
On Maximum Likelihood Reconstruction

over Multiple Deletion Channels

Sundara Rajan Srinivasavaradhan, Michelle Du, Suhas Diggavi and Christina Fragouli∗

Abstract—The problem of reconstructing a sequence when
observed through multiple looks over deletion channels occurs
in “de novo” DNA sequencing. The DNA could be sequenced
multiple times, yielding several “looks” of it, but each time
the sequencer could be noisy with (independent) deletion
impairments. The main goal of this paper is to develop
reconstruction algorithms for a sequence observed through
the lens of a fixed number of deletion channels. We use the
probabilistic model of the deletion channels to develop both
symbol-wise and sequence maximum likelihood decoding crite-
ria, and algorithms motivated by them. Numerical evaluations
demonstrate improvement in terms of edit distance error, over
earlier algorithms.

Index Terms—deletion channels, sequence decoding, MAP
symbol decoding, trace reconstruction

I. INTRODUCTION

The problem of reconstructing (or “decoding”) a se-

quence when observed through multiple looks over deletion

channels occurs in “de novo” DNA sequencing, e.g., see

models and analysis for recent nanopore sequencers [1], [2],

[3]. The DNA could be sequenced multiple times, yielding

several “looks” of it, but each time the sequencer could have

(independent) deletion impairments [1], [2]. The main goal

of this paper is to develop reconstruction algorithms for a

sequence observed through the lens of a fixed number of

deletion channels.

A similar problem has received attention in CS theory and

discrete mathematics, under the name “trace-reconstruction”

[4], [5], [6], [7], [8]. The main question these papers address

is what is the number of traces needed for perfect recon-

struction of an input sequence. They show that the required

number of traces (or looks) through independent deletion

channels grows with the input length, either exponentially

in the worst case or sub-polynomially in the average case. In

contrast, we are interested in the case where we have a fixed

number of deletion channels, motivated by a finite number

of reads of a sequence. Moreover, we do not aim for perfect

reconstruction, but a maximum likelihood decoder for the

input sequence, motivated by a more traditional information-

theoretic decoding criterion. [9] (also see references therein)

also considered decoding over channels with synchroniza-

tion errors, but as far as we know has not examined multiple

parallel channels.

There has also been extensive work on sequence assem-

bly, where multiple short reads are used to reconstruct an

original sequence. This falls into two categories. One where

∗The authors are with the Department of ECE, UCLA. E-mails:
{sundar, michelleruodu,suhas.diggavi,christina.fragouli}@ucla.edu. S.R.S.
acknowledges Guru-Krupa fellowship received during Jan-March 2018,
and M. Du was supported through an undergraduate NSF REU during
summer 2017. This work was supported, in part, by NSF grants 1705077
and 1514531.

many algorithms have been developed and implemented

for assembly with noisy reads, but without theoretical

performance guarantees for insertion/deletion errors in the

reads ([10] and references therein). The other is information-

theoretic work to examine the number of reads to assemble a

sequence from noiseless reads [11]. In contrast, we examine

the case of “de novo” sequencing with multiple reads of

the same sequence through deletion channels, motivated by

multiple reads of a nanopore sequencer.

In this paper1, we formulate maximum likelihood de-

coding criteria for reconstruction through multiple deletion

channels, which we believe has not been examined before.

We develop algorithms for a fixed (and small) number of

traces, which optimize symbol-wise reconstruction when

the original sequence length is known as well as se-

quence reconstruction when the original length is unknown.

Technically, we use a tool called the infiltration product,

which we believe has not been used for the reconstruction

problem over deletion channels before, and which enables

development of an equivalent representation of the problem

that may be of independent interest. For the sequence

reconstruction problem, we show that for sufficiently small

deletion probability, the shortest common supersequence

decoder has significantly higher likelihood, making it a good

candidate for decoding. First evaluation results indicate that

in terms of edit distance error, our approach can outperform

earlier algorithms such as the majority voting methods [5].

The paper is organized as follows. Section II presents the

model and definitions; Section III proves an equivalence

based on infiltration products; Section IV develops exact

symbol-wise MAP/ML decoding criteria and algorithms for

multiple traces, when the input length is known; Section V

develops the sequence estimation criterion and algorithms;

and Section VI presents evaluation results.

