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a b s t r a c t

Curvaturemediated elastic interactions between inclusions in lipidmembranes have been analyzed using
both theoretical and computational methods. Entropic corrections to these interactions have also been
studied. Here we show that elastic and entropic forces between inclusions in membranes can compete
under certain conditions to a yield a maximum in the free energy at a critical separation. If the distance
between the inclusions is less than this critical separation then entropic interactions dominate and there
is an attractive force between them, while if the distance is more than the critical separation then elastic
interactions dominate and there is a repulsive force between them. We assume the inclusions to be rigid
and use a previously developed semi-analytic method based on Gaussian integrals to compute the free
energy of amembranewith inclusions.We show that the critical separation between inclusions decreases
with increasing bending modulus and with increasing tension. We also compute the projected area of a
membranewith rigid inclusions under tension and find that the trend of the effective bendingmodulus as
a function of area fraction occupied by inclusions is in agreement with earlier results. Our technique can
be extended to account for entropic effects in other methods which rely on quadratic energies to study
the interactions of inclusions in membranes.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In mechanics, the forces of interaction between defects in an
elastic body are well understood. For example, two screw dislo-
cations with Burger’s vectors b and b′ at a distance r from each
other interact with a force per unit length f of magnitude f =

µbb′/(2πr)whereµ is the shearmodulus of the solid. This interac-
tion force arises because the defects produce elastic fields around
themwhich can overlap. The interaction between the defects could
be attractive or repulsive depending on whether the total elastic
energy of the solid decreases or increases due to the overlapping
of stress and strain fields produced by the defects [1]. Interactions
between defects in an elastic solid can also arise due to entropic
effects. For example, the equilibrium concentration of vacancies in
a solid is a result of the competition between the elastic energy
and the entropy of the vacancies. The elastic part of the free energy
of the solid, Uel, increases if the vacancy concentration increases
because the vacancies create elastic fields around them that store
energy. On the other hand, the entropic part of the free energy of
the solid Uen = −TS ≈ −T (c log c+ (1− c) log(1− c)) decreases as
the vacancy concentration c increases, for c ≪ 1. This competition
gives rise to a non-zero vacancy concentration at which the free
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energy is a minimum [2]. In a similar vein, the chemical force
on a dislocation has its origins in the entropy of vacancies [1].
The physics of elastic and entropic interactions described above
is applicable to any kind of defect of in an elastic material. Since
lipid membranes can be modeled as elastic continua we will apply
concepts similar to those described above to inclusions, such as
proteins, in them.

If two similar proteins bind to a lipid bilayer separated by a
distance r then the elastic deformation field around one of them
can produce a repulsive force on the other one [3]. The potential of
this force decays as 1/r4 as has been deduced from studies of pro-
teins interacting through elastic deformations of a lipid bilayer [4–
10]. Lipid membranes also fluctuate due to Brownian motion.
This results in an attractive entropic force between two similar
proteins [4,6]. The competition between attractive and repulsive
forces can lead to self-assembly of proteins on a lipid bilayer
membrane [11,12]. This sort of self-assembly determines the shape
of a cell membrane and plays a role in endo- and exo-cytosis by
the formation of localized invaginations or buds. Bud formation is
exactlywhat happenswhen capsid proteins of viruses, like HIV and
influenza, land on lipid membranes and self-assemble [4]. Simi-
larly, the protein endophilin clusters together on lipid membranes
and causes the formation of cylindrical tubules, and thus, it plays a
role in membrane trafficking events in a cell [13]. The early stages
of self-assembly of certain amyloid forming proteins (which cause
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Fig. 1. (a) Equilateral triangle element discretization scheme of a square membrane. The inclusions are represented by red hexagons consisting of many triangle elements.
We keep the element size fixed, so the number of triangle elements in an inclusion depends on the size of the inclusion. (b) The equilibrium shape of a membrane with two
proteins embedded in it and separated by a distance1r . The proteins are rigid cylinders which enforce contact anglesψA andψB with respect to the adjacent membrane. In
section 3.1, we will fix these angles to a given value as an enforced boundary condition. (c) Unit normal vectors n̂i and n̂j of two elements sharing one inclusion–membrane
boundary edge. lij is the reference length between the center of these two triangle elements. The red triangle belongs to the inclusion. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Alzheimer’s and Parkinson’s diseases) also involves self-assembly
of monomers on a lipid membrane [14]. Since self-assembly often
involves many more than two proteins, the interactions between
many proteins on a membrane have been studied and it has been
learned that pair-wise expressions are not sufficient to describe
these many body interactions [5]. However, most analytic studies
of these many body interactions account for membrane bending
deformations only. The entropic component of the interactions has
been studied recently using simulations and a sophisticated field
theory [6,7]. The field theory relies on the idea that the height
fluctuations of themembrane are small, so the bending energy can
bewritten as a quadratic form. This leads toGaussian path integrals
that can be evaluated analytically, but not without difficulty [6].

