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Abstract  

County level interannual climate-yield relationships for winter wheat were 

examined across a moisture gradient over primarily rainfed agricultural systems in 

the Columbia Basin of the United States from 1980-2014. Wheat yields were most 

strongly correlated with energy and moisture availability during the latter stages of 

crop development. Estimated actual evapotranspiration calibrated for winter wheat 

was typically the best predictor of interannual yield variability at the county level, with 

the strongest relationships for counties with intermediate amounts of mean annual 

precipitation. Crop yields were negatively impacted by warmer temperatures during 

the latter stages of crop development, particularly in the climatologically cooler 

counties as delayed crop phenology results in warmer temperatures during 

phenostages when crops are most sensitive. A variety of multi-variate statistical 

models explain an average of 29-37% of interannual county-level yield variance over 

the Columbia Basin, yet show spatial heterogeneities in climate yield relationships 

suggesting the importance of subregional climate-crop modeling. 
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1. Introduction 

Winter wheat (Triticum aestivum L.) is the most widespread cultivated crop in 

the Pacific Northwest of the United States (US), occupying 1.32 million hectares and 

yielding average 4.27 million metric tons annually from 2010-2014 (USDA). 

Approximately 75% of winter wheat grown in US Pacific Northwest occurs in the 

Columbia Basin encompassing much of the central and eastern Washington, and 

parts of northeastern Oregon and northwestern Idaho. Collectively, winter wheat in 

the Columbia Basin generates over 1 billion US dollars annually (USDA), contributing 

substantially to the rural economy. However, as dryland farming accounts for nearly 

all of winter wheat croplands grown in the region, yields can fluctuate from year to 

year due to moisture limitations (Schillinger et al.,2008; Fuentes et al., 2003). 

Interannual variability in winter wheat yields not only impacts local economies, but 

also affects global wheat prices (e.g., Sternberg et al., 2012). Understanding the 

factors that contribute to interannual variability in wheat production is thus of key 

importance to local agribusiness, global wheat markets, and global food security.  

Global wheat productivity increased substantially from 1960s to 1990s (Chen 

et al., 2004; Cantelaube et al., 2004; Lobell and Field, 2007; Lin and Huybers, 2012) 

due to advances in agricultural techniques (e.g., cultivars) and management (e.g., 

fertilizer usage, irrigation and crop rotation). However, yield increases have plateaued 

in some regions since the 1990s, due to a less favorable climate (Lobell and Field, 

2007) and decreased fertilizer usage (Lin and Huybers, 2012). Similar to global 

wheat yields, winter wheat yields across the US Columbia Basin showed a 19.5% 

increase from 1980-2000, with little overall increase since 2000 (Figure 1b). Whereas 
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human factors (e.g., cultivar choices, management) are typically more pronounced in 

long-term trends of crop yields, interannual climate variability is better coupled with 

interannual yield variability (Cantelaube et al. 2004).  

Numerous studies have empirically or experimentally examined climate-yield 

relationships, typically using monthly or seasonal temperature and precipitation 

summaries. Climate variability has been shown to account for roughly one third of 

wheat yield variability at global scales (Ray et al., 2015; Lobell and Field, 2007). The 

influence of climate variability on crop yield includes both energy and moisture 

constraints that can take on different relationships throughout crop development 

(Schlenker and Roberts, 2009; Porter and Gawith, 1999; Asseng, 2012). Optimal 

temperature ranges for wheat development have been identified for various crop 

phenostages, with detrimental impacts for both warm and cold excursions from 

identified thermal optimums (Porter and Gawith, 1999). For example, high 

temperatures (>30oC) during flowering and grain-filling stages can reduce yields 

(Gibson and Paulsen, 1999; Narayanan et al., 2015). Climate-yield relationships for 

rainfed wheat cropping systems typically show linear relationships with moisture 

availability (e.g., Zhang and Oweis, 1999; Schillinger et al., 2008). Water limitation 

can decrease stomatal conductance and viable leaf area, lead to a decline in 

photosynthesis, and result to reduced grain number and mass and increased grain 

protein content (Asseng, 2012; Nicolas et al., 1984).  

