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Abstract—Nanopore sequencing is an emerging new technology
for sequencing DNA, which can read long fragments of DNA
(~50,000 bases) unlike most current sequencers which can only
read hundreds of bases. While nanopore sequencers can acquire
long reads, the high error rates (=~ 30%) pose a technical
challenge. In a nanopore sequencer, a DNA is migrated through
a nanopore and current variations are measured. The DNA
sequence is inferred from this observed current pattern using
an algorithm called a base-caller. In this paper, we propose
a mathematical model for the ‘“channel” from the input DNA
sequence to the observed current, and calculate bounds on the
information extraction capacity of the nanopore sequencer. This
model incorporates impairments like inter-symbol interference,
deletions, as well as random response. The practical application
of such information bounds is two-fold: (1) benchmarking present
base-calling algorithms, and (2) offering an optimization objective
for designing better nanopore sequencers.

I. INTRODUCTION

DNA sequencing technology has undergone a major revolu-
tion with the cost of sequencing plummeting nearly six orders
of magnitude. Much of this improvement was made possible
by second generation sequencers, utilizing massive paralleliza-
tion, but these machines can only read short fragments of
DNA, typically a few hundred bases long. These short reads
are then stitched together with algorithms exploiting the over-
lap between reads to assemble them into long DNA sequences.
This assembly is unreliable because of repeated regions which
commonly occur in genomic DNA. These repeated regions
play an important role in evolution, development and in the
genetics of many diseases.

Nanopore sequencing promises to address this problem, by
increasing the read lengths by orders of magnitude (up to 100K
bases) [1]. The technology is based on DNA transmigrated
through a nanopore, and the ion current variations through the
pore are measured [2]. The sequence of DNA bases is inferred
from the observed current traces using an algorithm termed as
base-caller. Nanopore-sequencing technology is also beginning
to be commercialized by Oxford Nanopore Technologies.
Nanopore sequencers have enabled new applications such as
rapid virology and forensics.

However, despite recent progress, there is an important
bottleneck; nanopore sequencers built to date, have high er-
ror rate for de novo sequencing!. It is unclear whether the
present error-rate (of 30% for single-strand sequencing [3])
is fundamental to the nanopore or due to the limitations of
present base-calling algorithms. Thus one goal of the present

IDe novo sequencing refers to decoding the DNA sequence without the
help of any reference DNA.

direction of work is to understand the information-theoretic
limits of the nanopore sequencer, and help benchmark base-
calling algorithms. To achieve this goal, standardized signal-
level models are needed to analyze such sequencers, which
are currently unavailable. Another important benefit of such
information theoretic understanding is that it provides a way
to optimize the nanopore sequencer (for maximum information
capacity).

Motivated by this, our first contribution is in developing
a mathematical model for the nanopore sequencer. We use
the physics of the nanopore sequencers and experimental
data provided by our collaborators [2] to develop a signal-
level model for the nanopore channel, which captures (non-
linear) inter-symbol interference, signal-level synchronization
errors, and random response of the nanopore to the same
inputs. Our second contribution is capacity upper and lower
bounds for the nanopore channel. We develop lower bounds
on the information capacity of the nanopore channel using
techniques for deletion channels. These lower bounds can
be used for the list size estimation for sequencing arbitrary
sequences as well as assessing DNA storage capability of
nanopore decoding devices. We also develop novel computable
upper bounds for the decoding capacity of nanopore channel,
using a combination of upper-bounding techniques for deletion
channels and finite-state channels. We numerically evaluate
these bounds for both synthetic data using nanopore models
as well as measured responses from nanopore data.

The major technical challenge for the analysis of the
nanopore channel lies in the fact that it belongs to the category
of channels with synchronization errors. The study of such
channels dates back to Gallager [4] and Dobrushin [5], and
interest in the problem was revived due to new bounds in [6].
See [7] for a survey of results. However, even the simplest
i.i.d. deletion channel capacity is unresolved. In this paper we
develop novel lower and upper bounds for a channel model
in the this category, which not only are useful to analyze the
nanopore sequencers, but are also interesting technical results
in their own right. In [8], a nanopore sequencer is modeled at a
hard-decision level by a simplified insertion-deletion channel,
where no run of DNA bases is deleted, to understand how
to combine multiple reads. Our channel model, however, is
aimed at designing base-callers (decoding DNA from current
trace) and therefore operates at fine-grained signal level.