II. NOTATION AND PROBLEM FORMULATION

Consider a sequence X passed through t independent

deletion channels as shown in Fig. 1. When the sequence is

passed through a channel, each bit is independently deleted

with probability δ. This is a simple model that captures

the process of the same DNA sequenced t times through a

nanopore sequencer, with each read modeled for simplicity

as a deletion channel2. The goal is to estimate X from the

traces {Yi}s. It is clear that each Yi is a subsequence of X .

We formulate the reconstruction problem as follows.

When we exactly know the length n of the original se-

1A longer version of this work is available at [12].
2As seen in [1],[2] there are more complicated effects of the nanopore

reader not captured in this simple representation.

✞

�

✞

✁☛

✂✄

✁☎

✆

Fig. 1. The input sequence X is passed through t independent deletion
channels. We aim to estimate X from the Yis.

quence, we can compute the symbolwise maximum aposte-

riori estimate as X̂sm = X̂1X̂2...X̂n, as

X̂i = argmax
a∈A

Pr (Xi = a|Y1, ..., Yt). (1)

We calculate the maximum-likelihood sequence estimate as

X̂ml = argmax
h

Pr (X = h|Y1, ..., Yt). (2)

which can be used even when the input length is unknown.

Notation: Calligraphic letters refer to sets and capitalized

letters correspond to random variables. Let A be the set of

all symbols. We will focus on the case where A = {0, 1},

though our methods extend to larger sets. Define An to be

the set of all n-length sequences, A∗ to be the set of all

finite length sequences with symbols in A. For a sequence

f , |f | denotes the length of f . Given sequences f and g

in A∗, the number of subsequence patterns of f that are

equal to g is called the binomial coefficient of g in f and

is denoted by
(

f
g

)

. When the alphabet A is of cardinality

1,
(

f
g

)

=
(

|f |
|g|

)

, the classical binomial coefficient with their

respective lengths as the parameters. This definition hence

could be thought of as a generalization of the classical

binomial coefficients. We will denote by e the sequence of

length 0, and define
(

f
e

)

! 1 ∀ f ∈ A∗.

Edit distance: The edit distance de(f, g) measures

similarity between two sequences of possibly different

lengths [13]. de(f, g) is the minimum number of operations

needed to transform f to g, where the permitted operations

are insertion, deletion or substitution of a symbol. In this

work, we quantify the performance of algorithms in Section

VI using the edit distance metric.

Edit graph (defined in [14]): We now define an edit graph

where given two sequences fand g, every path on the edit

graph yields a supersequence h of f, g, where h is “covered”

by f, g – each symbol of h comes from either f or g or

both. For f and g in A∗, we form a graph G(f, g) with

(|f | + 1) × (|g| + 1) vertices each labelled with a distinct

pair (i, j), 0 ≤ i ≤ |f |, 0 ≤ j ≤ |g|. A directed edge

(i1, j1) → (i2, j2) exists iff at least one of the following

holds: 1) i2 − i1 = 1 and j1 = j2, or 2) j2 − j1 = 1 and

i1 = i2, or 3) i2− i1 = 1, j2− j1 = 1 and fi2 = gj2 , where

fi is the ith symbol of the sequence f .

Let p = ((i1, j1), (i2, j2), ..., (im, jm)) be a path

in G(f, g). We define w(p) to be the sequence

corresponding to the path, i.e., w(p) = x1x2...xm−1

where xk = fik+1
if jk = jk+1, xk = gjk+1

if ik =
ik+1, xk = fik+1

else. Intuitively, w(p) is formed by

✒✡✝ ✡✟

✒✠✝ ✠✟

Fig. 2. Edit graph G(‘APPLE’,‘MAPLE’). An easy way to think about this
is to write down f vertically with each symbol aligned to a vertical set of
edges and g horizontally likewise. A diagonal edge in a square exists if
the corresponding f and g symbols are equal. The thick red arrows form
a path and the symbols next to it form the corresponding sequence.

appending symbols in the following way: append the

corresponding f symbol for a vertical edge, g symbol for

horizontal edge, and f or g symbol for diagonal edge (see

example Fig. 2).