Prior studies have typically examined climate-yield relationships across broad 

geographic scales (e.g., national and state level) and fixed calendar dates (e.g., Ray 

et al., 2015). However, climate-yield relationships are likely to vary at spatial scales 
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finer than those typically examined due to heterogeneity in baseline moisture and 

energy within a geographic region and their interplay with known energy and 

moisture optimums for crop development.  Additionally, climate metrics (e.g., water 

balance) closely aligned with plant physiology during certain phenostages may have 

more explanatory power for interannual variability in crop yields than summaries of 

temperature and precipitation tied to static calendar dates. This study addresses 

these knowledge gaps in climate-yield relationships for winter wheat across the 

Columbia Basin using county-level crop and climate data. Collectively, the ability to 

improve our understanding of the climatic factors that influence interannual variability 

in wheat yields may improve seasonal outlooks for wheat yields and help inform 

wheat future prices on the global market. 

  



4 
 

 

2. Data and methods 

2.1 Study region 

The agricultural lands of the Columbia Basin comprise the lower elevations 

(170~1000m) of the Columbia River Basin in the US Pacific Northwest located 

between the Cascade Range and the Rocky Mountains. Typical of much of the 

Pacific Northwest, the region experiences a Mediterranean type climate with over 

75% of its annual precipitation occurring from November-May. Annual average 

precipitation varies across the region with around 200 mm in the rain-shadowed lee 

of the Cascade Rage in central Washington to more than 800 mm across the eastern 

portion of the basin where elevation rises on the windward flanks of the Northern 

Rockies in Idaho. The mean annual temperature of the study area generally adheres 

to elevational relationships with the highest temperatures in the lower elevations of 

the western Columbia Basin and lowest temperatures at higher elevation in the 

eastern Columbia Basin. 

Winter wheat is the major crop in the Columbia Basin covering over 30% of 

the 3.35 million hectares of cropland across the region. Dryland farming is primarily 

used, except in the driest areas in the southwestern extent of the region where 

irrigation is used. The average annual county yields from 1980-2014 vary 

geographically across the region from 2600-5100 kg/ha (Figure 1a). Spatial variability 

in winter wheat yields is evident with yields increasing west to east across the basin 

generally tracking with the gradient of moisture availability. Crop rotations are 

adopted across the region based on primarily mean annual precipitation, with annual 

cropping in the wetter zones and annual-fallow cropping in the drier zones, in an 
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effort to balance sufficient soil moisture for wheat cropping and avoid wheat disease 

and pests.  

2.2 Yield and climate data 

County level winter wheat yields from 1980-2014 for 27 counties from 

Washington, Oregon and Idaho in the Columbia Basin were acquired from the 

National Agricultural Statistics Service (NASS), US Department of Agriculture (2014). 

Although there were several missing records in this dataset, each county had at least 

28 years of valid data from 1980-2014.  

Two approaches were considered to minimize conflating climate drivers with 

long-term increases in yield (Figure 2). First, the 1980-2014 linear trend in yield was 

separately estimated for each county using a linear least squares regression 

following previous studies (Lobell et al., 2011; Olesen et al., 2000; Ray et al., 2015). 

We refer to the resultant time series as detrended yields. Alternatively, long-term 

changes in the wheat yields may not be adequately represented using a linear or 

higher-order polynomial trend, but instead may occur as abrupt shifts in yield due to 

the adoption of technological advancements, particularly at smaller geographic 

scales. To account for this possibility, we also considered first differences (i.e., 

changes from the previous year) of wheat yields and climate data as used in previous 

studies (Lobell and Field, 2007; Rao et al, 2015). We compare both detrended yield 

records and first difference records in subsequent analyses.  

Daily meteorological data at ~4km spatial resolution was acquired from 

Abatzoglou (2013) for daily maximum and minimum temperature, specific humidity, 

precipitation, solar radiation, and wind speed from 1979-2014. We averaged grid cell 
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values across the geographic extent of winter wheat cropland area derived from the 

aggregation of NASS from 2007-2014 (Figure 1a) for each of the 27 counties to 

create a county-level dataset. While most prior research examined relationships 

between climate and yield using static calendar dates, we adopt an approach that 

uses phenological dates tied to the development of winter wheat for each county and 

year. Phenological stages of winter wheat were defined using a growing degree day 

based (GDD) model for winter wheat (Ritchie, 1991). The model divides the wheat 

growing season into seven phenostages based on cumulative GDD with a base 

threshold of 0oC, consisting germination, emergence, tillering, booting, flowering, and 

grain-filling and maturity (Table 1). 