The paper is organized as follows. Section II develops the
signal-level model for the nanopore channel. We outline the
main technical results of this paper in Section III. We develop
the proof of the achievable rates for the nanopore channel in
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Fig. 1. Nanopore Sequencer

Section IV and the upper bounds in Section V. Numerical
evaluation of these bounds, including with real measurements
from nanopore sequencers provided by UW nanopore lab [2]
are given in Section VI. Details of the proofs and further
references are given in [9].

II. MODEL, NOTATION AND PROBLEM FORMULATION
A. Nanopore sequencer

We will use the nanopore sequencer shown in the simplified
schematic in Fig. 1, with details in [2]. A salt solution is
divided into two wells: cis well and trans well by a lipid
bilayer membrane. A nanopore is inserted into the bilayer,
and a voltage applied between the cis and trans wells results
in an ionic current. The (single-strand) DNA sequence to
be measured is prefixed and affixed with short known DNA
pieces (called adaptors) and enters the nanopore. As the DNA
migrates through the pore, modulations of the ionic current
caused by different nucleotides partially blocking the pore are
measured. An enzyme controls the DNA motion through the
nanopore, slowing it down so that the current variations can
be measured accurately.

An ideal nanopore sequencing system would ensure that
DNA migrates through the pore at a constant rate, that only
one base of DNA affects the current at a given time and from
the observed current, the nucleotide of DNA can be decoded
unambiguously with high probability. However, the following
phenomena occur due to the physics of the nanopore and the
enzyme (see Fig. 2). (i) Random dwelling time: Each nu-
cleotide may spend a varying amount of time in the nanopore,
resulting in unequal step size/level length. This is because
the speed at which the DNA sequence migrates through the
enzyme is a stochastic process. (ii) Inter-symbol interference:
Each observed current value is influenced by multiple bases or
“K-mer” (K bases), because the constriction of the nanopore
is thicker than a single nucleotide. In our experiments K =~ 4,
so we also call them quadromers or “Q-mers” for short. As in
DNA sequences there are 4 different type of nucleotides, there
are 4* = 256 different Q-mers all together. (iii) Backtracking
and skippings: The nucleotides are not necessarily read in
order by the nanopore - there is some backtracking and signif-
icant mis-stepping in the nanopore induced by the enzyme that
draws the DNA through the nanopore. This results in segments
that are repeated as well as segments that pass through without
registering a current reading, resulting in backstepping as well
as skipping (deletion) of segments. (iv) Q-mer map fading:
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Fig. 2. Model of the Nanopore Sequencer for a toy DNA sequence.
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Fig. 3. Mean and standard deviation of 256 Q-mer maps obtained from our
nanopore. Notice the significant overlap of Q-mer maps.

The current level G; at step ¢ is a function of the Q-mer
z; dwelling in the nanopore. However, this function is not
deterministic: each time the same dwelling Q-mer z produces
a current level with some variation, which resembles the fading
effect in communication channels. In Fig. 3, we plot the mean
value of the 256 random Q-mer map, together with their
variances as error-bar. (v) Noisy samples: On top of the Q-
mer map fading, within the same step/level, each sample of
the same level G; is subject to a random noise. Usually we
model the noise as an AWGN process with some variance 02-2,
which may vary from level to level.

B. Channel model and Notation

We can model the nanopore experiment as a communica-
tion process, with the input being the DNA sequence to be
measured and the output being the current samples produced,
with the following simplifying assumptions.

1) Experiments show that skipping happens much more
frequently than backtracking, so we model only skipping
as an i.i.d. deletion process.
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Fig. 4. Simplified nanopore channel.