Infiltration product: Using the edit graph we can construct

the set of possible supersequences S(f, g) of f, g which are

covered by it. Clearly multiple paths could yield the same

supersequence and we can count the number of distinct

ways N(h; f, g) one can construct the same supersequence

h from f, g. We can informally define the infiltration

product f ↑ g of f and g, as a polynomial with monomials

the supersequences h in S(f, g) and coefficients 〈f ↑ g, h〉
equal to N(h; f, g). For example, let A = {a, b}, then

ab ↑ ab = ab+ 2aab+ 2abb+ 4aabb+ 2abab

ab ↑ ba = aba+ bab+ abab+ 2abba+ 2baab+ baba.

The definition of infiltration extends to two series via

distributivity (precisely defined later), and to multiple se-

quences f ↑ g ↑ h in the same way: 〈f ↑ g ↑ h,w〉
is the number of distinct ways of constructing w as a

supersequence of f, g, h so that the construction covers w.

We now give a more formal definition of the infiltration

product (see [15] for the equivalence of the two definitions

and a more rigorous treatment). Denote Z to be the ring of

all integers. A series with coefficients in Z and variables in

A∗ is a mapping of A∗ into Z. The set of these series is

denoted by Z〈〈A〉〉. For a series σ ∈ Z〈〈A〉〉 and a sequence

w ∈ A∗, the value of σ on w is denoted by 〈σ,w〉, we refer

to it as the coefficient of w in σ, and it is an element of

Z. Clearly for f, g ∈ A∗, 〈f, g〉 = f=g . The following

operations of sum and product(or concatenation) of two

series σ, τ ∈ Z〈〈A〉〉, turn Z〈〈A〉〉 into a ring [15]:

〈σ + τ, w〉 = 〈σ,w〉+ 〈τ, w〉, (3)

〈στ, w〉 =
∑

w=uv
u,v∈A∗

〈σ, u〉〈τ, v〉 for any w ∈ A∗. (4)

A series is called a polynomial if all but finite number of

its coefficients are zero. We now define a series called the

✞ ✌
�

✄ ✁ �

✂ ☎✆☛

☎✆✝

✟ ✌ �✝✠

✡☞ ✡✍

Fig. 3. The cascade of a single deletion channel with parameter q = δ2

with the remnant channel with parameter p =
1

1+δ
.

infiltration product [15] as follows:

∀f ∈ A∗, f ↑ e = e ↑ f = f. (5)

∀f, g ∈ A∗, ∀a, b ∈ A,

fa ↑ gb = (f ↑ gb)a+ (fa ↑ g)b+ a=b(f ↑ g)a. (6)

∀σ, τ ∈ Z〈〈A〉〉, σ ↑ τ =
∑

f,g∈A∗

〈σ, f〉〈τ, g〉(f ↑ g).

(7)

The infiltration operation is commutative and associative,

and infiltration of two sequences f ↑ g is a polynomial

with variables of length (or degree) at most |f |+ |g| [15].

III. EQUIVALENT FORMULATION

We establish an equivalence of the t = 2 deletion chan-

nels with another channel model that exploits the infiltration

product. To do so, we first state a relation between the

binomial coefficients and the infiltration product, which

forms the backbone for many of our results.

Proposition 1. For h, f1, f2, ..., fm ∈ A∗,

(

h

f1

)(

h

f2

)

...

(

h

fm

)

=
∑

w∈A∗

〈f1 ↑ f2 ↑ ... ↑ fm, w〉

(

h

w

)

.

The full proof of the proposition can be found in [12],

we give an intuition here. We use induction to prove it. The

main idea is as follows: consider a particular occurrence

of f1, ..., fm as subsequences of h. For this instance, the

symbols in h can be divided into two sets: symbols which

are “covered” by f1, ..., fm and symbols which are not.

w refers to the subsequence of h covered by f1, ..., fm,

and of course, there are multiple coverings, as given by

the infiltration product. Summing over all w’s gives us the

expression in the left hand side.

