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Abstract—Nanopore sequencing is an emerging new technology
for sequencing DNA, which can read long fragments of DNA
(∼50,000 bases) unlike most current sequencers which can only
read hundreds of bases. While nanopore sequencers can acquire
long reads, the high error rates (≈ 30%) pose a technical
challenge. In a nanopore sequencer, a DNA is migrated through
a nanopore and current variations are measured. The DNA
sequence is inferred from this observed current pattern using
an algorithm called a base-caller. In this paper, we propose
a mathematical model for the “channel” from the input DNA
sequence to the observed current, and calculate bounds on the
information extraction capacity of the nanopore sequencer. This
model incorporates impairments like inter-symbol interference,
deletions, as well as random response. The practical application
of such information bounds is two-fold: (1) benchmarking present
base-calling algorithms, and (2) offering an optimization objective
for designing better nanopore sequencers.

I. INTRODUCTION

DNA sequencing technology has undergone a major revolu-

tion with the cost of sequencing plummeting nearly six orders

of magnitude. Much of this improvement was made possible

by second generation sequencers, utilizing massive paralleliza-

tion, but these machines can only read short fragments of

DNA, typically a few hundred bases long. These short reads

are then stitched together with algorithms exploiting the over-

lap between reads to assemble them into long DNA sequences.

This assembly is unreliable because of repeated regions which

commonly occur in genomic DNA. These repeated regions

play an important role in evolution, development and in the

genetics of many diseases.

Nanopore sequencing promises to address this problem, by

increasing the read lengths by orders of magnitude (up to 100K

bases) [1]. The technology is based on DNA transmigrated

through a nanopore, and the ion current variations through the

pore are measured [2]. The sequence of DNA bases is inferred

from the observed current traces using an algorithm termed as

base-caller. Nanopore-sequencing technology is also beginning

to be commercialized by Oxford Nanopore Technologies.

Nanopore sequencers have enabled new applications such as

rapid virology and forensics.

However, despite recent progress, there is an important

bottleneck; nanopore sequencers built to date, have high er-

ror rate for de novo sequencing1. It is unclear whether the

present error-rate (of 30% for single-strand sequencing [3])

is fundamental to the nanopore or due to the limitations of

present base-calling algorithms. Thus one goal of the present

1De novo sequencing refers to decoding the DNA sequence without the
help of any reference DNA.

direction of work is to understand the information-theoretic

limits of the nanopore sequencer, and help benchmark base-

calling algorithms. To achieve this goal, standardized signal-

level models are needed to analyze such sequencers, which

are currently unavailable. Another important benefit of such

information theoretic understanding is that it provides a way

to optimize the nanopore sequencer (for maximum information

capacity).

Motivated by this, our first contribution is in developing

a mathematical model for the nanopore sequencer. We use

the physics of the nanopore sequencers and experimental

data provided by our collaborators [2] to develop a signal-

level model for the nanopore channel, which captures (non-

linear) inter-symbol interference, signal-level synchronization

errors, and random response of the nanopore to the same

inputs. Our second contribution is capacity upper and lower

bounds for the nanopore channel. We develop lower bounds

on the information capacity of the nanopore channel using

techniques for deletion channels. These lower bounds can

be used for the list size estimation for sequencing arbitrary

sequences as well as assessing DNA storage capability of

nanopore decoding devices. We also develop novel computable

upper bounds for the decoding capacity of nanopore channel,

using a combination of upper-bounding techniques for deletion

channels and finite-state channels. We numerically evaluate

these bounds for both synthetic data using nanopore models

as well as measured responses from nanopore data.

The major technical challenge for the analysis of the

nanopore channel lies in the fact that it belongs to the category

of channels with synchronization errors. The study of such

channels dates back to Gallager [4] and Dobrushin [5], and

interest in the problem was revived due to new bounds in [6].

See [7] for a survey of results. However, even the simplest

i.i.d. deletion channel capacity is unresolved. In this paper we

develop novel lower and upper bounds for a channel model

in the this category, which not only are useful to analyze the

nanopore sequencers, but are also interesting technical results

in their own right. In [8], a nanopore sequencer is modeled at a

hard-decision level by a simplified insertion-deletion channel,

where no run of DNA bases is deleted, to understand how

to combine multiple reads. Our channel model, however, is

aimed at designing base-callers (decoding DNA from current

trace) and therefore operates at fine-grained signal level.