2) While the nanopore model shown in Fig. 2 produces
current waveforms in continuous time, in practice, a
level-finding algorithm is usually applied (see [2]) to
determine the change-points at which nucleotides mi-
grate in/out of the nanopore, and output the mean
current-levels as a discrete-time current-level sequence
Vi, ..., Vin . We further assume that the output V; are dis-
cretized. Thus the effects of sample noise, dwelling and
fading are modeled using a single discrete memoryless
channel.

In this simplified channel (depicted in Fig. 4), the input
(corresponding to the bases in the DNA sequence) symbol
at time n is denoted by X,,, which has a finite alphabet X.
X,, is passed through an ISI channel with memory K — 1,
to form the K-mer Y, = X ;- = (S,-1,Xp,), where
Spo1 & X 1 denotes the IST channel state at time n — 1.
The alphabets for the K-mers and ISI states are denoted by
Y = XK agnd § = x¥K-1 respectively. The initial state
so is known (they are the prefixed adaptors). The K-mers
{Y,,} are then sent to a deletion channel, where each K-
mer is independently deleted with probability p;. We can
represent the deletion process by an i.i.d. Bernoulli(pg) process
{D;}i>1, where D; = 1 denotes a deletion at time . When
the input of the deletion channel is a length-n vector Y, its
output is a K -mer vector of random length, denoted by Z(").
The corresponding alphabet is Y™ £ Uy UY?U---UY".
Similarly when a segment of K-mers Y, is input to the
deletion channel, we use 2 (:’L) to denote the output.2 Finally,
after deletion, a K-mer Z,, is sent to a DMC to produce the
channel output V,,, (corresponding to the discretized levels),
whose alphabet is denoted by V. We also use V(TZ) to denote
the output of DMC corresponding to the random-length K-
mer vector Z((:l)), and denote its alphabet by V("™ +1),

ITI. MAIN RESULTS

In this paper we obtain both capacity lower and upper
bounds for the nanopore channel given in Fig. 4. We outline
the proofs in this paper with details in [9]. In particular, we
derive achievable rates for a cascade of a deletion channel with
a DMC, i.e., the channel without the first block in Fig. 4, then
apply the result to the nanopore channel. The main result for
the lower bound is the following theorem (see Section IV for
the definition of FE() and other notations and definitions):

Theorem 1: For the cascade of a deletion channel with a
DMC, the following is an achievable rate for each irreducible
Markov transition matrix P on the input alphabet ):

C(P) = — inf (1= 0)y + 0E()]/ 02— OH(ZV). (D

2The sub/superscripts in these notations have parentheses around them to
denote the effect of deletion.
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Fig. 5. Achievable rates using Q-mer map data from experiments [2].

Therefore, if P is a collection of irreducible Markov transition
matrices, then suppep C(P) is also achievable.

For the achievable rates of the nanopore channel, we can
apply the results above, with a constraint on the choice of
Markov transition matrix P: since the current K-mer takes
the form Y, = X . Y1 the next K-mer Y, ; can only
be obtained from left-shifting X 5., by one position and
attaching a new nucleotide X, to the right. Thus for the
nanopore channel the Markov transition matrix can only be
supported on such legal transitions.

The interpretation of these rates is as follows. If we use
i.i.d. uniform input distribution on the nucleotides to generate
the K -mer transition matrix P, then we obtain an achievable
rate that reflects the sequencing capability of the nanopore
sequencer. If we optimize the transition matrix, then we obtain
an achievable rate that can be used to measure the capability of
the nanopore sequencer as a reader for a DNA storage system.
In Fig. 5, we plot the achievable rates in Theorem 1, both
when the input distribution is i.i.d. uniform and when P is
optimized. The channel used is constructed from experimental
data, where the DMC is obtained using the Q-mer map data
from experiments in [2] with level discretization. We can see
that optimized transition matrices can achieve higher rates than
the uniformly generated one.

The main capacity upper bound results are derived in
Section V. Our starting point is the following upper bounds
in the form of finite block mutual information.