Dryland wheat production in the Columbia Basin is dependent on soil moisture 

captured in winter precipitation in combination with spring precipitation. While most 

prior climate-yield studies have relied on first-order climate variables of temperature 

and precipitation (e.g., Ray et al., 2015), we hypothesized that water balance metrics 

should be better aligned with crop water use and thus may better relate to 

interannual variability in yields. We applied a modified Thornthwaite water balance 

model (Willmott et al., 1985) that considers temperature, precipitation and reference 

evapotranspiration using the Penman-Montieth method (Allen et al., 1998). Since 

reference evapotranspiration assumes a static reference grass surface, we used a 

seasonally varying single crop coefficient for winter wheat that varied from 0.7, 1.15 

and 0.3 for the initial, mid-season and the end of late season, respectively, with linear 

transitions during the development phase and late season based on GDD (Table 2, 

Saadi et al. 2015). We used county-level available water content data aggregated 
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from winter wheat growing regions from the USDA-NRCS STATSGO database and 

the water balance model to calculate actual evapotranspiration (AET) and the water 

deficit (DEF, the difference between the potential evapotranspiration and AET) for 

each county.  

Heat stress can have negative impacts on crop growth (Liu et al., 2014; 

Prasad and Djanaguiraman, 2014; Talukder et al., 2014; Porter and Gawith, 1999). 

We calculated cumulative heat degree days (HDD) from flowering to physical 

maturity using a base threshold of 30oC for daily maximum temperature as a proxy 

for heat stress (Porter and Gawith, 1999; Liu et al., 2014).  

2.3 Climate-yield relationships and models 

Pearson’s correlation coefficients were calculated between each climate 

metric and wheat yield for each county from 1980-2014. We calculated correlations 

for each phenology stage and all combinations of consecutive phenological stages. 

Correlations were run separately for both detrended yields as well as first difference 

time series. We sought to identify phenological windows during which climate-yield 

relationships across the region were maximized. This was accomplished by 

identifying the maximum county-average squared correlation for temperature, 

precipitation, AET and DEF. Correlation coefficients and linear regressions were 

calculated between wheat yield and climate for each county using the optimum 

phenological window to assess spatial variability across the study region. 

Forward stepwise linear regression models were used to estimate climate 

impact on wheat yield variability (e.g., Tao et al., 2012) separately for each county 

using the optimized phenological windows from the four climate variables and HDD. 
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Two modeling schemes were developed, one using linear detrended yields (Y), the 

second using first difference yields (∆Y). The linear detrended yield model used five 

climate predictors and their square terms: (i) mean temperature from flowering to 

maturity (Tfm), (ii) cumulative precipitation from booting to maturity (Pbm), (iii) AET 

from grain filling to maturity (AETgm), (iv) DEF over the entire growing season, and (v) 

HDD from flowering to maturity (HDD). The first-difference model used five first-

difference climate predictors and their square terms: (i) first difference of mean 

temperature from grain filling to maturity (∆Tgm), (ii) first difference of cumulative 

precipitation from booting to maturity (∆Pbm), (iii) first difference of AET from grain 

filling to maturity (∆AETgm), (iv) first difference of DEF over the entire growing season 

(∆DEF), and (v) the first difference of HDD from flowering to maturity (∆HDD). 

Stepwise linear regression fits variables in order of importance, and is often used to 

develop models where there are a number of independent variables that may explain 

variance of the dependent. Independent variables were allowed to enter the model 

when the p-value for an F-test was <0.05, and removed from the model when p 

was > 0.10.   

As an alternative to constructing separate models from each county, we 

considered the first difference panel linear model using county-level wheat yields and 

five predictors (Tfm, Pbm, AETgm, DEF, HDD) not including their square-terms. The 

first difference panel model can be viewed as differencing each term in the fixed 

effect model. Fixed effect panel regression model was used to depict global and 

provincial climate-yield relationships in recent years (Lobell, et.al., 2011; Tao, et.al., 

2014). This approach can incorporate time series information with cross-section 
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(geographic units) information to general a universal climate-yield response. Each 

section has a unique model intercept to reflect cross-section differences which are 

implied as different yield levels. First differencing approach removes the time-

invariant term from the model, which removes the cross-section difference in the 

model equation.  Unlike the stepwise regression approach, the panel model 

generates a single equation that is used across the entire study area.   
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3. Results 

