences between total available moisture (overwinter soil moisture gain plus April-

June precipitation) as defined by Schillinger et al., (2008) and AETgm, which



17

represents plant water use from grain filling to maturity, the results are comparable

and our results extend these relationships to the larger geographic area.

Stepwise regression models across the 27 counties in the Columbia Basin
showed a discrete pattern of climate-yield relationships explaining up 77% of the
interannual variability in wheat yield. Unlike previous analyses that have examined
climate-yield relationships at broader political units (e.g., Ray et al., 2015), we show a
large amount of regional heterogeneity across the study area with different climate
variability contributing to model skill across the region. For example, we show that the
northeastern portion of the basin was more sensitive to temperature variability,
whereas the central and southern portion of the basin were sensitive to moisture
variability. Although our results did not identify an optimal set of predictor variables,
regression models for counties that failed to incorporate a moisture proxy had poor

explanatory power (mean of less 19% of the yield variability explained).

Overall, more variance was explained with the first difference stepwise model
(R? = 0.369) than the detrended stepwise model (R? = 0.300) and the first difference
panel model (R? = 0.285). The panel model is an alternative approach and attractive
due to the larger number of degrees of freedom and consistency in coefficients
across the study area. However, our results show that climate-yield relationships vary
geographically across the Columbia Basin, particularly with temperature exerting a
stronger influence on wheat yield variability in climatologically cooler counties (Figure

4, Figure 6).

Several caveats in our study may constrain the performance of our yield

models. First, the actual planting date of winter wheat is not spatially or temporally
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constant. Due to the lack of planting date records, we arbitrarily defined planting as
Oct 15t, the middle of the general planting window for the region. This assumption can
impact the timing of subsequent phenology stages and climate-yield relationships.
Second, we didn’t consider crop rotation in water balance calculations but assumed a
continuous winter wheat cropping system. The influence of antecedent climate
variability prior to the current growing season on wheat yields may thus contribute to
variability in soil moisture. The third limitation of our study is that we didn’t distinguish
the irrigated and non-irrigated fields due to a lack of continuous yield records.
Irrigation can mitigate climate impacts, particularly related to water limitation, on crop
growth thereby leading to weak climate-yield correlations (Troy et al., 2015). We
hypothesize that poorly performing yield models for counties in the arid western
portion of the basin is a function of a higher fraction of harvested wheat being

irrigated and thus less sensitive to climate variability.

Our yield models explain approximately one-third of county level winter wheat
yield variability over the past three decades. Additional unexplained variance may be
related to direct and indirect climate impacts beyond those that we considered, for
example the occurrence of stripe rust (e.g., Sharma-Poudyal and Chen, 2011) and
precipitation events prior to harvest. Non-climatic drivers of variability in wheat yield
are also probable and may even alter observed climate relationships. For example,
spatiotemporal changes in wheat cultivars could alter the climate sensitivity of yields
(Cattivelli et al., 2008) and produces non-stationarity in climate-yield relationships.
Nonetheless, our yield models may have value in forecasting winter wheat yields

during the growing season by incorporating both observed climate and seasonal



climate forecasts. Such forecasts may have value for estimating regional wheat

yields and for wheat futures markets.
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5. Tables and Figures

20

Table 1. Winter wheat phenological stages and corresponding growing degree days (GDD, base 0°C)

Phenological Germination | Emergence | Tillering | Booting | Flowering | Grain Maturity
stages filling

Cumulative

GDD 70 685 875 1075 1575 1825

Table 2. The growing degree days (GDD) and crop coefficients of winter wheat growth stages in FAO-

56 model.
Stages Initial Crop development | Mid-season Late season
GDD (°C-day) 0-400 400-1250 1250-1900 1900-2150
Crop Coefficient | .7 0.7-1.15 1.15 1.15-0.3
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Table 4. The summary table of the first difference panel regression model. The units of

temperature (ATm) is degree Celsius; mm for precipitation (APwm), actual evapotranspiration
(AAET4m), and water deficit (ADEF); °C-day for heat degree days (AHDD).