The paper is organized as follows. Section II develops the

signal-level model for the nanopore channel. We outline the

main technical results of this paper in Section III. We develop

the proof of the achievable rates for the nanopore channel in







periods to a finite state channel [11] with only ISI memory.

In this form the upper bounds can be relaxed (see Theorem 3

in Section V), which upper bounds mutual information by the

relative entropy between the “worst-case” block conditional

probability and a stationary Markov distribution on the out-

put. The relaxation can then be computed using the Viterbi

algorithm with linear complexity, and so we can compute it

for very large n, which suppresses the term log |S| and yields

practically more effective upper bounds.

IV. ACHIEVABLE RATES

Our approach is based on and generalizes the lower bound

ideas for (noisy) deletion channels in [6]. The codebook is gen-

erated randomly using a stationary ergodic Markov process.3

The decoder outputs an estimated codeword if, roughly, the

output length is typical and it is the unique codeword which

is jointly typical with the output. With such a coding system

we derive an achievable rate by analyzing the average error

probability, which utilizes techniques for watched Markov

chains in [6], the general AEP [12], and ergodic theory [13].

Consider an i.i.d. deletion channel with input alphabet Y ,

connected to a DMC with output alphabet V . We assume all

alphabets are finite and the deletion probability pd satisfies

0 ≤ pd < 1. Let a stationary Markov process {Yi}i≥1 on Y
with an irreducible transition matrix P be input to the deletion

channel, and let {Zj}j≥1 denote the corresponding output of

the deletion channel. Let π be the steady state distribution

of P . Then {Zj} is a watched Markov chain [6], which is

also a stationary Markov process [14, Lemma 6-6]. Define

θ = 1 − pd > 0, then the watched Markov chain {Zj} has a

transition matrix

P̄ =
θ

1− θ

∞
∑

k=1

(1− θ)kP k = θP [I − (1− θ)P ]−1,

which also has π as the steady state distribution. Note that

as P is irreducible, P̄ is primitive, i.e., all of its entries

are positive. Hence by [13, Thm 1.19], {Zj} is a stationary

ergodic process. The corresponding output process {Vj}j≥1 of

the DMC is a hidden Markov process, and the joint process

{Zj , Vj}j≥1 is also stationary and ergodic (see [15]). As in

[12] we use H(V) to denote the entropy rate of the stationary

ergodic process {Vj} and define the conditional entropy rate

H(Z|V) = H(Z,V)−H(V).
Let a, b ∈ Y . Define P̃b to be the submatrix of P obtained

from removing the b-th row and b-th column, q̃b to be the

column vector obtained from removing the b-th entry of the

b-th column of P , and p̃ab to be the row vector obtained from

removing the b-th entry of the a-th row of P . Let

Eab(γ) = ln
[

Pab + p̃ab(e
γI − P̃b)

−1q̃b

]

for γ > 0 and define E(γ) =
∑

a,b∈Y πaP̄abEab(γ). With

all these definitions we have the achievable rate theorem

(Theorem 1 in Section III), whose proof is presented in [9].

3In the nanopore channel, the ISI channel naturally provides such a Markov
structure.

V. CAPACITY UPPER BOUNDS

We use methods in [16] and [11] to derive a series of

capacity upper bounds in terms of finite blocks of mutual

information (see also [17]), and then seek a relaxation in the

formulation of [18] that leads to more effective computation.

Using techniques similar to [16], we can show that the

channel capacity is upper bounded by

lim inf
n→∞

Cn, Cn ,
1

n
sup
Xn

I
(

Xn;V (n)
)

. (3)

In general, this upper bound is not computable, as the limiting

behavior of Cn is unknown. However, if we can show that

for each n, there is a Cn such that (i) Cn ≤ Cn and (ii)

{nCn}
∞
n=1 is subadditive, then limn→∞ Cn exists and is equal

to infn Cn. Hence Cn is an upper bound for each finite n and

is computable.4 Using these ideas we derive the upper bound

series {Cn} in Theorem 2 (see Section III), whose proof is

presented in [9].

The upper bound (2) suffers from two issues: i) the compu-

tational complexity grows exponentially, since the optimiza-

tion space is |X |n-dimensional; ii) for smaller n, the extra

term 1
n
log |S| is relatively large and decays very slowly with

n, which greatly reduces the effectiveness of the upper bounds.