Theorem 2: For each n, C,, defined below is a capacity
upper bound for the nanopore channel:

C, = 1 maxmaxI(X"; V(”)’so) +log|S||. (2
n sop Pxn

Second, since the extra term log |S| above considerably affects
the effectiveness of the upper bound for small to moderate n,
while for large n the computation is not practical due to the
exponential complexity of the first term, we seek a relaxation
that has much less complexity. For that purpose we introduce
periodical synchronization symbols to the channel output (as in
[10]), and convert the resulting channel across synchronization



periods to a finite state channel [11] with only ISI memory.
In this form the upper bounds can be relaxed (see Theorem 3
in Section V), which upper bounds mutual information by the
relative entropy between the “worst-case” block conditional
probability and a stationary Markov distribution on the out-
put. The relaxation can then be computed using the Viterbi
algorithm with linear complexity, and so we can compute it
for very large n, which suppresses the term log |S| and yields
practically more effective upper bounds.

IV. ACHIEVABLE RATES

Our approach is based on and generalizes the lower bound
ideas for (noisy) deletion channels in [6]. The codebook is gen-
erated randomly using a stationary ergodic Markov process.’
The decoder outputs an estimated codeword if, roughly, the
output length is typical and it is the unique codeword which
is jointly typical with the output. With such a coding system
we derive an achievable rate by analyzing the average error
probability, which utilizes techniques for watched Markov
chains in [6], the general AEP [12], and ergodic theory [13].

Consider an i.i.d. deletion channel with input alphabet ),
connected to a DMC with output alphabet V. We assume all
alphabets are finite and the deletion probability p, satisfies
0 < pg < 1. Let a stationary Markov process {Y;};,>1 on )
with an irreducible transition matrix P be input to the deletion
channel, and let {Z;},>1 denote the corresponding output of
the deletion channel. Let m be the steady state distribution
of P. Then {Z;} is a watched Markov chain [6], which is
also a stationary Markov process [14, Lemma 6-6]. Define
6 =1—pg > 0, then the watched Markov chain {Z;} has a
transition matrix

_ ) =
"1 20"
k=1

which also has 7 as the steady state distribution. Note that
as P is irreducible, P is primitive, i.e., all of its entries
are positive. Hence by [13, Thm 1.19], {Z;} is a stationary
ergodic process. The corresponding output process {V;};>1 of
the DMC is a hidden Markov process, and the joint process
{Z;,V;}j>1 is also stationary and ergodic (see [15]). As in
[12] we use H (V) to denote the entropy rate of the stationary
ergodic process {V;} and define the conditional entropy rate
H(Z|V)=H(Z,V)—- H(V).

Let a,b € Y. Define ]5b to be the submatrix of P obtained
from removing the b-th row and b-th column, ¢, to be the
column vector obtained from removing the b-th entry of the
b-th column of P, and p,; to be the row vector obtained from
removing the b-th entry of the a-th row of P. Let

kpk =9P[I - (1-6)P)",

Eaw(y) =In [Pab + Pap(e’T — Py) "G,

for v > 0 and define E(y) = Y, ,cy TaPapEap(7). With
all these definitions we have the achievable rate theorem
(Theorem 1 in Section III), whose proof is presented in [9].

3In the nanopore channel, the ISI channel naturally provides such a Markov
structure.

V. CAPACITY UPPER BOUNDS

We use methods in [16] and [11] to derive a series of
capacity upper bounds in terms of finite blocks of mutual
information (see also [17]), and then seek a relaxation in the
formulation of [18] that leads to more effective computation.

Using techniques similar to [16], we can show that the
channel capacity is upper bounded by

liminf C,,
n—oo

C, & 1 sup I(X"; V(”)). 3)
n xn

In general, this upper bound is not computable, as the limiting
behavior of C,, is unknown. However, if we can show that
for each n, there is a C,, such that (i) C,, < C,, and (ii)
{nC,}2_, is subadditive, then lim,, . C, exists and is equal
to inf,, C,,. Hence C,, is an upper bound for each finite n and
is computable.* Using these ideas we derive the upper bound
series {5n} in Theorem 2 (see Section III), whose proof is
presented in [9].

