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Abstract—The problem of reconstructing a sequence when
observed through multiple looks over deletion channels occurs
in “de novo” DNA sequencing. The DNA could be sequenced
multiple times, yielding several “looks” of it, but each time
the sequencer could be noisy with (independent) deletion
impairments. The main goal of this paper is to develop
reconstruction algorithms for a sequence observed through
the lens of a fixed number of deletion channels. We use the
probabilistic model of the deletion channels to develop both
symbol-wise and sequence maximum likelihood decoding crite-
ria, and algorithms motivated by them. Numerical evaluations
demonstrate improvement in terms of edit distance error, over
earlier algorithms.

Index Terms—deletion channels, sequence decoding, MAP
symbol decoding, trace reconstruction

I. INTRODUCTION

The problem of reconstructing (or “decoding”) a se-
quence when observed through multiple looks over deletion
channels occurs in “de novo” DNA sequencing, e.g., see
models and analysis for recent nanopore sequencers [1], [2],
[3]. The DNA could be sequenced multiple times, yielding
several “looks” of it, but each time the sequencer could have
(independent) deletion impairments [1], [2]. The main goal
of this paper is to develop reconstruction algorithms for a
sequence observed through the lens of a fixed number of
deletion channels.

A similar problem has received attention in CS theory and
discrete mathematics, under the name “trace-reconstruction”
[4], [5], [6], [7], [8]. The main question these papers address
is what is the number of traces needed for perfect recon-
struction of an input sequence. They show that the required
number of traces (or looks) through independent deletion
channels grows with the input length, either exponentially
in the worst case or sub-polynomially in the average case. In
contrast, we are interested in the case where we have a fixed
number of deletion channels, motivated by a finite number
of reads of a sequence. Moreover, we do not aim for perfect
reconstruction, but a maximum likelihood decoder for the
input sequence, motivated by a more traditional information-
theoretic decoding criterion. [9] (also see references therein)
also considered decoding over channels with synchroniza-
tion errors, but as far as we know has not examined multiple
parallel channels.

There has also been extensive work on sequence assem-
bly, where multiple short reads are used to reconstruct an
original sequence. This falls into two categories. One where
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many algorithms have been developed and implemented
for assembly with noisy reads, but without theoretical
performance guarantees for insertion/deletion errors in the
reads ([10] and references therein). The other is information-
theoretic work to examine the number of reads to assemble a
sequence from noiseless reads [11]. In contrast, we examine
the case of “de novo” sequencing with multiple reads of
the same sequence through deletion channels, motivated by
multiple reads of a nanopore sequencer.

In this paper!, we formulate maximum likelihood de-
coding criteria for reconstruction through multiple deletion
channels, which we believe has not been examined before.
We develop algorithms for a fixed (and small) number of
traces, which optimize symbol-wise reconstruction when
the original sequence length is known as well as se-
quence reconstruction when the original length is unknown.
Technically, we use a tool called the infiltration product,
which we believe has not been used for the reconstruction
problem over deletion channels before, and which enables
development of an equivalent representation of the problem
that may be of independent interest. For the sequence
reconstruction problem, we show that for sufficiently small
deletion probability, the shortest common supersequence
decoder has significantly higher likelihood, making it a good
candidate for decoding. First evaluation results indicate that
in terms of edit distance error, our approach can outperform
earlier algorithms such as the majority voting methods [5].

The paper is organized as follows. Section II presents the
model and definitions; Section III proves an equivalence
based on infiltration products; Section IV develops exact
symbol-wise MAP/ML decoding criteria and algorithms for
multiple traces, when the input length is known; Section V
develops the sequence estimation criterion and algorithms;
and Section VI presents evaluation results.

II. NOTATION AND PROBLEM FORMULATION

Consider a sequence X passed through t independent
deletion channels as shown in Fig. 1. When the sequence is
passed through a channel, each bit is independently deleted
with probability . This is a simple model that captures
the process of the same DNA sequenced ¢ times through a
nanopore sequencer, with each read modeled for simplicity
as a deletion channel®. The goal is to estimate X from the
traces {Y;}s. It is clear that each Y; is a subsequence of X.

We formulate the reconstruction problem as follows.
When we exactly know the length n of the original se-

A longer version of this work is available at [12].
2As seen in [1],[2] there are more complicated effects of the nanopore
reader not captured in this simple representation.