Consider now the channel in Fig. 3, where the input is

first passed through a single deletion channel C1 and then

through the remnant channel C2. Each bit passing through

C2 is deleted in Ỹ1 but appears in Ỹ2 with a probability p

and vice-versa with the same probability, and it appears in

both with a probability 1−2p. Equivalently, for a sequence

z ∈ A∗ and outputs f, g ∈ A∗:

Pr(Ỹ1 = f, Ỹ2 = g|Z = z)

= 〈f ↑ g, z〉p2|z|−|f |−|g|(1− 2p)|f |+|g|−|z|. (8)

The following lemma shows that in terms of the input-

output distribution such a cascade is equivalent to the t = 2
independent deletion channel.

Lemma 1. The t = 2 independent deletion channel and the

cascade in Fig. 3 produce the same Pr(Y1, Y2|X).

Proof. We need to prove that

Pr(Ỹ1 = f, Ỹ2 = g|X = x) = Pr(Y1 = f, Y2 = g|X = x)

when q = δ2 and p = δ
1+δ or equivalently,

Pr(Ỹ1 = f,Ỹ2 = g|X = x)

=

(

x

f

)(

x

g

)

δ2|x|−|f |−|g|(1− δ)|f |+|g|, (9)

since it is easy to see that the RHS is equal to Pr(Y1 =
f, Y2 = g|X = x). Now,

Pr(Ỹ1 = f, Ỹ2 = g|X = x)

=
∑

z∈A∗

[

Pr(Z = z|X = x)× (10)

Pr(Ỹ1 = f, Ỹ2 = g|Z = z,X = x)
]

.

Expanding the probability terms and using the fact that X−
Z − Ỹ1Ỹ2 forms a Markov chain the previous expression is

∑

z∈A∗

[

(

x

z

)

q|x|−|z|(1− q)|z|
]

[

〈f ↑ g, z〉p2|z|−|f |−|g|(1− 2p)|f |+|g|−|z|
]

.

When q = δ2 and p = δ
1+δ , this is equal to

∑

z∈A∗

(

x

z

)

〈f ↑ g, z〉δ2|x|−|f |−|g|(1− δ)|f |+|g|

(a)
=

(

x

f

)(

x

g

)

δ2|x|−|f |−|g|(1− δ)|f |+|g| (11)

where (a) follows from Proposition 1 for m = 2.

For t = 2 the maximum likelihood estimate is

X̂ml = argmax
x

Pr (Y1Y2|X = x)

= argmax
x

(

x

Y1

)(

x

Y2

)

δ2|x|,

which can be expressed using Proposition 1 as,

X̂ml = argmax
x

∑

w∈A∗

〈Y1 ↑ Y2, w〉

(

x

w

)

δ2|x|. (12)

We can also write the ML decoding criterion for the input

of the remnant channel (Fig. 3), given same outputs as,

Ẑml,rem ≡ argmax
z

〈Y1 ↑ Y2, z〉

(

δ2

1− δ2

)|z|

. (13)

The objective function here does not sum over all coef-

ficients of Y1 ↑ Y2 unlike for the independent deletion

channels, and hence constructing the infiltration Y1 ↑ Y2

gives a table look-up way to find Ẑml,rem. Thus the

infiltration proves its use in estimating the intermediate

sequence Z, which will be fairly close to the actual input

X for small δ. For very small δ, it would also be fair to

expect that 〈Y1 ↑ Y2, z〉
(

δ2

1−δ2

)|z|

is maximum when |z|

is of the lowest possible value; this motivates the heuristic

of decoding via a shortest common supersequence of the

traces that we term Alg. 4 in Section V.

IV. SYMBOLWISE MAP ESTIMATE

We examine symbolwise maximum-aposteriori (MAP)

estimation when the length n of the sequence is known, and

every sequence in An is equally likely. We first consider the

case of a single deletion channel and derive an algorithm

(Alg. 1) that is polynomial in n; the extension to t > 1
channels (Alg. 2) may not be polynomial time, and we thus

propose Alg. 3 motivated by a criterion for approximate

MAP estimation. We present the methods for t = 2, and

A = {0, 1}, but they extend for general A and t.