Our overarching goal here is to study elastic and entropic forces
between many inclusions on lipid membranes using computa-
tional methods based on Gaussian integrals. Although mechani-
cal and thermodynamic properties of lipid membranes, including
how inclusions (such as, proteins) effect the overall membrane
behavior, have been quantitatively studied using experimental,
theoretical and computational methods [15–22], it is not always
possible to design an experiment for large scale problems involving
membrane protein interactions; on the other hand, the sample
scale is too large for molecular simulations. To overcome these
difficulties, researchers have turned to continuum modeling and
associated computational methods [23] to study large scale (more
than several microns) problems involving protein interactions on
membranes. Unlike molecular simulation (such as, Monte Carlo
and Molecular Dynamics based studies [21,22]) these continuum
methods do not include Brownian fluctuations. Our technique
described below can potentially be combined with continuum
computationalmethods to account for entropic effects arising from
Brownian fluctuations.

2. Theory

2.1. Semi-analytic method to compute membrane free energy

The thermodynamic properties of a fluctuating lipidmembrane
have been studied by starting from an energy expression [24,25]:

Eb =

∫ L

0

∫ L

0
dxdy

{
Kb

2

(
w,xx + w,yy

)2
+

F
2
(w2

,x + w2
,y)

}
. (1)

Here, L is the side of a square membrane, Kb is the bending modu-
lus, and F is the externally applied isotropic tension. The variable
w(x, y) in the expression above is the out-plane deflection of the
neutral plane. We assume that the deformation is relatively small
such that there are no overhangs in the membrane, and thus the

displacement of each point is written as a function of the in-plane
coordinate (x, y). We discretize the membrane into approximately
Q = 4N2/

√
3 equilateral triangle elements of side l as shown in

Fig. 1(a) (so thatN = L/l), similar tomanyMonte Carlo simulations
on other fluid and solid membranes [26,27]. But, in contrast to the
Monte Carlo simulations we will compute the partition function
analytically. The key idea is to express the membrane energy
quadratically as a function of approximately P ≈ 2N(N + 1)/

√
3

node variables wi, i = 1..P as in [24,25]:

E =
4KbAe

3l4
∑
(i,j)

(
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)2
+

FAe

3l2
∑[
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2
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2
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2] . (2)

Here the summation in the bending energy term runs over all the
adjacent triangle element pairs that share one edge linked bynodes
i, j, with k, l, being the other two nodes of these two elements.
The summation in the potential energy of the tension F runs over
all the triangle elements. The subscripts r, s, t denote the nodes
of one triangle in the second sum. Ae = L2/Q is the reference
area of one triangle. Since the energy expression is quadratic, we
can define a stiffness matrix M such that E = wMwT, where the
vector w = [w1, w2, . . . , wP ] contains all the node displacements.
Recall that M is a function of Kb, F , L, l. In statistical mechanics,
1
Z exp (−E/kBT ) is the probability of finding a system in a given
state of energy E, where kB is the Boltzmann constant, T is the
absolute temperature and Z is the partition function. Next, we
are going to compute the partition function Z by carrying out the
integration of exp (−E/kBT ) over all possible states of the system
as in [28–31]. The partition function Z scales inversely with the
square root of the determinant ofM, as