To address these issues, we add periodic synchronization

symbols to the output (as in [10]), and use the formulation

developed in [18]. Let M denote the period of synchro-

nization and consider block length N = nM . Let X̄k and

V̄k denote XkM
(k−1)M+1 and V

(kM)
((k−1)M+1), respectively. Then

I
(

XN ;V (N)
∣

∣s0
)

≤ I
(

X̄n; V̄ n
∣

∣s0
)

= I
(

X̄n; V̄ n
∣

∣s̄0
)

, where

S̄n , SnM = XnM
nM−K+2. Thus CN ≤ 1

M
C

′

n, where

C
′

n ,
1

n

[

max
s̄0

max
P

X̄n

I
(

X̄n; V̄ n
∣

∣s̄0
)

+ log |S|

]

. (4)

Note that the channel with input X̄n and output V̄n is a finite

state channel [11] with state S̄n and only has inter-symbol

interference (ISI) memory. So we can apply methods in [18]

to simplify the computation of C
′

n:

C
′

n ≤ C̃ ′
n ,

1

n

[

max
ūn

D(W (·|ūn)‖R(·) ) + log |S|
]

, (5)

where Ūk =
(

S̄k−1, X̄k

)

is the input branch of the finite

state channel at time k, W denotes the transition probabil-

ity p(v̄n | ūn) and R can be any probability distribution on

sequences v̄n.

Theorem 3: CN ≤ 1
M
C̃ ′

n for all N = nM .

This new upper bound admits a linear complexity algorithm

(the Viterbi algorithm), if we restrict R to be a stationary

measure of an L-th order homogeneous Markov chain [18].

Furthermore, a good choice of R can be obtained from the

(L+1)-dimensional output distribution of the finite state chan-

nel p
(

v̄ns̄n | x̄ns̄n−1

)

when the input distribution is optimized

with respect to the achievable rate.

4These upper bounding techniques dates back to Gallager [11] for finite
state channels. For discrete memoryless synchronization channels Dobrushin
[19] also showed (as explicitly pointed out in [7]) subadditivity of a series of
capacity upper bounds, however, these channels are memoryless and have no
ISI (or any channels states).



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p
d

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
a
p
a
c
it
y
 b

o
u
n
d
s
 (

b
it
s
)

LB - uniform
LB - Opt
Del LB - uniform
UB, M = 1
UB, M = 2
UB, M = 3
UB, M = 4
UB, M = 5
UB, M = 6
UB, M = 7

Fig. 6. K = 2, |X | = 2, symmetric DMC.

VI. NUMERICAL RESULTS

We use two examples to illustrate the computation of the

capacity bounds for the nanopore channel. The first example

has ISI memory length K = 2, input alphabet size |X | = 2,

and uses a symmetric DMC: in this case V = Y , p(y|y) = c

for all y and p(y′|y) = c′ for all y′ 6= y, for some constants c

and c′. The bounds are plotted in Fig. 6 for different deletion

probabilities. The second example has the same ISI memory

length and input alphabet size, but the DMC is not symmetric:

it is constructed similarly to the example in Section III, where

a part of the Q-mer map data in Fig. 3 is extracted to simulate

the real world situation. The corresponding bounds are plotted

in Fig. 7.

In both examples, we plot the achievable rates in Theorem 1

as the capacity lower bounds, both when the input distribution

is i.i.d. uniform and when P is optimized. We also plot

the achievable rate of pure deletion channel when the input

distribution is i.i.d. uniform, to illustrate the rate loss due

to the signal degradation caused the DMC. From Fig. 6 we

can see that for the channel with a symmetric DMC, i.i.d.

uniformly generated codewords already have a performance

very close to the optimal coding scheme in Section IV. From

Fig. 7 (and also 5 in Section III), we can see that when the

DMC is not symmetric, non-uniformly generated codewords

can achieve higher rates than the uniform ones. But when the

deletion probability pd is small, the uniform case is still close

to optimal.

We also plot the capacity upper bounds in Theorem 3

with different parameters for these two examples. From the

computation results we found that either increasing the syn-

chronization period M or the output Markov order L yields a

tighter upper bound, but when M is not too small the bounds

become very close to each other for different L. Hence in

Fig. 6 and 7 we only plot the upper bounds for different M

(with L = 1). We note that further computational optimization

is needed to calculate the upper bounds for Fig. 5.
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