The upper bound (2) suffers from two issues: i) the compu-
tational complexity grows exponentially, since the optimiza-
tion space is |X|"-dimensional; ii) for smaller n, the extra
term % log |S| is relatively large and decays very slowly with
n, which greatly reduces the effectiveness of the upper bounds.
To address these issues, we add periodic synchronization
symbols to the output (as in [10]), and use the formulation
developed in [18]. Let M denote the period of synchro-
nization and consider block length N = nM. Let X}, and
Vi denote X(,C M+1 and V(((k 1))M+1), respectively. Then
I(XN |so) < I(X" V”|so) = I(X” V”|50), where

Sp & Spn = XM Ko Thus Cn < MC’ where

" n S0  Pgn

c 2 1 [maxmax](X" Vn’SO) + log |S|} )

Note that the channel with input X,, and output V}, is a finite
state channel [11] with state S, and only has inter-symbol
interference (ISI) memory. So we can apply methods in [18]
to simplify the computation of 6;:

T, < G2~ [max DOW(I")|R()) +1og]S]] . )
where U, = (Sk_l,Xk) is the input branch of the finite
state channel at time k, W denotes the transition probabil-
ity p(v™ |u™) and R can be any probability distribution on
sequences v"

Theorem 3 Cy < i C” for all N = nM.

This new upper bound admlts a linear complexity algorithm
(the Viterbi algorithm), if we restrict R to be a stationary
measure of an L-th order homogeneous Markov chain [18].
Furthermore, a good choice of R can be obtained from the
(L+1)-dimensional output distribution of the finite state chan-
nel p(z‘)n§n | inEn,l) when the input distribution is optimized
with respect to the achievable rate.

4These upper bounding techniques dates back to Gallager [11] for finite
state channels. For discrete memoryless synchronization channels Dobrushin
[19] also showed (as explicitly pointed out in [7]) subadditivity of a series of
capacity upper bounds, however, these channels are memoryless and have no
ISI (or any channels states).
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Fig. 6. K =2, |X| = 2, symmetric DMC.

VI. NUMERICAL RESULTS

We use two examples to illustrate the computation of the
capacity bounds for the nanopore channel. The first example
has ISI memory length K = 2, input alphabet size |X| = 2,
and uses a symmetric DMC: in this case V = ), p(yly) = ¢
for all y and p(y'|y) = ¢ for all y’ # y, for some constants ¢
and ¢’. The bounds are plotted in Fig. 6 for different deletion
probabilities. The second example has the same ISI memory
length and input alphabet size, but the DMC is not symmetric:
it is constructed similarly to the example in Section III, where
a part of the Q-mer map data in Fig. 3 is extracted to simulate
the real world situation. The corresponding bounds are plotted
in Fig. 7.

In both examples, we plot the achievable rates in Theorem 1
as the capacity lower bounds, both when the input distribution
is i.i.d. uniform and when P is optimized. We also plot
the achievable rate of pure deletion channel when the input
distribution is i.i.d. uniform, to illustrate the rate loss due
to the signal degradation caused the DMC. From Fig. 6 we
can see that for the channel with a symmetric DMC, i.i.d.
uniformly generated codewords already have a performance
very close to the optimal coding scheme in Section IV. From
Fig. 7 (and also 5 in Section III), we can see that when the
DMC is not symmetric, non-uniformly generated codewords
can achieve higher rates than the uniform ones. But when the
deletion probability py is small, the uniform case is still close
to optimal.

We also plot the capacity upper bounds in Theorem 3
with different parameters for these two examples. From the
computation results we found that either increasing the syn-
chronization period M or the output Markov order L yields a
tighter upper bound, but when M is not too small the bounds
become very close to each other for different L. Hence in
Fig. 6 and 7 we only plot the upper bounds for different M
(with L = 1). We note that further computational optimization
is needed to calculate the upper bounds for Fig. 5.
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