Z =

√
(2πkBT )P

detM
. (3)

The Gibbs free energy G(F , T ) of the membrane is related to the
partition function Z as G = −kBT ln Z , and hence the projected
area, entropy and other thermal quantities can be computed by dif-
ferentiating G(F , T ). We computed the projected area and entropy
of the membrane as a function of T , Kb and F using the method
above in [24] and recovered results from well-known analytic
expressions for the projected area [18] and entropy in the limit as l
became small. For L = 1 µm and 0.01 pN/nm ≤ F ≤ 1 pN/nm,
l = 2.5 nm resulted in excellent agreement with the known
analytic formula for projected area and entropy. Thus, we have
the capability to capture elastic and entropic effects in fluctuating
membranes.
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2.2. A model for inclusions

A lipid bilayer membrane in a live cell has proteins embedded
in it, whose size is a few nanometers. These proteins are much
stiffer than lipid molecules and they have strong interactions with
their surrounding lipids [32]. The embedded proteins change the
local shape of the membrane and affect both the elastic and en-
tropic parts of the membrane free energy. We will now apply our
semi-analytic method described above to the study the effect of
membrane inclusions.Wemodel each inclusion by assigning some
of the triangle elements with much larger bending stiffness (103

pNnm for all computations in this paper) than the lipid membrane
as shown in Fig. 1(a). Also, we fixed the displacement of all the
inclusion nodes to be zero to compute the bending energy. Thus,
we are assuming the inclusions to be rigid disks in comparison to
the membrane. An advantage of assuming rigid inclusions is that
we do not have to account for the energy due to Gauss curvature
in our calculations [5]. One inclusion could contain 6, 24, or 54
equilateral triangle elements depending on its size. The inclusion–
membrane interaction at the boundary of each inclusion (labeled
A, B, . . .) ismodeled by uniform contact anglesψA, ψB, . . . .HereψA
is the angle between the boundary triangle elements of inclusion A
and the adjacentmembrane triangle elements shown in Fig. 1(b). If
we remember that the displacement of all nodes on the inclusions
is zero then the displacement of inclusion–adjacent membrane
nodes isw =

√
3
2 l sinψA at T = 0. Since all our boundary conditions

are specified node displacements we solve for the displacements
of all other nodes comprising the membrane using standard tech-
niques in the finite element method (see, for example, [33]). Once
the displacements of all nodes are known the elastic energy can
be immediately computed using Eq. (2). To compute the entropic
contribution to the free energy we add a penalty energy Ep to
Eq. (2), as is done in earlier works [25,28]. Here the penalty energy
is written as the sum:

Ep = λ
∑
C

(ψ − ψA)
2, (4)

where ψA is chosen to be 0.1 for all computations, and λ is a
penalty energy coefficient, which is chosen to be large enough
(e.g. λ = 1012 in [25]) to ensure that the probability of config-
urations violating the boundary condition is extremely small in
the partition sum for Z . The contour C is the boundary of all the
proteins, thus we have tacitly assumed that all proteins have the
same contact angle with themembrane. We can, of course, impose
a different contact angle at every protein, but we do not do so here
for simplicity. ψ could be expressed as the absolute value of the
difference between unit normal vectors n̂i, n̂j of the two elements
sharing one boundary edge as in Fig. 1(c), or1

ψ =
⏐⏐n̂i − n̂j

⏐⏐ . (5)

Recall that n̂i and n̂j can be represented by quadratic expressions of
node displacement variables [w1, w2, . . . , wP ]. Therefore, we can
write the penalty energy by an algebraic expression