• t = 1 : The posterior symbol-wise probability is,

Pr(Xi =a|Y) =
∑

x∈An|xi=a

Pr(x) Pr(Y |X = x)

Pr(Y)

=
δn−|Y |(1− δ)|Y |

2n Pr(Y)

∑

x∈An|xi=a

(

x

Y

)

We compute
∑

x|xi=a

(

x
Y

)

using the following Lemma.

Lemma 2.

∑

f∈An|fi=a

(

f

g

)

=

2n−|g|





1

2

(

n− 1

|g|

)

+
∑

j|gj=a

(

i− 1

j − 1

)(

n− i

|g| − j

)



 ,

where index j is implicitly constrained to [|g|+ i− n : i].

Proof. The high level idea is to think of the LHS as the total

number of ways to first place g in |g| out of n spaces, such

that the ith space is always a, and filling out the remaining

spaces. Let s = (s1, ..., sm), si ∈ [1 : n] and si < sj , ∀i <
j denote the indices (in increasing order) corresponding to

a particular m-length subsequence of an n-length sequence,

and let Sm denote the set of all possible s of length m.

Clearly, |Sm| =
(

n
m

)

. Also let fs ≡ fs1fs2 ...fsm . Now,

∑

f∈An|fi=a

(

f

g

)

=
∑

f |fi=a

∑

s∈Sm

{fs = g}

=
∑

s∈Sm

∑

f |fi=a

{fs = g}

=
∑

s|i/∈s

∑

f |fi=a

{fs = g}+
∑

s|i∈s

∑

f |fi=a

{fs = g}.

To evaluate the first term, consider Fig. 4(a). For a fixed

✟

�

✁

�

✂ ✄

☎

✆

✆

✆

✒✝✞ ✒✠✞

Fig. 4. Figure for the proof of Lemma 1.

s, the number of f |fi = a is the number of empty spaces

to fill in f after matching g to fs, which is 2n−1−|g|. Thus,

the first term is equal to
∑

s|i/∈s
2n−1−|g| =

(

n−1
|g|

)

2n−1−|g|.

To evaluate the second term, we first note that whenever

sj = i, then gj = a, otherwise fs += g. Now when sj =
i and gj = a, g[1:j−1] goes in f[1:i−1] and g[j+1:|g| goes

into f[i+1:n] , as in Fig. 4(b). As done earlier, we can now

evaluate this to 2n−|g|
∑

j|gj=1

(

i−1
j−1

)(

n−i
|g|−j

)

.

Algorithm 1 Symbolwise MAP with 1 trace

1: Input: (n, Y), Output: X̂sm(Y)
2: for i = 1, 2, ..., n do

3: s ← Pr(Xi=1|Y)
Pr(Xi=0|Y)

4: Xi ← 1 if s ≥ 1, 0 else

5: return X[1:n]

Algorithm 2 Exact Symbolwise MAP for t traces

1: Input: (n, Y1, .., Yt), Output: X̂sm(Y1, ..., Yt)
2: Compute Y1 ↑ Y2 ↑ ... ↑ Yt

3: for i = 1, 2, ..., n do

4: s1, s0 ← 0
5: for each w ∈ Y1 ↑ Y2 of length≤ n do

6: sa ← sa +
[

2n−|w|〈Y1 ↑ ... ↑ Yt, w〉

7:
∑

j|wj=a

(

i−1
j−1

)(

n−i
|w|−j

)

]

for a = 0, 1

8: Xi ← 1 if s1 ≥ s0, 0 else

9: return X[1:n]

Algorithm 3 Approximate symbolwise MAP

1: Input: (n, Y1, ..., Yt), Output: X̂sm,approx(Y1, ..., Yt)

2: s ←
∏t

j=1
Pr(Xi=1|Yj)
Pr(Xi=0|Yj)

3: Xi ← 1 if s ≥ 1, 0 else

4: return X[1:n]

Corollary 1. We can implement a polynomial time algo-

rithm (Alg. 1) for symbolwise MAP estimation for t = 1
using

Pr(Xi = 1|Y)

Pr(Xi = 0|Y)
=

(

n−1
|Y |

)

+ 2
∑

j|Yj=1

(

i−1
j−1

)(

n−i
|Y |−j

)

(

n−1
|Y |

)

+ 2
∑

j|Yj=0

(

i−1
j−1

)(

n−i
|Y |−j

) .