Fig. 1. The input sequence X is passed through ¢ independent deletion
channels. We aim to estimate X from the Y;s.

quence, we can compute the symbolwise maximum aposte-
riori estimate as X, = X1 X5...X,,, as

X; = argmax Pr (X; = a|Y1, ...
aceA

Y). 6]

We calculate the maximum-likelihood sequence estimate as

2

X = argmax Pr (X = h|Yy,...,Y,).
h
which can be used even when the input length is unknown.

Notation: Calligraphic letters refer to sets and capitalized
letters correspond to random variables. Let A be the set of
all symbols. We will focus on the case where A = {0,1},
though our methods extend to larger sets. Define A" to be
the set of all n-length sequences, .A* to be the set of all
finite length sequences with symbols in .A. For a sequence
f> |f] denotes the length of f. Given sequences f and g
in A*, the number of subsequence patterns of f that are
equal to g is called the binomial coefficient of g in f and
is denoted by (ch ). When the alphabet A is of cardinality

1, (f; )= ('g ‘I), the classical binomial coefficient with their
respective &engths as the parameters. This definition hence
could be thought of as a generalization of the classical
binomial coefficients. We will denote by e the sequence of

length 0, and define (/) 21V f € A*.

Edit distance: The edit distance d.(f,g) measures
similarity between two sequences of possibly different
lengths [13]. d.(f, g) is the minimum number of operations
needed to transform f to g, where the permitted operations
are insertion, deletion or substitution of a symbol. In this
work, we quantify the performance of algorithms in Section
VI using the edit distance metric.

Edit graph (defined in [14]): We now define an edit graph
where given two sequences fand g, every path on the edit
graph yields a supersequence h of f, g, where h is “covered”
by f,g — each symbol of h comes from either f or g or
both. For f and ¢ in A*, we form a graph G(f,g) with
(If] + 1) x (|g| + 1) vertices each labelled with a distinct
pair (4,7),0 < i < |f], 0 < j < |g|. A directed edge
(i1,71) — (i2,72) exists iff at least one of the following
holds: 1) 15 —¢; = 1 and j; = jo, or 2) jo — 51 = 1 and
il = ig, or 3) iz *le = 1, j2 *jl =1and fig = Gjs» where
fi is the i*" symbol of the sequence f.

Let p = ((i17j1)7(i27j2)7"'7(im7jm)) be a path
in G(f,g). We define w(p) to be the sequence
corresponding to the path, ie., w(p) = z129..Tpm-1
where xp = fi, ., il jx = Jry, 00 = g, i =

ik+1,T6 = fip,, else. Intuitively, w(p) is formed by
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Fig. 2. Edit graph G(‘APPLE’,'MAPLE’). An easy way to think about this
is to write down f vertically with each symbol aligned to a vertical set of
edges and g horizontally likewise. A diagonal edge in a square exists if
the corresponding f and g symbols are equal. The thick red arrows form
a path and the symbols next to it form the corresponding sequence.

appending symbols in the following way: append the
corresponding f symbol for a vertical edge, g symbol for
horizontal edge, and f or g symbol for diagonal edge (see
example Fig. 2).

Infiltration product: Using the edit graph we can construct
the set of possible supersequences S(f, g) of f, g which are
covered by it. Clearly multiple paths could yield the same
supersequence and we can count the number of distinct
ways N (h; f, g) one can construct the same supersequence
h from f,g. We can informally define the infiltration
product f 1 g of f and g, as a polynomial with monomials
the supersequences h in S(f, g) and coefficients (f 1 g, h)
equal to N(h; f,g). For example, let A = {a, b}, then

ab 1 ab = ab + 2aab + 2abb + 4aabb + 2abab
ab T ba = aba + bab + abab + 2abba + 2baab + baba.

The definition of infiltration extends to two series via
distributivity (precisely defined later), and to multiple se-
quences f 1T g 1T h in the same way: (f 1T g 1T h,w)
is the number of distinct ways of constructing w as a
supersequence of f, g, h so that the construction covers w.