Ep = wMPwT
+ w · Cp + C, (6)

where Cp is a vector and C is a constant. Now,we perform the same
exercise as in [24]; we replace the stiffnessmatrixM in Eq. (3) with
a newmatrixM+MP taking care of bothmembrane energy as well
as penalty energy, and rewrite the energy expression as:

E + Ep = (w − w̄) (M + MP) (w − w̄)T + C̄ (7)

1 This is by assuming ψ to be small such that cosψ = 1 − ψ2/2. Therefore,⏐⏐n̂i − n̂j
⏐⏐2 = 2 − 2n̂i · n̂j = 2 − 2 cosψ = ψ2 .

where the equilibrium position w̄ has been computed before by
enforcing displacement boundary conditions at each inclusion and
C̄ is a constant taking care of the equilibrium position energy.
Finally, we carry out the integral for the partition function:

Z = exp
(

−
C̄
kBT

)√
(2πkBT )P

det (M + MP)
. (8)

The membrane free energy with inclusions is thus given by:

G = −kBT ln Z = C̄ +
kBT
2

ln det (M + MP)+ G0. (9)

Here the first term takes care of the elastic contribution which is
independent of temperature, and the second term takes care of the
entropic contribution, which increases linearly with temperature,
and G0 is a constant.

Although we used the penalty energy formulation above due
to the simplicity of implementing it, we must point out a pitfall
and alternative methods to account for the constraints in our
calculation of the entropic contribution to the free energy. The
caveat in introducing an extraneous parameter λ (the penalty
parameter in Eq. (4) above) is that the free energywill now depend
on λ too, which is unphysical. To avoid this difficulty we plot the
variance of the fluctuations inw as a function of λ and choose λ so
large that the variance is practically independent of λ. An example
of such a plot can be found in Fig. 3(c) of [25]. Now, there are
other ways of accounting for constraints without introducing an
extraneousλ. One suchmethod is (a) to incorporate the constraints
into the partition sum through a δ-function which enforces the
counting of only those configurations that satisfy the constraint,
then (b) express the δ-function through Fourier transformas δ(x) =
1
2π

∫
∞

−∞
eikx dk, and then (c) use the saddle-point approximation to

compute the integral for the partition function [28]. Yet another
method that can be used for special situations involves (a) elim-
inating some degrees of freedom using the constraint equations,
(b) approximating the energy for the configurations satisfying the
constraints to quadratic order in the remaining degrees of freedom,
and (c) using Gaussian integrals to compute the partition function
by integrating over these remaining degrees of freedom. We have
used the ‘penalty method’ to compute the partition function here
because it is well-established as a method of imposing constraints
in finite element calculations (see, for example, [33]).

3. Results

3.1. Interaction of two inclusions

The first problem solved using our method is to compute the
interactions between two proteins on a lipid bilayer as shown in
Fig. 1(a). We can compute both the elastic and entropic parts of
the free energy of this lipid membrane as a function of a protein
separation distance r . We choose a membrane with side L =

500 nm and a discretization scheme with N = 200, resulting
in an element size l = 2.5 nm because it resulted in excellent
agreement between our computations and the analytic expres-
sions for membrane entropy [24]. The bending modulus is varied
from 5kBT to 20kBT andmembrane tension is set to zero.We hinge
all four sides of the membrane. The inclusions contain 6, 24, or
54 equilateral triangle elements depending on their radius R. The
results for various computation groups in Table 1 are shown in
Fig. 2. In each plot the distance r is on the x-axis, the elastic part
of the free energy (blue curve and circles) is on the left y-axis and
the entropic part of the free energy (green curve and circles) is on
the right y-axis.

We see in all the computation groups that the entropic part
of the free energy increases with protein separation distance and
the elastic part decreases with protein separation distance. The
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Table 1
Parameters used in the two inclusion computations.