• t > 1 : Using similar arguments to t = 1, we can show

the following, where ∝ denotes proportionality,

Pr(Xi = a|Y1Y2) ∝
∑

x∈An|xi=a

(

x

Y1

)(

x

Y2

)

...

(

x

Yt

)

. (14)

Using Proposition 1, we see that,

Pr(Xi = a|Y1Y2..Yt)

∝
∑

x|xi=a

∑

w||w|≤n

(

x

w

)

〈Y1 ↑ Y2 ↑ ↑ Yt, w〉

=
∑

w||w|≤n

〈Y1 ↑ Y2 ↑ ... ↑ Yt, w〉
∑

x|xi=a

(

x

w

)

. (15)

Algorithm 2 uses (15) for the MAP criterion

X̂i = argmax
a∈A

∑

w||w|≤n

{

2n−|w|〈Y1 ↑ Y2 ↑ ... ↑ Yt, w〉

(

∑

j|wj=a

(

i− 1

j − 1

)(

n− i

|w| − j

)

)

}

, (16)

which may not be polynomial time due to the number of

terms in summation of (16). We propose an alternate strat-

egy for symbolwise estimation in Algorithm 3, where in-

stead of computing argmaxa
∑

x∈An|xi=a

(

x
Y1

)(

x
Y2

)

...
(

x
Yt

)

,

we equivalently compute argmaxa
∏t

j=1 Pr(Xi = a|Yj).
This can be computed in polynomial time from Lemma 2

and Corollary 1.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Deletion probability

A
v
er

ag
e

ed
it

 d
is

ta
n
ce

 (
n
o
rm

al
iz

ed
)

Sequence ML

Algorithm 1

2

Fig. 5. t = 1: Alg. 1 vs. (18).

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

Deletion probability

A
v
er

ag
e

ed
it

 d
is

ta
n
ce

 (
n
o
rm

al
iz

ed
)

Algorithm 2

Algorithm 3

Algorithm 1
2

Fig. 6. t = 2: Algs 1, 3 and 2.

0 0.005 0.01 0.015 0.02
10

6

10
5

10
4

10
3

10
2

10
1

Deletion probability

A
v
er

ag
e

ed
it

 d
is

ta
n
ce

 (
n
o
rm

al
iz

ed
)

Majority voting

Algorithm 4
2

Fig. 7. Alg. 4 (t = 2) vs majority voting (t = 3).

V. SEQUENCE ESTIMATION

Unlike Section IV, we here assume that a-priori, we

do not know the length of the sequence in A∗; indeed,

given a trace, the posterior probabilities for the sequence

length concentrates around a range of values. Alg. 4 uses

the shortest common supersequence to approximate the ML

decoding of the input of the remnant channel in Section III,

as well as for the overall reconstruction, given that we

cannot hope to recover symbols erased from all sequences.

Theorem 1 shows that the probability of the input not being

a shortest common supersequence of two traces is smaller

than the probability of the input being any given shortest

common supersequence.

Algorithm 4 Shortest common supersequence reconstruc-

tion

1: Input: (Y1, Y2), Output: SCS(Y1, Y2)
2: Find a shortest path p in G(Y1, Y2)
3: return w(p)

Theorem 1.
∑

|X|>|SCS|

Pr(X|fY1, Y2)

Pr(X = SCS(Y1, Y2)|Y1, Y2)
≤ 1.33

(

1

4e

)2nǫ

, (17)

if δ ≤
(

1
4e

)n(1+ǫ)
for any fixed ǫ > 0.

The basic idea in the proof (available in [12]) is as follows:

We lower bound the denominator term in the left by 1, and

upper bound the numerator by a geometric series using a

variety of common algebraic inequalities.