Variable Coefficient Pr(>|t])
Intercept 22.33 0.32
ATim -18.61 0.26
APbm 1.66 <0.01
AAETgm 7.66 <0.01
ADEF -2.45 <0.001
AHDD -1.42 <0.01
R-Square 0.286

Adj. R-Square 0.284
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Figure 1: a) Geographic extent of the 27 counties in the Columbia Basin of the United States (inset
map) and average county winter wheat yields for 1980-2014. The extent of agricultural land where
winter wheat was grown in at least one year from 2008-2014 is shown in grey. The numbering of the

counties is referred to in Table 3. b) Annual county area weighted average winter wheat yields in the
Columbia Basin from 1980-2014.
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Figure 2: Matrices of county-mean r? value between (left) detrended winter wheat yields and climate
variables, and (right) first difference winter wheat yields and first difference climate variables for (top-
to-bottom) mean temperature (T), accumulated precipitation (P), climatic water deficit (DEF), and
actual evapotranspiration (AET). The y-axes denote the ending phenology stage, and x-axes denote
the number of consecutive phenology stages. Note, values in bottom-right of each matrix are shown in

white and were not evaluated.



26

Detrended First-difference

T, f) AT

,
o ,/.. |

4

2

Figure 3: Pearsons correlation coefficients (r) between (left) detrended yields and climate variables,
and (right) first difference yields and first difference climate variables for (top-to-bottom) mean
temperature (T), accumulated precipitation (P), climatic water deficit (DEF), actual evapotranspiration
(AET), and heat degree days (HDD). Counties that exhibited non-significant relationships are denoted

by hatched area.



Correlation

Correlation

Correlation

Correlation

0.2 a) Tfm
: r=0473 ' '
pval < 0.05 s |
O [ ]
0.2 o ®® o o @ °. E
e ® o . ®,
0.4 [ ] % o o . o L] i
¢ L]
-0.6 . - : :
7 8 9 10 1 12
Avg annual temperature (°C)
c)P
bm
0.8 —
X . ]
0.6 . ... . .o. .
04 + L) [ . i
.. L) ° d
0.2t A =-0.141 % l
0 pval = 0.484 ]
0.2 - - - - -
200 300 400 500 600 700 800
Avg annual precipitation (mm)
e) AET
0.8 : . — I .
d '. L) *
0.6 r . . 4
° * ° ® . []
04 .‘ . . . . _
0.2 r r=-0.262 1
0 . pval = 0.187 i
0.2 ' ' ' ' '
200 300 400 500 600 700 800
Avg annual precipitation (mm)
g) DEF
0.2 r=0.324
0 . pval = 0.099~ ]
027 ° . e o 1
. H
041 o @ . 1
hd *® o0 .
061 ©® *%°* o . 1
L ]
-0.8 . . e -
200 300 400 500 600 700 800

Avg annual precipitation (mm)

Correlation

Correlation

Correlation

Correlation

27

b) AT
0.2 : . am .
' r=0.683 .
0 pval < 0.001 e ®
L]
-0.2 . . «* .
L) ...
-0.4 ¢ . e .
. ® "o
L]
-0.6 — : : ‘
7 8 9 10 11 12
Avg annual temperature (°C)
08 d) AP,
. i .
.l o o° ¢ ‘e * [
04 r®e o Kl
LN}
0.2 r . r =0.369
1=0.058
0 . pva
0.2 - - - - .
200 300 400 500 600 700 800
Avg annual precipitation (mm)
f) AAET
0.8 -. T T .g-m T T
06 o8 .
e e ® e * bl
041 e R o
[ ]
02T r=0.196
0 pval = 0.328
L]
0.2 ' ' ' ' .
200 300 400 500 600 700 800
Avg annual precipitation (mm)
h) ADEF
0.2 i r=-0.256
0 pval = 0.198
-0.2 ¢
» [ ]
®
0dly o :o . o . *
06} e ..l .
L ]
0.8 - . - . .
200 300 400 500 600 700 800

Avg annual precipitation (mm)

Figure 4: Scatterplot of county-level 1981-2010 climate normals and climate-yield correlations for (left)

detrended winter wheat yields and (right) first difference yields and climate. The linear correlation

coefficient and p-value is reported for each relationship.
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Figure 5: Coefficients of linear univariate regression for (left) detrended yield models and (right) first
difference yield models for variables for (top-to-bottom) mean temperature (T), accumulated
precipitation (P), actual evapotranspiration (AET), and climatic water deficit (DEF). Counties that

exhibit statistically non-significant relationships are denoted by hatched area.
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Figure 6: Scatterplot of county-level 1981-2010 climate normals and climate-yield coefficients for (left)
detrended winter wheat yields and (b) first difference yields and climate. The linear correlation

coefficient and p-value is reported for each relationship.
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Figure 7: The spatial distribution of r squared correlation coefficients (R2) from (a) detrended wheat
yield stepwise regression model, (b) first difference wheat yield stepwise regression model, and (c)

first difference panel regression model. Counties for which no model was developed are denoted by

dark grey.
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