Group L(nm) Element size(nm) Kb (pNnm) Inclusion radius (nm) ael (pNnm5) aen (pNnm5) rcr (nm)

A 500 2.5 82 7.5 5.86 × 105
−8.72 × 105 –

B 500 2.5 41 7.5 2.93 × 105
−9.41 × 105 –

C 500 2.5 20.5 7.5 1.46 × 105
−9.97 × 105 –

D 500 2.5 82 5 2.25 × 105
−1.40 × 104 –

E 500 2.5 41 5 1.12 × 105
−1.69 × 104 –

F 500 2.5 20.5 5 5.56 × 104
−1.87 × 104 –

G 500 2.5 82 2.5 6.21 × 104
−1.97 × 103 –

H 500 2.5 41 2.5 3.11 × 104
−2.13 × 103 –

I 500 2.5 20.5 2.5 1.55 × 104
−2.23 × 103 –

J 500 2.5 6.15 2.5 4.66 × 103
−2.31 × 103 25

K 500 2.5 4.1 2.5 3.11 × 103
−2.33 × 103 30

L 500 2.5 3.28 2.5 2.49 × 103
−2.33 × 103 35

M 500 2.5 2.87 2.5 2.18 × 103
−2.28 × 103 40

Fig. 2. Results for computations with two inclusions on a membrane with properties summarized in Table 1. Circles are computation results and solid lines are theoretical
fits using Eq. (10). Blue and green data, associated with left and right y-axis respectively, correspond to elastic and entropic parts of the membrane free energy. Free energy
is non-dimensionalized by kBT at 300 K, and inclusion separation distance r is non-dimensionalized by inclusion radius R. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

dependence of both entropic and elastic parts of the free energy has
been studied analytically in [6] and references therein. It is known
that the elastic and entropic parts of the free energy of amembrane
with two identical rigid circular disks whose centers are a distance
r apart take the form (to lowest order in 1/r):

Uel(r) =
ael
r4

+ O(
1
r6

),

Uen(r) =
aen
r4

+ O(
1
r6

).
(10)

The subscript el and en indicate elastic and entropic parts, respec-
tively.We obtained ael and aen by fitting each computation group in
Table 1 using Eq. (10) as shownby the solid lines in Fig. 2. According
to Yolcu et al. [6] the r−6 term in the elastic part of the free energy
is zero for two circular inclusions of the same radius R, so we did
not include this term in our fits for Uel(r). The fitting parameter
ael should scale with Kbψ

2
AR

4, while fitting parameter aen should
scale with kBTR4 and be independent of Kb if the inclusions are
circular disks of radius R as in [6]. In Fig. 3 we see that our ael (solid

lines) increases linearly with bending modulus Kb, and aen (dashed
lines) remains almost unchanged as bending modulus increases
from 5kBT to 20kBT , which agrees with the analytic theory based
on Gaussian integrals [6].We see from Table 1 that themagnitudes
of ael and aen increase with inclusion size, as expected. We do
not expect exact agreement of our computations with [6] because
(a) our inclusions are hexagonal in shape while those in [6] are
circular, (b) we use only the first few terms in the expansions
provided in [6] to fit our results, (c) our membrane is not infinite
as in [6] and has specific boundary conditions applied at its edges,
and (d) the expansions in [6] are valid, presumably, for R/r ≪ 1,
while for some of our computations R/r < 1.

3.2. Free energy maxima due to elastic entropic competition

Fig. 2 shows that the elastic and entropic parts of the free
energy have opposing trends as functions of r , Uel(r) decreases as r
increases, and Uen increases as r increases. This competition could
result in a maximum in the total free energy if the appropriate
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Fig. 3. Dependence of fitting parameters ael and aen in Eq. (10) on membrane
bending modulus and inclusion size. The blue solid lines associated with the left
y-axis are results for ael , which increases linearly with Kb . The green dashed lines
associated with the right y-axis are results for aen , which are almost independent
of Kb (aen decreases very slowly with decreasing Kb). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