3.1 Univariate climate correlations 

The strength of the interannual relationship between climate and winter wheat 

yield exhibited more widespread and significant correlations with moisture related 

metrics than temperature (Figure 2). The strongest correlations for both temperature 

and moisture metrics covered time periods that include the latter stages of crop 

development. The county mean squared Pearson’s correlation coefficient (r2) 

between detrended yield and temperature showed an optimum (r2 = 0.11) during the 

period from flowering to maturity (Tfm). Similarly, the strongest county mean r2 

between detrended yield and both precipitation (r2 = 0.18) and AET (r2 = 0.25) 

occurred during the latter stages of crop development from booting to maturity, and 

flowering to maturity, respectively. Significant, but weak correlations (r2 <0.1) were 

evident between yield and early season precipitation from germination to tillering. 

Finally, the strongest correlations between detrended yield and DEF were for 

phenological periods that included grain filling stage, such as from grain filling to 

maturity (r2 = 0.22). 

A similar pattern was found using first-differences, although with slightly higher 

r2 values for each of the optimums (Figure 2). For example, the county mean r2 

between the first difference of yield and ∆AET from grain filling to maturity was 0.29, 

and the county mean r2 between the first difference of yield and ∆P from booting to 

maturity was 0.22. Minor differences in the timing of the optimum correlations were 

seen for temperature and AET, with the peak r2 occurring from grain filling to maturity 
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stages (∆Tgm, ∆AETgm), rather than flowering to maturity stages as found in the 

detrended yield relationship. 

The spatial variability in county-level univariate correlations between wheat 

yields and optimums for the temperature, precipitation, AET, and DEF, as well as 

HDD from flowering to maturity are shown in Figure 3. Temperature (Tfm, ∆Tgm) 

exhibited negative correlations with yields across the study area. However, most of 

the significant correlations were found in counties across the northeastern portion of 

the basin where temperatures are climatologically cooler. The strength of the 

interannual temperature-yield relationship showed significant positive correlations 

with mean county annual temperatures (Figure 4a, b), where cooler counties have 

stronger negative r-values between temperature (Tfm, ∆Tgm) and wheat yields. 

Correlations between HDD and yield were mainly weak and non-significant across 

the Columbia Basin. However, there is a longitudinal dipole whereby a few counties 

in the warmer southwestern portion of the basin had significant negative correlations, 

while a few counties in the cooler eastern portion of the basin had significant positive 

correlations.  

Spatially coherent relationships were realized between yield and moisture 

related variables across much of the study area. Significant positive correlations 

between yield and both precipitation (Pbm, ∆Pbm) and AET (AETgm, ∆AETgm) were 

found over much of the region, with the strongest correlations found in the central 

and southern portion of the basin. Widespread significant negative correlations were 

found between the cumulative water deficit (DEF, ∆DEF) and wheat yields, with the 

strongest correlations for counties in the central basin. Non-significant correlations 
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with precipitation, AET, and DEF were found for counties along the western and 

eastern flanks of the basin. While the spatial pattern in correlation coefficients to 

moisture variables did not exhibit significant linear correlation with the county level 

mean annual precipitation (Figure 4 c-f), the strongest correlations typically were 

present in counties that intermediate precipitation zones, defined by annual mean 

precipitation between 300-550mm.  

Univariate regression coefficients for temperature, precipitation, AET and DEF 

to winter wheat yields are shown in Figure 5. Coefficients for Tfm and ∆Tgm were 

negative across nearly the entire basin with county-average values of -144.0 kg ha-1 

oC-1 and -143.4 kg ha-1 oC-1, respectively. The strongest negative coefficients were 

present across counties in the northern and eastern portion of the basin, exhibited a 

strong negative correlation with the pattern of county-level annual mean temperature 

(Figure 6 a,b). This suggests that wheat yields in cooler counties are more sensitive 

to interannual variability in temperature during the latter stages of crop development 

than in warmer counties.  Coefficients for Pbm and ∆Pbm were positive across the 

basin with county-average values of +6.6 kg ha-1 mm-1 and +7.0 kg ha-1 mm-1, 

respectively. The highest coefficients were present across counties in the central 

northern portion of the basin. Regression coefficients for Pbm exhibited significant 

negative correlation with mean annual precipitation, which suggests wheat yields in 

drier counties are more sensitive to precipitation during the latter stages of crop 

development than in wetter counties (Figure 6c).  Coefficients for AET and ∆AET 

were positive all over the basin with county-average values of +13.4 kg ha-1 mm-1 and 