We now give a more formal definition of the infiltration
product (see [15] for the equivalence of the two definitions
and a more rigorous treatment). Denote Z to be the ring of
all integers. A series with coefficients in Z and variables in
A* is a mapping of A* into Z. The set of these series is
denoted by Z((.A)). For a series o € Z({.A)) and a sequence
w € A*, the value of o on w is denoted by (o, w), we refer
to it as the coefficient of w in o, and it is an element of
Z. Clearly for f,g € A*,(f,g) = 1;—,. The following
operations of sum and product(or concatenation) of two
series 0,7 € Z{(A)), turn Z({{.A)) into a ring [15]:

(0 +7w) ={o,w) +(r,w), (3
(oT,w) = Z (o,u)(r,v) for any w € A*. (4)
S

A series is called a polynomial if all but finite number of
its coefficients are zero. We now define a series called the
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Fig. 3. The cascade of a single deletion channel with parameter ¢ = 62
with the remnant channel with parameter p =

FEn L
infiltration product [15] as follows:
VieA", frte=etf=Ff (5)
Vf,ge A", Va,be A,

fatgb=(f1gb)a+ (fatg)b+lep(fTg)a. (6)

Vo,r € Z((A), otT= Y (0,/)(r.9)(f 19
f.ge A*
(N

The infiltration operation is commutative and associative,
and infiltration of two sequences f 1 ¢ is a polynomial
with variables of length (or degree) at most | f| + |g| [15].

III. EQUIVALENT FORMULATION

We establish an equivalence of the ¢ = 2 deletion chan-
nels with another channel model that exploits the infiltration
product. To do so, we first state a relation between the
binomial coefficients and the infiltration product, which
forms the backbone for many of our results.

fm € A%,

S Uittt f ().

weA*

Proposition 1. For h, f1, fo, ...,

(1)) () -

The full proof of the proposition can be found in [12],
we give an intuition here. We use induction to prove it. The
main idea is as follows: consider a particular occurrence
of fi,..., fm as subsequences of h. For this instance, the
symbols in h can be divided into two sets: symbols which
are “covered” by fi,..., f, and symbols which are not.
w refers to the subsequence of h covered by fi,..., fm,
and of course, there are multiple coverings, as given by
the infiltration product. Summing over all w’s gives us the
expression in the left hand side.

Consider now the channel in Fig. 3, where the input is
first passed through a single deletion channel C; and then
through the remnant channel Co. Each bit passing through
Cy is deleted in Y] but appears in Y, with a probability p
and vice-versa with the same probability, and it appears in
both with a probability 1 — 2p. Equivalently, for a sequence
z € A* and outputs f,g € A*:

=fY2=g|Z = 2)
= (f 1 g, 2)p? 1= I=lal(1 — op)lFI+lgl=Izl - (g)
The following lemma shows that in terms of the input-

output distribution such a cascade is equivalent to the ¢t = 2
independent deletion channel.

Pr(y;

Lemma 1. The t = 2 independent deletion channel and the
cascade in Fig. 3 produce the same Pr(Y7,Y5|X).

Proof. We need to prove that

Pr(Yi = f,Yo = g|X =) = Pr(Y1 = f, Y2 = g| X = z)

when ¢ = 6% and p = 25 or equivalently,

Pr(Yy = fY2 = g|X =)

= G) (z) §2#I=1f1=lal (1 — g)l/1+lal - (9)

since it is easy to see that the RHS is equal to Pr(Y; =
f,Ya = g|X = z). Now,

PI‘(Y~1 = f, Yg = g‘X = .I‘)
= [Pr(Z:z\X:x)x (10)
zEA*
Pr(Yy=fYa=glZ=12X = x)}

Expanding the probability terms and using the fact that X —
Z —Y1Y, forms a Markov chain the previous expression is

; K!z)qleZl(l ~ )]
[<f 4 g, 2)pE=1f1=lal (1 — Qp)\f|+\g\—\z\} .

When ¢ = 62 and p =

>

1+6’ this is equal to

(Jf) (F 1 g, 2)621= 11118l (1 _ g)lf1+1a]

z€A*
@ (T () 5212117119l |71+l
= ) 9(1-0 g (11)
(f ) <9> =0
where (a) follows from Proposition 1 for m = 2. O
For ¢ = 2 the maximum likelihood estimate is
Xt = arg max Pr (Y1Ys2|X = z)
= arg max (Y1) <Y2> 52,
which can be expressed using Proposition 1 as,
. x
Xont = Vi 1Y 52l 12
1 = arg max Z (i1 2’w>(w> (12)

weA*

We can also write the ML decoding criterion for the input
of the remnant channel (Fig. 3), given same outputs as,

Zmi,rem = argmax
4

52 ]
<Y1TY27Z><17752) . (13)

The objective function here does not sum over all coef-
ficients of Y7 1 Ys unlike for the independent deletion
channels, and hence constructing the infiltration Y7 1 Y5
gives a table look-up way to find ZAmme. Thus the
infiltration proves its use in estimating the intermediate
sequence Z, which will be fairly close to the actual input
X for small §. For very small §, it would also be fair to

]
expect that (Y7 1 Y5, 2) (1 5 is maximum when |z|
is of the lowest possible value; this motivates the heuristic

of decoding via a shortest common supersequence of the
traces that we term Alg. 4 in Section V.