system parameters are chosen. Fig. 2 shows that if we chooseψA =

0.1 then for most lipid bilayer membranes the elastic contribution
dominates the entropic contribution and there is no extremum
in the free energy. However, while the entropic contribution is
independent of Kb the elastic contribution can be made smaller by
lowering Kb so that the two balance to give an extremum. To test
this idea,we chose lower bendingmoduliKb = 0.7−1.5kBT (Group
J–M in Table 1) and computed the free energy of our membrane
with two inclusions of radius 2.5 nm at zero tension. Such low
bending moduli are known to occur for surfactant membranes
(see [34] and references therein). Note from Table 1 that the fitted
values of aen do not varymuch for this group of computationswhile
the fitted values of ael vary linearly with Kb. In Fig. 4(a) we plot the
free energy U(r) for two of these membranes and see a maximum
in each case. In fact, ael ∝ Kbψ

2
A where ψA is the boundary contact

angle at the inclusion [6], so the maximum can also be obtained by
varyingψA instead of Kb. Let us label the inter-inclusion separation
r at the maximum by rcr . The sign of dU

dr indicates that for r < rcr
the interaction force between the inclusions is attractive, while for
r > rcr the interaction force is repulsive.

The location of the maximum, rcr , decreases with increasing
Kb as shown in the inset of Fig. 4(a). This may be qualitatively
understood as follows. For Kb = 0 the free energy is entirely
entropic and tends to a maximum as r → ∞, while for large Kb
when the elastic energy dominates the entropy (i.e., ael ≫ −aen)
the free energy tends to a maximum as r → 0. Hence, as Kb

decreases we expect rcr (the location of the maximum in the free
energy) to increase. In our calculation, we cannot find the exact
location of the maximum, rcr , since we only choose the separation
distances that are multiples of l, the element size. However, we are
able to see the trend of rcr increasing as the bending modulus of
the membrane Kb decreases.

In order to ensure that the maximum obtained in our calcula-
tions above is real and not an artifact of computation we verify
below that it can also be found by going back to the asymptotic
expressions for Uel(r) and Uen(r) given in Yolcu et al. [6] for two
circular inclusions of radius R. For the entropic part of the free
energy the first five terms in Yolcu et al. [6] are:

Uen(r) = −kBT
(

6
x4

+
20
x6

+
84
x8

+
344
x10

+
1388
x12

+ · · ·

)
, (11)

where x =
r
R . This gives an entropic interaction force that is

attractive for all r > 0. We have argued above that addition of an
elastic energy Uel(r) could result in a maximum in the free energy
which would make the interaction force repulsive for r > rcr . To
see if this is true we consider the asymptotic expansion of Uel(r)
given in [6]:

Uel(r) =
8πKbψ

2
A

x4
+ O(

1
x6

). (12)

We plotted U(r) = Uel(r)+ Uen(r) as a function of r and confirmed
that the shape of the curves is similar to those obtained from our
computations (plots not shown). When we chose Kb = 20kBT and
ψA = 0.11 then the maximumwas at rcr

R = 19.1 (or rcr = 47.8 nm
if R = 2.5 nm) and for Kb = 21kBT and ψA = 0.11 the maximum
moved to rcr

R = 8.82 (or rcr = 22 nm if R = 2.5 nm). These
calculations confirmed that the trends from our computational
method described above are not artifacts.

3.3. Effect of tension on free energy maxima

While changing the bending modulus Kb or boundary angle ψA
is one way of controlling the magnitude of elastic and entropic
parts of the free energy, another way to do so is to change the
hydrostatic tension.Wehave tried this forKb = 0.9kBT by applying
a tension F = 1 × 10−5 pN/nm to F = 5 × 10−3 pN/nm (Group
N-P in Table 2). In Fig. 4(b), we compare the computation result
of total free energy of Group N and P of same bending modulus
Kb. The non-zero value of tension increases the elastic part of
the free energy because the potential energy of the applied ten-
sion is added. It decreases the entropic contribution since tension
stretches out the ripples of out-of-plane thermal fluctuation. The
net result is that the location of the free energy maxima rcr de-
creaseswith increasing F , and thus Fig. 4(a) and (b) exhibit a similar
result.