+14.5 kg ha-1 mm-1, respectively. The strongest coefficients for AET were apparent 
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across counties in southeastern Washington state. A similar, but inverted pattern was 

seen for DEF and ∆DEF with county-average values of -6.7 kg ha-1 mm-1 and -7.9 kg 

ha-1 mm-1, respectively. Significant negative correlations were evident between 

regression coefficients for ∆DEF and county-level mean annual precipitation, which 

suggests yields in wetter counties are more sensitive to water deficit changes during 

the growing season than in drier counties.  

3.2 Climate yields models 

Stepwise linear regression models explained an average of 30.0% of county-

level interannual variability in detrended wheat yields (Figure 7a). Only Yakima 

County, Washington had no model, whereas climate explained 69.0% of the yield 

variance in Garfield County, Washington (Table 3). The most frequently selected 

variable for county level stepwise regression of detrended yields was AETgm. DEF 

was selected as a predictor in the central and southern portion of the basin, whereas 

Tfm was the only variable to explain yield variability in the northernmost three counties 

in Idaho.  

Stepwise linear regression models explained an average of 36.9% of county 

level interannual variability in first-difference wheat yields (Figure 7b). Yakima 

County, Washington and Union County, Oregon had no model, and climate explained 

77.4% of the yield variance in Garfield County, Washington. The three most 

frequently selected predictors for the first-difference stepwise model were ∆AETgm, 

∆Pbm and ∆DEF. However, due to the collinearity among moisture variables, typically 

only a single moisture variable was used in each county. One of these three moisture 

variables was used in all but one county for which a first-difference model was built.  



14 
 

 

The first difference panel model explained 28.6% of the temporal variance in 

county level yield records (Figure 7c). The form of the equation (Table 4) suggests 

negative relationship with ∆Tfm and ∆HDD of -18.6 kg ha-1 C-1 and -1.42 kg ha-1 DD-1, 

respectively. Similarly, the model showed positive relationships with moisture 

availability with regressions of +1.66 kg ha-1 mm-1, +7.66 kg ha-1 mm-1, and -2.45 kg 

ha-1 mm-1, for ∆Pbm, ∆AETgm, and ∆DEF, respectively. By comparison, univariate first 

difference panel models using only ∆AETgm, and only ∆Pbm had coefficients of +14.5 

kg ha-1 mm-1 and +6.42 kg ha-1 mm-1, respectively.  

The geographic pattern of explained variance was similar for all three 

modeling approaches with a larger portion of explained variance for counties in the 

central portion of the basin than for counties on the periphery. However, the spatial 

variability in r2 did not exhibit any apparent relationship to underlying spatial variability 

in climate unlike for the univariate correlations (e.g., Figures 4 and 6). Part of the 

spatial variability is likely a function of the underlying non-climatic factors such as 

irrigation across parts of the study area. For example, the first-difference model 

explained an average of 25% of the variance in interannual wheat yields in counties 

where at least 10 percent of harvested land was irrigated, whereas first-difference 

models explained an average of nearly 40% of the variance in all remaining counties.  
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4. Discussion and Conclusion 

Our modeling results suggest that climate explains between an average of 29-

37% of the county-level interannual variability in winter wheat yield across the 

Columbia Basin from 1980-2014. These results are similar to proportion of explained 

variance in global wheat yields by climate factors (Ray et al., 2015). Interannual 

variability in winter wheat yields were found to be more sensitive to moisture and 

energy variability during the latter stages of the crop development, especially during 

flowering and grain filling, than during the earlier growing season. These results are 

consistent with previous studies that have shown wheat yields are more sensitive to 

temperature during its reproductive phase (from flowering to maturity) than during its 

vegetative phase (Porter and Gawith, 1999; Asseng et al., 2012). Collectively, we 

suggest that moisture is the primary climatic constraint of winter wheat yields in the 

Columbia Basin, and that water balance metrics provide more explanatory power 

than precipitation alone.  