IV. SYMBOLWISE MAP ESTIMATE

We examine symbolwise maximum-aposteriori (MAP)
estimation when the length n of the sequence is known, and
every sequence in A" is equally likely. We first consider the
case of a single deletion channel and derive an algorithm
(Alg. 1) that is polynomial in n; the extension to ¢t > 1
channels (Alg. 2) may not be polynomial time, and we thus
propose Alg. 3 motivated by a criterion for approximate
MAP estimation. We present the methods for ¢ = 2, and
A ={0,1}, but they extend for general A and ¢.

e t = 1 : The posterior symbol-wise probability is,

Pr(z)Pr(Y|X =x)

Pr(X; =alY) = Z Br(7)
zeA" |z;=a
sl — gl x
B )
ze A" |z;=a

We compute Em‘ vima () using the following Lemma.

Lemma 2.
f)z
fGA;i(L(g
on—lg| l(n—l) (i—l)(n—i) 7
2 g ) 2 o) ol

Jlgi=a
where index j is implicitly constrained to [|g| +i —n : i].

Proof. The high level idea is to think of the LHS as the total
number of ways to first place g in |g| out of n spaces, such
that the i space is always a, and filling out the remaining
spaces. Let s = (51, ..., 5m),5; € [1 : n] and s; < 5;,Vi <
j denote the indices (in increasing order) corresponding to
a particular m-length subsequence of an n-length sequence,
and let S, denote the set of all possible s of length m.

Clearly, |S,,| = (;) Also let fs = fs, fso---Js,,- Now,
> (f) = > > Ufi=g)
rearifi=a N/ fif—ases,
= Z Z {fs =g}
s€Sm f|fi=a
=3 3 =gt + > > 1{fa=g}
sligs flfi=a sli€s f|fi=a

To evaluate the first term, consider Fig. 4(a). For a fixed

(@ (b)
Fig. 4. Figure for the proof of Lemma 1.

s, the number of f|f; = a is the number of empty spaces
to fill in f after matching ¢ to fs, which is 27~ =19, Thus,
the first term is equal to -, 2n—1-lgl = (”’;ﬁ)?”flf‘g'.
To evaluate the second term, we first note that whenever
sj = i, then g; = a, otherwise fs # g. Now when s; =
iand g; = a, gpi;j—1) goes in fi1:i—1] and gpj41:4 gO€S
into fli11:n) > as in Fig. 4(b). As done earlier, we can now

evaluate this to 2719137 (17]) (lg"_ij). O

Algorithm 1 Symbolwise MAP with 1 trace

: Input: (n,Y"), Output: Xsm(Y)

1

2. fori=1,2,...,n do
3 s « PrXi=1]Y)
4
5

Pr(X,=0|Y)
X, 1if s>1,0 else

: return X[q.p

Algorithm 2 Exact Symbolwise MAP for ¢ traces

1: Input: (n,Yy,..,Yy), Output: X, (Y1, ..., Yy)
2: Compute Y7 Y21 ...TY;

3: fori=1,2,....,n do

4: s1,80 0

5 for each w € Y; 1 Y5 of length< n do
6 Sa + Sa + [2”4“"()/1 ot Y w)

>

Zj\wj:a (]Z:i) (\w| j)i| for a = 0,1

8: X; + 1if 517 > sg, 0 else
9: return X[y.p

Algorithm 3 Approximate symbolwise MAP

1: Input: (n, ig,(.).(.ﬂztl){/ )Output: )A(S,n’ammm(Y17
208 H] 1 Pr(X,=0[Y,)
3X<—11fs>10else

4: return X1,

Yt)

Corollary 1. We can implement a polynomial time algo-
rithm (Alg. 1) for symbolwise MAP estimation for t = 1
using