Fig. 4. Non-dimensionalized total free energy profile of selected groups in Tables 1 and 2. (a) The position of themaximum rcr moved to the left as bendingmodulus increased.
(b) The position of the maximummoved to the left as tension increased. (c) The position of the maximum rcr moved to the left as bending modulus increased for a cluster of
seven proteins. The blues lines and red lines are associated with left and right y-axis respectively. The inset in (a) shows the position of the maximum, rcr , as a function of Kb
for zero tension as (see group J–M in Table 1) as dots. The inset in (c) show the layout of protein clusters. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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Table 2
Parameters used in the cluster computations.

Group L(nm) Element size(nm) Kb (pNnm) Inclusion radius (nm) Number of inclusions tension F (pNnm−1) rcr (nm)

N 500 2.5 3.69 2.5 2 0.00001 35
O 500 2.5 3.69 2.5 2 0.0005 35
P 500 2.5 3.69 2.5 2 0.005 30

Q 500 2.5 4.1 2.5 7 0 30
R 500 2.5 2.87 2.5 7 0 35
S 500 2.5 2.87 2.5 7 0.01 40

Fig. 5. Thermally reduced area change vs. membrane tension for various area
fractions of membrane inclusions. The inset shows effective membrane bending
modulus vs. membrane inclusion fractions (dots), fitted by a line given by Eq. (14).

3.4. Cluster of inclusions

Having benchmarked our computations against analytic results
we want to go beyond pair-wise interactions which are known
not to apply to many-body interactions [5]. Our computational
method is not restricted to just two inclusions; it can equally
well be used to study interactions between many inclusions in
a membrane. To illustrate the capability of our method we will
assume that a cluster of seven inclusions forms a regular hexagon
with one inclusion at each of the six vertices and one at the center
as shown in the inset of Fig. 4(c). The side of the hexagon is r . Our
choice of parameters for the membrane inclusion system is shown
in Table 2. We compute the total free energy of the system as a
function of r and change both Kb and F in computation groups Q,
R and S. For all groups we see a maximum in the free energy, as
shown in Table 2 and plotted in Fig. 4(c). If r < rcr then these
proteins will attract each other due to entropic interactions and
r will decrease until a preferred separation is dictated by short
range interactions. The value of rcr can be modulated by changing
the tension F . A more detailed analysis (including a parameter
study) of such clusters of inclusions is left to future work, but the
computations presented here suffice to illustrate the capabilities of
our computational method.

3.5. Thermally reduced area change affected by inclusions

Out-of-plane thermal fluctuation of a lipid membrane results
in a shrinking of the membrane projected area. From [18–20], the
projected area A−1A of a lipidmembrane of area A (reference area
at T = 0) and no inclusions is related to the membrane bending
modulus and membrane tension as:
1A
A

=
kBT
8πKb

ln
π2/b2 + F/Kb

π2/A + F/Kb
, (13)

where b is the radius of a lipid head group and is on the order of 1
nm. If stiff proteins bind to a membrane, its thermal fluctuation
should be suppressed and thus result in a larger projected area
than a membrane with no inclusions. We will now determine how

this change quantitatively depends on the protein area fraction
f . According to [22], there is an effective bending modulus as a
function of f given by

K eff
b =

Kb

1 − cf
, (14)

where c is a coefficient affected by system properties, which could
be obtained by fitting the experimental or simulation data. In our
finite element model, we can test the effect of stiff proteins on
the projected area. We choose a 250 nm ×250 nm membrane
with bending modulus Kb = 10kBT and tension ranging from
0.01−1 pN/nmwith different numbers of 7.5 nm radius hexagonal
inclusions as shown in Table 3. We compute the projected area
change following the procedure in our previous work [24] and
extract the effective bending modulus from the slope of a plot of
1A
A vs. log F . The data are tabulated in Table 3 and the results from
our computations are plotted in Fig. 5. We see that as the fraction f
of inclusions increases, the change in projected area1A decreases.
The slope of the line plotting1A/A vs. log F increases indicating a
larger effective bending modulus. We fitted this line using Eq. (13)
and extracted an effective bending modulus K eff

b as a function of f .
A plot of K eff

b as a function of f is shown in the inset of Fig. 5 along
with a fit using Eq. (14) which yields c = 1.2.