Our correlative analysis and models show an inverse relationship between 

wheat yield and temperature from flowering to maturity, consistent with previous 

studies that found elevated temperatures during this period reduce grain numbers 

and grain weight (Al-Khatib and Paulsen, 1990; Ferris et al.,1998; Narayanan et al., 

2015). Liu et al. (2016) suggested a 4.1-6.4% decline in global wheat yield per 1oC 

warming. Our results support this hypothesis for the study region, although we only 

address temperature impacts directly through temperature-yield relationships – 

ignoring the indirect influences through AET and DEF. Univariate regression between 
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wheat yields and temperature variability suggest an average 3.7% decline in wheat 

yield per 1oC warming across the Columbia Basin.  

Paradoxically, the strongest negative relationships between temperature and 

yield were generally found in the climatologically cooler counties over the eastern 

portion of the domain. However, our use of phenological calendars allows wheat to 

reach this phenostage later in the year when day lengths are longer and 

temperatures are higher. The Tfm was over 1.2oC warmer for the climatologically 

coolest tercile of counties than the rest of the domain. Thus, the delayed phenology 

in these cooler counties allows them to be more susceptible to temperature variability 

during a climatologically warmer time of the year. Similarly, we hypothesize that 

relatively weak relationships between HDD and yields across the Columbia Basin are 

a consequence of the seasonal mismatch between the phenology of winter wheat 

and extreme temperatures across the region with wheat reaching maturity in warmer 

counties before the onset of very warm temperatures.  

The univariate regression coefficients for AET suggest slightly lower moisture 

impacts on wheat yields than shown in previous field studies within the region by 

Schillinger et al., (2008). The county average coefficients for AETgm (∆AETgm) in 

detrended (first-difference) univariate regression models were 13.4 kg ha-1 mm-1 

(14.5 kg ha-1 mm-1). By contrast, Schillinger et al., (2008) showed a regression 

coefficient of 19.2 kg ha-1 mm-1 to total available moisture. While there are 

differences between total available moisture (overwinter soil moisture gain plus April-

June precipitation) as defined by Schillinger et al., (2008) and AETgm, which 
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represents plant water use from grain filling to maturity, the results are comparable 

and our results extend these relationships to the larger geographic area.  

Stepwise regression models across the 27 counties in the Columbia Basin 

showed a discrete pattern of climate-yield relationships explaining up 77% of the 

interannual variability in wheat yield. Unlike previous analyses that have examined 

climate-yield relationships at broader political units (e.g., Ray et al., 2015), we show a 

large amount of regional heterogeneity across the study area with different climate 

variability contributing to model skill across the region. For example, we show that the 

northeastern portion of the basin was more sensitive to temperature variability, 

whereas the central and southern portion of the basin were sensitive to moisture 

variability. Although our results did not identify an optimal set of predictor variables, 

regression models for counties that failed to incorporate a moisture proxy had poor 

explanatory power (mean of less 19% of the yield variability explained).  

Overall, more variance was explained with the first difference stepwise model 

(R2 = 0.369) than the detrended stepwise model (R2 = 0.300) and the first difference 

panel model (R2 = 0.285). The panel model is an alternative approach and attractive 

due to the larger number of degrees of freedom and consistency in coefficients 

across the study area. However, our results show that climate-yield relationships vary 

geographically across the Columbia Basin, particularly with temperature exerting a 

stronger influence on wheat yield variability in climatologically cooler counties (Figure 

4, Figure 6).  

Several caveats in our study may constrain the performance of our yield 

models. First, the actual planting date of winter wheat is not spatially or temporally 
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constant. Due to the lack of planting date records, we arbitrarily defined planting as 

Oct 1st, the middle of the general planting window for the region. This assumption can 

impact the timing of subsequent phenology stages and climate-yield relationships. 

Second, we didn’t consider crop rotation in water balance calculations but assumed a 

continuous winter wheat cropping system. The influence of antecedent climate 

variability prior to the current growing season on wheat yields may thus contribute to 

variability in soil moisture. The third limitation of our study is that we didn’t distinguish 

the irrigated and non-irrigated fields due to a lack of continuous yield records. 

Irrigation can mitigate climate impacts, particularly related to water limitation, on crop 

growth thereby leading to weak climate-yield correlations (Troy et al., 2015). We 

hypothesize that poorly performing yield models for counties in the arid western 

portion of the basin is a function of a higher fraction of harvested wheat being 

irrigated and thus less sensitive to climate variability.  