VI. NUMERICAL RESULTS

Single channel: We compare the symbol-wise MAP Alg. 1

to the sequence ML estimate for the single channel (with

known blocklength) which is

X̂ml = argmax
x∈An

(

x

Y

)

. (18)

For a blocklength of 20, Fig. 5 shows that symbolwise

MAP outperforms the sequence ML estimate. Note that both

methods have an average edit distance less than 2δ, which is

the worst case edit distance when our estimate is a random

n length supersequence of Y .

Two vs. one channels: We compare the use of two channels

and Algs 2-3 to using a single deletion channel and Alg. 1

for a small blocklength of 7, we used a small blocklength

since simulating Alg. 3 is of exponential complexity, but

we hope that the pattern follows for larger blocklengths.

Fig. 6 shows that though the heuristic Alg. 3 performs
better than Alg. 1, the improvement is not as significant

as using the optimal MAP decoding in Alg. 2, which has

significantly higher complexity. Obtaining low complexity

algorithms which are closer to the optimal MAP symbol-

wise decoding performance is part of on-going work. For

reference we also plot δ2, the fraction of bits deleted in both

the traces (and which we can never hope to recover).

Alg. 4: We compare the performance of Alg. 4 using the

edit graph vs. the majority voting reconstruction of [5]

implemented for three channels (an odd number of channels

enables to break ties during majority voting). We use a

blocklength of 100 here. Fig. 7 shows that even though

the majority voting uses t = 3 deletion channels, it can

perform worse than Alg. 4 (t = 2). These are first results

and a deeper investigation of the performance is on-going.

REFERENCES

[1] W. Mao, S. N. Diggavi, and S. Kannan, “Models and information-
theoretic bounds for nanopore sequencing,” 2017 ISIT, 2017.

[2] ——, “Models and information-theoretic bounds for nanopore
sequencing,” CoRR, vol. abs/1705.11154, 2017. [Online]. Available:
http://arxiv.org/abs/1705.11154

[3] A. H. Laszlo et.al., “Decoding long nanopore sequencing reads of
natural dna,” Nat Biotech, pp. 829–833, 2014.

[4] V. I. Levenshtein, “Efficient reconstruction of sequences,” IEEE

Transactions on Information Theory, Jan 2001.
[5] T. Batu, S. Kannan, S. Khanna, and A. McGregor, “Reconstructing

strings from random traces,” in SODA ’04, 2004, pp. 910–918.
[6] T. Holenstein, M. Mitzenmacher, R. Panigrahy, and U. Wieder, “Trace

reconstruction with constant deletion probability and related results,”
in ACM-SIAM SODA ’08, 2008, pp. 389–398.

[7] A. De, R. O’Donnell, and R. A. Servedio, “Optimal mean-based
algorithms for trace reconstruction,” in STOC 2017.

[8] Y. Peres and A. Zhai, “Average-case reconstruction for the dele-
tion channel: subpolynomially many traces suffice,” CoRR, vol.
abs/1708.00854, 2017.

[9] M. C. Davey and D. J. C. MacKay, “Reliable communication over
channels with insertions, deletions and substitutions,” IEEE Transac-

tions on Information Theory, vol. 47, pp. 687–698, 2001.
[10] H. Li and R. Durbin, “Fast and accurate short read alignment with

burrows-wheeler transform,” 2009.
[11] I. Shomorony, S. H. Kim, T. A. Courtade, and D. N. C. Tse,

“Information-optimal genome assembly via sparse read-overlap
graphs,” Bioinformatics, vol. 32, no. 17, pp. i494–i502, 2016.

[12] S. Srinivasavaradhan, M. Du, S. Diggavi, and C. Fragouli, “On
maximum likelihood reconstruction over multiple deletion channels,”
2017. [Online]. Available: http://arni.ee.ucla.edu/v8.pdf

[13] G. Navarro, “A guided tour to approximate string matching,” ACM

Comput. Surv., vol. 33, no. 1, pp. 31–88, Mar. 2001.
[14] D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer

Science and Computational Biology. New York, NY, USA: Cam-
bridge University Press, 1997.

[15] M. Lothaire, Combinatorics on Words, ser. Cambridge Mathematical
Library. Cambridge University Press, 1997.