4. Conclusions

The main objective of this paper is to demonstrate a method
which can be used to compute the elastic and entropic interactions
between inclusions in lipid membranes. Our method produces
results that are consistent with earlier work showing that elastic
interaction energy decreases and the entropic interaction energy
increases as the distance between the inclusions increases. We
have also shown how the competition between elastic and en-
tropic forces can result in a maximum in the free energy, both
for two inclusions and a cluster of seven inclusions arranged on
a hexagon. The position of the maximum can be modulated by
changing the membrane tension, membrane bending modulus, or
the contact angle between the inclusion and the lipid. The presence
of a maximum in the interaction free energy implies that when the
spacing between the inclusions is less than that at the maximum
therewill be attractive forces between the inclusions and their final
arrangement will be determined by short range interactions.

Even though we have demonstrated some capabilities of our
method a large parameter space remains unexplored. For example,
we only considered inclusions that are hexagonal and of the same
size; recent work by Kahraman et al. [23] shows that the final
configuration of a cluster of proteins on a membrane depends on
their shape.We did not vary the contact angleψA or consider other
types of boundary condition. These are also expected to affect the
interaction free energy of inclusions. For example, the elastic inter-
action energy should be much smaller if the inclusion–membrane
boundary is a hinge. A limitation of our computational method is
that all the equilateral triangular elements are of the same size;
ideally, the mesh should be more refined near the inclusion. The
impediment to applying this idea is that it is not clear to us how to
compute themembrane entropywith a non-uniformmesh. Finally,
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Table 3
Parameters used in projected area change computations.

Group L(nm) Element size(nm) Kb (pNnm) Inclusion radius Number of inclusions Fraction f K eff
b (pNnm)

T 250 2.5 41 7.5 9 0.0211 42.18
U 250 2.5 41 7.5 24 0.0587 44.12
V 250 2.5 41 7.5 49 0.115 47.24
W 250 2.5 41 7.5 81 0.191 52.21

our inclusions are assumed to be rigid; this assumption can be
relaxed in our computations if we properly account for the energy
due toGauss curvature.Wehope to address these topics in the near
future.

The interactions between the inclusions described here fall
under the category of ‘curvature mediated’ interactions. Interac-
tions between inclusions in lipid membranes can arise also due to
’bilayer thickness’ mediated interactions. We have not considered
this second set of interactions here, but we know that they too can
lead to a preferred lattice spacing between inclusions on a lipid
membrane as summarized in recent work by Kahraman et al. [23].
They minimize an energy that is quadratic in u/a and its gradients
where u(x, y) is half the bilayer thickness and a is half the unper-
turbed bilayer thickness. We believe that our methods of comput-
ing the partition function summarized here can be extended to
this type of energy. Such a modification would more accurately
capture the physics of interactions between inclusions in a lipid
bilayer. Another important ingredient that leads to a preferred
spacing between inclusions, such as proteins, onmembranes is the
interfacial energy at the protein’s boundary with the membrane
as shown by Agrawal et al. [22]. In the work of [22] the interfa-
cial energy is assumed to depend quadratically on the jumps in
displacement and slope at the protein–membrane boundary, and
moduli characterizing this interfacial energy are extracted from
molecular simulations of proteins embedded in lipid membranes.
Once again, since the energies in this method are also quadratic
in the displacements our technique can potentially be applied to
obtain entropic corrections.
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