Our yield models explain approximately one-third of county level winter wheat 

yield variability over the past three decades. Additional unexplained variance may be 

related to direct and indirect climate impacts beyond those that we considered, for 

example the occurrence of stripe rust (e.g., Sharma-Poudyal and Chen, 2011) and 

precipitation events prior to harvest. Non-climatic drivers of variability in wheat yield 

are also probable and may even alter observed climate relationships. For example, 

spatiotemporal changes in wheat cultivars could alter the climate sensitivity of yields 

(Cattivelli et al., 2008) and produces non-stationarity in climate-yield relationships. 

Nonetheless, our yield models may have value in forecasting winter wheat yields 

during the growing season by incorporating both observed climate and seasonal 
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climate forecasts. Such forecasts may have value for estimating regional wheat 

yields and for wheat futures markets.   
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5. Tables and Figures 

Table 1. Winter wheat phenological stages and corresponding growing degree days (GDD, base 0oC) 

Phenological 
stages 

Germination Emergence Tillering Booting Flowering Grain 
filling 

Maturity 

Cumulative 
GDD 70 400 685 875 1075 1575 1825 

 

 

Table 2. The growing degree days (GDD) and crop coefficients of winter wheat growth stages in FAO-

56 model. 

Stages Initial Crop development Mid-season Late season 

GDD (oC∙day) 0-400 400-1250 1250-1900 1900-2150 
Crop Coefficient 0.7 0.7-1.15 1.15 1.15-0.3 
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Table 4. The summary table of the first difference panel regression model. The units of 

temperature (∆Tfm) is degree Celsius; mm for precipitation (∆Pbm), actual evapotranspiration 

(∆AETgm), and water deficit (∆DEF); oC∙day for heat degree days (∆HDD). 

Variable Coefficient Pr(>|t|) 

Intercept 22.33 0.32 

∆Tfm -18.61 0.26 

∆Pbm 1.66 <0.01 

∆AETgm 7.66 <0.01 

∆DEF -2.45 <0.001 

∆HDD -1.42 <0.01 

R-Square 0.286  

Adj. R-Square 0.284  
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Figure 1: a) Geographic extent of the 27 counties in the Columbia Basin of the United States (inset 

map) and average county winter wheat yields for 1980-2014. The extent of agricultural land where 

winter wheat was grown in at least one year from 2008-2014 is shown in grey. The numbering of the 

counties is referred to in Table 3. b) Annual county area weighted average winter wheat yields in the 

Columbia Basin from 1980-2014. 
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Figure 2: Matrices of county-mean r2 value between (left) detrended winter wheat yields and climate 

variables, and (right) first difference winter wheat yields and first difference climate variables for (top-

to-bottom) mean temperature (T), accumulated precipitation (P), climatic water deficit (DEF), and 

actual evapotranspiration (AET).  The y-axes denote the ending phenology stage, and x-axes denote 

the number of consecutive phenology stages. Note, values in bottom-right of each matrix are shown in 

white and were not evaluated. 
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Figure 3: Pearsons correlation coefficients (r) between (left) detrended yields and climate variables, 

and (right) first difference yields and first difference climate variables for (top-to-bottom) mean 

temperature (T), accumulated precipitation (P), climatic water deficit (DEF), actual evapotranspiration 

(AET), and heat degree days (HDD). Counties that exhibited non-significant relationships are denoted 

by hatched area. 
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Figure 4: Scatterplot of county-level 1981-2010 climate normals and climate-yield correlations for (left) 

detrended winter wheat yields and (right) first difference yields and climate. The linear correlation 

coefficient and p-value is reported for each relationship. 
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Figure 5: Coefficients of linear univariate regression for (left) detrended yield models and (right) first 

difference yield models for variables for (top-to-bottom) mean temperature (T), accumulated 

precipitation (P), actual evapotranspiration (AET), and climatic water deficit (DEF). Counties that 

exhibit statistically non-significant relationships are denoted by hatched area. 
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Figure 6: Scatterplot of county-level 1981-2010 climate normals and climate-yield coefficients for (left) 

detrended winter wheat yields and (b) first difference yields and climate. The linear correlation 

coefficient and p-value is reported for each relationship. 
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Figure 7: The spatial distribution of r squared correlation coefficients (R2) from (a) detrended wheat 

yield stepwise regression model, (b) first difference wheat yield stepwise regression model, and (c) 

first difference panel regression model. Counties for which no model was developed are denoted by 

dark grey. 
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