Pr(X;
Pr(X;

(|Y\) +23 v, (52 1)(&\7-3)
(m) +23 5y, o(Z 1)(&:)

e t > 1: Using similar arguments to ¢t = 1, we can show
the following, where o denotes proportionality,

> (1) 6)-G) ae

zEA"|z;=a
Using Proposition 1, we see that,
PI‘(X»L = a|Y1Y2..Y})

> >

elzi=a wl|w|<n

Y. MYt tYiw) Y

wllw|<n z|zi=a

Algorithm 2 uses (15) for the MAP criterion

=1JY)
 =0Y)

Pr(X; = a|V1Ys)

I

(‘T) (Yi 1 Y21 oo 1 Yiow)
w

(‘”) (15)
w
{2" WY 1Y 1. 1 Y, w)

G) (|Zij>)}’ (16)

which may not be polynomial time due to the number of
terms in summation of (16). We propose an alternate strat-
egy for symbolwise estimation in Algorithm 3, where in-
stead of computing arg max, erA"|x7,:a (;fl) (é)(;ﬁt),
we equivalently compute arg max, H;Zl Pr(X; = alYj).
This can be computed in polynomial time from Lemma 2
and Corollary 1.

X; = arg max
acA Z

wljwl<n

(¥

Jlwj=a
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Fig. 5. t = 1: Alg. 1 vs. (18).

V. SEQUENCE ESTIMATION

Unlike Section IV, we here assume that a-priori, we
do not know the length of the sequence in A*; indeed,
given a trace, the posterior probabilities for the sequence
length concentrates around a range of values. Alg. 4 uses
the shortest common supersequence to approximate the ML
decoding of the input of the remnant channel in Section III,
as well as for the overall reconstruction, given that we
cannot hope to recover symbols erased from all sequences.
Theorem 1 shows that the probability of the input not being
a shortest common supersequence of two traces is smaller
than the probability of the input being any given shortest
common supersequence.

Algorithm 4 Shortest common supersequence reconstruc-
tion

1: Input: (Y7,Y3), Output: SCS(Y7,Ys)

2: Find a shortest path p in G(Y7,Y3)

3: return w(p)

Theorem 1.
Pr(X|fY1,Y2)
| X|>[SCS|
Pr(X = SCS(Y1,Y2)|Y1,Y2)

1 2ne
SL%(—) . (17
4e

ifo < (ﬁ)n(lﬁ) for any fixed € > 0.

The basic idea in the proof (available in [12]) is as follows:
We lower bound the denominator term in the left by 1, and
upper bound the numerator by a geometric series using a
variety of common algebraic inequalities.

VI. NUMERICAL RESULTS

Single channel: We compare the symbol-wise MAP Alg. 1
to the sequence ML estimate for the single channel (with
known blocklength) which is

o x

Xomi al;geljliix (Y>
For a blocklength of 20, Fig. 5 shows that symbolwise
MAP outperforms the sequence ML estimate. Note that both
methods have an average edit distance less than 20, which is
the worst case edit distance when our estimate is a random
n length supersequence of Y.
Two vs. one channels: We compare the use of two channels
and Algs 2-3 to using a single deletion channel and Alg. 1
for a small blocklength of 7, we used a small blocklength
since simulating Alg. 3 is of exponential complexity, but

(18)

0.15 02
probability &

Deletion

Fig. 6. t =2: Algs 1, 3 and 2.
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Fig. 7. Alg. 4 (t = 2) vs majority voting (¢t = 3).

we hope that the pattern follows for larger blocklengths.

Fig. 6 shows that though the heuristic Alg. 3 performs
better than Alg. 1, the improvement is not as significant

as using the optimal MAP decoding in Alg. 2, which has
significantly higher complexity. Obtaining low complexity
algorithms which are closer to the optimal MAP symbol-
wise decoding performance is part of on-going work. For
reference we also plot 82, the fraction of bits deleted in both
the traces (and which we can never hope to recover).

Alg. 4: We compare the performance of Alg. 4 using the
edit graph vs. the majority voting reconstruction of [5]
implemented for three channels (an odd number of channels
enables to break ties during majority voting). We use a
blocklength of 100 here. Fig. 7 shows that even though
the majority voting uses ¢ = 3 deletion channels, it can
perform worse than Alg. 4 (t = 2). These are first results
and a deeper investigation of the performance is on-going.
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